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Abstract

A dominating set S of a graph G of order n is a subset of the vertices of G
such that every vertex is either in S or is adjacent to a vertex of S. The
domination polynomial is defined byD(G, x) =

∑
d(G, i)xi where d(G, i)

is the number of dominating sets in G with cardinality i. Two graphs
G and H are considered D-equivalent if D(G, x) = D(H, x). Extending
previous results, we determine the equivalence classes of all paths.

1 Introduction

Let G = (V,E) be a graph. A set S of the vertex set V of graph G is a dominating set
if for each v ∈ V (G), either v ∈ S or there exists u ∈ S which is adjacent to v. The
domination number of G, denoted γ(G), is the cardinality of the smallest dominating
set of G. There is a long history of interest in domination, in both pure and applied
settings [10, 11].

As for many graph properties, one can more thoroughly investigate domination
via a generating function. Let D(G, i) be the collection of dominating sets of a graph
G with cardinality i and let d(G, i) = |D(G, i)|. Then the domination polynomial
D(G, x) of G is defined as

D(G, i) =

|V (G)|∑
i=γ(G)

d(G, i)xi.

A natural question to ask is to what extent can a graph polynomial describe the
underlying graph (for example, a survey of what is known with regards to chromatic
polynomials can be found in [9, ch. 3]). We say that two graphs G and H are
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domination equivalent or simply D-equivalent (written G ∼D H) if they have the
same domination polynomial. As in [1], we let [G] denote the D-equivalence class
determined by G, that is [G] = {H|H ∼D G} (we identify isomorphic graphs). A
graph G is said to be dominating unique or simply D-unique if [G] contains only G.

Two problems arise. Which graphs are D-unique, that is, are completely de-
termined by their domination polynomials? More generally, can we determine the
D-equivalence class of a graph? Both problems appear difficult, but there are some
partial results known. In [2] Akbari and Oboudi showed all cycles are D-unique.
Anthony and Picollelli classified all complete r-partite graphs which are D-unique in
[7], while Alikhani and Peng [5] showed most cubic graphs of order 10 (including the
Petersen graph) are D-unique. Kotek, Preen, and Simon [13] defined and character-
ized irrelevant edges (those which can be removed without changing the domination
polynomial of a graph), and showed various trees (in particular paths [1]) barbell
graphs [12], and other graphs, are not D-unique.

Paths form an interesting class. In [1] Akbari, Alikhani and Peng considered the

D-equivalence classes of paths, and showed that [Pn] = {Pn, P̃n} for n ≡ 0 (mod 3)

where P̃n is the graph obtained by adding an edge between the two stems in Pn.
In this paper we extend this result and determine the D-equivalence class for path
Pn for all n. Our plan is as follows: we first prove some results concerning the
top-most coefficients of domination polynomials for relevant classes of graphs, and
some conditions that hold for graphs whose domination polynomials satisfy the same
three-term recurrence that paths follow. We then determine the equivalence class
for a path Pn (n ≥ 5) by showing first that any D-equivalent graph must arise as
the disjoint union of some cycles together with Pn or the graph formed from it by
joining its two stems. Finally, we rule out the presence of cycles.

We shall rely on a few standard definitions. The order of a graph is its number
of vertices; Pn and Cn denote the path and cycle of order n, respectively. The set
of vertices N(v) = {u|uv ∈ E(G)} is called the open neighbourhood of v; similarly,
N [v] = N(v)∪{v} is called the closed neighbourhood of v (if S is a subset of vertices,
then the closed neighbourhood of S is defined to be N [S] = ∪v∈SN [v]). A vertex of
degree 1 is a leaf, its neighbour is a stem, and the edge between them is called a
pendant edge.

2 Coefficients of Domination Polynomials

We start with an examination of what the domination polynomial encodes about
graphs in general, and about paths in particular. Some coefficients of domination
polynomials are known for general graphs. In [6], Alikhani and Peng determined
d(G, n− 1) and d(G, n− 2) in terms of certain properties within the graph. In this
section we will present formulae for d(G, n − 3) and d(G, n − 4) for large classes
of graphs, as well as derive some properties of the coefficients specifically for the
domination polynomials of paths. All of these will be essential in the following
section where we determine the equivalence class for paths.
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Theorem 2.1 [6] Let G be a graph of order n with t vertices of degree one and r
isolated vertices. If D(G, x) =

∑n
i=1 d(G, i)xi is its domination polynomial then the

following hold:

(i) d(G, n− 1) = n− r.

(ii) d(G, n− 2) =
(
n
2

)− t if G has no isolated vertices and no K2 components.

When counting the number of dominating sets with cardinality close to n, it is
sometimes simpler to count the number of subsets which are not dominating. A
subset S ⊆ V (G) is not dominating if there exists a vertex v in G such that none
of its neighbours, nor itself, is in S. That is, N [v] ∩ S = ∅, and in such a case, we
say S = V (G) − S encompasses v or v is encompassed by S. The next elementary
lemma will help us identify which subsets are not dominating.

Lemma 2.2 For a graph G and S ⊆ V (G), S is not dominating if and only if there
exists a vertex v ∈ S which is encompassed by S.

We now determine the number of dominating sets of a certain size in graphs with
mild restrictions (no components of cardinality at most 2) by counting the number of
subsets of vertices with a given cardinality which contain the closed neighbourhood
of at least one of its vertices.

Lemma 2.3 For a graph G of order n with no K2 components let W be the set of
all stems of G. Then for k ∈ N, where 0 ≤ k ≤ n− γ(G),

d(G, n− k) =
∑

S⊆V−W
|N [S]|≤k

(−1)|S|
(
n− |N [S]|
k − |N [S]|

)
.

Proof Fix k ∈ {0, 1, . . . , n − γ(G)}. For each v ∈ V , let Av be the collection
of k-subsets which encompass v. By Lemma 2.2, d(G, n − k) =

(
n
k

) − | ∪v∈V Av|.
If a k-subset S encompasses any stem si then it also encompasses any leaf l ∈
N [si]. As G has no K2 components, all leaves are in V − W . Hence Asi ⊆ Al

and
⋃
v∈V

Av =
⋃

v∈V −W

Av. Furthermore for any S ⊂ V −W , ∩v∈SAv is the collection

of k-subsets which encompass all of S. Therefore |
⋂
v∈S

Av| =
(
n− |N [S]|
k − |N [S]|

)
, and by

inclusion-exclusion,

d(G, n− k) =

(
n

k

)
−

∣∣∣∣∣
⋃

v∈V −W

Av

∣∣∣∣∣
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=

(
n

k

)
−

∑
S⊆V−W

S �=∅

(−1)|S|−1

∣∣∣∣∣
⋂
v∈S

Av

∣∣∣∣∣
=

∑
S⊆V−W
|N [S]|≤k

(−1)|S|
(
n− |N [S]|
k − |N [S]|

)
.

In Lemma 2.3 we omit graphs with K2 components because each vertex in a K2 is
both a stem and a leaf. We will further this restriction and omit graphs with isolated
vertices as these graphs will arise in the next section when considering graphs that
are domination equivalent to paths.

In the next lemma we will use Lemma 2.3 to determine a formula for d(G, n− 3)
for a graph G of order n with no isolated vertices and no K2 components. Before
we begin, we define some graph parameters and subsets. An r-loop is an induced
r-cycle in G such that all but one vertex has degree two in G. Examples of r-loops
can be found in Figure 1; the vertices s3, v11, and v12 form a 3-loop, and the vertices
s3, v5, v6, . . . , v10 form a 7-loop. Further, we use the following notation, all with
respect to a graph G:

• Tr: the set of vertices of degree r in G which are not stems.

• ω: the number of stems in G.

• W = {s1, s2, . . . , sω}: the set of all stems in G.

• Si: the set of leaves attached to stem si.

• Lr: the set of r-loops.

• Li
r: the set of r-loop subgraphs which contain stem si.

• Cr: the set of components which are cycles of order r.

l1

l2

l3

s1 s2

l4 l5

v1

v2

v3

v4 s3

l6

v5

v6

v7

v8

v9

v10

v11

v12

s4

l7

Figure 1: An example of a graph
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As an example, consider the graph in Figure 1. The set of stemsW is {s1, s2, s3, s4}
and ω = 4. There are no degree zero vertices so T0 = ∅. There are seven degree one
vertices (leaves), none of which are stems, so T1 = {l1, l2, l3, l4, l5, l6, l7}. There are
13 degree two vertices, one of which (s4) is a stem, so T2 = {vi|1 ≤ i ≤ 12}. The
sets of leaves are S1 = {l1, l2, l3}, S2 = {l4, l5}, S3 = {l6}, and S4 = {l7}.
Theorem 2.4 For a graph G of order n where G has no isolated vertices and no K2

components,

d(G, n− 3) =

(
n

3

)
−
(
|T1| · (n− 2) + |T2| −

ω∑
i=1

(|Si|
2

)
− |L3| − 2|C3|

)
. (1)

Proof We will determine and sum (−1)|S|
(
n−|N [S]|
k−|N [S]|

)
for each S ⊆ V −W such that

|N [S]| ≤ 3 in order to use Lemma 2.3. If |N [S]| ≤ 3 then |S| ≤ 3, thus we will
consider the cases |S| = 0, 1, 2 and 3. Note the case |S| = 0 is trivial and yields the
summand

(
n
3

)
.

If |S| = 1, then S = {v} where v non-stem vertex and deg(v) ≤ 2. Hence v is
either in T0, T1 or T2. As G has no isolated vertices, the case |S| = 1 yields the
summand −(|T1| · (n− 2) + |T2|).

If |S| = 2, let S = {u, v} for non-stem vertices u and v. Note N [S] = 2 or 3.
However, if N [S] = 2 then u and v are either isolated or form a K2, which would
contradict our assumptions. Hence N [S] = 3 and N [S] = {u, v, x}. There must be
at least one edge from either u or v to x. Without loss of generality, let x ∈ N [u].
Furthermore neither u nor v can be isolated. HenceN [S] induces one of the subgraphs
shown in Figure 2.

u v

x

(a)

u v

x

(b)

u v

x

(c)

Figure 2: Every subgraph induced by N [S] when |S| = 2

Note that the degree of u and v in G is the same as their degree in the subgraph
induced by their closed neighbourhood. In Figure 2 (a), u and v are leaves in G
on the same stem. We can enumerate all such subgraphs in G by

∑ω
i=1

(|Si|
2

)
. In

Figure 2 (b), v is a leaf with stem u, which contradicts u and v being non-stem
vertices. In Figure 2 (c), u and v are in an induced 3-cycle; as we do not know
the degree of x in G, this subgraph is either a 3-loop or 3-cycle component. We can
enumerate all such subgraphs in G by |L3|+3|C3|. The summand for the case |S| = 2
is
∑ω

i=1

(|Si|
2

)
+ |L3|+ 3|C3|.

If |S| = 3, then |N [S]| = 3 and N [S] = S. No vertex in S is isolated. Now
suppose v ∈ S was a leaf. Then as N(v) ⊆ N [S] = S, then the corresponding stem
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of v is also in S which contradicts S ⊆ V −W . Therefore N [S] is a 3-cycle component
and the summand for the case |S| = 3 is −|C3|.

Taking the sum of each of the cases gives use the right hand side of equation (1).

We now introduce a new collection of graphs that play a pivotal role in the next
section.

Definition 2.5 Let Gk denote the set of all graph G with the property that every
vertex is either a stem or has degree at most k.

Our focus will be when k = 2. Two familiar families of graphs in G2 are paths and
cycles. Another example was shown in Figure 1. For a graph G of order n without
isolated vertices, clearly G ∈ G2 if and only if ω + |T1| + |T2| = n. Note if G ∈ G2

and G has an r-loop then the one vertex of the r-loop which is not degree two must
be a stem.

In the next lemma we will extend our work of Theorem 2.4 and determine d(G, n−
4) for a graph G ∈ G2 of order n with no isolated vertices and no K2 components
(we will make essential use of this in the next section). The proof is similar to that
of Theorem 2.4, but more involved (details can be found in [8]). Before we begin, we
will partition T2 into subsets based on the number of neighbouring stems.

• V0: The subset of T2 with no adjacent stems.

• V i
1 : The subset of T2 adjacent to exactly one stem, stem i.

• V ij
2 : The subset of T2 adjacent to exactly two stems, stems i and j (this set is

denoted V2 when G only has two stems).

Theorem 2.6 Let G ∈ G2 be a graph of order n with no isolated vertices and no K2

components. Then

d(G, n− 4) =

(
n

4

)
− |T1|

(
n− 2

2

)
− |T2|(n− 3) + α1 + α2 + α3,

where

α1 =
ω∑

i=1

(|Si|
2

)
(n− 3) + |L3|(n− 4) + |C3|(2n− 9),

α2 =
ω∑

i=1

|Si|
2
(|T1| − |Si|) +

∑
i �=j

|V ij
2 |(|Si|+ |Sj|) +

ω∑
i=1

|V i
1 ||Si|, and

α3 = |V0|+
ω∑

i=1

|V i
1 |
2

+
∑
i �=j

(|V ij
2 |
2

)− ω∑
i=1

(|Si|
3

)− ω∑
i=1

|Li
3||Si| − |C4|.

We now turn specifically to the coefficients of the domination polynomials of
paths, with interest in the top four.
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Theorem 2.7 [4]

(i) For every n ≥ 2, d(Pn, n− 1) = n.

(ii) For every n ≥ 3, d(Pn, n− 2) =
(
n
2

)− 2.

(iii) For every n ≥ 4, d(Pn, n− 3) =
(
n
3

)− (3n− 8).

(iv) For every n ≥ 5, d(Pn, n− 4) =
(
n
4

)− (2n2 − 13n+ 20).

We will also need to know when −2 is root of a domination polynomial, as
this plays a role in our characterization of graphs that are domination equivalent
to paths. The domination polynomial is multiplicative across components (that is,
D(G1 ∪ · · ·Gm, x) = D(G1, x)D(G2, x) · · ·D(Gm, x)) and D(K2,−2) = 0. There-
fore, D(G,−2) = 0 implies G has no K2 components. This observation is vital to
determining the domination equivalence classes of paths.

It is well known (and easy to see [6]) that Pn satisfies the recurrence

D(Gn, x) = x(D(Gn−1, x) +D(Gn−2, x) +D(Gn−3, x))

for n ≥ 3 (other families, such as the cycles Cn, do as well). We show that for
n ≥ 9, −2 is never a root of D(Pm, x), by showing that, given a sequence of graphs
satisfying such a recurrence if the D(Gi,−2) is non-zero, increasing in absolute value
and of alternating sign for the four consecutive indices i = N,N + 1, N + 2, N + 3,
then D(Gm,−2) = 0 for m ≥ N . This allows us to show that any G ∼D Gm does
not have any K2 components, since D(K2,−2) = 0.

Lemma 2.8 Fix k ≥ 1. Suppose we have a sequence of graphs (Gn)n≥1 that satisfies
the recurrence

D(Gn, x) = x(D(Gn−1, x) +D(Gn−2, x) +D(Gn−3, x))

for n ≥ 3. If for some N ∈ N

0 < |D(GN ,−2)| < |D(GN+1,−2)| < |D(GN+2,−2)| < |D(GN+3,−2)|

and D(GN ,−2), D(GN+1,−2), D(GN+2,−2), D(GN+3,−2) have alternating sign,
then D(Gm,−2) = 0 for m ≥ N .

Proof Substituting x = −2 into the recurrence, we find that

D(Gn,−2) = −2(D(Gn−1,−2) +D(Gn−2,−2) +D(Gn−3,−2)).

By induction we will show that D(Gn,−2) is increasing in absolute value and al-
ternating in sign for all n ≥ N + 3. As |D(GN ,−2)| > 0 then this will imply
D(Gn,−2) = 0 for m ≥ N . By the hypotheses, the result is true for n = N .
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Suppose for some k ≥ N , D(GN+3,−2), . . . , D(Gk,−2) alternate in signs and
increase in absolute value. Then we will first show D(Gk+1,−2) has opposite sign to
D(Gk,−2). First assume D(Gk,−2) > 0 (a similar argument holds when
D(Gk,−2) < 0). Then D(Gk−1,−2) < 0 and D(Gk−2,−2) > 0. By our induction as-
sumption, the absolute value of D(Gm,−2) is strictly increasing for N +3 ≤ m ≤ k.
Therefore

D(Gk,−2) +D(Gk−1,−2) +D(Gk−2,−2) > 0.

When we multiply the left side of the above inequality by −2, from the recurrence
relation for D(Gk,−2) we will obtain D(Gk+1,−2). The signs continue to alternate.

We now show that |D(Gk+1,−2)| > |D(Gk,−2)|. We consider the two cases:
D(Gk,−2) > 0 and D(Gk,−2) < 0. If D(Gk,−2) > 0 then D(Gk−1,−2) < 0,
D(Gk−2,−2) > 0, and D(Gk−3,−2) < 0. By our induction assumption, the absolute
value of D(Gm,−2) is strictly increasing. Therefore

D(Gk−1,−2) +D(Gk−2,−2) +D(Gk−3,−2) < D(Gk−1,−2) +D(Gk−2,−2) < 0.

By the recurrence relation for D(Gk,−2) we deduce

D(Gk,−2) = −2(D(Gk−1,−2) +D(Gk−2,−2) +D(Gk−3,−2))
> −2(D(Gk−1,−2) +D(Gk−2,−2)).

Since D(Gk+1,−2) < 0, we have

|D(Gk+1,−2)| = −D(Gk+1,−2)
= −(−2(D(Gk,−2) +D(Gk−1,−2) +D(Gk−2,−2)))
= 2D(Gk,−2) + 2D(Gk−1,−2) + 2D(Gk−2,−2)
> D(Gk,−2)− 2(D(Gk−1,−2) +D(Gk−2,−2))

+2D(Gk−1,−2) + 2D(Gk−2,−2)
= D(Gk,−2)
= |D(Gk,−2)|.

Therefore |D(Gk+1,−2)| > |D(Gk,−2)| and our claim is true. A similar argument
holds when D(Gk,−2) < 0.

Using the base casesD(P1, x) = x, D(P2, x) = x2+2x andD(P3, x) = x3+3x2+x,
calculations will show that D(Pi,−2) = 0 for 9 ≤ i ≤ 12, D(P13,−2) = −32,
D(P14,−2) = 64 and D(P15,−2) = −96. From this and the previous Lemma, we
conclude:

Corollary 2.9 If n ≥ 9, −2 is not a zero of D(Pn, x).

3 Equivalence Classes of Paths

We have done the necessary background work to proceed onto our characterization
of those graphs that are domination equivalent to path Pn.
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We first observe that any graph G ∼D Pn does not have any 4-cycle components.
This follows from the multiplicativity of the domination polynomial over components
and the following two lemmas.

Lemma 3.1 [2] If n is a positive integer, then

D(Cn,−1) =

{
3 n ≡ 0 mod 4

−1 otherwise
.

Lemma 3.2 [3] Let F be a forest. Then D(F,−1) ∈ {1,−1} and therefore
D(Pn,−1) ∈ {1,−1}.

Corollary 3.3 If a graph G is D-equivalent to Pn with a component H, then
|D(H,−1)| = 1, and so G does not have any 4-cycle components.

In the next lemma we use the results from Theorem 2.4, Theorem 2.6 and Corol-
lary 2.9 to show, for large enough n, that any graph G ∼D Pn must be the disjoint
union of one path and some number of cycles.

Lemma 3.4 For n ≥ 9, if G ∼D Pn then G = H ∪ C where H ∈ {Pk, P̃k} and C is
a disjoint union of cycles.

Proof Let G be a graph with D(G, x) = D(Pn, x) where n ≥ 9. Then d(G, i) =
d(Pn, i) for all i. Furthermore, by Theorem 2.7 we have:

(i) d(G, n− 1) = n.

(ii) d(G, n− 2) =
(
n
2

)− 2.

(iii) d(G, n− 3) =
(
n
3

)− (3n− 8).

(iv) d(G, n− 4) =
(
n
4

)− (2n2 − 13n+ 20).

By Theorem 2.1 the number of isolated vertices in G is n − d(G, n − 1) = 0. By
Corollary 2.9, D(G,−2) = 0, and again by Theorem 2.1 the number of leaves is
|T1| =

(
n
2

) − d(G, n− 2) = 2. By Theorem 2.4, since G has no K2 components and
no isolated vertices,

d(G, n− 3) =

(
n

3

)
−
(
|T1| · (n− 2) + |T2| −

ω∑
i=1

(|Si|
2

)
− |L3| − 2|C3|

)
.

Furthermore, from |T1| = 2 and (iii) we know

n− 4 = |T2| −
ω∑

i=1

(|Si|
2

)
− |L3| − 2|C3|.
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By rearranging for |T2| we get

|T2| = n− 4 +
ω∑

i=1

(|Si|
2

)
+ |L3|+ 2|C3|.

We claim that for G, |L3| = 0, |C3| = 0 and G ∈ G2 (recall that G2 is the set of
all graphs with maximum non-stem degree two, and that ω is the number of stems
in G). We will show our claim is true using the fact that n = ω +

∑
i∈N |Ti| so

n ≥ ω + |T1| + |T2|. Since |T1| = 2, it follows that T2 ≤ n − (2 + ω). Also, if
n = ω+ |T1|+ |T2| then G ∈ G2. As G has two leaves, it either has one or two stems.
We prove the claim for the case where G has two stems (the case where G has one
stem is simpler and is omitted).

Suppose G has two stems. Then ω = 2, |S1| = 1, |S2| = 1, and |T2| ≤ n − 4.
Thus

|T2| = n− 4 + 0 + |L3|+ 2|C3|.
Since |L3| + 2|C3| ≥ 0, it follows that |T2| ≥ n − 4, and therefore |T2| = n − 4.
Furthermore, |L3| + 2|C3| = 0 so |L3| = 0 and |C3| = 0. As ω + |T1| + |T2| = n, we
have G ∈ G2.

For a graph in G2, a T2 vertex can only be adjacent to stems or other T2 vertices.
Therefore the T2 vertices form paths between stems, r-loops, and disjoint cycles in
G2 graphs. As G ∈ G2, G will be the disjoint union of some number of cycles and a
subgraph H which has one of the two forms shown in Figure 3. (These two forms
were noted for graphs domination equivalent to paths in [1], but we shall need more
than was used there about the types of subgraphs present to limit the possibilities).

...

(a) One stem

. . . . . ....

(b) Two stems

Figure 3: The two possible structures of H

Recall from Section 2, we partitioned T2 into subsets based on the number of
neighbouring stems.

• V0: The subset of T2 with no adjacent stems.

• V i
1 : The subset of T2 adjacent to exactly one stem, stem i.

• V ij
2 : The subset of T2 adjacent to exactly two stems, stems i and j (this set is

denoted V2 when G only has two stems).
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We wish to show that the subgraph H of G is either a path or a path with an
edge between its stems. This is equivalent of showing H has two stems with either
one path between them or two, with one being an edge, and no r-loops. If G has
exactly two stems, and no r-loops, then the number of paths between the stems is
exactly 1

2
(|V 1

1 |+ |V 2
1 |)+ |V2|. Furthermore, if |V 1

1 | ≤ 1 and |V 2
1 | ≤ 1 then H has no r-

loops. Therefore it is sufficient to show H has two stems and either |V 1
1 | = |V 2

1 | = 0
and |V2| = 1, or |V 1

1 | = |V 2
1 | = 1 and |V2| = 0. We will show this by examining

d(G, n− 4).

By Theorem 2.6, as G has no K2 components, no isolated vertices, and G ∈ G2,
we have that

d(G, n− 4) =

(
n

4

)
− |T1|

(
n− 2

2

)
− |T2|(n− 3) + α1 + α2 + α3,

where

α1 =
ω∑

i=1

(|Si|
2

)
(n− 3) + |L3|(n− 4) + |C3|(2n− 9),

α2 =
ω∑

i=1

|Si|
2
(|T1| − |Si|) +

∑
i �=j

|V ij
2 |(|Si|+ |Sj|) +

ω∑
i=1

|V i
1 ||Si|, and

α3 = |V0|+
ω∑

i=1

|V i
1 |
2

+
∑
i �=j

(|V ij
2 |
2

)− ω∑
i=1

(|Si|
3

)− ω∑
i=1

|Li
3||Si| − |C4|.

Since |L3| = 0, |Li
3| = 0 for every i. Furthermore, |C3| = 0, and by Corollary 3.3

|C4| = 0. We again consider the two cases, where G has one stem and G has two
stems. Note that |T2| = |V0|+

∑ω
i=1 |V i

1 |+
∑

i �=j |V ij
2 |.

Again there are two cases to consider, depending on whether G has one or two
stems. We focus on the case of two stems, leaving the case of one stem to the reader.

Suppose that G has two stems. We find that ω = 2 ,|S1| = 1, |S2| = 1, and
|T2| = n − 4. As there are only two stems, let the set of T2 vertices which are
adjacent to both be denoted V2. Furthermore |V0|+ |V 1

1 |+ |V 2
1 |+ |V2| = |T2| = n−4.

Using this we can simplify α1, α2, and α3 to be

α1 = 0, α2 = 1 + 2|V2|+
2∑

i=1

|V i
1 |, and α3 = |V0|+

2∑
i=1

|V i
1 |
2

+
(|V2|

2

)
.

Since |V0|+ |V 1
1 |+ |V 2

1 |+ |V2| = n−4, it follows that α1+α2+α3 = n−3+
2∑

i=1

|V i
1 |
2

+

|V2|+
(|V2|

2

)
and

d(G, n− 4) =

(
n

4

)
−

(
2n2 − 13n+ 21−

2∑
i=1

|V i
1 |
2

− |V2| −
(|V2|

2

))
.

However by item (iv), d(G, n− 4) =
(
n
4

)− (2n2 − 13n+ 20) and therefore

2∑
i=1

|V i
1 |
2

+ |V2|+
(|V2|

2

)
= 1.
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As each summand is non-negative and |V2|+
(|V2|

2

)
is a non-negative integer, the only

solutions to this are
∑2

i=1
|V i

1 |
2

= 1, |V2| = 0 or
∑2

i=1
|V i

1 |
2

= 0, |V2| = 1.

In the case
∑2

i=1
|V i

1 |
2

= 1, |V2| = 0, then because G has no K2 components and
there are no vertices adjacent to both stems (|V2| = 0) it follows that |V i

1 | ≥ 1 for each

i. Furthermore, because
∑2

i=1
|V i

1 |
2

= 1, we have |V 1
1 | = |V 2

1 | = 1, and |V2| = 0. In the

case
∑2

i=1
|V i

1 |
2

= 0, |V2| = 1 since |V i
1 | ≥ 0 for each i, then we have |V 1

1 | = |V 2
1 | = 0,

and |V2| = 1. Both cases result in H having one path between its two stems and no
r-loops. As we do not specify the degree of the stems, this allows for the possibility
of an edge to be between them, and proves our result.

Let n ∈ Z, n = 0 and p be a prime factor of n. Then there is a nonnegative
integer a such that pa | n but pa+1 � n; we set ordp(n) = a. In other words, a is the
exponent of p in the prime decomposition of n. Furthermore, define ordp(0) = 0. In
a similar method used by Akbari and Oboudi [2] we will determine ord3(D(Pn,−3))
in order to show that if a graph G is D-equivalent to a path, then G is the disjoint
union of a path and at most two cycles.

Lemma 3.5 [2] For n ∈ N,

ord3(D(Cn,−3)) =

⎧⎨
⎩

�n
3
�+ 1 n ≡ 0 mod 3

�n
3
� or �n

3
�+ 1 n ≡ 1 mod 3

�n
3
� n ≡ 2 mod 3

.

Using a similar approach, we can prove the following statement.

Lemma 3.6 For n ∈ N

ord3(D(Pn,−3)) =

⎧⎨
⎩

�n
3
� n ≡ 0 mod 3

�n
3
� n ≡ 1 mod 3

�n
3
� or �n

3
�+ 1 n ≡ 2 mod 3

.

The next straightforward lemma gives the domination numbers of paths and
cycles, and will help us to restrict the number of disjoint cycles in G if G ∼D Pn.

Lemma 3.7 For every n ≥ 1, γ(Pn) = �n
3
�, and for all n ≥ 3, γ(Cn) = �n

3
�.

From Lemma 3.4 we know that if G is D-equivalent to Pn then G is the disjoint
union of H and some number of cycles where H ∈ {Pk, P̃k} and k ≤ n. In the next
lemma we will show the number of cycles is at most two.

Lemma 3.8 For n ∈ N For n ≥ 9, if G ∼D Pn then G = H∪C where H ∈ {Pk, P̃k},
k ≤ n, and C is a disjoint union of at most two cycles.
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Proof Let n = 3m + r and G be a graph with D(G, x) = D(P3m+r, x) where
r ∈ {0, 1, 2}. By Lemma 3.4,

G = P3m1+r1 ∪ C3m2+r2 ∪ . . . ∪ C3mk+rk ,

where 3m + r =
∑k

i=1(3mi + ri) and for each i, ri ∈ {0, 1, 2}. In this proof we will
begin by restricting the number of non-zero ri, and then restrict the number of ri
which are zero. By Lemma 3.7 we know

γ(G) =
k∑

i=1

⌈3mi + ri
3

⌉
=

k∑
i=1

mi +
k∑

i=1

⌈ri
3

⌉
.

Since 3m+ r =
k∑

i=1

(3mi + ri), it follows that
k∑

i=1

mi = m+ r
3
−

k∑
i=1

ri
3
and

γ(G) = m+
r

3
+

k∑
i=1

(⌈ri
3

⌉
− ri

3

)
.

Since γ(G) = γ(P3m+r) and γ(P3m+r) = �3m+r
3

� = m+ � r
3
�, then we have

k∑
i=1

(⌈ri
3

⌉
− ri

3

)
=

⌈r
3

⌉
− r

3
.

Let f(ri) =
⌈
ri
3

⌉− ri
3
. Because ri ∈ {0, 1, 2}, it follows that f(0) = 0, f(1) = 2

3
, and

f(2) = 1
3
. Now consider the number of ri = 0 for the cases r = 0, 1, and 2:

• If r = 0 then
∑

f(ri) = 0 and no ri = 0.

• If r = 1 then
∑

f(ri) =
2
3
and at most two ri = 0.

• If r = 2 then
∑

f(ri) =
1
3
and at most one ri = 0.

We now count those ri with ri = 0. For a graph H , let g(H) = ord3(D(H,−3))−
γ(H). Using Lemma 3.5, Lemma 3.6 and the fact that γ(C3m+r) = γ(P3m+r) =
�3m+r

3
� we can obtain g(P3m+r) and g(C3m+r):

g(P3m+r) =

⎧⎨
⎩

0 r = 0
0 r = 1
0 or 1 r = 2

, g(C3m+r) =

⎧⎨
⎩

1 r = 0
0 or 1 r = 1
0 r = 2

.

For simplicity we will denote g(P3m+r) and g(C3m+r) with gP (r) and gC(r). Because
G is the disjoint union of a path and cycles, γ(G) is just the sum of domination
numbers of each of the paths and cycles. Similarly ord3(D(G,−3)) is just the sum
of the orders of each of its components. From this we get the following equality:

gP (r) = gP (r1) +

k∑
i=2

gC(ri).

Now consider the number of ri = 0 for the cases r = 0, 1, and 2.
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• If r = 0 then gP (r1) +
k∑

i=2

gC(ri) = 0 and no ri = 0 for i ≥ 2.

• If r = 1 then gP (r1) +
k∑

i=2

gC(ri) = 0 and no ri = 0 for i ≥ 2.

• If r = 2 then gP (r1) +
k∑

i=2

gC(ri) = 0 or 1 and at most one ri = 0 for i ≥ 2.

Together with the three cases counting the number of nonzero ri, we can easily see
there are at most two ri for i ≥ 2. Therefore there are at most two cycle components.

We have narrowed the number of cycle components to two in graphs which are
D-equivalent to paths. From Lemma 3.1 we know D(Cn,−1). We will now eval-
uate D′(Cn,−1), D′′(Cn,−1), and D′′′(Cn,−1) as well as D(Pn,−1), D′(Pn,−1),
D′′(Pn,−1), and D′′′(Pn,−1).

Lemma 3.9 [2] For n ∈ N

D′(Cn,−1) =

⎧⎪⎪⎨
⎪⎪⎩

−n, n ≡ 0 mod 4
n, n ≡ 1 mod 4
0, n ≡ 2 mod 4
0, n ≡ 3 mod 4

.

Lemma 3.10 [2] For n ∈ N

D′′(Cn,−1) =

⎧⎪⎪⎨
⎪⎪⎩

1
4
n (n− 4) , n ≡ 0 mod 4

−1
2
n (n− 1) , n ≡ 1 mod 4

1
4
n (n + 2) , n ≡ 2 mod 4

0, n ≡ 3 mod 4

.

The proofs of Lemmas 3.11 to 3.15 are similar and are left to the reader.

Lemma 3.11 For n ∈ N

D′′′(Cn,−1) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
16
n3 + 3

4
n2 − 2n, n ≡ 0 mod 4

3
16
n3 − 9

8
n2 + 15

16
n, n ≡ 1 mod 4

− 3
16
n3 + 3

4
n, n ≡ 2 mod 4

1
16
n3 + 3

8
n2 + 5

16
n, n ≡ 3 mod 4

.

Lemma 3.12 For n ∈ N

D(Pn,−1) =

⎧⎪⎪⎨
⎪⎪⎩

1, n ≡ 0 mod 4
−1, n ≡ 1 mod 4
−1, n ≡ 2 mod 4
1, n ≡ 3 mod 4

.
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Lemma 3.13 For n ∈ N

D′(Pn,−1) =

⎧⎪⎪⎨
⎪⎪⎩

0, n ≡ 0 mod 4
n+1
2
, n ≡ 1 mod 4
0, n ≡ 2 mod 4

−n+1
2
, n ≡ 3 mod 4

.

Lemma 3.14 For n ∈ N

D′′(Pn,−1) =

⎧⎪⎪⎨
⎪⎪⎩

−1
8
n(n + 4), n ≡ 0 mod 4

−1
8
(n− 1)2, n ≡ 1 mod 4

1
8
(n + 2)2, n ≡ 2 mod 4

1
8
(n− 3)(n+ 1), n ≡ 3 mod 4

.

Lemma 3.15 For n ∈ N

D′′′(Pn,−1) =

⎧⎪⎪⎨
⎪⎪⎩

1
16
n3 − n, n ≡ 0 mod 4

− 9
16
n2 + 3

8
n+ 3

16
, n ≡ 1 mod 4

− 1
16
n3 + 1

4
n, n ≡ 2 mod 4

9
16
n2 + 3

8
n− 3

16
, n ≡ 3 mod 4

.

We now present our main result, the equivalence class of paths. The next theorem
will show [Pn] = {Pn, P̃n} for n ≥ 9. However, first we will discuss the [Pn] for n ≤ 8

as shown in Table 1. For n = 4, 7, 8, [Pn] = {Pn, P̃n} (Pn and P̃n are isomorphic
when n ≤ 3). Note that D(Pn,−2) = 0 when n = 4, 7 and 8, and in fact P4, P7,
and P8 are each D-equivalent to graphs with K2 components. Note that [P7] and
[P8] each have four graphs. Hhowever, two of the graphs arise from the other two by
adding in an irrelevant edge (an edge between two stems).

Theorem 3.16 Let Fi (i ≥ 3) denote the graph that consists of a cycle Ci with a
pendant edge (that is, one of the vertices vi of the cycle is attached to a new vertex
of degree 1), and let Hi denote the graph formed from Fi and K2 by adding in an
edge between the stem in Fi and a vertex of K2. Then

• [Pn] = {Pn} if n ≤ 3,

• [P4] = {P4, 2P2},
• [Pn] = {Pn, P̃n, Fn−3 ∪K2, Hn−3} for n = 7, 8, and

• [Pn] = {Pn, P̃n} otherwise.
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n D(Pn, x) [Pn]
1 x
2 x2 + 2x
3 x3 + 3x2 + x
4 x4 + 4x3 + 4x2

5 x5 + 5x4 + 8x3 + 3x2

6 x6 + 6x5 + 13x4 + 10x3 + x2

7 x7 + 7x6 + 19x5 + 22x4 + 8x3

8 x8 + 8x7 + 26x6 + 40x5 + 26x4 + 4x3

Table 1: The domination equivalence classes for paths up to length eight

Proof From previous remarks, it suffices to only consider n ≥ 9. Let G be a graph
which is D-equivalent to Pn. By Lemma 3.8, G = H ∪C where H ∈ {Pn1, P̃n1} with
n1 ≤ n and C is the disjoint union of at most two cycles. Therefore either G = H ,
G = H∪Cn2 or G = H∪Cn2∪Cn3 . It is sufficient to show the latter two cases always
yield a contradiction. We will do so by evaluating D(Pn,−1), . . . , D′′′(Pn,−1) and
D(G,−1), . . . , D′′′(G,−1) for all cases n1, n2, n3 ≡ 0, 1, 2, 3 (mod 4) and showing
each case contradicts D(G, x) = D(Pn, x). By Lemma 3.1 there can be no cycles
with order congruent to 0 (mod 4). Tthere are 12 cases to consider for one cycle
(without loss of generality n1 ≡ 0, 1, 2, 3 (mod 4) and n2 ≡ 0, 1, 2, 3 (mod 4)) and
similarly 24 cases for two cycles. In each case, we can derive a contradiction.

We begin with the situation of only one cycle, so that, without loss of generality,
n3 = 0 and G = Pn1 ∪ Cn2. As the domination polynomial is multiplicative across
components, taking the first three derivatives of D(G, x) we obtain the following
system of equations:

D(Gn,−1) = D(Pn1,−1)D(Cn2,−1) (PC0)

D′(G,−1) = D′(Pn1 ,−1)D(Cn2,−1) +D(Pn1,−1)D′(Cn2,−1) (PC1)

D′′(G,−1) = D′′(Pn1 ,−1)D(Cn2,−1) + 2D′(Pn1,−1)D′(Cn2,−1)
+D(Pn1,−1)D′′(Cn2 ,−1) (PC2)

D′′′(G,−1) = D′′′(Pn1,−1)D(Cn2,−1) + 3D′′(Pn1,−1)D′(Cn2,−1)
+3D′(Pn1,−1)D′′(Cn2 ,−1) +D(Pn1,−1)D′′′(Cn2,−1) (PC3)
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Of the 12 cases to consider, we will only illustrate the proofs for two of them.

Case 2: n1 ≡ 0, n2 ≡ 2 (mod 4)

As n ≡ n1 + n2 (mod 4), n ≡ 2 (mod 4), and so equation (PC2) reduces to

(n+ 2)2

8
=

n1(n1 + 4)

8
+

n2(n2 + 2)

4
,

and equation (PC3) reduces to

−n3

16
+

n

4
= −n3

1

16
+ n1 − 3n3

2

16
+

3n2

4
.

We will now substitute n = n1 + n2 into the reduced equation (PC2):

0 = 1
8
(n1 + n2 + 2)2 − (1

8
n1(n1 + 4) + 1

4
n2(n2 + 2))

0 = (n1 + n2 + 2)2 − n1(n1 + 4)− 2n2(n2 + 2)
0 = n2

1 + n2
2 + 4 + 2n1n2 + 4n1 + 4n2 − n2

1 − 4n1 − 2n2
2 − 4n2

0 = −n2
2 + 2n1n2 + 4.

Therefore n1 = (n2
2 − 4)/2n2. By substituting this and n = n1 + n2 into the reduced

equation (PC3) and multiplying by n2 we obtain

0 = −1

4
n4
2 − 2n2

2 + 12.

We obtain the solutions n2 = −2, 2,−2
√
3i or 2

√
3i. Because n2 is the border of the

cycle, we have n2 ≥ 3, a contradiction for all four solutions.

Case 7: n1 ≡ 2, n2 ≡ 1 (mod 4)

Since n ≡ n1+n2 (mod 4), we have n ≡ 3 (mod 4), and so equation (PC1) reduces
to

−n + 1

2
= −n2

and equation (PC2) reduces to

1

8
(n− 3)(n+ 1) = −1

8
(n1 + 2)2 +

1

2
n2(n2 − 1).

Therefore n = 2n2 − 1. As n = n1 + n2, it follows that n1 = n2 − 1. By substituting
this into the reduced equation (PC2) and multiplying both sides by 8 we obtain

(2n2 − 4)(2n2) = −(n2 + 1)2 + 4n2(n2 − 1).

Bringing everything to one side and simplifying we are left with

(n2 − 1)2 = 0.

Therefore n2 = 1. However, because n2 ≥ 3, this is a contradiction.
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Since each of the 12 cases results in a contradiction, G is not a disjoint union of
H and one cycle, where H ∈ {Pn1, P̃n1}. We will now consider whether G can be a
disjoint union of H and two cycles; this yields (without loss of generality) 24 cases,
a number of which can be handled quickly, although some are more involved than
the others. We only present two of the cases, leaving the rest to the reader (again,
details can be found in [8]). Here we have G = Pn1 ∪Cn2 ∪Cn3. In a similar manner
to the case with one cycle we obtain a system of equations by taking the first three
derivatives of D(G, x).

D(G,−1) = D(Pn1,−1)D(Cn2,−1)D(Cn3,−1) (PCC0)

D′(G,−1) = D′(Pn1,−1)D(Cn2,−1)D(Cn3,−1)+
D(Pn1,−1)D′(Cn2,−1)D(Cn3,−1) +
D(Pn1,−1)D(Cn2,−1)D′(Cn3,−1) (PCC1)

D′′(G,−1) = D′′(Pn1,−1)D(Cn2,−1)D(Cn3,−1)+
D(Pn1,−1)D′′(Cn2,−1)D(Cn3,−1)+
D(Pn1,−1)D(Cn2,−1)D′′(Cn3,−1)+
2D′(Pn1 ,−1)D′(Cn2,−1)D(Cn3,−1)+
2D′(Pn1 ,−1)D(Cn2,−1)D′(Cn3,−1)+
2D(Pn1,−1)D′(Cn2 ,−1)D′(Cn3,−1) (PCC2)

D′′′(G,−1) = D′′′(Pn1,−1)D(Cn2,−1)D(Cn3,−1)+
D(Pn1,−1)D′′′(Cn2,−1)D(Cn3,−1)+
D(Pn1,−1)D(Cn2,−1)D′′′(Cn3,−1)+
3D′′(Pn1,−1)D′(Cn2,−1)D(Cn3,−1)+
3D′(Pn1 ,−1)D′′(Cn2,−1)D(Cn3,−1)+
3D′′(Pn1,−1)D(Cn2,−1)D′(Cn3,−1)+
3D′(Pn1 ,−1)D(Cn2,−1)D′′(Cn3,−1)+
3D(Pn1,−1)D′′(Cn2,−1)D′(Cn3,−1)+
3D(Pn1,−1)D′(Cn2 ,−1)D′′(Cn3,−1)+
6D′(Pn1 ,−1)D′(Cn2,−1)D′(Cn3,−1) (PCC3)

Case 2: n1 ≡ 0, n2 ≡ 1, n3 ≡ 2 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4), we have n ≡ 3 (mod 4), and equation (PCC1)
reduces to

−n + 1

2
= −n2

and equation (PCC2) reduces to

1

8
(n− 3)(n+ 1) = −1

8
n1(n1 + 4)− 1

4
n3(n3 + 2) +

1

2
n2(n2 − 1).

Therefore n = 2n2 − 1. Since n = n1 + n2 + n3, we have n2 = n1 + n3 + 1 and
n = 2n1 + 2n3 + 1. By substituting this into the reduced equation (PCC2) and
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multiplying both sides by 8 we obtain

(2n1+2n3−2)(2n1+2n3+2) = −n1(n1+4)−2n3(n3+2)+4(n1+n3+1)(n1+n3),

which simplifies to

4(n1 + n3)
2 − 4 = −n1(n1 + 4)− 2n3(n3 + 2) + 4(n1 + n3)

2 + 4(n1 + n3)
−4 = −n2

1 − 4n1 − 2n2
3 − 4n3 + 4n1 + 4n3

0 = −n2
1 − 2n2

3 + 4.

Since n3 ≥ 3, there are no solutions, which is a contradiction.

Case 3: n1 ≡ 0, n2 ≡ 2, n3 ≡ 2 (mod 4)

As n ≡ n1 + n2 + n3 (mod 4), we have n ≡ 0 (mod 4), and so equation (PCC2)
reduces to

−1

8
n(n + 4) = −1

8
n1(n1 + 4)− 1

4
n3(n3 + 2)− 1

4
n2(n2 + 2),

and equation (PCC3) reduces to

1

16
n3 − n =

1

16
n3
1 − n1 +

3

16
n3
3 −

3

4
n3 +

3

16
n3
2 −

3

4
n2.

We will now substitute n = n1 + n2 + n3 into the the reduced equation (PCC2):

n2
2 + n2

3 − 2n1n2 − 2n1n3 − 2n2n3 = 0.

Therefore if we isolate for n1 we find

n1 =
(n2 − n3)

2

2(n2 + n3)
.

By substituting this and n = n1 + n2 + n3 into the the reduced equation (PCC3),
multiplying by 64n2 + 64n3, and simplifying we obtain

n4
2 − 8n3

2n3 + 30n2
2n

2
3 − 8n2n

3
3 + n4

3 − 16n2
2 − 32n2n3 − 16n2

3 = 0.9 (9)

We have plotted the non-negative solutions to equation (9) along with the line n3 =
8 − n2 in Figure 4. We will show that any line n3 = k − n2 which intersects the set
of non-negative solutions to equation (9) must have k ≤ 8. Therefore we will be able
to bound all solutions to equation (9) with the bounds n3 ≤ 8− n2and n3, n2 ≥ 3.

We will show the line n3 = k − n2 only intersects the set of non-negative solutions
to equation (9) if k ≤ 8. First substitute n3 = k − n2 into equation (9) to obtain

48n4
2 − 96kn3

2 + 60k2n2
2 − 12k3n2 + k4 − 12k2 = 0.
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Figure 4: Solutions to n4
2− 8n3

2n3+30n2
2n

2
3− 8n2n

3
3+n4

3− 12n2
2− 32n2n3− 12n2

3 = 0

The solutions are

n2 =
1

2
k ± 1

12

√
18k2 ± 6k

√
−3k2 + 192.

Therefore n2 is real only if −3k2 + 192 ≥ 0 and hence k ≤ 8. Therefore the only
remaining viable solutions are the 6 integer pairs bounded by n2, n3 ≥ 3 and n3 ≤
8− n2. As none are solutions, this is a contradiction.

Since each case results in a contradiction, G is not a disjoint union of H and
one cycle nor two cycles, where H ∈ {Pn1, P̃n1}. We conclude that G has no cycle

components and G ∈ {Pn, P̃n}.

4 Concluding Remarks

We have determined the domination equivalence classes for paths. Along the way of
our proof, we have also determined the number of dominating sets of large cardinality
in families of graphs, as a function of various graph parameters. We expect that these
formulae (and the techniques used to prove them) will be of use in other problems
related to domination-equivalence. One extension of our results is to consider trees
in general (we remark that the only domination unique trees are stars, as they are
unique because they are the only trees with all but one vertex being a leaf, and any
other tree has at least two distinct stems, which can be joined to form an irrelevant
edge).

Open problem 1. For a tree T , characterize the domination-equivalence class of T .

Results in [13] show that we can build dominating equivalent graphs by adding an
(irrelevant) edge between stems. We have shown large enough paths are domination-
unique up to this operation.

Open problem 2. Which other graphs in G2 are domination-unique up to the
addition and removal of irrelevant edges?
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Finally, it would be useful to know from the domination polynomial whether a
graph is connected. However the addition of irrelevant edges make it possible for a
connected and disconnected graph to be domination-equivalent. This leads us to our
last open problem.

Open problem 3. Is there a disconnected graph which is domination-equivalent
to a connected graph but which cannot be made connected through the addition of
irrelevant edges?
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