
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 73(2) (2019), Pages 313–333

On k-total dominating graphs

S. Alikhani D. Fatehi

Department of Mathematics
Yazd University
89195-741, Yazd

Iran
alikhani@yazd.ac.ir davidfatehi@yahoo.com

C.M. Mynhardt∗

Department of Mathematics and Statistics
University of Victoria

Victoria, BC
Canada

kieka@uvic.ca

Abstract

For a graph G, the k-total dominating graph Dt
k(G) is the graph whose

vertices correspond to the total dominating sets of G that have cardi-
nality at most k; two vertices of Dt

k(G) are adjacent if and only if the
corresponding total dominating sets of G differ by either adding or delet-
ing a single vertex. The graph Dt

k(G) is used to study the reconfiguration
problem for total dominating sets: a total dominating set can be recon-
figured to another by a sequence of single vertex additions and deletions,
such that the intermediate sets of vertices at each step are total dom-
inating sets, if and only if they are in the same component of Dt

k(G).
Let d0(G) be the smallest integer � such that Dt

k(G) is connected for all
k ≥ �.

We investigate the realizability of graphs as total dominating graphs.
For k the upper total domination number Γt(G), we show that any graph
without isolated vertices is an induced subgraph of a graph G such that
Dt

k(G) is connected. We obtain the bounds Γt(G) ≤ d0(G) ≤ n for any
connected graph G of order n ≥ 3, characterize the graphs for which
either bound is realized, and determine d0(Cn) and d0(Pn).
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1 Introduction

A dominating set of a graph G = (V,E) is a set D ⊆ V (G) such that every vertex
of G − D is adjacent to a vertex in D. If no proper subset of D is a dominating
set, then D is a minimal dominating set of G. The domination number γ(G) of
G the minimum cardinality of a dominating set of G, while the upper domination
number Γ(G) is the maximum cardinality of a minimal dominating set. We denote
the independence number (the maximum cardinality of an independent set) of G by
α(G).

A total dominating set (TDS ) of a graph G without isolated vertices is a set
S ⊆ V (G) such that every vertex of G is adjacent to a vertex in S. If no proper subset
of S is a TDS of G, then S is a minimal TDS (an MTDS ) of G. Every graph without
isolated vertices has a TDS, since S = V (G) is such a set. The total domination
number of G, denoted by γt(G), is the minimum cardinality of a TDS. The upper
total domination number of G, denoted by Γt(G), is the maximum cardinality of an
MTDS. A TDS of size γt is called γt-set of G, and an MTDS of size Γt(G) is called
a Γt-set ; γ-sets and Γ-sets are defined similarly. Since every total dominating set
of G is a dominating set, γ(G) ≤ γt(G) for any graph G without isolated vertices.
However, not every minimal total dominating set is minimal dominating, hence there
is no similar comparison of Γ(G) and Γt(G). For example, for the star K1,n, n ≥ 3,

γ(K1,n) = 1 < γt(K1,n) = Γt(K1,n) = 2 < Γ(K1,n) = n.

On the other hand, consider the path Pn of order n. It is well known that γ(Pn) =
⌈
n
3

⌉
and Γ(Pn) = α(Pn) =

⌈
n
2

⌉
. As mentioned in Observation 3.1 and Proposition 3.2,

γt(Pn) =
n
2
+ 1 if n ≡ 2 (mod 4) and γt(Pn) =

⌈
n
2

⌉
otherwise, and Γt(Pn) = 2

⌊
n+1
3

⌋
.

Therefore, for n large enough,

γ(Pn) < Γ(Pn) ≤ γt(Pn) < Γt(Pn).

For a given threshold k, let S and S ′ be total dominating sets of order at most k
of G. The total dominating set reconfiguration (TDSR) problem asks whether there
exists a sequence of total dominating sets of G starting with S and ending with S ′,
such that each total dominating set in the sequence is of order at most k and can be
obtained from the previous one by either adding or deleting exactly one vertex.

This problem is similar to the dominating set reconfiguration (DSR) problem,
which is PSPACE-complete even for planar graphs, bounded bandwidth graphs,
split graphs, and bipartite graphs, while it can be solved in linear time for cographs,
trees, and interval graphs [12].

The DSR problem naturally leads to the concept of the k-dominating graph intro-
duced by Haas and Seyffarth [10] as follows. If G is a graph and k a positive integer,
then the k-dominating graph Dk(G) of G is the graph whose vertices correspond to
the dominating sets of G that have cardinality at most k, two vertices of Dk(G)
being adjacent if and only if the corresponding dominating sets of G differ by either
adding or deleting a single vertex. The DSR problem therefore simply asks whether
two given vertices of Dk(G) belong to the same component of Dk(G).
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The Haas-Seyffarth paper [10] stimulated the work of Alikhani, Fatehi and
Klavžar [2], Mynhardt, Roux and Teshima [17], Suzuki, Mouawad and Nishimura
[18], as well as their own follow-up paper [11]. Haas and Seyffarth [10] gave condi-
tions for Dk(G) to be connected; this is the case, for example, when k ≥ γ(G)+Γ(G),
or when k ≥ Γ(G)+1 and G is bipartite or chordal. They also posed the question of
whether DΓ(G)+1(G) is connected for all graphs G. However, Suzuki et al. [18] found
an infinite class of graphs G such that DΓ(G)+1(G) is disconnected and DΓ(G)+2(G)
is connected. Mynhardt et al. [17] then presented constructions of graphs G with
arbitrary upper domination number Γ(G) ≥ 3 and arbitrary domination number
2 ≤ γ(G) ≤ Γ(G) that show that the smallest integer k such that D�(G) is con-
nected for all � ≥ k can be as high as Γ(G)+γ(G)−1, or even Γ(G)+γ(G) provided
γ(G) < Γ(G).

The study of k-dominating graphs was further motivated by similar studies of
graph colourings and other graph problems, such as independent sets, cliques and
vertex covers—see e.g. [3, 4, 5, 6, 15, 16]—and by a general goal to further understand
the relationship between the dominating sets of a graph. Motivated by definition of
k-dominating graph, we define the k-total dominating graph of G as follows.

Definition 1 The k-total dominating graph Dt
k(G) of G is the graph whose vertices

correspond to the total dominating sets of G that have cardinality at most k. Two
vertices of Dt

k(G) are adjacent if and only if the corresponding total dominating sets
of G differ by either adding or deleting a single vertex. For r ≥ 0, we abbreviate
Dt

Γt(G)+r(G) to Dt
Γt+r(G), and Dt

γt(G)+r(G) to Dt
γt+r(G).

In studying the TDSR problem, it is therefore natural to determine conditions
for Dt

k(G) to be connected. We begin the study of this problem in Section 2. To this
purpose we define d0(G) to be the smallest integer � such that Dt

k(G) is connected
for all k ≥ �, and note that d0(G) exists for all graphs G without isolated vertices
because Dt

|V (G)|(G) is connected.

If G is a graph without isolated vertices and k ≥ γt(G), then both the k-
dominating graph Dk(G) and the k-total dominating graph Dt

k(G) are defined, and
the latter is an induced subgraph of the former. Nevertheless, because of the incom-
parability of the upper parameters Γ(G) and Γt(G), it is natural to expect that the
two graphs can be very different, and we will see that this is indeed the case.

We introduce our notation in Section 1.1 and provide background material on
total domination in Section 1.2. For instance, we characterize graphs G such that
Γt(G) = |V (G)| − 1. In Section 3 we determine d0(Cn) and d0(Pn); interestingly,
it turns out that d0(C8) = Γt(C8) + 2, making C8 the only known graph for which
Dt

Γt+1(G) is disconnected. The main result for cycles requires four lemmas, which we
state in Section 3 but only prove in Section 5 to improve the flow of the exposition. In
Section 4 we study the realizability of graphs as total dominating graphs. We show
that the hypercubes Qn and starsK1,n are realizable for all n ≥ 2, that C4, C6, C8 and
C10 are the only realizable cycles, and that P1 and P3 are the only realizable paths.
Section 6 contains a list of open problems and questions for future consideration.
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1.1 Notation

For domination related concepts not defined here we refer the reader to [13]. The
monograph [14] by Henning and Yeo is a valuable resource on total domination.

For vertices u, v of a graph G, we write u ∼ v if u and v are adjacent. A vertex v
such that u ∼ v for all u ∈ V (G)− {v} is a universal vertex. We refer to a vertex of
G of degree 1 as a leaf and to the unique neighbour of a leaf in G � K2 as a stem,
and denote the number of leaves and stems of G by λ(G) and σ(G), respectively. As
usual, for u, v ∈ V (G), d(u, v) denotes the distance from u to v.

A set of cardinality n is also called an n-set. A subset of cardinality k of a set A
is called a k-subset of A. The hypercube Qn is the graph whose vertices are the 2n

subsets of an n-set, where two vertices are adjacent if and only if one set is obtained
from the other by deleting a single element.

The disjoint union of r copies of a graph H is denoted by rH . The corona G◦K1

of a graph G is the graph obtained by joining each vertex of G to a new leaf. A
generalized corona of G is a graph obtained by joining each vertex of G to one or
more new leaves. For a graph G and a subset U of V (G), we denote by G[U ] the
subgraph of G induced by U .

Remark 1.1 The set of stems of a graph G is a subset of any TDS of G, otherwise
some leaf is not totally dominated. Hence γt(G) ≥ σ(G).

The open neighbourhood of a vertex v is N(v) = {u ∈ V (G) : u ∼ v} and
the closed neighbourhood of v is N [v] = N(v) ∪ {v}. Let S ⊆ V (G). The closed
neighbourhood of S is N [S] =

⋃
s∈S N [s]. The open private neighbourhood of a

vertex s ∈ S relative to S, denoted OPN(s, S), consists of all vertices in the open
neighbourhood of s that do not belong to the open neighbourhood of any s′ ∈ S−{s},
that is, OPN(s, S) = N(s)−⋃

s′∈S−{s}N(s′). A vertex in OPN(s, S) may belong to
S, in which case it is called an internal private neighbour of s relative to S, or it
may belong to V (G)− S, in which case it is called an external private neighbour of
s relative to S. The set of internal (external, respectively) private neighbours of s
relative to S are denoted by IPN(s, S) (EPN(s, S), respectively). Hence OPN(s, S) =
IPN(s, S) ∪ EPN(s, S). These sets play an important role in determining whether a
TDS is an MTDS or not.

1.2 Preliminary results

Cockayne, Dawes and Hedetniemi [7] characterize minimal total dominating sets as
follows.

Proposition 1.2 [7] A TDS S of a graph G is an MTDS if and only if OPN(s, S) �=
∅ for every s ∈ S.

We restate Proposition 1.2 in a more convenient form for our purposes.
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Corollary 1.3 Let S be a TDS of a graph G, H the subgraph of G consisting of
the components of G[S] of order at least 3, and X the set of stems of H. Then S is
an MTDS if and only if EPN(s, S) �= ∅ for each s ∈ V (H)−X.

Proof. Since each vertex in S is dominated by another vertex in S, G[S] has
no isolated vertices. A vertex s′ ∈ S belongs to IPN(s, S) if and only if s′ ∼ s
and degG[S](s

′) = 1. Therefore, if G[{s, s′}] is a K2 component of G[S], then
s′ ∈ IPN(s, S) ⊆ OPN(s, S) and s ∈ IPN(s′, S) ⊆ OPN(s′, S). Further, if x is
a stem of H , then x is adjacent to a vertex x′ ∈ S such that degG[S](x

′) = 1,
hence x′ ∈ IPN(x, S). By Proposition 1.2, therefore, S is an MTDS if and only if
OPN(s, S) �= ∅ for every s ∈ V (H) − X. But for any s ∈ V (H) − X , each vertex
in N(s) ∩ S is adjacent to at least two vertices in S, hence IPN(s, S) = ∅, which
implies that OPN(s, S) �= ∅ if and only if EPN(s, S) �= ∅. �

Cockayne et al. [7] also established an upper bound on the total domination
number, while Favaron and Henning [9] established an upper bound on the upper
total domination number.

Proposition 1.4 If G is a connected graph of order n ≥ 3, then

(i) [7] γt(G) ≤ 2n
3
, and

(ii) [9] Γt(G) ≤ n−1; furthermore, if G has minimum degree δ ≥ 2, then Γt(G) ≤
n− δ + 1, and this bound is sharp.

We now characterize graphs G such that Γt(G) = |V (G)| − 1.

Proposition 1.5 A connected graph G of order n ≥ 3 satisfies Γt(G) = n−1 if and
only if n is odd and G is obtained from n−1

2
K2 by joining a new vertex to at least

one vertex of each K2.

Proof. It is clear that Γt(G) = n−1 for any such graph G. For the converse, assume
G is a connected graph of order n ≥ 3 such that Γt(G) = n− 1 and let S be a Γt-set
of G. Suppose H is a component of G[S] of order at least 3. If δ(H) ≥ 2, then H
has no stems. If δ(H) = 1, then H has at least as many leaves as stems, so that H
has at least two vertices that are not stems. In either case Corollary 1.3 implies that
at least two vertices in S has nonempty external private neighbourhoods, which is
impossible since |S| = n − 1. Therefore each component of H is a K2. Since only
one vertex of G does not belong to S and G is connected, the result follows. �

2 Connectedness of Dt
k(G)

Haas and Seyffarth [10] showed that DΓ(G)(G) is disconnected whenever E(G) �= ∅.
In contrast, we show that any graph without isolated vertices is an induced subgraph
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of a graph G such that Dt
Γt
(G) is connected. We obtain the bounds Γt(G) ≤ d0(G) ≤

n for any connected graph G of order n ≥ 3, and characterize graphs that satisfy
equality in either bound.

We begin with some definitions and basic results. For k ≥ γt(G) and A,B total

dominating sets of G of cardinality at most k, we write A
k↔ B, or simply A ↔ B

if k is clear from the context, if there is a path in Dt
k(G) connecting A and B. The

binary relation ↔ is clearly symmetric and transitive. Any superset of a TDS is a
TDS. Hence if A ⊆ B and b ∈ B−A, then A∪{b} is a TDS. Repeating this argument

shows that A ↔ B. Therefore, if A
k↔ A′ for all MTDSs A,A′ of cardinality at most

k, then Dt
k(G) is connected. We state these facts explicitly for referencing.

Observation 2.1 Let A,B,C be total dominating sets of a graph G of cardinality
at most k ≥ γt(G).

(i) If A ⊆ B, then A
k↔ B.

(ii) If A ∪B ⊆ C, then A
k↔ C

k↔ B.

(iii) If A
k↔ A′ for all MTDSs A,A′ of cardinality at most k, then Dt

k(G) is con-
nected.

As in the case of dominating sets, the connectedness of Dt
k(G) however does not

guarantee the connectedness of Dt
k+1(G). For example, consider the tree T = S2,2,2

(the spider with three legs of length 2 each) in Figure 1. This figure shows Dt
6(T ),

where vertices are represented by copies of T , and the total dominating sets are
indicated by the solid circles. The unique Γt-set is an isolated vertex in Dt

Γ(T ), so
Dt

Γt
(T ) = Dt

n−1(T ) is disconnected.

In the case of dominating sets DΓ(G)(G) is disconnected whenever G has at least
one edge (and hence at least two minimal dominating sets): let H be a nontrivial
component of G and D a minimal dominating set of H . Then V (H) − D is a
dominating set of H and therefore contains a minimal dominating set D′ disjoint
from D. It follows that G has at least two minimal dominating sets. Let X be a
Γ-set and Y any other minimal dominating set of G. By the minimality of X , Y
is not a subset of X, and no superset of X belongs to DΓ(G)(G). Hence X and Y
belong to different components of DΓ(G)(G).

For total domination the situation is not quite as simple. A fundamental dif-
ference between domination and total domination is that every graph with at least
one edge has at least two different minimal dominating sets, whereas there are many
graphs with a unique MTDS. Consider, for example, the double star S(r, t), which
consists of two adjacent vertices u and v such that u is adjacent to r leaves and v is
adjacent to t leaves. By Remark 1.1, u and v belong to any TDS of S(r, t). Since
{u, v} is an MTDS, it is the only MTDS of S(r, t). Therefore Dt

Γt
(S(r, t)) = K1,

which is connected. We show that the stems of G determine whether Dt
Γt
(G) is

connected or not.
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Figure 1: The graph Dt
6(S2,2,2)

Theorem 2.2 Let G be a connected graph of order n ≥ 3 with Γt(G) = k. Denote
the set of stems of G by X. Then Dt

k(G) is connected if and only if X is a TDS
of G.

Proof. Let S be any Γt-set of G. Then no subset of S is a TDS and no superset of
S is a vertex of Dt

k(G), hence S is an isolated vertex of Dt
k(G). Therefore

Dt
k(G) is connected if and only if S is the only MTDS of G. (1)

Suppose X is a TDS of G. Any x ∈ X is adjacent to a leaf, hence X − {x} does
not dominate G. Therefore X is an MTDS. This implies that no superset of X is an
MTDS. But by Remark 1.1, X is contained in any TDS of G. Consequently, X is
the only MTDS of G, so γt(G) = Γt(G) = σ(G) and Dt

k(G) = K1.

Conversely, suppose X is not a TDS of G. We show that G has at least two
MTDSs. First assume that X dominates G. Then G[X ] has an isolated vertex, say
x, which is adjacent to a leaf �x /∈ X . Now

Y = X ∪ {�x : x is an isolated vertex of G[X]}
is an MTDS of G. For another MTDS of G, let T ′ be a spanning tree of G, let T be
the subtree of T ′ obtained by deleting all leaves of T ′ and let Z = V (T ). If |Z| = 1,
then T = K1 and T ′ is a star. Say Z = {z}. Then z is a universal vertex of G and
X = {z}. Since n ≥ 3 there exists a vertex y ∈ N(z) − �z, and {y, z} is an MTDS
of G distinct from Y . On the other hand, if |Z| ≥ 2, then Z is a TDS that does not
contain any leaves of G. Hence Z contains an MTDS distinct from Y .

Now assume that X does not dominate G and let S be any MTDS of G. Then
there exists a vertex v ∈ S − X. Since v /∈ X, degG(u) ≥ 2 for each u ∈ N(v).
Let S ′ = V (G) − {v}. Since G is connected, every vertex not adjacent to v has a
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neighbour in S ′, and every vertex in N(v) has at least one other neighbour in S ′.
Thus S ′ is a TDS, and since v /∈ S ′, S ′ contains an MTDS distinct from S. The
result follows from (1). �

The class of graphs whose stems form a TDS includes (but is not limited to) the
generalized coronas of graphs without isolated vertices. Hence:

Corollary 2.3 Any graph without isolated vertices is an induced subgraph of a graph
G such that Dt

Γt
(G) is connected.

The first paragraph of the proof of Theorem 2.2 implies the following result.

Corollary 2.4 The graph Dt
Γt
(G) is disconnected if and only if G has at least two

MTDSs.

If the set of stems of G is a TDS, then it is the unique MTDS of G, hence we
also have the following corollary.

Corollary 2.5 If G is a connected graph of order n ≥ 3 whose set of stems is a
TDS, then Dt

γt(G) is connected.

The converse of Corollary 2.5 does not hold—for the spider S(2, 2, 2) in Figure 1,
Dt

4(S(2, 2, 2)) = K1, which is connected, but the stems form an independent set of
cardinality 3, which is not a TDS.

Since any TDS of cardinality greater than Γt contains a TDS of cardinality Γt, the
following result is immediate from Observation 2.1(i) (and similar to [10, Lemma 4]).

Lemma 2.6 If k ≥ Γt(G) and Dt
k(G) is connected, then Dt

k+1(G) is connected.

We now know that
Γt(G) ≤ d0(G) ≤ n

for any connected graph of order n ≥ 3, and that the first inequality is strict if and
only if the stems of G do not form a TDS. Equality in the upper bound is realized
by graphs with upper total domination number equal to n − 1, as characterized in
Proposition 1.5, because all these graphs also have an MTDS of cardinality n−1

2
+ 1

different from the Γt-set described in the proof, so Dt
n−1(G) is disconnected. We next

show that if Γt(G) < n− 1, then d0(G) ≤ n− 1.

Theorem 2.7 If G is a connected graph of order n ≥ 3 such that Γt(G) < n − 1,
then d0(G) ≤ min{n− 1,Γt(G) + γt(G)}.
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Proof. Let X be the set of stems of G. Suppose first that G has a unique MTDS S,
so that d0(G) = Γt(G) by Corollary 2.4. By Remark 1.1, X is the unique MTDS of G,
hence |X| ≥ 2. But each vertex of X is adjacent to a leaf, hence n ≥ 2|X| ≥ |X|+2.
Therefore

d0(G) = Γt(G) ≤
⌊n
2

⌋
≤

{
n− 1
Γt(G) + γt(G)

.

Assume therefore that G has at least two MTDSs and let A and B be any two

MTDSs of G. If |A ∪ B| ≤ n − 1, then A
n−1↔ B by Observation 2.1(ii), hence

assume |A ∪ B| = n. By the hypothesis, Γt(G) ≤ n − 2, hence there exist distinct
vertices a1, a2 ∈ A − B and b1, b2 ∈ B − A. By Remark 1.1, {a1, a2, b1, b2} ∩ X =
∅. Consider the four pairs ai, bj , i, j = 1, 2. Suppose first that for one of these
pairs ai, bj , every vertex adjacent to both ai and bj has degree at least 3. Since we
also have that ai, bj /∈ X, G − ai − bj has no isolated vertices. This implies that
V (G)− {ai, bj}, V (G)− {ai} and V (G)− {bj} are TDS’s of G, and we have

A
n−1↔ V (G)− {bj} n−1↔ V (G)− {ai, bj} n−1↔ V (G)− {ai} n−1↔ B.

Hence assume that for each pair ai, bj, i, j = 1, 2, there exists a vertex ci,j such
that N(ci,j) = {ai, bj}. Then in G1 = G − a1 − c1,1, b1 ∼ c2,1, and c1,2 ∼ b2.
Since deg(c1,1) = 2, a1 and c1,1 have no common neighbours except possibly b1
(which is adjacent to c2,1). Therefore G1 has no isolated vertices, which means that
V (G)− {a1, c1,1} is a TDS of G. Similarly, V (G)− {b1, c1,1} and V (G)− {c1,1} are
TDS’s of G. Now

A
n−1↔ V (G)− {b1} n−1↔ V (G)− {b1, c1,1} n−1↔ V (G)− {c1,1}
n−1↔ V (G)− {a1, c1,1} n−1↔ V (G)− {a1} n−1↔ B.

By Observation 2.1(iii), d0(G) ≤ n− 1.

Now let C be any fixed γt-set and B any MTDS of G. Then |C∪B| ≤ |C|+ |B| ≤
γt(G) + Γt(G). By Observation 2.1(ii), C

γt+Γt↔ B. By transitivity, A
γt+Γt↔ B for all

MTDSs A,B of G, so by Observation 2.1(iii), d0(G) ≤ Γt(G) + γt(G). �

To summarise, in this section we showed that

• for any connected graph G of order n ≥ 3,

Γt(G) ≤ d0(G) ≤ n. (2)

• The lower bound in (2) is realized if and only if G has exactly one MTDS, i.e.,
if and only if the stems of G form a TDS.

• The upper bound in (2) is realized if and only if Γt(G) = n−1, i.e., if and only
if n is odd and G is obtained from n−1

2
K2 by joining a new vertex to at least

one vertex of each K2.
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3 Determining d0 for paths and cycles

Our aim in this section is to show (in Theorem 3.9) that d0(C8) = Γt(C8) + 2
and d0(Cn) = Γt(Cn) + 1 if n �= 8. Similar techniques can be used to show that
d0(P2) = Γt(P2) = d0(P4) = Γt(P4) = 2 and d0(Pn) = Γt(Pn) + 1 if n = 3 or n ≥ 5.
We need four lemmas (Lemmas 3.5 – 3.8) to obtain the result for cycles. To enhance
the logical flow of the paper, we only state the lemmas in this section and defer their
proofs to Section 5.

It is easy to determine the total domination numbers of paths and cycles.

Observation 3.1 [14, Observation 2.9] For n ≥ 3,

γt(Pn) = γt(Cn) =

⎧⎨
⎩

n
2
+ 1 if n ≡ 2 (mod 4)

⌈
n
2

⌉
otherwise.

The upper total domination number for paths was determined by Dorbec, Hen-
ning and McCoy [8].

Proposition 3.2 [8] For any n ≥ 2, Γt(Pn) = 2
⌊
n+1
3

⌋
.

A proof of the following proposition on the upper total domination number of
cycles can be found in the appendix of [1], which is a preprint of this work.

Proposition 3.3 For any n ≥ 3,

Γt(Cn) =

⎧⎨
⎩

2
⌊
n
3

⌋
if n ≡ 2 (mod 6)

⌊
2n
3

⌋
otherwise.

Let Cn = (v0, v1, . . . , vn−1, v0). When discussing subsets of {v0, v1, . . . , vn−1} the
arithmetic in the subscripts is performed modulo n. We mention some obvious
properties of minimal total dominating sets of Cn.

Remark 3.4 Let S be an MTDS of Cn. Then

(i) each component of Cn[S] is either P2, P3 or P4;

(ii) each P3 or P4 component is preceded and followed by exactly two consecutive
vertices of Cn − S;

(iii) Cn − S does not contain three consecutive vertices of Cn.

Using the next four lemmas, we show in Theorem 3.9 that, with the single ex-
ception of n = 8, d0(Cn) = Γt(Cn) + 1. We only state the lemmas here; their proofs
are given in Section 5. The first lemma concerns MTDSs that induce P3 or P4

components.
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Lemma 3.5 Let n ≥ 10.

(i) If S is an MTDS such that Cn[S] contains a P4 component, then S is connected,
in Dt

|S|+1(Cn), to an MTDS without P4 components.

(ii) If S is an MTDS such that Cn[S] contains two consecutive P3 components, then
S is connected, in Dt

|S|+1(Cn), to an MTDS with fewer P3 components.

(iii) If S is an MTDS such that Cn[S] contains at least one P3 and at least one P2

component but no P4 components, then S is connected, in Dt
Γt+1(Cn), to an

MTDS that has no P3 components.

The next lemma concerns MTDSs that induce only P2 components. For brevity
we refer to such an MTDS as a P2-MTDS. For a P2-MTDS S, each P2 component is
followed by one or two vertices not belonging to S. We refer to these P2 components
as P2P 1 and P2P 2 components, respectively. An MTDS S is called a maximum
P2-MTDS if S is a P2-MTDS of maximum cardinality.

Lemma 3.6 Let S be a P2-MTDS of Cn, n ≥ 10.

(i) S is a maximum P2-MTDS if and only if Cn[S] has at most two P2P 2 compo-
nents.

(ii) If Cn[S] has at least one P2P 1 component and S ′ is any P2-MTDS such that

|S| ≤ |S ′| ≤ |S|+ 2, then S
|S|+3↔ S ′.

We next consider Cn, n ≡ 0 (mod 4).

Lemma 3.7 Suppose n ≥ 8 and n ≡ 0 (mod 4); say n = 4k. (By Observation 3.1,
γt(Cn) = 2k.) Then

(i) Dt
2k+1(Cn) is disconnected;

(ii) if n ≥ 12, then Cn has a P2-MTDS S∗ such that |S∗| = 2k + 2 and Cn[S
∗] has

four P2P 1 components;

(iii) all γt-sets belong to the same component of Dt
2k+2(Cn) and all P2-MTDSs of

cardinality 2k or 2k + 2 belong to the same component of Dt
2k+3(Cn).

Our final lemma concerns small cycles.

Lemma 3.8 If 3 ≤ n ≤ 9 and n �= 8, then d0(Cn) = Γt(Cn) + 1.

Theorem 3.9 For n = 8, d0(C8)=Γt(C8)+2. In all other cases, d0(Cn)=Γt(Cn)+1.
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Proof. Since γt(C8) = Γt(C8) = 4, Lemma 3.7(i) implies that Dt
Γt+1(C8) is discon-

nected and then the first part of Lemma 3.7(iii) implies that d0(C8) = Γt(C8) + 2.
By Lemma 3.8, the theorem is true for 3 ≤ n ≤ 7 and n = 9. Hence assume n ≥ 10.

Let S be any MTDS of Cn. By Lemma 3.5 (possibly applied several times), if

Cn[S] has a P3 or P4 component, then there exists a P2-MTDS S∗ such that S
Γt+1↔ S∗.

Thus we may assume that S is a P2-MTDS. If n �≡ 0 (mod 4), then S has at least
one P2P 1 component. If n ≡ 0 (mod 4), then n ≥ 12 and, by Lemma 3.7, all
P2-MTDSs of cardinality n

2
or n

2
+ 2 belong to the same component of Dt

2k+3(Cn).

Moreover, any P2-MTDS of cardinality n
2
+ 2 has a P2P 1 component. In either case

repeated application of Lemma 3.6(ii) shows that all P2-MTDSs belong to the same
component of Dt

Γt+1(Cn). The result follows from Observation 2.1(iii), Corollary 2.4
and Lemma 2.6. �

The proof of the following result for paths is similar and omitted. Note that for
n ≡ 0 (mod 4), Γt(Pn) = Γt(Cn) + 2, which explains the difference between d0(P8)
and d0(C8). The result is trivial for P2 = K2, while the result for P4 follows from
Corollary 2.5.

Theorem 3.10 d0(P2) = Γt(P2) = d0(P4) = Γt(P4) = 2 and d0(Pn) = Γt(Pn) + 1 if
n = 3 or n ≥ 5.

4 Realizability of graphs as total dominating graphs

One of the main problems in the study of k-total dominating graphs is determining
which graphs are total dominating graphs. Since Dt

k(G) = H if and only if Dt
k+2(G∪

K2) = H , in studying graphs G such that Dt
k(G) = H for a given graph H we

restrict our investigation to graphs G without K2 components (and also without
isolated vertices, so that γt(G) is defined).

As noted in [2, 17] for the k-dominating graph Dk(G) of a graph G of order n,
the k-total dominating graph Dt

k(G) is similarly a subgraph of the hypercube Qn

(provided k ≥ γt(G) and G has no isolated vertices) and is therefore bipartite. Since
any subset of V (Kn) of cardinality at least 2 is a TDS of Kn and since Qn is vertex
transitive, Dt

n(Kn) ∼= Qn − N [v] for some v ∈ V (Qn). We show in Corollary 4.2(i)
that Qn itself is realizable as the k-total dominating graph of several graphs, and in
Corollary 4.2(ii) that stars K1,n, n ≥ 2, are realizable. Again the set of stems plays
an important role.

In the last two results of the section we determine the realizability of paths and
cycles.

Theorem 4.1 Let H be any graph of order r, 2 ≤ r ≤ n, without isolated vertices
and let G be a generalized corona of H having exactly n leaves. For each � such
that 0 ≤ � ≤ n, Dt

r+�(G) is the subgraph of Qn corresponding to the collection of all
k-subsets, 0 ≤ k ≤ �, of an n-set.
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Proof. Every vertex of H is a stem of G. By Remark 1.1, X = V (H) is contained
in any TDS of G. Since H has no isolated vertices, X is an MTDS of G. As shown
in the proof of Theorem 2.2, X is the only MTDS of G. For any set L of leaves of G,

X ∪L is a TDS of G. Moreover, for any sets L1 and L2 of leaves, X ∪L1
r+�↔ X ∪L2

if and only if each |Li| ≤ � and L1 is obtained from L2 by adding or deleting exactly
one vertex. The result now follows from the definitions of Qn and Dt

r+�(G). �

Corollary 4.2 Let H be any graph of order r, 2 ≤ r ≤ n, without isolated vertices
and let G be a generalized corona of H having exactly n leaves. For every integer
n ≥ 2,

(i) Dt
r+n(G) ∼= Qn

(ii) Dt
r+1(G) ∼= K1,n.

Proof. (i) By Theorem 4.1, Dt
r+n(G) is the subgraph of Qn corresponding to the

collection of all subsets of an n-set. Hence Dt
r+n(G) ∼= Qn.

(ii) By Theorem 4.1, Dt
r+1(G) is the subgraph of Qn corresponding to the empty

set and all singleton subsets of an n-set. Hence Dt
r+1(G) ∼= K1,n. �

We mentioned above that for a graph G without isolated vertices and γt(G) ≤ k,
Dt

k(G) is a subgraph of Qn. The strategy used in the proof of Theorem 4.1 enables
us to be a little more specific in many cases.

Proposition 4.3 Let G be a connected graph of order n ≥ 3 having σ(G) stems.
For any k ≥ γt(G), Dt

k(G) is a subgraph of Qn−σ(G).

In particular, Dt
n(G) is a subgraph of Qn−σ(G) in which the vertex corresponding

to V (G) has degree Δ(Dt
n(G)) = n− σ(G) = Δ(Qn−σ(G)).

Proof. Let X be the set of stems of G. By Remark 1.1, X is contained in any TDS
of G. Hence all TDS’s of G are subsets of V (G) that contain X, and there are 2n−σ(G)

such sets. This shows that Dt
k(G) is a subgraph of Qn−σ(G) for any k ≥ γt(G).

Now consider Dt
n(G). For v ∈ V (G), G− v has an isolated vertex if and only if

v ∈ X. Therefore V (G) − {u} is a TDS of G if and only if u ∈ V (G) − X , which
implies that deg(V (G)) = n− σ(G) in Dt

n(G). Let S be any TDS of G; necessarily,
X ⊆ S. There are at most n − |S| supersets of S of cardinality |S| + 1 that are
TDS’s, and at most |S| − σ(G) subsets of S of cardinality |S| − 1 that are TDS’s.
Hence in Dt

n(G), deg(S) ≤ n− |S|+ |S| − σ(G) = n− σ(G). �

Concerning the realizability of cycles, it is easily seen thatDt
4(P4) ∼= C4, D

t
3(C4) ∼=

Dt
5(P6) ∼= C8, D

t
4(C5) ∼= C10 and, if G is the graph obtained by joining two leaves of

K1,3, then Dt
3(G) ∼= Dt

3(K1,3) ∼= C6. We show that C2r, r ∈ {2, 3, 4, 5}, are the only
cycles realizable as k-total domination graphs.
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Proposition 4.4 (i) There is no graph G of order n > 6 such that Dt
k(G) ∼= Cm

for some integer k.

(ii) For m > 10, there is no graph G such that Dt
k(G) ∼= Cm for some integer k.

Proof. (i) Suppose to the contrary that Dt
k(G) ∼= Cm. Let S be a γt-set of G. Then

deg(S) = 2 in Dt
k(G). Since each superset of S is a TDS of G, S has exactly two

supersets of cardinality |S|+1. This implies that n−|S| = 2, i.e., n−γt(G) = 2. But
we know that γt(G) ≤ 2n

3
(Proposition 1.4(i)) and so n ≤ 6, which is a contradiction.

(ii) Now suppose that Dt
k(G) ∼= Cm, where m > 10. By (i), G has order n ≤ 6

and n− γt(G) = 2. Say Dt
k(G) is the cycle (S1, S2, . . . , Sm, S1). Since n = γt(G) + 2,

each Si has cardinality γt(G), γt(G) + 1 or γt(G) + 2.

First assume |Si| = γt(G) + 2 = n for some i. Then n ≥ 4 and we also have
k = n. Since Si has degree 2 in Dt

k(G), G has exactly two TDS’s of cardinality n−1.
By Remark 1.1, G has exactly two vertices that are not stems. Since n ≥ 4 (and G
has no K2 components), G consists of two stems and two leaves, i.e., G = P4. But
Dt

4(P4) ∼= C4, contradicting m > 10.

We may therefore assume that k = n − 1 and n − 2 ≤ |Si| ≤ n − 1 for each i.
But then, by definition of adjacency in Dt

k(G), |Si| = n − 1 for m
2
values of i and

|Si| = n− 2 for the other m
2
values of i. Since m > 10, V (G) has at least six subsets

of cardinality n − 1, which implies that n ≥ 6. Therefore n = 6, γt(G) = 4, k = 5
and m = 12, and each of the six 5-subsets of V (G) is a TDS. By Remark 1.1, G
has no stems and hence no leaves. Let v be a vertex of G such that deg(v) = Δ(G).
If deg(v) = 5, then {u, v} is a TDS for any u ∈ V (G) − {v}, which contradicts
γt(G) = 4. If deg(v) = 4, let u be the unique vertex nonadjacent to v and let w
be any vertex adjacent to u. Then G[{u, v, w}] ∼= P3, so {u, v, w} is a TDS, also a
contradiction. If deg(v) = 3, let u1 and u2 be the vertices nonadjacent to v. Since
G has no leaves, each ui is adjacent to a vertex wi ∈ N(v). Hence {v, w1, w2} is a
TDS of cardinality at most 3, again a contradiction. Therefore G is 2-regular. But if

G = 2K3, then G has
(
3
2

)2
= 9 > 6 TDS’s of cardinality 4, and if G = C6, then any

vertex of Dt
5(G) corresponding to five consecutive vertices of C6 has degree 3. With

this final contradiction the proof is complete. �

The realizability of paths is somewhat similar to that of cycles in that only a
small number of paths are k-total dominating graphs. Since Dt

2(K2) ∼= P1 and
Dt

3(P3) ∼= Dt
3(P4) ∼= Dt

4(P5) ∼= P3, P1 and P3 are realizable. Indeed, they are the
only realizable paths, as we show next.

Proposition 4.5 For m �= 1, 3, there is no graph G such that Dt
k(G) ∼= Pm for some

integer k.

Proof. Suppose G is a graph of order n such that Dt
k(G) ∼= Pm for some integer k.

Say Pm = (S1, S2, . . . , Sm), where each Si is a TDS of G. It is easy to examine all
graphs of order at most 3, hence assume n ≥ 4.

If S1 is a γt-set of G, then exactly one superset of S1 of cardinality |S1| + 1,
namely S2, is a TDS. Since every superset of S1 is a TDS, γt(G) = n − 1 ≤ 2n

3
(by
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Proposition 1.4(i)), hence n ≤ 3, contrary to the assumption above. Thus we may
assume that S1 and (similarly) Sm have cardinality at least γt(G) + 1. Therefore Si,
for some 1 < i < m, is a γt-set. Exactly as in the proof of Proposition 4.4 we obtain
that n ≤ 6, γt = n − 2 and each Si has cardinality γt(G), γt(G) + 1 or γt(G) + 2.
If |Si| = γt(G) + 2, then, as shown in the proof of Proposition 4.4, G = P4 and
Dt

4(P4) ∼= C4 � Pm. Therefore |S1| = |Sm| = γt(G) + 1 = n − 1 = k. Now, S2 is a
γt-set of cardinality n−2, hence S1 and S3 are the only supersets of S2 of cardinality
n− 1, and S2, in turn, is the only subset of S1 that is a TDS. Therefore

OPN(v, S1) = ∅ for exactly one vertex v ∈ S1. (3)

Let G1 = G[S1]. Since 4 ≤ n ≤ 6, 3 ≤ |S1| ≤ 5. Suppose G1 contains a triangle, say
(a1, a2, a3, a1). Then by (3) there exists a bi ∈ OPN(ai, S1) for i = 1, 2 (without loss
of generality), where b1 �= b2 and {b1, b2}∩ {a1, a2, a3} = ∅. Since |S1| = n− 1, b1 or
b2 belongs to S1.

Say b1 ∈ S1. Then b1 ∈ IPN(a1, S1) and we also have from (3) that OPN(b1, S1) �=
∅ or OPN(a3, S1) �= ∅. But if OPN(a3, S1) �= ∅, then n = 6 and {a1, a2, a3} is
a TDS of G of cardinality n − 3, which is not the case. Therefore there exists
c1 ∈ OPN(b1, S1). But then V (G) = {a1, a2, a3, b1, b2, c1} and {a1, a2, b1} is a TDS of
G, again a contradiction. We conclude that G1 is triangle-free.

If G1 contains an r-cycle, r ≥ 4, then (3) implies that at least r − 1 vertices of
the cycle have private neighbours not on the cycle. But then n ≥ 7, a contradiction.
Therefore G1 is acyclic. If G1 has two K2 components, then, by the restrictions on
the order of G1, G1 = 2K2 and IPN(v, S1) �= ∅ for each v ∈ S1, contrary to (3).

Suppose G1 has a path component Pr = (u1, u2, . . . , ur), r ≥ 3. Then neither
leaf of Pr has an internal private neighbour, so, by (3), one of them has an external
private neighbour. Say u1 has external private neighbour w1. Since |S1| = n − 1,
V (G) = S1 ∪ {w1}, and since w1 ∈ EPN(u1, S1), degG(w1) = 1. Now, if S1 is
disconnected, then G1 = K2 ∪ Pr, and since degG(w1) = 1, K2 is also a component
of G. Hence G = K2 ∪ P4, so Dt

5(G) = Dt
3(P4) = P3. On the other hand, if S1 is

connected, then G is isomorphic to P4, P5 or P6, in which case Dt
n−1(G) is P3 or C8.

Finally, suppose G1 is a tree but not a path. Then G1 has at least three leaves.
By (3), two of them have external private neighbours, contrary to |S1| = n− 1. �

A full subgraph of Qn is a subgraph that corresponds to all subsets of cardinality
at most k of an n-set, for some integer k such that 0 ≤ k ≤ n. In this section we
showed that

• all full subgraphs of Qn, n ≥ 2, are realizable as k-total dominating graphs.

• In particular, Qn and K1,n are realizable for all n ≥ 2.

We also showed that

• C4, C6, C8 and C10 are the only realizable cycles, and

• P1 and P3 are the only realizable paths.
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5 Proofs of lemmas in Section 3

This section contains the proofs of the lemmas stated in Section 3. To simplify our
discussion of total dominating sets of Cn, we encode each TDS S using an n-tuple
(or part of an n-tuple) of the symbols ◦ and •, where • in position i indicates that
vi−1 ∈ S, while ◦ in position i indicates that vi−1 /∈ S. For example, the MTDS
S = {v0, v1, v4, v5} of C8 is written as S = (• • ◦ ◦ • • ◦◦). By Remark 3.4(ii),
every P3 or P4 component belongs to a code of the form (· · · ◦ ◦ • • • ◦ ◦ · · · ) or
(· · · ◦ ◦ • • • • ◦ ◦ · · · ), respectively. The n-tuples are often compressed by writing the
number of consecutive occurrences of ◦ or • above the symbol; for example, we may

write (· · · ◦ ◦ • • • ◦ ◦ · · · ) and (· · · ◦ ◦ • • • • ◦ ◦ · · · ) as (· · · 2◦ 3• 2◦ · · · ) and (· · · 2◦ 4• 2◦ · · · ),
respectively. When a P2-component of S can be followed by one of two vertices of

Cn − S, we write (· · · 2• ◦ · · · ) without indicating a number above ◦.
When adding vertices to a TDS, for example, when adding a vertex to (· · ·2◦ 2• 2◦· · · )

to form (· · · 2◦ 3• 1◦· · · ), we write (· · · 2◦ 2• 2◦· · · ) → (· · · 2◦
3

�
1

♦ · · · ) to emphasize the position

of the addition. Conversely, when deleting a vertex from (· · · 2◦ 3• 1◦ · · · ) (say) to form

(· · · 2◦ 2• 2◦ · · · ), we write (· · · 2◦ 3• 1◦ · · · ) → (· · · 2◦
2

�
2

♦ · · · ).
We restate the lemmas for convenience.

Lemma 3.5 Let n ≥ 10.

(i) If S is an MTDS such that Cn[S] contains a P4 component, then S is con-
nected, in Dt

|S|+1(Cn), to an MTDS without P4 components.

(ii) If S is an MTDS such that Cn[S] contains two consecutive P3 components,
then S is connected, in Dt

|S|+1(Cn), to an MTDS with fewer P3 components.

(iii) If S is an MTDS such that Cn[S] contains at least one P3 and at least one P2

component but no P4 components, then S is connected, in Dt
Γt+1(Cn), to an

MTDS that has no P3 components.

Proof. (i) By Remark 3.4(i), S is of the form (· · · 2◦ 4• 2◦ · · · ). Consider the TDS S ′

with |S ′| = |S| obtained by

(· · · 2◦ 4• 2◦ · · · ) → (· · · 2◦
5

�
1

♦ · · · ) → (· · · 2◦
2

�
1

♦
2

� 1◦ · · · ) = S ′.

If S ′ is an MTDS, let S ′′ = S ′. If S ′ is not an MTDS, then S ′ is of the form

(· · · 2◦ 2• 1◦ 2• 1◦ 3• · · · ) or (· · · 2◦ 2• 1◦ 2• 1◦ 4• · · · ). In the former case, let S ′′ = (· · · 2◦ 2• 1◦ 2•
2

♦
2

� · · · )
and in the later case let S ′′ = (· · · 2◦ 2• 1◦ 2•

2

♦
3

� · · · ). In all cases, S ′′ is an MTDS having

fewer P4 components than S such that S
|S|+1↔ S ′′ and |S ′′| ≤ |S|. The result follows

by repeating this procedure.
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(ii) The result follows from the operations

(· · · 2◦ 3• 2◦ 3• 2◦· · · )→ (· · · 2◦ 3•
1
♦

4
� 2◦· · · )→ (· · · 2◦

2
�

2
♦ 4• 2◦ · · · )→ (· · · 2◦ 2•

1
♦

5
� 2◦· · · )→ (· · · 2◦ 2• 1◦

2
�

1
♦

2
� 2◦· · · ).

(iii) If Cn[S] contains at least one P3 and at least one P2 component but no P4

components, then Cn[S] contains either (a) two consecutive P3 components or (b) a
P3 component preceded and followed by a P2 component. In the former case, Cn[S]

is of the form (· · · 2◦ 3• 2◦ 3• 2◦ · · · ) and, by (ii), S
|S|+1↔ S ′ where S ′ = (· · · 2◦ 2• 1◦ 2• 1◦ 2• 2◦ · · · ).

Moreover, |S ′| = |S|. In the latter case, Cn[S] is of the form (· · · ◦ 2• 2◦ 3• 2◦ 2• ◦ · · · ),
and S ′′ = (· · · ◦ 2• 1◦ 2• 1◦ 2• 1◦ 2• ◦ · · · ) is an MTDS of larger cardinality having fewer P3

components than S. Hence S is not a Γt-set. The operations

(· · · ◦ 2• 2◦ 3• 2◦ 2•◦· · · ) → (· · ·◦ 2•
1
♦

4
� 2◦ 2•◦· · · ) → (· · ·◦ 2• 1◦

5
�

1
♦ 2•◦ · · · ) → (· · · ◦ 2• 1◦

2
�

1
♦

2
� 1◦ 2•◦· · · ) = S′′

show that S
|S′′|+1↔ S ′, hence S

Γt+1↔ S ′′. By repeating the operations for (a) and (b)
as necessary we obtain the desired result. �

Lemma 3.6 Let S be a P2-MTDS of Cn, n ≥ 10.

(i) S is a maximum P2-MTDS if and only if Cn[S] has at most two P2P 2 compo-
nents.

(ii) If Cn[S] has at least one P2P 1 component and S ′ is any P2-MTDS such that

|S| ≤ |S ′| ≤ |S|+ 2, then S
|S|+3↔ S ′.

Proof. (i) Suppose Cn[S] has p components, q of which are P2P 2 components. Then
|S| = 2p and n = 4q + 3(p− q). The result follows by comparing these numbers to
the formula for Γt(Cn) in Proposition 3.3.

(ii) First note that if S is of the form (· · · ◦ 2• 1◦ 2• 2◦ · · · 2• 2◦ 2• 1◦ · · · ), then repeating
the operations

(· · · ◦ 2• 1◦ 2• 2◦ · · · 2• 2◦ 2• 1◦ · · · ) → (· · · ◦ 2• 1◦
3

�
1

♦ · · · 2• 2◦ 2• 1◦ · · · ) → (· · · ◦ 2•
2

♦
2

� 1◦ · · · 2• 2◦ 2• 1◦ · · · )

as necessary shows that S is connected in Dt
|S|+1(Cn) to an MTDS of the same

cardinality, hence with the same number of both types of components, in which all
the components of each type appear consecutively.

Thus, assume S is of the form (•• 1◦ 2• 1◦ · · · 2• 1◦ 2• 2◦ 2• 2◦ · · · ), where all the components
of each type appear consecutively and • is a marked vertex to indicate the position
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of the first P2P 1 component. The operations

(• • 1◦ 2• 1◦ 2• 1◦ · · · 2• 1◦ 2• 2◦ · · · 2• 2◦) → (•
4

� 1◦ 2• 1◦ · · · 2• 1◦ 2• 2◦ · · · 2• 2◦)
→ (♦ 4• 1◦ 2• 1◦ · · · 2• 1◦ 2• 2◦ · · · 2• 2◦) → (◦

7

� 1◦ · · · 2• 1◦ 2• 2◦ · · · 2• 2◦)
→ (◦

2

�
1

♦
4

� 1◦ · · · 2• 1◦ 2• 2◦ · · · 2• 2◦) → · · · → (◦ 2• 1◦ 2• 1◦ 2• · · ·
4

� 2◦ · · · 2• 2◦)
→ (◦ 2• 1◦ 2• 1◦ 2• · · ·

5

�
1

♦ · · · 2• 2◦) → (◦ 2• 1◦ 2• 1◦ 2• · · ·
2

�
1

♦
2

� 1◦ · · · 2• 2◦)
→ · · · → (◦ 2• 1◦ 2• 1◦ 2• · · · 2• 1◦ 2• 1◦ · · ·

2

♦
2

�
1

♦)

produce a P2-MTDS S ′′ which can also be obtained from S by a rotation vi → vi+1

for each i. Thus S
|S|+1↔ S ′′. These operations can be repeated to show that S

|S|+1↔ S3

for each rotation S3 of S. By the above and transitivity, for each P2-MTDS S ′ such

that |S| = |S ′|, S |S|+1↔ S ′ and hence S
|S|+3↔ S ′.

Now assume that S ′ is any P2-MTDS such that |S ′| = |S| + 2. Then S is not a
maximum P2-MTDS and hence, by (i), S has at least three P2P 2 components. As
shown above we may assume all P2P 2 components of Cn[S] are consecutive. Hence

S is of the form (
2• 2◦ 2• 2◦ 2• 2◦ · · · 2• 1◦ · · · ), and the addition of three vertices in succession

produces a TDS of the form (
2•
1

♦
7

� 2◦ · · · 2• 1◦ · · · ). Then the operations

(
2•1◦7•2◦· · ·2•1◦ · · · ) → (

2•1◦
2
�

1
♦

4
�2◦· · ·2•1◦ · · · ) → (

2•1◦2•1◦
5
�

1
♦ · · ·2•1◦ · · · ) → (

2•1◦2•1◦
2
�

1
♦

2
�

1
♦ · · ·2•1◦ · · · ) = S1

produce a P2-MTDS S1 such that |S1| = |S| + 2 and S1
|S|+3↔ S. However, we have

already shown above that S1
|S1|+1↔ S ′, i.e. S1

|S|+3↔ S ′. By transitivity, S
|S|+3↔ S ′. �

Lemma 3.7 Suppose n ≥ 8 and n ≡ 0 (mod 4); say n = 4k. (By Observation 3.1,
γt(Cn) = 2k.) Then

(i) Dt
2k+1(Cn) is disconnected;

(ii) if n ≥ 12, then Cn has a P2-MTDS S∗ such that |S∗| = 2k + 2 and Cn[S
∗]

has four P2P 1 components;

(iii) all γt-sets belong to the same component of Dt
2k+2(Cn) and all P2-MTDSs of

cardinality 2k or 2k + 2 belong to the same component of Dt
2k+3(Cn).

Proof. Any γt-set S of Cn is a P2-MTDS, hence of the form (· · · 2◦ 2• 2◦ 2• 2◦ · · · ).
(i) By symmetry the addition of any single vertex v to S results in S ′ =

(· · · 2◦
3

�
1

♦ 2• 2◦ · · · ), and by Remark 3.4(iii), v is the only vertex whose deletion from
S ′ produces a TDS, namely S. However, by symmetry, Cn has four γt-sets.

(ii) If n ≥ 12, then by Observation 3.1 and Proposition 3.3, Γt(Cn) ≥ γt(Cn)+2.
Hence Cn has a P2-MTDS S∗ such that |S∗| = 2k+2 and Cn[S

∗] has k+1 components.
Elementary calculations show that four components are P2P 1 components.
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(iii) By adding two vertices in succession, then deleting a (different) vertex, we
obtain

(· · · ◦ ◦• • 2◦ 2• 2◦ 2• · · · ) → (· · · 2◦ •
2

�
1

♦
3

�
1

♦ 2• · · · ) → (· · · 2◦ • 2•
2

♦
2

� 1◦ 2• · · · ),

where • is a marker to indicate a specific vertex. Adding and deleting another vertex,
we obtain

(· · · 2◦ • 2• 2◦ 2• 1◦ 2• · · · ) → (· · · 2◦ • 2• 2◦ 2• 1◦
3

� · · · ) → (· · · 2◦ • 2• 2◦ 2•
2

♦
2

� · · · ).

Continuing the process, we eventually obtain the TDS (· · ·
2

�
1

♦• 2• 2◦ 2• 2◦ 2• · · · ) of
cardinality γt(Cn) + 1, and one last step—a vertex deletion—produces the γt-set

S ′ = (· · · 2• ◦♦ 2• 2◦ 2• 2◦ 2• · · · ).

Hence S ′ is obtained from S by a rotation vi → vi+1 for each i. Repeating the
procedure twice more shows that S is connected to each of the three other γt-sets of
Cn.

Now let S∗ be a P2-MTDS of cardinality 2k + 2. Then n ≥ 12 and as shown
in Lemma 3.6(ii) we may assume that the four P2P 1 components of Cn[S

∗] occur

consecutively. Hence S∗ is of the form (
2• 1◦ 2• 1◦ 2• 1◦ 2• 1◦ 2• 2◦ · · · ). The operations

(
2•1◦2•1◦2•1◦2•1◦2•2◦· · · ) → (

2•1◦
5
�1◦2•1◦2•2◦· · · ) → (

2•
2
♦

4
�1◦2•1◦2•2◦· · · ) → (

2•2◦
7
�1◦2•2◦· · · ) → (

2•2◦
2
�

2
♦

2
�

2
♦2•2◦ · · · )

show that S∗ belongs to the same component of Dt
2k+3(Cn) as a γt-set of Cn. The

result follows by transitivity. �

Lemma 3.8 If 3 ≤ n ≤ 9 and n �= 8, then d0(Cn) = Γt(Cn) + 1.

Proof. The result is obvious for n ∈ {3, 4, 5} because Dt
3(C3) ∼= K1,3, D

t
3(C4) ∼= C8

and Dt
4(C5) ∼= C10. All MTDSs of C6 are of the form (

2• 1◦ 2•1◦) or (4•2◦), and one easily

obtains that d0(C6) = 5 = Γt(C6) + 1. All MTDSs of C7 are of the form (
2• 1◦ 2•2◦) and

the result is easy to check. Finally, all MTDSs of C9 are of the form (
3• 2◦ 2•2◦) and

(
2• 1◦ 2• 1◦ 2•1◦) and again the result follows easily. �

6 Problems for future work

Problem 6.1 Determine d0(G) for other classes of graphs.

As mentioned in the introduction, Mynhardt et al. [17] obtained constructions
showing that the smallest integer k such that the domination graph D�(G) is con-
nected for all � ≥ k can be as high as Γ(G) + γ(G) − 1, or Γ(G) + γ(G) provided
γ(G) < Γ(G). For total domination graphs, C8 is the only known graph for which
Dt

Γt+1(G) is disconnected. We therefore state the following open problem.
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Problem 6.2 Construct classes of graphs Gα such that the difference satisfies
d0(Gα)− Γt(Gα) ≥ α ≥ 2 (or show that the difference is bounded).

Problem 6.3 Find more classes of graphs that can/cannot be realized as k-total
domination graphs.

As mentioned in [10] for domination graphs, D2(K1,n) ∼= K1,n, and the authors
stated finding other graphs G such that Dk(G) ∼= G for some k as an open problem.
We formulate a similar problem. Problem 6.5 was also addressed in [10].

Problem 6.4 Note that Dt
3(P3) ∼= P3. Determine other graphs G such that

Dt
k(G) ∼= G for some k.

Problem 6.5 Determine the complexity of deciding whether two MTDSs of G are
in the same component of Dt

k(G), or of Dt
Γ(G)+1(G).

Problem 6.6 Determine conditions that imply that Dt
k(G) is Hamiltonian.
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