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Abstract
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a total dominating set of G if the subgraph induced by D has no isolated
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a minimum total dominating set. In this article we give a constructive
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1 Introduction

Throughout this paper G = (V,E) will be a finite, undirected, simple and connected
graph of order n. The neighborhood of a vertex v ∈ V is the set N(v) of all vertices
adjacent to v in G. For a set X ⊆ V, the open neighborhood, N(X), is defined to be⋃

v∈X N(v) and the closed neighborhood of X is defined as N [X] = N(X) ∪X. The
degree of a vertex v ∈ V is d(v) = |N(v)|. A vertex v ∈ V is an end vertex if d(v) = 1.
A support vertex, or support, is the neighbor of an end vertex; a strong support vertex
is the neighbor of at least two end vertices. For a set S ⊆ V, and v ∈ S, the private
neighborhood pn(v, S) of v ∈ S is defined by pn(v, S) = {u ∈ V : N(u) ∩ S = {v}}.
Each vertex in pn(v, S) is called a private neighbor of v.

A vertex cover of G is a set X ⊆ V such that each edge of G is incident to at
least one vertex of X. A minimum vertex cover is a vertex cover of smallest possible
cardinality. The vertex cover number of G, τ(G), is the cardinality of a minimum
vertex cover of G. A vertex cover of cardinality τ(G) is called a τ(G)-set.

The minimum vertex cover problem arises in various important applications, in-
cluding multiple sequence alignments in computational biochemistry (see for example
[15]). In computational biochemistry there are many situations where conflicts be-
tween sequences in a sample can be resolved by excluding some of the sequences. Of
course, exactly what constitutes a conflict must be precisely defined in the biochem-
ical context. It is possible to define a conflict graph where the vertices represent the
sequences in the sample and there is an edge between two vertices if and only if there
is a conflict between the corresponding sequences. The aim is to remove the fewest
possible sequences that will eliminate all conflicts, which is equivalent to finding a
minimum vertex cover in the conflict graph G. Several approaches, such as the use
of a parameterized algorithm [4] and the use of a simulated annealing algorithm [17],
have been developed to deal with this problem.

A subset D of V is dominating in G if N [D] = V . The domination number of
G, denoted by γ(G), is the minimum cardinality among all dominating sets in G. A
dominating set D is a total dominating set of G if the subgraph G[D] induced by D
has no isolates. In [2], Cockayne et al. defined the total domination number γt(G) of
a graph G to be the minimum cardinality among all total dominating sets of G. A
total dominating set of cardinality γt(G) is called a γt(G)-set.

A total vertex cover is a set which is both a total dominating set and vertex
cover. In [5], Dutton studies total vertex covers of minimum size. He proved that,
in general, the associated decision problem is NP-complete, and gives some bounds
of the size of a minimum total vertex cover of a graph G in terms of γt(G) and
τ(G); this parameter has received some attention in recent years [6, 13]. In this
work, we explore a particular case of total vertex covers. A (γt − τ)-set of G is a
total vertex cover which is both a γt(G)-set and a τ(G)-set. While every graph has
a total vertex cover, by considering K2, it is trivial to observe that not every graph
has a (γt − τ)-set. So, it is natural to ask for a characterization of graphs having a
(γt − τ)-set.

Clearly, a graph G having a (γt − τ)-set also satisfies γt(G) = τ(G); a graph
satisfying this equation will be called a (γt − τ)-graph. Again, K2 is an example of
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a graph which is not a (γt − τ)-graph, and so, the following question arises: Does
every (γt− τ)-graph contain a (γt− τ)-set? Unfortuately, the answer is no (consider
the path on 8 vertices, P8). So, another natural problem to consider is to find a
characterization of (γt − τ)-graphs.

Total domination in graphs is well described in [9] and more recently in [11] and
[12]. Among the different variants of domination, total domination is probably the
best known and the most widely studied. Total domination has been successfully
related to many graph theoretic parameters [12]; in particular, an additional moti-
vation for this work is the following observation. It is known that for every graph G,
γ(G) ≤ α′(G), where α′(G) is the matching number of G. Nonetheless, neither α′(G)
nor γt(G) bounds the other one, and it is an interesting problem to find families of
graphs G such that γt(G) ≤ α′(G), [12]. On the other hand, in [7], Hartnell and
Rall characterized all the graphs G such that γ(G) = τ(G). Recalling that for every
bipartite graph G we have τ(G) = α′(G), it is natural to consider the problem of
characterizing bipartite graphs G such that γt(G) = τ(G).

A usual approach in the literature for characterizing families of trees with a certain
property is to consider a constructive characterization. First, a family B of trees
having the property P (where it is usually trivial to verify it) is chosen as a (recursive)
base, and then, some operations preserving P are introduced. Finally, it is proved
that the family of trees having the property P are precisely those trees that can be
constructed from a tree in B by recursive applications of the proposed operations.
This approach has been used extensively, to characterize, for example, Roman trees
[10], trees with equal independent domination and restrained domination numbers,
trees with equal independent domination and weak domination numbers [8], trees
with equal independent domination and secure domination numbers [14], trees with
at least k disjoint maximum matchings [16], trees with equal 2-domination and 2-
independence numbers [1], trees with equal domination and independent domination
numbers, trees with equal domination and total domination numbers [3], etc. In [3],
a general framework for studying constructive characterizations of trees having an
equality between two parameters is discussed.

The main goal of this article is to provide a constructive characterization of the
trees having a (γt − τ)-set. For unexplained terms and symbols we refer the reader
to [9]. The rest of the paper is structured as follows. In Section 2 we present some
basic results that will be used in the rest of the paper; it is also proved that the
difference between γt(G) and τ(G) can be arbitrarily large. Section 3 is devoted to
proving our main result; showing that the family of trees T having a (γt− τ)-set can
be constructed through four simple operations starting from P4. In the final section
some related problems are proposed.

2 Basic results relating γt(G) and τ(G)

In Section 3 we will define four operations which will be used to construct all the trees
having a (γt − τ)-set. Such operations will be defined using the following definition.

Definition 2.1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two disjoint
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graphs, and let u and v be vertices in V (G) and V (H), respectively. The sum of G
with H via the edge uv, G +uv H, is defined as V (G +uv H) = V (G) ∪ V (H) and
E(G+uv H) = E(G) ∪ E(H) ∪ {uv}.

Moreover, if H = K1 = {v}, we say that we add v to G supported by u.

Let G and H be two graphs with u ∈ G and v ∈ H. Notice that, regardless of
the choice of u and v, the following inequalities are always satisfied:

max{γt(G), γt(H)} ≤ γt(G+uv H) ≤ γt(G) + γt(H),

max{τ(G), τ(H)} ≤ τ(G+uv H) ≤ τ(G) + τ(H) + 1.

It is also worth noticing that, for each of the previous four inequalities, there are
examples where they are strict, and examples where they are equalities; we will
come across them in the following sections.

We will now use the previously defined sum to prove that the difference between
γt and τ can be arbitrarily large, even for trees.

Proposition 2.1. For any positive integer k there exists a tree T(k) such that τ(T(k))−
γt(T(k)) = k.

Proof. Let P4k+2 = (v1, v2, . . . , v4k+2) be a path. Add 2k + 2 new vertices to P4k+2,
each supported by a different one of the 2k + 2 vertices {v1, v2, v5, v6, v9, v10, . . . ,
v4k+1, v4k+2}. The graph that we obtain is a tree T(k) such that γt(T(k)) = 2k + 2,
and τ(T(k)) = 3k + 2. Thus, we have τ(T(k))− γt(T(k)) = k. See Figure 1.

v1 v2 v3 v5 v6 v7 v9 v10v4 v8

Figure 1: Example of T(k) with k = 2.

Proposition 2.2. For every positive integer k there exists a tree T ′(k) such that

γt(T
′
(k))− τ(T ′(k)) = k.

Proof. Let P4k−1 = (v1, v2, . . . , v4k−1) be a path. Add 2k new vertices to P4k−1 each
supported by one of the vertices with an odd index. The graph that we obtain is
a tree T ′(k) such that γt(T

′
(k)) = 3k, τ(T ′(k)) = 2k. Hence, γt(T

′
(k)) − τ(T ′(k)) = k. See

Figure 2.

v1 v2 v3 v5 v6 v7 v9 v10 v11v4 v8

Figure 2: Example of T ′(k) with k = 3.

The following simple remark will be useful in the proof of our main result.
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Remark 2.3. Let G be a graph with at least three vertices. If G is not a star, then
there exists a minimum total dominating set D ⊆ V (G) such that D contains no end
vertex of G.

Proof. Let D be a γt(G)-set and x belonging to D be an end vertex of G such that
N(x) = {y}. Then (D − {x}) ∪ {z} is a total dominating set of G, where z ∈ N(y)
is not an end vertex of G.

Our next result will also be very useful in the following section.

Lemma 2.4. If γt(G) = τ(G) and D is a (γt− τ)-set of G, then D contains no end
vertex of G.

Proof. Let D ⊆ V (G) be a (γt − τ)-set of G. If D contains an end vertex x, then,
since D is a total dominating set, it follows that there exists a vertex y ∈ D∩NG(x).
This implies that D − {x} is a vertex cover of G, a contradiction to the assumption
that γt(G) = τ(G).

As we mentioned in the introduction, not every tree contains a (γt − τ)-set. The
smallest tree having a (γt−τ)-set is P4, which also happens to be the smallest (γt−τ)-
tree. But not every (γt − τ)-tree contains a (γt − τ)-set. Actually, it is not hard to
find an infinite class of (γt − τ)-trees not having a (γt − τ)-set, the most simple one
is the family of paths P4k, for k ≥ 2. Thus, the class of trees having a (γt − τ)-set is
properly contained in the class of (γt − τ)-trees.

Given a class of graphs, it is common in graph theory to aim for a characterization
in terms of a set of forbidden induced subgraphs, because such a characterization
directly implies polynomial time recognition for the class. Unfortunately, neither
(γt − τ)-trees, nor trees having a (γt − τ)-set, admit a characterization of this kind.
To prove this fact, consider the following construction.

Recall that the corona of a graph G is the graph obtained from G by adding a
new vertex v′ to G supported by v, for every vertex v ∈ V (G). If H is the corona
of the graph G, then clearly V (G) is a (γt − τ)-set of H. Hence, any graph G is an
induced subgraph of a (γt − τ)-graph (of a graph having a (γt − τ)-set), and thus,
there exists no forbidden subgraph characterization of (γt − τ)-graphs (of graphs
having a (γt − τ)-set).

In our next section, we will obtain a constructive characterization of trees having
a (γt − τ)-set. Towards this end, we finish this section introducing a definition and
proving a simple technical result.

Definition 2.2. Let G be a graph and S a γt(G)-set. A vertex v is S-quasi-isolated
if there exists u ∈ S such that pn(u, S) = {v}. A vertex v is quasi-isolated if it is
S-quasi-isolated for some γt(G)-set S.

A vertex v is a 2-support if it is at distance two from an end vertex. The next
proposition shows that if a vertex is a 2-support, then it is not quasi-isolated.

Proposition 2.5. Let G be a graph and v ∈ V a 2-support. Then the vertex v is
non-quasi-isolated.
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Proof. Let x, y, v ∈ V be an end vertex, a support and a 2-support of G, respectively,
such that y ∈ N(x)∩N(v). For every γt(G)-set S, y ∈ S, v ∈ N(y) and x ∈ pn(y, S),
therefore for any u ∈ S, pn(u, S) 6= {v}. Hence, v is not quasi-isolated.

3 Trees having a (γt − τ)-set

We define the family T of trees to consist of all trees T that can be obtained from
a sequence T1, T2, . . . , Tk of trees such that T1 is the path P4, T = Tk and, if k ≥ 2,
then for 1 ≤ i ≤ k− 1, the tree Ti+1 can be obtained from Ti by one of the following
operations.

• Operation O1: Consider u ∈ V (T ) such that u belongs to some (γt − τ)-set.
Let v be an end vertex of a path P4. Then do the sum of T with P4 via the
edge uv.

• Operation O2: Let u ∈ V (T ) such that u belongs to some (γt − τ)-set. Then
add a new vertex v to T supported by u.

• Operation O3: Let u ∈ V (T ) such that u belongs to some (γt − τ)-set and
u is not a quasi-isolated vertex. Let P2 = (v, w) be a path with two vertices.
Then do the sum of T with P2 via the edge uv.

• Operation O4: Let u ∈ V (T ) such that u is not a quasi-isolated vertex of T .
Let v be a support vertex of a path P4. Then do the sum of T with P4 via the
edge uv.

Our next lemma is valid for any tree, not necessarily a tree in T .

Lemma 3.1. Let T be a tree. If Ti is a tree obtained from T by an operation Oi,
1 ≤ i ≤ 4, then:

1. γt(T1) = γt(T ) + 2 and τ(T1) = τ(T ) + 2;

2. γt(T2) = γt(T ) and τ(T2) = τ(T );

3. γt(T3) = γt(T ) + 1 and τ(T3) = τ(T ) + 1;

4. γt(T4) = γt(T ) + 2 and τ(T4) = τ(T ) + 2;

and hence, γt(T )− τ(T ) = γt(Ti)− τ(Ti), for 1 ≤ i ≤ 4. In particular γt(T ) = τ(T )
if and only if γt(Ti) = τ(Ti), for 1 ≤ i ≤ 4.

Proof. Observe that for 1 ≤ i ≤ 4, γt(Ti) ≥ γt(T ) and τ(Ti) ≥ τ(T ). We consider
four cases.

• Suppose i = 1, P4 = (v, x, y, z) and T1 = T +uv P4. Let S be a γt(T )-set (a
τ(T )-set, respectively). Then, S ′ = S ∪ {x, y} (S ′ = S ∪ {v, y}, resp.), is a
total dominating set (vertex cover, resp.) of T1. Thus, γt(T1) ≤ γt(T ) + 2 and
τ(T1) ≤ τ(T ) + 2.
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For purposes of contradiction, let D be a γt(T1)-set such that |D| ≤ γt(T ) + 1.
Define S = D∩V (P4), then 2 ≤ |S| ≤ 3. Suppose |S| = 2, then v /∈ D and D−S
is a total dominating set of T with cardinality less than or equal to γt(T )− 1.
If |S| = 3, then (D − S) ∪ {w} for w ∈ NT (u) is a total dominating set of T
with cardinality less than or equal to γt(T )− 1. Therefore, γt(T1) = γt(T ) + 2.

For purposes of contradiction, let D be a τ(T1)-set such that |D| ≤ τ(T ) + 1.
Define S = D ∩ V (P4), then |S| = 2. Suppose S = {x, y}, or S = {x, z} or
S = {v, y}, then D − S is a vertex cover of T with cardinality less than or
equal to τ(T )− 1. Hence, τ(T1) = τ(T ) + 2.

• For i = 2 the proof is straightforward.

• Suppose i = 3, P2 = (v, w) and T3 = T +uv P2. Let S be a γt(T )-set such that
u ∈ S, then S ′ = S ∪ {v} is a total dominating set of T3. Similarly, if S is a
τ(T )-set then S ′ = S ∪ {v} is a vertex cover of T3. Thus, γt(T3) ≤ γt(T ) + 1
and τ(T3) ≤ τ(T ) + 1.

We will show that γt(T3) = γt(T )+1, so, for purposes of contradiction, let D be
a γt(T3)-set such that |D| < γt(T ) + 1. It suffices to assume that |D| = γt(T ),
and there is no end vertex in D (such a set exists by Remark 2.3). Then
D∩V (P2) = {v} and u ∈ D. Since |D−{v}| < γt(T ), the set D−{v} is not a
total dominating set of T . But, for all z ∈ NT (u), the set D′ = (D−{v})∪{z}
is a γt(T )-set such that u is D′-quasi-isolated, a contradiction. So, γt(T3) =
γt(T ) + 1.

By definition of vertex cover, it is not possible that τ(T3) = τ(T ), so τ(T3) =
τ(T ) + 1.

• Suppose i = 4, P4 = (x, v, y, z) and T4 = T +uv P4. Let S be a γt(T )-set (a
τ(T )-set, respectively). Then, S ′ = S ∪{v, y} is a total dominating set (vertex
cover, resp.) of T4. Thus, γt(T4) ≤ γt(T ) + 2 and τ(T4) ≤ τ(T ) + 2.

For purposes of contradiction, let D be a γt(T4)-set such that |D| ≤ γt(T ) + 1.
Then D ∩ V (P4) = {v, y}. Since |D − {v, y}| ≤ γt(T ) − 1, the set D − {v, y}
is not a total dominating set of T. But, for all w ∈ NT (u), the set D′ =
(D−{v, y})∪{w} is a γt(T )-set such that u is D′-quasi-isolated, a contradiction.
So, γt(T4) = γt(T ) + 2.

By definition of vertex cover, it is not possible that τ(T4) ≤ τ(T ) + 1, so
τ(T4) = τ(T ) + 2.

Corollary 3.2. Suppose T is a tree with D a (γt−τ)-set of T . If Ti is a tree obtained
from T by an operation Oi, 1 ≤ i ≤ 4, then Ti has a (γt − τ)-set Di.

Proof. Let D be a (γt− τ)-set of T . With the notation of the above lemma, we have:

• If i = 1 then D1 = D ∪ {x, y}.
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• If i = 2 then D2 = D.

• If i = 3 then D3 = D ∪ {v}.

• If i = 4 then D4 = D ∪ {v, y}.

Theorem 3.3. If T ∈ T , then T is a (γt − τ)-tree.

Proof. Let T = P4; then γt(T ) = τ(T ) = 2. By Lemma 3.1 and Corollary 3.2, the
proof is straightforward.

As mentioned at the end of Section 2, there exist (γt − τ)-trees that are not in
family T .

Lemma 3.4. Let T be a tree and u a vertex in T .

1. Let P2 = (v, w) be a path of order two. Suppose that u belongs to some γt(T )-
set D of T and define T ′ to be the sum of T with P2 via the edge uv. If u is
D-quasi-isolated, then γt(T ) = γt(T

′).

2. Let v and w be the support vertices of a path P4. Define T ′ to be the sum of T
with P4 via the edge uv. If u is a quasi-isolated vertex, then γt(T ) = γt(T

′)+1.

Proof. Let D be a γt(T )-set such that u is D-quasi-isolated. There exists z ∈ D such
that pn(z,D) = {u}. It is easy to verify that D′ = (D − {z}) ∪ {v}, is a γt(T

′)-set,
in the first case, and D′ = (D−{z})∪ {v, w} is a γt(T

′)-set for the second case.

Our main result is the following.

Theorem 3.5. Let T be a tree. If T has a (γt − τ)-set, then T ∈ T .

Proof. By induction on n = |V (T )|. Since γt(T ) = τ(T ), we have n ≥ 4. The only
tree T with four vertices and equality γt(T ) = τ(T ) is P4, and P4 ∈ T .

Let T be a tree with n > 4 and let D be a (γt − τ)-set of T . If T has a strong
support vertex v with an end vertex u, then D is a (γt − τ)-set of T ′ = T − {u}.
By the induction hypothesis T ′ ∈ T and, using operation O2 we have that T ∈ T .
Therefore we can assume that there are no strong support vertices in T .

Let P = (v0, . . . , vl) be a longest path in T . Then dT (v1) = 2 and by Lemma 2.4
the vertices v1, v2 ∈ D. The proof of the theorem follows from the next two claims.

Claim 1. If there exists a vertex x ∈ NT (v2) ∩D such that x 6= v1 then T ∈ T .

Proof of Claim 1. Observe that dT (v2) > 2. Otherwise, dT (v2) = 2 and hence
x = v3 and D − {v2} is a vertex cover of T , contradicting γt(T ) = τ(T ). Notice
that x is not an end vertex of T , otherwise D− {x} would be a vertex cover of T , a
contradiction, thus, x is a support vertex of T . Let T ′ be the tree T ′ = T −{v0, v1}.
Since v2 ∈ D, the set D − {v1} is a vertex cover of T ′, and D − {v1} is a total
dominating set of T ′. This implies that τ(T ′) ≤ τ(T )−1 and that γt(T

′) ≤ γt(T )−1.
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Let D′ be a γt(T
′)-set. Since x is a support vertex in T ′, x ∈ D′ and we may thus

assume that v2 ∈ D′. It now follows that D′ ∪ {v1} is a total dominating set of T .
Thus

γt(T ) ≤ |D′ ∪ {v1}| = γt(T
′) + 1 ≤ (γt(T )− 1) + 1 = γt(T ),

which implies that γt(T
′) = γt(T ) − 1. On the other hand, if A is a τ(T ′)-set, then

A ∪ {v1} is a vertex cover of T . This implies that

τ(T ) ≤ |A ∪ {v1}| = τ(T ′) + 1 ≤ (τ(T )− 1) + 1 = τ(T ).

Therefore, τ(T ′) = τ(T )−1. Combining all this and using the fact that γt(T ) = τ(T )
we get that τ(T ′) = γt(T

′). Since D − {v1} is a vertex cover of T ′ (of cardinality
τ(T ′)), which is also a total dominating set of T ′ (of cardinality γt(T

′)), it now follows
that T ′ has a (γt−τ)-set. Now, it follows from the induction hypothesis that T ′ ∈ T .
We have already noticed that v2 is a 2-support of T ′, so it follows from Lemma 2.5
that v2 is not quasi-isolated in T ′, and using operation O3, we have that T ∈ T .

Claim 2. If NT (v2) ∩D = {v1}, then T ∈ T .

Proof of Claim 2. If NT (v2)∩D = {v1}, then v2 is a support vertex or dT (v2) = 2.
Observe that if dT (v3) = 1, since T does not have strong support vertices, then

T = P4. Therefore, dT (v3) ≥ 2. Since D is a vertex cover of T and v3 /∈ D,
|NT (v3) ∩D| ≥ 2.

Suppose v2 is a support vertex with end vertex neighbor x, and let T ′ be the tree
T ′ = T −{v0, v1, v2, x}. Since v3 /∈ D, every edge incident to v3 in T must be covered
by some of its neighbors. Thus, the set D − {v1, v2} is a vertex cover of T ′. Also,
since |NT (v3)∩D| ≥ 2, vertex v3 is dominated by some vertex in D−{v1, v2}; clearly
vertices (other than v3) in V (T ′) are not dominated in T by v1 or v2, so they must
be dominated by some vertex in D − {v1, v2}, and therefore D − {v1, v2} is a total
dominating set of T ′. Hence, γt(T

′) ≤ γt(T )− 2 and τ(T ′) ≤ τ(T )− 2. Now, let D′

be a γt(T
′)-set. Since {v1, v2} is a total dominating set of T [{v0, v1, v2, x}], it is clear

that D′ ∪ {v1, v2} is a total dominating set of T . Hence,

γt(T ) ≤ |D′ ∪ {v1, v2}| = γt(T
′) + 2 ≤ (γt(T )− 2) + 2 = γt(T ),

which implies γt(T
′) = γt(T ) − 2. On the other hand, let A be a τ(T ′)-set, hence,

since {v1, v2} covers all the edges in the graph T [{v0, v1, v2, v3, x}], it is clear that
A ∪ {v1, v2} is a vertex cover of T , and thus,

τ(T ) ≤ |A ∪ {v1, v2}| = τ(T ′) + 2 ≤ (τ(T )− 2) + 2 = τ(T ).

Hence τ(T ′) = τ(T ) − 2, and thus, following a reasoning analogous to that of the
previous claim, we obtain that D − {v1, v2} is a (γt − τ)-set of T ′. Now, we can
apply the induction hypothesis to obtain T ′ ∈ T . Notice that v3 is not a quasi-
isolated vertex of T ′, otherwise Lemma 3.4 would imply γt(T ) = γt(T

′) + 1, but
γt(T

′) = γt(T ) − 2. Hence, we can obtain T from T ′ using operation O4, therefore
T ∈ T .

Now we may assume that dT (v2) = 2. For purposes of contradiction, suppose
that dT (v3) > 2. Hence, there is a path P3 = (a, b, c) which is attached to v3 by the
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edge cv3. Since D is a γt(T )-set, we have b, c ∈ D. But then (D ∪ {v3})− {v2, c} is
a vertex cover of T, a contradiction. Thus dT (v3) = 2.

Since D is a vertex cover of T and v3 /∈ D, we have v4 ∈ D. If dT (v4) = 1,
then T = P5, and D is not a γt(T )-set. If dT (v4) = 2, then v5 ∈ D, in this case
(D − {v2, v4}) ∪ {v3} is a vertex cover of T , a contradiction. Hence, dT (v4) > 2.

Define T ′ as T ′ = T −{v0, v1, v2, v3}, we will show that the set D′ = D−{v1, v2}
is a (γt − τ)-set of T ′ containing v4. Notice first that v1 dominates exactly v0 and
v2 in T , and v2 dominates exactly v1 and v3 in T . Hence, no vertex in V (T ′) is
dominated in T by v1 or v2, and hence every vertex of T ′ is dominated in T ′ by some
vertex in D−{v1, v2}. Thus, D−{v1, v2} is a total dominating set of T ′, and we have
γt(T

′) ≤ γt(T )− 2. If D′ is a γt(T
′)-set, and using the fact that T [{v0, v1, v2, v3}] is

isomorphic to P4, then it is easy to conclude that D′ ∪ {v1, v2} is a total dominating
set of D. Therefore

γt(T ) ≤ |D′ ∪ {v1, v2}| = γt(T
′) + 2 ≤ (γt(T )− 2) + 2 = γt(T ),

which implies that γt(T ) = γt(T
′)− 2. Also, since v1 and v2 do not cover any edges

in T ′, it is clear that in T , all the edges of T ′ are covered by D − {v1, v2}. Thus,
D− {v1, v2} is a vertex cover of T ′, so we have τ(T ′) ≤ τ(T )− 2. Let A be a vertex
cover of T ′, if v4 ∈ A, then A ∪ {v1, v2} is a vertex cover of T . Therefore

τ(T ) ≤ |A ∪ {v1, v2}| = τ(T ′) + 2 ≤ (τ(T )− 2) + 2 = τ(T )

which implies that τ(T ) = τ(T ′) + 2. If v4 /∈ A for every τ(T ′)-set, then, since we
have already noticed that D − {v1, v2} is a vertex cover of T ′, it must be the case
that τ(T ′) ≤ τ(T ) − 3. But then, A ∪ {v1, v3} would be a τ(T )-set with τ(T ) − 1
vertices, a contradiction. Thus, there is at least one τ(T ′)-set containing v4, and, as
mentioned above, τ(T ) = τ(T ′) + 2. Therefore, D − {v1, v2} is a (γt − τ)-set of T ′,
and the induction hypothesis impiles T ′ ∈ T . Finally, we can obtain T from T ′ using
operation O1.

Therefore, we have proved the following theorem.

Theorem 3.6. It T is a tree, then T ∈ T if and only if T has a (γt − τ)-set.

4 Further work and open problems

Once we have characterized the trees having a (γt−τ)-set, the following natural step
is to consider the following problem.

Problem 4.1. Find a characterization for the (γt − τ)-trees.

If we let T ′ be the family of all (γt − τ)-trees, it is clear that the family T , of all
trees having a (γt − τ)-set, is contained in T ′. We have already observed in Section
2, that this containment is proper. Moreover, we can slightly modify the operations
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O1,O2, and O3 to preserve the equality γt = τ , but not necessarily preserving the
existence of a (γt− τ)-set, thus obtaining a larger infinite family of trees, say S, such
that T ⊂ S ⊂ T ′. The modified operations for a tree T are the following (notice the
relaxation of the choice of u, cf. Section 2).

• Operation O′1: Let u be a vertex in T , and let v be an end vertex of a path
P4. Then do the sum of T with P4 via the edge uv.

• Operation O′2: Let u ∈ V (T ) such that u belongs to some γt(T )-set and also
belongs to some τ(T )-set. Then add a new vertex v to T supported by u.

• Operation O′3: Let u ∈ V (T ) such that u belongs to some γt(T )-set and u
it is not a quasi-isolated vertex. Let P2 = (v, w) be a path with two vertices.
Then do the sum of T with P2 via the edge uv.

Notice that the family of paths of length 4k, k ≥ 2, mentioned in Section 2 as
an example of an infinite family of (γt − τ)-graphs not having a (γt − τ)-set, can be
obtained from P4 by recursively applying operation O′1; this shows that the inclusion
T ⊂ T ′ is proper. Similarly, examples can be found of a tree T ′ obtained from a tree
T by applying operation Oi, i ∈ {2, 3}, such that T has a (γt − τ)-set, but T ′ does
not.

From the computational point of view, for any tree T , both γt(T ) and τ(T ) can be
determined in polynomial time. Hence, the problem of determining if γt(T ) = τ(T ),
for a tree T , is polynomial time solvable. For the case of trees having a (γt − τ)-
set, Theorem 3.6 does not trivially imply a polynomial algorithm to determine the
existence of a (γt− τ)-set in a tree, so the following problem seems to be interesting.

Problem 4.2. Find the complexity of determining the existence of a (γt − τ)-set in
a tree.

Of course, it is also interesting to ask both problems for general graphs.

Problem 4.3. For a given graph G:

• Find the complexity of determining whether γt(G) = τ(G).

• Find the complexity of determining the existence of a (γt − τ)-set in G.

Our intuition says that the existence of a (γt − τ)-set is so restrictive in the
structure of G that the second problem might be solvable in polynomial time.
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