# A characterization of trees having a minimum vertex cover which is also a minimum total dominating set<sup>\*</sup>

César Hernández-Cruz $^{\dagger}$ 

Departamento de Matemáticas, Facultad de Ciencias Universidad Nacional Autónoma de México Mexico chc@ciencias.unam.mx

# Magdalena Lemańska

Department of Technical Physics and Applied Mathematics Gdansk University of Technology Poland magda@mif.pg.gda.pl

## RITA ZUAZUA

Departamento de Matemáticas, Facultad de Ciencias Universidad Nacional Autónoma de México Mexico ritazuazua@ciencias.unam.mx

### Abstract

A vertex cover of a graph G = (V, E) is a set  $X \subseteq V$  such that each edge of G is incident to at least one vertex of X. A dominating set  $D \subseteq V$  is a total dominating set of G if the subgraph induced by D has no isolated vertices. A  $(\gamma_t - \tau)$ -set of G is a minimum vertex cover which is also a minimum total dominating set. In this article we give a constructive characterization of trees having a  $(\gamma_t - \tau)$ -set.

<sup>\*</sup> The authors are thankful for the financial support received from Grants UNAM-PAPIIT IN-114415 and SEP-CONACyT. Also, the first author would like to thank the Post-Doctoral Fellowships program of DGAPA-UNAM for its support.

<sup>&</sup>lt;sup>†</sup> Corresponding author.

#### 1 Introduction

Throughout this paper G = (V, E) will be a finite, undirected, simple and connected graph of order n. The *neighborhood* of a vertex  $v \in V$  is the set N(v) of all vertices adjacent to v in G. For a set  $X \subseteq V$ , the *open neighborhood*, N(X), is defined to be  $\bigcup_{v \in X} N(v)$  and the closed neighborhood of X is defined as  $N[X] = N(X) \cup X$ . The degree of a vertex  $v \in V$  is d(v) = |N(v)|. A vertex  $v \in V$  is an *end vertex* if d(v) = 1. A support vertex, or support, is the neighbor of an end vertex; a strong support vertex is the neighbor of at least two end vertices. For a set  $S \subseteq V$ , and  $v \in S$ , the private neighborhood pn(v, S) of  $v \in S$  is defined by  $pn(v, S) = \{u \in V: N(u) \cap S = \{v\}\}$ . Each vertex in pn(v, S) is called a private neighbor of v.

A vertex cover of G is a set  $X \subseteq V$  such that each edge of G is incident to at least one vertex of X. A minimum vertex cover is a vertex cover of smallest possible cardinality. The vertex cover number of G,  $\tau(G)$ , is the cardinality of a minimum vertex cover of G. A vertex cover of cardinality  $\tau(G)$  is called a  $\tau(G)$ -set.

The minimum vertex cover problem arises in various important applications, including multiple sequence alignments in computational biochemistry (see for example [15]). In computational biochemistry there are many situations where conflicts between sequences in a sample can be resolved by excluding some of the sequences. Of course, exactly what constitutes a conflict must be precisely defined in the biochemical context. It is possible to define a conflict graph where the vertices represent the sequences in the sample and there is an edge between two vertices if and only if there is a conflict between the corresponding sequences. The aim is to remove the fewest possible sequences that will eliminate all conflicts, which is equivalent to finding a minimum vertex cover in the conflict graph G. Several approaches, such as the use of a parameterized algorithm [4] and the use of a simulated annealing algorithm [17], have been developed to deal with this problem.

A subset D of V is dominating in G if N[D] = V. The domination number of G, denoted by  $\gamma(G)$ , is the minimum cardinality among all dominating sets in G. A dominating set D is a total dominating set of G if the subgraph G[D] induced by D has no isolates. In [2], Cockayne et al. defined the total domination number  $\gamma_t(G)$  of a graph G to be the minimum cardinality among all total dominating sets of G. A total dominating set of cardinality  $\gamma_t(G)$  is called a  $\gamma_t(G)$ -set.

A total vertex cover is a set which is both a total dominating set and vertex cover. In [5], Dutton studies total vertex covers of minimum size. He proved that, in general, the associated decision problem is  $\mathcal{NP}$ -complete, and gives some bounds of the size of a minimum total vertex cover of a graph G in terms of  $\gamma_t(G)$  and  $\tau(G)$ ; this parameter has received some attention in recent years [6, 13]. In this work, we explore a particular case of total vertex covers. A  $(\gamma_t - \tau)$ -set of G is a total vertex cover which is both a  $\gamma_t(G)$ -set and a  $\tau(G)$ -set. While every graph has a total vertex cover, by considering  $K_2$ , it is trivial to observe that not every graph has a  $(\gamma_t - \tau)$ -set. So, it is natural to ask for a characterization of graphs having a  $(\gamma_t - \tau)$ -set.

Clearly, a graph G having a  $(\gamma_t - \tau)$ -set also satisfies  $\gamma_t(G) = \tau(G)$ ; a graph satisfying this equation will be called a  $(\gamma_t - \tau)$ -graph. Again,  $K_2$  is an example of

a graph which is not a  $(\gamma_t - \tau)$ -graph, and so, the following question arises: Does every  $(\gamma_t - \tau)$ -graph contain a  $(\gamma_t - \tau)$ -set? Unfortuately, the answer is no (consider the path on 8 vertices,  $P_8$ ). So, another natural problem to consider is to find a characterization of  $(\gamma_t - \tau)$ -graphs.

Total domination in graphs is well described in [9] and more recently in [11] and [12]. Among the different variants of domination, total domination is probably the best known and the most widely studied. Total domination has been successfully related to many graph theoretic parameters [12]; in particular, an additional motivation for this work is the following observation. It is known that for every graph G,  $\gamma(G) \leq \alpha'(G)$ , where  $\alpha'(G)$  is the matching number of G. Nonetheless, neither  $\alpha'(G)$ nor  $\gamma_t(G)$  bounds the other one, and it is an interesting problem to find families of graphs G such that  $\gamma_t(G) \leq \alpha'(G)$ , [12]. On the other hand, in [7], Hartnell and Rall characterized all the graphs G such that  $\gamma(G) = \tau(G)$ . Recalling that for every bipartite graph G we have  $\tau(G) = \alpha'(G)$ , it is natural to consider the problem of characterizing bipartite graphs G such that  $\gamma_t(G) = \tau(G)$ .

A usual approach in the literature for characterizing families of trees with a certain property is to consider a constructive characterization. First, a family B of trees having the property P (where it is usually trivial to verify it) is chosen as a (recursive) base, and then, some operations preserving P are introduced. Finally, it is proved that the family of trees having the property P are precisely those trees that can be constructed from a tree in B by recursive applications of the proposed operations. This approach has been used extensively, to characterize, for example, Roman trees [10], trees with equal independent domination and restrained domination numbers, trees with equal independent domination and weak domination numbers [8], trees with equal independent domination and secure domination numbers [14], trees with at least k disjoint maximum matchings [16], trees with equal 2-domination and 2independence numbers [1], trees with equal domination and independent domination numbers, trees with equal domination and total domination numbers [3], etc. In [3], a general framework for studying constructive characterizations of trees having an equality between two parameters is discussed.

The main goal of this article is to provide a constructive characterization of the trees having a  $(\gamma_t - \tau)$ -set. For unexplained terms and symbols we refer the reader to [9]. The rest of the paper is structured as follows. In Section 2 we present some basic results that will be used in the rest of the paper; it is also proved that the difference between  $\gamma_t(G)$  and  $\tau(G)$  can be arbitrarily large. Section 3 is devoted to proving our main result; showing that the family of trees T having a  $(\gamma_t - \tau)$ -set can be constructed through four simple operations starting from  $P_4$ . In the final section some related problems are proposed.

## **2** Basic results relating $\gamma_t(G)$ and $\tau(G)$

In Section 3 we will define four operations which will be used to construct all the trees having a  $(\gamma_t - \tau)$ -set. Such operations will be defined using the following definition.

**Definition 2.1.** Let G = (V(G), E(G)) and H = (V(H), E(H)) be two disjoint

graphs, and let u and v be vertices in V(G) and V(H), respectively. The sum of G with H via the edge uv,  $G +_{uv} H$ , is defined as  $V(G +_{uv} H) = V(G) \cup V(H)$  and  $E(G +_{uv} H) = E(G) \cup E(H) \cup \{uv\}.$ 

Moreover, if  $H = K_1 = \{v\}$ , we say that we add v to G supported by u.

Let G and H be two graphs with  $u \in G$  and  $v \in H$ . Notice that, regardless of the choice of u and v, the following inequalities are always satisfied:

$$\max\{\gamma_t(G), \gamma_t(H)\} \le \gamma_t(G +_{uv} H) \le \gamma_t(G) + \gamma_t(H),$$
$$\max\{\tau(G), \tau(H)\} \le \tau(G +_{uv} H) \le \tau(G) + \tau(H) + 1.$$

It is also worth noticing that, for each of the previous four inequalities, there are examples where they are strict, and examples where they are equalities; we will come across them in the following sections.

We will now use the previously defined sum to prove that the difference between  $\gamma_t$  and  $\tau$  can be arbitrarily large, even for trees.

**Proposition 2.1.** For any positive integer k there exists a tree  $T_{(k)}$  such that  $\tau(T_{(k)}) - \gamma_t(T_{(k)}) = k$ .

Proof. Let  $P_{4k+2} = (v_1, v_2, \ldots, v_{4k+2})$  be a path. Add 2k + 2 new vertices to  $P_{4k+2}$ , each supported by a different one of the 2k + 2 vertices  $\{v_1, v_2, v_5, v_6, v_9, v_{10}, \ldots, v_{4k+1}, v_{4k+2}\}$ . The graph that we obtain is a tree  $T_{(k)}$  such that  $\gamma_t(T_{(k)}) = 2k + 2$ , and  $\tau(T_{(k)}) = 3k + 2$ . Thus, we have  $\tau(T_{(k)}) - \gamma_t(T_{(k)}) = k$ . See Figure 1.



Figure 1: Example of  $T_{(k)}$  with k = 2.

**Proposition 2.2.** For every positive integer k there exists a tree  $T'_{(k)}$  such that  $\gamma_t(T'_{(k)}) - \tau(T'_{(k)}) = k$ .

*Proof.* Let  $P_{4k-1} = (v_1, v_2, \ldots, v_{4k-1})$  be a path. Add 2k new vertices to  $P_{4k-1}$  each supported by one of the vertices with an odd index. The graph that we obtain is a tree  $T'_{(k)}$  such that  $\gamma_t(T'_{(k)}) = 3k$ ,  $\tau(T'_{(k)}) = 2k$ . Hence,  $\gamma_t(T'_{(k)}) - \tau(T'_{(k)}) = k$ . See Figure 2.



Figure 2: Example of  $T'_{(k)}$  with k = 3.

The following simple remark will be useful in the proof of our main result.

**Remark 2.3.** Let G be a graph with at least three vertices. If G is not a star, then there exists a minimum total dominating set  $D \subseteq V(G)$  such that D contains no end vertex of G.

*Proof.* Let D be a  $\gamma_t(G)$ -set and x belonging to D be an end vertex of G such that  $N(x) = \{y\}$ . Then  $(D - \{x\}) \cup \{z\}$  is a total dominating set of G, where  $z \in N(y)$  is not an end vertex of G.

Our next result will also be very useful in the following section.

**Lemma 2.4.** If  $\gamma_t(G) = \tau(G)$  and D is a  $(\gamma_t - \tau)$ -set of G, then D contains no end vertex of G.

Proof. Let  $D \subseteq V(G)$  be a  $(\gamma_t - \tau)$ -set of G. If D contains an end vertex x, then, since D is a total dominating set, it follows that there exists a vertex  $y \in D \cap N_G(x)$ . This implies that  $D - \{x\}$  is a vertex cover of G, a contradiction to the assumption that  $\gamma_t(G) = \tau(G)$ .

As we mentioned in the introduction, not every tree contains a  $(\gamma_t - \tau)$ -set. The smallest tree having a  $(\gamma_t - \tau)$ -set is  $P_4$ , which also happens to be the smallest  $(\gamma_t - \tau)$ -tree. But not every  $(\gamma_t - \tau)$ -tree contains a  $(\gamma_t - \tau)$ -set. Actually, it is not hard to find an infinite class of  $(\gamma_t - \tau)$ -trees not having a  $(\gamma_t - \tau)$ -set, the most simple one is the family of paths  $P_{4k}$ , for  $k \geq 2$ . Thus, the class of trees having a  $(\gamma_t - \tau)$ -set is properly contained in the class of  $(\gamma_t - \tau)$ -trees.

Given a class of graphs, it is common in graph theory to aim for a characterization in terms of a set of forbidden induced subgraphs, because such a characterization directly implies polynomial time recognition for the class. Unfortunately, neither  $(\gamma_t - \tau)$ -trees, nor trees having a  $(\gamma_t - \tau)$ -set, admit a characterization of this kind. To prove this fact, consider the following construction.

Recall that the corona of a graph G is the graph obtained from G by adding a new vertex v' to G supported by v, for every vertex  $v \in V(G)$ . If H is the corona of the graph G, then clearly V(G) is a  $(\gamma_t - \tau)$ -set of H. Hence, any graph G is an induced subgraph of a  $(\gamma_t - \tau)$ -graph (of a graph having a  $(\gamma_t - \tau)$ -set), and thus, there exists no forbidden subgraph characterization of  $(\gamma_t - \tau)$ -graphs (of graphs having a  $(\gamma_t - \tau)$ -set).

In our next section, we will obtain a constructive characterization of trees having a  $(\gamma_t - \tau)$ -set. Towards this end, we finish this section introducing a definition and proving a simple technical result.

**Definition 2.2.** Let G be a graph and S a  $\gamma_t(G)$ -set. A vertex v is S-quasi-isolated if there exists  $u \in S$  such that  $pn(u, S) = \{v\}$ . A vertex v is quasi-isolated if it is S-quasi-isolated for some  $\gamma_t(G)$ -set S.

A vertex v is a 2-support if it is at distance two from an end vertex. The next proposition shows that if a vertex is a 2-support, then it is not quasi-isolated.

**Proposition 2.5.** Let G be a graph and  $v \in V$  a 2-support. Then the vertex v is non-quasi-isolated.

*Proof.* Let  $x, y, v \in V$  be an end vertex, a support and a 2-support of G, respectively, such that  $y \in N(x) \cap N(v)$ . For every  $\gamma_t(G)$ -set  $S, y \in S, v \in N(y)$  and  $x \in pn(y, S)$ , therefore for any  $u \in S$ ,  $pn(u, S) \neq \{v\}$ . Hence, v is not quasi-isolated.  $\Box$ 

## 3 Trees having a $(\gamma_t - \tau)$ -set

We define the family  $\mathcal{T}$  of trees to consist of all trees T that can be obtained from a sequence  $T_1, T_2, \ldots, T_k$  of trees such that  $T_1$  is the path  $P_4, T = T_k$  and, if  $k \ge 2$ , then for  $1 \le i \le k-1$ , the tree  $T_{i+1}$  can be obtained from  $T_i$  by one of the following operations.

- **Operation**  $\mathcal{O}_1$ : Consider  $u \in V(T)$  such that u belongs to some  $(\gamma_t \tau)$ -set. Let v be an end vertex of a path  $P_4$ . Then do the sum of T with  $P_4$  via the edge uv.
- **Operation**  $\mathcal{O}_2$ : Let  $u \in V(T)$  such that u belongs to some  $(\gamma_t \tau)$ -set. Then add a new vertex v to T supported by u.
- Operation  $\mathcal{O}_3$ : Let  $u \in V(T)$  such that u belongs to some  $(\gamma_t \tau)$ -set and u is not a quasi-isolated vertex. Let  $P_2 = (v, w)$  be a path with two vertices. Then do the sum of T with  $P_2$  via the edge uv.
- Operation  $\mathcal{O}_4$ : Let  $u \in V(T)$  such that u is not a quasi-isolated vertex of T. Let v be a support vertex of a path  $P_4$ . Then do the sum of T with  $P_4$  via the edge uv.

Our next lemma is valid for any tree, not necessarily a tree in  $\mathcal{T}$ .

**Lemma 3.1.** Let T be a tree. If  $T_i$  is a tree obtained from T by an operation  $\mathcal{O}_i$ ,  $1 \leq i \leq 4$ , then:

- 1.  $\gamma_t(T_1) = \gamma_t(T) + 2$  and  $\tau(T_1) = \tau(T) + 2$ ;
- 2.  $\gamma_t(T_2) = \gamma_t(T)$  and  $\tau(T_2) = \tau(T)$ ;
- 3.  $\gamma_t(T_3) = \gamma_t(T) + 1$  and  $\tau(T_3) = \tau(T) + 1$ ;
- 4.  $\gamma_t(T_4) = \gamma_t(T) + 2$  and  $\tau(T_4) = \tau(T) + 2$ ;

and hence,  $\gamma_t(T) - \tau(T) = \gamma_t(T_i) - \tau(T_i)$ , for  $1 \le i \le 4$ . In particular  $\gamma_t(T) = \tau(T)$  if and only if  $\gamma_t(T_i) = \tau(T_i)$ , for  $1 \le i \le 4$ .

*Proof.* Observe that for  $1 \le i \le 4$ ,  $\gamma_t(T_i) \ge \gamma_t(T)$  and  $\tau(T_i) \ge \tau(T)$ . We consider four cases.

• Suppose i = 1,  $P_4 = (v, x, y, z)$  and  $T_1 = T +_{uv} P_4$ . Let S be a  $\gamma_t(T)$ -set (a  $\tau(T)$ -set, respectively). Then,  $S' = S \cup \{x, y\}$  ( $S' = S \cup \{v, y\}$ , resp.), is a total dominating set (vertex cover, resp.) of  $T_1$ . Thus,  $\gamma_t(T_1) \leq \gamma_t(T) + 2$  and  $\tau(T_1) \leq \tau(T) + 2$ .

For purposes of contradiction, let D be a  $\gamma_t(T_1)$ -set such that  $|D| \leq \gamma_t(T) + 1$ . Define  $S = D \cap V(P_4)$ , then  $2 \leq |S| \leq 3$ . Suppose |S| = 2, then  $v \notin D$  and D-Sis a total dominating set of T with cardinality less than or equal to  $\gamma_t(T) - 1$ . If |S| = 3, then  $(D - S) \cup \{w\}$  for  $w \in N_T(u)$  is a total dominating set of Twith cardinality less than or equal to  $\gamma_t(T) - 1$ . Therefore,  $\gamma_t(T_1) = \gamma_t(T) + 2$ . For purposes of contradiction, let D be a  $\tau(T_1)$ -set such that  $|D| \leq \tau(T) + 1$ . Define  $S = D \cap V(P_4)$ , then |S| = 2. Suppose  $S = \{x, y\}$ , or  $S = \{x, z\}$  or  $S = \{v, y\}$ , then D - S is a vertex cover of T with cardinality less than or equal to  $\tau(T) - 1$ . Hence,  $\tau(T_1) = \tau(T) + 2$ .

- For i = 2 the proof is straightforward.
- Suppose i = 3,  $P_2 = (v, w)$  and  $T_3 = T +_{uv} P_2$ . Let S be a  $\gamma_t(T)$ -set such that  $u \in S$ , then  $S' = S \cup \{v\}$  is a total dominating set of  $T_3$ . Similarly, if S is a  $\tau(T)$ -set then  $S' = S \cup \{v\}$  is a vertex cover of  $T_3$ . Thus,  $\gamma_t(T_3) \leq \gamma_t(T) + 1$  and  $\tau(T_3) \leq \tau(T) + 1$ .

We will show that  $\gamma_t(T_3) = \gamma_t(T) + 1$ , so, for purposes of contradiction, let D be a  $\gamma_t(T_3)$ -set such that  $|D| < \gamma_t(T) + 1$ . It suffices to assume that  $|D| = \gamma_t(T)$ , and there is no end vertex in D (such a set exists by Remark 2.3). Then  $D \cap V(P_2) = \{v\}$  and  $u \in D$ . Since  $|D - \{v\}| < \gamma_t(T)$ , the set  $D - \{v\}$  is not a total dominating set of T. But, for all  $z \in N_T(u)$ , the set  $D' = (D - \{v\}) \cup \{z\}$ is a  $\gamma_t(T)$ -set such that u is D'-quasi-isolated, a contradiction. So,  $\gamma_t(T_3) = \gamma_t(T) + 1$ .

By definition of vertex cover, it is not possible that  $\tau(T_3) = \tau(T)$ , so  $\tau(T_3) = \tau(T) + 1$ .

• Suppose i = 4,  $P_4 = (x, v, y, z)$  and  $T_4 = T +_{uv} P_4$ . Let S be a  $\gamma_t(T)$ -set (a  $\tau(T)$ -set, respectively). Then,  $S' = S \cup \{v, y\}$  is a total dominating set (vertex cover, resp.) of  $T_4$ . Thus,  $\gamma_t(T_4) \leq \gamma_t(T) + 2$  and  $\tau(T_4) \leq \tau(T) + 2$ .

For purposes of contradiction, let D be a  $\gamma_t(T_4)$ -set such that  $|D| \leq \gamma_t(T) + 1$ . Then  $D \cap V(P_4) = \{v, y\}$ . Since  $|D - \{v, y\}| \leq \gamma_t(T) - 1$ , the set  $D - \{v, y\}$ is not a total dominating set of T. But, for all  $w \in N_T(u)$ , the set  $D' = (D - \{v, y\}) \cup \{w\}$  is a  $\gamma_t(T)$ -set such that u is D'-quasi-isolated, a contradiction. So,  $\gamma_t(T_4) = \gamma_t(T) + 2$ .

By definition of vertex cover, it is not possible that  $\tau(T_4) \leq \tau(T) + 1$ , so  $\tau(T_4) = \tau(T) + 2$ .

**Corollary 3.2.** Suppose T is a tree with D a  $(\gamma_t - \tau)$ -set of T. If  $T_i$  is a tree obtained from T by an operation  $\mathcal{O}_i$ ,  $1 \leq i \leq 4$ , then  $T_i$  has a  $(\gamma_t - \tau)$ -set  $D_i$ .

*Proof.* Let D be a  $(\gamma_t - \tau)$ -set of T. With the notation of the above lemma, we have:

• If i = 1 then  $D_1 = D \cup \{x, y\}$ .

- If i = 2 then  $D_2 = D$ .
- If i = 3 then  $D_3 = D \cup \{v\}$ .
- If i = 4 then  $D_4 = D \cup \{v, y\}$ .

**Theorem 3.3.** If  $T \in \mathcal{T}$ , then T is a  $(\gamma_t - \tau)$ -tree.

*Proof.* Let  $T = P_4$ ; then  $\gamma_t(T) = \tau(T) = 2$ . By Lemma 3.1 and Corollary 3.2, the proof is straightforward.

As mentioned at the end of Section 2, there exist  $(\gamma_t - \tau)$ -trees that are not in family  $\mathcal{T}$ .

**Lemma 3.4.** Let T be a tree and u a vertex in T.

- 1. Let  $P_2 = (v, w)$  be a path of order two. Suppose that u belongs to some  $\gamma_t(T)$ -set D of T and define T' to be the sum of T with  $P_2$  via the edge uv. If u is D-quasi-isolated, then  $\gamma_t(T) = \gamma_t(T')$ .
- 2. Let v and w be the support vertices of a path  $P_4$ . Define T' to be the sum of T with  $P_4$  via the edge uv. If u is a quasi-isolated vertex, then  $\gamma_t(T) = \gamma_t(T') + 1$ .

*Proof.* Let D be a  $\gamma_t(T)$ -set such that u is D-quasi-isolated. There exists  $z \in D$  such that  $pn(z, D) = \{u\}$ . It is easy to verify that  $D' = (D - \{z\}) \cup \{v\}$ , is a  $\gamma_t(T')$ -set, in the first case, and  $D' = (D - \{z\}) \cup \{v, w\}$  is a  $\gamma_t(T')$ -set for the second case.  $\Box$ 

Our main result is the following.

**Theorem 3.5.** Let T be a tree. If T has a  $(\gamma_t - \tau)$ -set, then  $T \in \mathcal{T}$ .

*Proof.* By induction on n = |V(T)|. Since  $\gamma_t(T) = \tau(T)$ , we have  $n \ge 4$ . The only tree T with four vertices and equality  $\gamma_t(T) = \tau(T)$  is  $P_4$ , and  $P_4 \in \mathcal{T}$ .

Let T be a tree with n > 4 and let D be a  $(\gamma_t - \tau)$ -set of T. If T has a strong support vertex v with an end vertex u, then D is a  $(\gamma_t - \tau)$ -set of  $T' = T - \{u\}$ . By the induction hypothesis  $T' \in \mathcal{T}$  and, using operation  $\mathcal{O}_2$  we have that  $T \in \mathcal{T}$ . Therefore we can assume that there are no strong support vertices in T.

Let  $P = (v_0, \ldots, v_l)$  be a longest path in T. Then  $d_T(v_1) = 2$  and by Lemma 2.4 the vertices  $v_1, v_2 \in D$ . The proof of the theorem follows from the next two claims.

**Claim 1.** If there exists a vertex  $x \in N_T(v_2) \cap D$  such that  $x \neq v_1$  then  $T \in \mathcal{T}$ .

Proof of Claim 1. Observe that  $d_T(v_2) > 2$ . Otherwise,  $d_T(v_2) = 2$  and hence  $x = v_3$  and  $D - \{v_2\}$  is a vertex cover of T, contradicting  $\gamma_t(T) = \tau(T)$ . Notice that x is not an end vertex of T, otherwise  $D - \{x\}$  would be a vertex cover of T, a contradiction, thus, x is a support vertex of T. Let T' be the tree  $T' = T - \{v_0, v_1\}$ . Since  $v_2 \in D$ , the set  $D - \{v_1\}$  is a vertex cover of T', and  $D - \{v_1\}$  is a total dominating set of T'. This implies that  $\tau(T') \leq \tau(T) - 1$  and that  $\gamma_t(T') \leq \gamma_t(T) - 1$ .

341

Let D' be a  $\gamma_t(T')$ -set. Since x is a support vertex in T',  $x \in D'$  and we may thus assume that  $v_2 \in D'$ . It now follows that  $D' \cup \{v_1\}$  is a total dominating set of T. Thus

$$\gamma_t(T) \le |D' \cup \{v_1\}| = \gamma_t(T') + 1 \le (\gamma_t(T) - 1) + 1 = \gamma_t(T),$$

which implies that  $\gamma_t(T') = \gamma_t(T) - 1$ . On the other hand, if A is a  $\tau(T')$ -set, then  $A \cup \{v_1\}$  is a vertex cover of T. This implies that

$$\tau(T) \le |A \cup \{v_1\}| = \tau(T') + 1 \le (\tau(T) - 1) + 1 = \tau(T).$$

Therefore,  $\tau(T') = \tau(T) - 1$ . Combining all this and using the fact that  $\gamma_t(T) = \tau(T)$ we get that  $\tau(T') = \gamma_t(T')$ . Since  $D - \{v_1\}$  is a vertex cover of T' (of cardinality  $\tau(T')$ ), which is also a total dominating set of T' (of cardinality  $\gamma_t(T')$ ), it now follows that T' has a  $(\gamma_t - \tau)$ -set. Now, it follows from the induction hypothesis that  $T' \in \mathcal{T}$ . We have already noticed that  $v_2$  is a 2-support of T', so it follows from Lemma 2.5 that  $v_2$  is not quasi-isolated in T', and using operation  $\mathcal{O}_3$ , we have that  $T \in \mathcal{T}$ .

Claim 2. If  $N_T(v_2) \cap D = \{v_1\}$ , then  $T \in \mathcal{T}$ .

Proof of Claim 2. If  $N_T(v_2) \cap D = \{v_1\}$ , then  $v_2$  is a support vertex or  $d_T(v_2) = 2$ . Observe that if  $d_T(v_3) = 1$ , since T does not have strong support vertices, then  $T = P_4$ . Therefore,  $d_T(v_3) \ge 2$ . Since D is a vertex cover of T and  $v_3 \notin D$ ,  $|N_T(v_3) \cap D| \ge 2$ .

Suppose  $v_2$  is a support vertex with end vertex neighbor x, and let T' be the tree  $T' = T - \{v_0, v_1, v_2, x\}$ . Since  $v_3 \notin D$ , every edge incident to  $v_3$  in T must be covered by some of its neighbors. Thus, the set  $D - \{v_1, v_2\}$  is a vertex cover of T'. Also, since  $|N_T(v_3) \cap D| \ge 2$ , vertex  $v_3$  is dominated by some vertex in  $D - \{v_1, v_2\}$ ; clearly vertices (other than  $v_3$ ) in V(T') are not dominated in T by  $v_1$  or  $v_2$ , so they must be dominated by some vertex in  $D - \{v_1, v_2\}$ , and therefore  $D - \{v_1, v_2\}$  is a total dominating set of T'. Hence,  $\gamma_t(T') \le \gamma_t(T) - 2$  and  $\tau(T') \le \tau(T) - 2$ . Now, let D' be a  $\gamma_t(T')$ -set. Since  $\{v_1, v_2\}$  is a total dominating set of  $T[\{v_0, v_1, v_2, x\}]$ , it is clear that  $D' \cup \{v_1, v_2\}$  is a total dominating set of T. Hence,

$$\gamma_t(T) \le |D' \cup \{v_1, v_2\}| = \gamma_t(T') + 2 \le (\gamma_t(T) - 2) + 2 = \gamma_t(T),$$

which implies  $\gamma_t(T') = \gamma_t(T) - 2$ . On the other hand, let A be a  $\tau(T')$ -set, hence, since  $\{v_1, v_2\}$  covers all the edges in the graph  $T[\{v_0, v_1, v_2, v_3, x\}]$ , it is clear that  $A \cup \{v_1, v_2\}$  is a vertex cover of T, and thus,

$$\tau(T) \le |A \cup \{v_1, v_2\}| = \tau(T') + 2 \le (\tau(T) - 2) + 2 = \tau(T).$$

Hence  $\tau(T') = \tau(T) - 2$ , and thus, following a reasoning analogous to that of the previous claim, we obtain that  $D - \{v_1, v_2\}$  is a  $(\gamma_t - \tau)$ -set of T'. Now, we can apply the induction hypothesis to obtain  $T' \in \mathcal{T}$ . Notice that  $v_3$  is not a quasiisolated vertex of T', otherwise Lemma 3.4 would imply  $\gamma_t(T) = \gamma_t(T') + 1$ , but  $\gamma_t(T') = \gamma_t(T) - 2$ . Hence, we can obtain T from T' using operation  $\mathcal{O}_4$ , therefore  $T \in \mathcal{T}$ .

Now we may assume that  $d_T(v_2) = 2$ . For purposes of contradiction, suppose that  $d_T(v_3) > 2$ . Hence, there is a path  $P_3 = (a, b, c)$  which is attached to  $v_3$  by the edge  $cv_3$ . Since D is a  $\gamma_t(T)$ -set, we have  $b, c \in D$ . But then  $(D \cup \{v_3\}) - \{v_2, c\}$  is a vertex cover of T, a contradiction. Thus  $d_T(v_3) = 2$ .

Since D is a vertex cover of T and  $v_3 \notin D$ , we have  $v_4 \in D$ . If  $d_T(v_4) = 1$ , then  $T = P_5$ , and D is not a  $\gamma_t(T)$ -set. If  $d_T(v_4) = 2$ , then  $v_5 \in D$ , in this case  $(D - \{v_2, v_4\}) \cup \{v_3\}$  is a vertex cover of T, a contradiction. Hence,  $d_T(v_4) > 2$ .

Define T' as  $T' = T - \{v_0, v_1, v_2, v_3\}$ , we will show that the set  $D' = D - \{v_1, v_2\}$ is a  $(\gamma_t - \tau)$ -set of T' containing  $v_4$ . Notice first that  $v_1$  dominates exactly  $v_0$  and  $v_2$  in T, and  $v_2$  dominates exactly  $v_1$  and  $v_3$  in T. Hence, no vertex in V(T') is dominated in T by  $v_1$  or  $v_2$ , and hence every vertex of T' is dominated in T' by some vertex in  $D - \{v_1, v_2\}$ . Thus,  $D - \{v_1, v_2\}$  is a total dominating set of T', and we have  $\gamma_t(T') \leq \gamma_t(T) - 2$ . If D' is a  $\gamma_t(T')$ -set, and using the fact that  $T[\{v_0, v_1, v_2, v_3\}]$  is isomorphic to  $P_4$ , then it is easy to conclude that  $D' \cup \{v_1, v_2\}$  is a total dominating set of D. Therefore

$$\gamma_t(T) \le |D' \cup \{v_1, v_2\}| = \gamma_t(T') + 2 \le (\gamma_t(T) - 2) + 2 = \gamma_t(T),$$

which implies that  $\gamma_t(T) = \gamma_t(T') - 2$ . Also, since  $v_1$  and  $v_2$  do not cover any edges in T', it is clear that in T, all the edges of T' are covered by  $D - \{v_1, v_2\}$ . Thus,  $D - \{v_1, v_2\}$  is a vertex cover of T', so we have  $\tau(T') \leq \tau(T) - 2$ . Let A be a vertex cover of T', if  $v_4 \in A$ , then  $A \cup \{v_1, v_2\}$  is a vertex cover of T. Therefore

$$\tau(T) \le |A \cup \{v_1, v_2\}| = \tau(T') + 2 \le (\tau(T) - 2) + 2 = \tau(T)$$

which implies that  $\tau(T) = \tau(T') + 2$ . If  $v_4 \notin A$  for every  $\tau(T')$ -set, then, since we have already noticed that  $D - \{v_1, v_2\}$  is a vertex cover of T', it must be the case that  $\tau(T') \leq \tau(T) - 3$ . But then,  $A \cup \{v_1, v_3\}$  would be a  $\tau(T)$ -set with  $\tau(T) - 1$ vertices, a contradiction. Thus, there is at least one  $\tau(T')$ -set containing  $v_4$ , and, as mentioned above,  $\tau(T) = \tau(T') + 2$ . Therefore,  $D - \{v_1, v_2\}$  is a  $(\gamma_t - \tau)$ -set of T', and the induction hypothesis implies  $T' \in \mathcal{T}$ . Finally, we can obtain T from T' using operation  $\mathcal{O}_1$ .

Therefore, we have proved the following theorem.

**Theorem 3.6.** It T is a tree, then  $T \in \mathcal{T}$  if and only if T has a  $(\gamma_t - \tau)$ -set.

#### 4 Further work and open problems

Once we have characterized the trees having a  $(\gamma_t - \tau)$ -set, the following natural step is to consider the following problem.

**Problem 4.1.** Find a characterization for the  $(\gamma_t - \tau)$ -trees.

If we let  $\mathcal{T}'$  be the family of all  $(\gamma_t - \tau)$ -trees, it is clear that the family  $\mathcal{T}$ , of all trees having a  $(\gamma_t - \tau)$ -set, is contained in  $\mathcal{T}'$ . We have already observed in Section 2, that this containment is proper. Moreover, we can slightly modify the operations

 $\mathcal{O}_1, \mathcal{O}_2$ , and  $\mathcal{O}_3$  to preserve the equality  $\gamma_t = \tau$ , but not necessarily preserving the existence of a  $(\gamma_t - \tau)$ -set, thus obtaining a larger infinite family of trees, say  $\mathcal{S}$ , such that  $\mathcal{T} \subset \mathcal{S} \subset \mathcal{T}'$ . The modified operations for a tree T are the following (notice the relaxation of the choice of u, cf. Section 2).

- **Operation**  $\mathcal{O}'_1$ : Let u be a vertex in T, and let v be an end vertex of a path  $P_4$ . Then do the sum of T with  $P_4$  via the edge uv.
- Operation  $\mathcal{O}'_2$ : Let  $u \in V(T)$  such that u belongs to some  $\gamma_t(T)$ -set and also belongs to some  $\tau(T)$ -set. Then add a new vertex v to T supported by u.
- Operation  $\mathcal{O}'_3$ : Let  $u \in V(T)$  such that u belongs to some  $\gamma_t(T)$ -set and u it is not a quasi-isolated vertex. Let  $P_2 = (v, w)$  be a path with two vertices. Then do the sum of T with  $P_2$  via the edge uv.

Notice that the family of paths of length  $4k, k \geq 2$ , mentioned in Section 2 as an example of an infinite family of  $(\gamma_t - \tau)$ -graphs not having a  $(\gamma_t - \tau)$ -set, can be obtained from  $P_4$  by recursively applying operation  $\mathcal{O}'_1$ ; this shows that the inclusion  $\mathcal{T} \subset \mathcal{T}'$  is proper. Similarly, examples can be found of a tree T' obtained from a tree T by applying operation  $\mathcal{O}_i, i \in \{2, 3\}$ , such that T has a  $(\gamma_t - \tau)$ -set, but T' does not.

From the computational point of view, for any tree T, both  $\gamma_t(T)$  and  $\tau(T)$  can be determined in polynomial time. Hence, the problem of determining if  $\gamma_t(T) = \tau(T)$ , for a tree T, is polynomial time solvable. For the case of trees having a  $(\gamma_t - \tau)$ set, Theorem 3.6 does not trivially imply a polynomial algorithm to determine the existence of a  $(\gamma_t - \tau)$ -set in a tree, so the following problem seems to be interesting.

**Problem 4.2.** Find the complexity of determining the existence of a  $(\gamma_t - \tau)$ -set in a tree.

Of course, it is also interesting to ask both problems for general graphs.

**Problem 4.3.** For a given graph G:

- Find the complexity of determining whether  $\gamma_t(G) = \tau(G)$ .
- Find the complexity of determining the existence of a  $(\gamma_t \tau)$ -set in G.

Our intuition says that the existence of a  $(\gamma_t - \tau)$ -set is so restrictive in the structure of G that the second problem might be solvable in polynomial time.

## References

 C. Brause, M. A. Henning and M. Krzywkowski, A characterization of trees with equal 2-domination and 2-independence numbers, *Discrete Math. Theor. Comput. Sci.* 19(1) (2017).

- [2] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, *Networks* 10(3) (1980), 211–219.
- [3] M. Dorfling, W. Goddard, M. A. Henning and C. M. Mynhardt, Construction of trees and graphs with equal domination parameters, *Discrete Math.* 306(21) (2006), 2647–2654.
- [4] R. G. Downey and M. R. Fellows, Fixed parameter tractability and completeness II: completeness for W[1], Theor. Comput. Sci. 141(1-2) (1995), 109–131.
- [5] R. Dutton, Total vertex covers, Bull. Inst. Combin. Appl. 66 (2012) 33–41.
- [6] R. Dutton and W. Klostermeyer, Edge Dominating Sets and Vertex Covers, Discuss. Math. Graph Theory 33(2) (2013), 437–456.
- [7] B. Hartnell and D. F. Rall, A characterization of graphs in which some minimum dominating set covers all the edges, *Czechoslovak Math. J.* 45(2) 221–230.
- [8] J. H. Hattingh and M. A. Henning, Characterizations of trees with equal domination parameters, J. Graph Theory 34(2) (2000) 142–153.
- [9] T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Math., 208. Marcel Dekker, Inc., New York, 1998.
- [10] M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22(2) (2002), 325–334.
- [11] M. A. Henning, A survey on selected recent results on total domination in graphs Discrete Math. 309(1) (2009), 32–63.
- [12] M. A. Henning and A. Yeo, *Total domination in graphs*, Springer Monographs in Mathematics, Springer, New York, 2013.
- [13] P. C. Li, Computing optimal total vertex covers for trees, http://www.cs.umanitoba.ca/ lipakc/styled/tvc5.pdf.
- [14] Z. Li and J. Xu, A characterization of trees with equal independent domination and secure domination numbers, *Inform. Process. Lett.* 119 (2017), 14–18.
- [15] S. Pirzada and A. Dharwadker, Applications of Graph Theory, J. Korea SIAM. 11(4) (2007), 19–38.
- [16] P. Slater, A constructive characterization of trees with at least k disjoint maximum matchings, J. Combin. Theory Ser. B 25 (1978), 326–338.
- [17] X. Xu and J. Ma, An efficient simulated annealing algorithm for the minimum vertex cover problem, *Neurocomputing* 69(7-9) (2006), 913–916.

(Received 20 Jan 2018; revised 12 Aug 2018, 12 Nov 2018)