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Abstract

Given a positive integer k, a subset S of vertices of a graph G is called a
k-tuple dominating set in G if for every vertex v ∈ V (G), |N [v]∩S| ≥ k.
The minimum cardinality of a k-tuple dominating set in G is the k-tuple
domination number γ×k(G) of G. A subset S of vertices of a graph G is
called a k-tuple total dominating set in G if for every vertex v ∈ V (G),
|N(v) ∩ S| ≥ k. The minimum cardinality of a k-tuple total dominating
set in G is the k-tuple total domination number γ×k,t(G) of G. We present
probabilistic upper bounds for the k-tuple domination number of a graph
as well as for the k-tuple total domination number of a graph, and im-
prove previous bounds given in [J. Harant and M.A. Henning, Discuss.
Math. Graph Theory 25 (2005), 29–34], [E.J. Cockayne and A.G. Thoma-
son, J. Combin. Math. Combin. Comput. 64 (2008), 251–254], and [M.A.
Henning and A.P. Kazemi, Discrete Appl. Math. 158 (2010), 1006–1011]
for graphs with sufficiently large minimum degree under certain assump-
tions.

1 Introduction

For graph theory notation and terminology not given here we refer to [10], and for the
probabilistic methods notation and terminology we refer to [1]. We consider finite,
undirected and simple graphs G with vertex set V = V (G) and edge set E = E(G).
The number of vertices of G is called the order of G and is denoted by n = n(G).
The open neighborhood of a vertex v ∈ V is N(v) = NG(v) = {u ∈ V | uv ∈ E}
and the closed neighborhood of v is N [v] = NG[v] = N(v) ∪ {v}. The degree of a
vertex v, denoted by deg(v) (or degG(v) to refer to G), is the cardinality of its open
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neighborhood. We denote by δ(G) and Δ(G), the minimum and maximum degrees
among all vertices of G, respectively. For a subset S of V (G), the subgraph of G
induced by S is denoted by G[S]. A subset S ⊆ V is a dominating set of G if every
vertex in V − S has a neighbor in S. The domination number γ(G) is the minimum
cardinality of a dominating set of G. A set S ⊆ V is a total dominating set if each
vertex in V is adjacent to at least one vertex of S, while the minimum cardinality of
a total dominating set is the total domination number γt(G) of G.

For a positive integer k, a set S ⊆ V (G) is called a k-tuple dominating set in
G if for every vertex v ∈ V (G), |N [v] ∩ S| ≥ k. The minimum cardinality of a
k-tuple dominating set in G is the k-tuple domination number γ×k(G) of G. For the
case k = 2, the k-tuple domination is also called double domination. The concept of
k-tuple domination number was introduced by Harary and Haynes [9], and further
studied for example in [4, 6, 7, 8, 14, 15, 17]. Henning and Kazemi [11] introduced the
concept of k-tuple total domination in graphs. For a positive integer k, a subset S
of V is a k-tuple total dominating set of G if for every vertex v ∈ V , |N(v)∩ S| ≥ k.
The k-tuple total domination number γ×k,t(G) is the minimum cardinality of a k-
tuple total dominating set of G. The concept of k-tuple total domination number
was further studied for example in [2, 3, 5, 12, 13, 16]. We note that if a graph G
has a k-tuple dominating set, then clearly, δ ≥ k− 1, and if a graph G has a k-tuple
total dominating set then δ ≥ k.

Harant and Henning obtained the following probabilistic upper bound on the
double domination number of a graph.

Theorem 1.1 (Harant and Henning, [8]) If G is a graph of order n with mini-
mum degree δ ≥ 1 and average degree d, then

γ×2(G) ≤
(
ln(1 + d) + ln δ + 1

δ

)
n.

Cockayne and Thomason [4] improved Theorem 1.1.

Theorem 1.2 (Cockayne and Thomason [4]) If G is a graph of order n with
minimum degree δ ≥ 1, then

γ×2(G) ≤
(
ln(1 + δ) + ln δ + 1

δ

)
n.

They also presented the following probabilistic upper bound on the k-tuple dom-
ination number of a graph.

Theorem 1.3 (Cockayne and Thomason [4]) Let G be a graph of order n with
minimum degree δ ≥ 1. If k is fixed and δ is sufficiently large, then

γ×k(G) ≤ n

(
ln δ + (k − 1 + o(1)) ln ln δ

δ

)
.
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Henning and Kazemi proved the following.

Theorem 1.4 (Henning and Kazemi [11]) If G is a graph of order n with min-
imum degree δ ≥ 2, then

γ×2,t(G) ≤
(
ln(2 + δ) + ln δ + 1

δ

)
n.

Theorem 1.5 (Henning and Kazemi [11]) Let G be a graph of order n with
minimum degree δ. If k is fixed and δ is sufficiently large, then

γ×k,t(G) ≤ n

(
ln δ + (k − 1 + o(1)) ln ln δ

δ

)
.

In the proof of Theorems 1.2, 1.3, 1.4 and 1.5 it is assumed that δ is sufficiently
large and k is fixed. In this paper, we first obtain new probabilistic upper bounds
for the k-tuple domination number of a graph with sufficiently large δ, explicitly,
when δ ≥ 3k − 4, and we improve both Theorems 1.2 and 1.3 under some certain
assumptions. We next obtain new probabilistic upper bounds for the k-tuple total
domination number of a graph with sufficiently large δ, explicitly, when δ ≥ 3k − 2,
and we improve both Theorems 1.4 and 1.5 in such a case and under some certain
assumptions. The main probabilistic methods are similar to those presented in the
proof of Theorems 1.2, 1.3, 1.4 and 1.5.

For two subset A and B of vertices of G, and an integer k, we say that A k-tuple
dominates B if for any vertex v ∈ B, |N [v]∩A| ≥ k. Similarly, we say that A k-tuple
total dominates B if for any vertex v ∈ B, |N(v)] ∩ A| ≥ k. For a random variable
X, we denote by E(X) the expectation of X .

2 Bounds for the k-tuple domination number

We first prove the following important lemma.

Lemma 2.1 Let k ≥ 1 be a positive integer and G be a graph on n vertices with
minimum degree δ ≥ 3k − 4 and maximum degree Δ. Let A ⊆ V (G) be a set
obtained by choosing each vertex v ∈ V (G) independently with probability p ∈ (0, 1),
A′ = {v ∈ A : |NG(v) − A| ≤ k − 2}, and A′′ = {v ∈ A′ : |NG(v) − A′| ≤ 2k − 3}.
Then there is a subset S ⊆ A′ such that S k-tuple dominates A′′ and |S| ≤ t|A′|,
where

t = p+

k−1∑
i=0

(k − i)

(
δ + 1
i

)
pi(1− p)δ−2k+4−i.
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Proof. Let δ1 = min{degG[A′](v) : v ∈ A′′}. For any vertex v ∈ A′′ we have
degG[A′](v) = degG(v) − |NG(v) − A′| ≥ degG(v) − (2k − 3) ≥ δ − (2k − 3). Thus
δ1 ≥ δ − (2k − 3) ≥ k − 1. For each vertex v ∈ A′′, pick a set Nv comprising v and
δ1 of its neighbors in A′, so |Nv| = δ1 + 1.

Create a subset A1 ⊆ A′ by choosing each vertex v ∈ A′ independently with
probability p. Let Vi = {v ∈ A′′ : |Nv ∩ A1| = i}, for 0 ≤ i ≤ k − 1. Form the
set Xi by placing within it k − i members of Nv − A1 for each v ∈ Vi. Note that
|Xi| ≤ (k − i)|Vi|. Let B1 =

⋃k−1
i=0 Xi. Then the set D = A1 ∪B1, k-tuple-dominates

any vertex of A′′. We now compute the expectation of |D|. Clearly, E(|A1|) = |A′|p,
since |A1| can be denoted as the sum of |A′| random variables. For each vertex

v ∈ A′′, Pr(v ∈ Vi) =

(
δ1 + 1

i

)
pi(1 − p)δ1+1−i. Thus by the linearity property of

the expectation,

E(|D|) = E(|A1|) + E(|B1|)

≤ E(|A1|) +
k−1∑
i=0

E(|Xi|)

≤ E(|A1|) +
k−1∑
i=0

(k − i)E(|Vi|)

≤ |A′|p+ |A′|
k−1∑
i=0

(k − i)

(
δ1 + 1

i

)
pi(1− p)δ1+1−i

= |A′|
[
p+

k−1∑
i=0

(k − i)

(
δ1 + 1

i

)
pi(1− p)δ1+1−i

]

≤ |A′|
[
p+

k−1∑
i=0

(k − i)

(
δ + 1
i

)
pi(1− p)δ−2k+4−i

]
= t|A′|.

Hence, by the pigeonhole property of the expectation there is a subset S ⊆ A′

such that S k-tuple dominates A′′ and |S| ≤ t|A′|.

Theorem 2.2 Let k ≥ 1 be a positive integer and p ∈ (0, 1) be a real number. For
any graph G on n vertices with minimum degree δ ≥ 3k− 4 and maximum degree Δ,

γ×k(G) ≤ n

(
p+

k−1∑
i=0

(k − i)

(
δ + 1
i

)
pi(1− p)δ+1−i

)

− n

[
1− p−

k−1∑
i=0

(k − i)

(
δ + 1
i

)
pi(1− p)δ−2k+4−i

](
δ

k − 2

)
p3+Δ−k.

Proof. Let k ≥ 1 be a positive integer, and let G be a graph on n vertices with
minimum degree δ ≥ 3k− 4 and maximum degree Δ. Create a subset A ⊆ V (G) by
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choosing each vertex v ∈ V (G) independently with probability p. Let A′ = {v ∈ A :
|N(v) − A| ≤ k − 2}, and A′′ = {v ∈ A′ : |N(v) − A′| ≤ 2k − 3}. For any vertex
v ∈ A′ − A′′, |N(v) ∩ (A− A′)| = |N(v)−A′| − |N(v)− A| ≥ 2k − 2− (k − 2) = k.
Thus any vertex of A′ − A′′ is k-tuple-dominated by some vertex of A − A′. Let
Vi = {v ∈ V : |N [v] ∩ A| = i} for 0 ≤ i ≤ k − 1. Clearly Vi ∩ A′ = ∅, since
|N(v) ∩ A| ≥ deg(v)− |N(v)− A| ≥ δ − (k − 2) ≥ 3k − 4 − (k − 2) = 2(k − 1) > k
for any vertex v ∈ A′. Thus, Vi ⊆ V (G)− A′. For each vertex v ∈ Vi, pick a set Nv

comprising v and δ of its neighbors in V (G)−A′, so |Nv| = δ+1. Form the set Xi by
placing within it k−i members of Nv−A for each v ∈ Vi. Note that |Xi| ≤ (k−i)|Vi|.
Let B =

⋃k−1
i=0 Xi. For each vertex v ∈ V (G), Pr(v ∈ Vi) =

(
δ + 1
i

)
pi(1− p)δ+1−i.

By Lemma 2.1, there is a set S ⊆ A′ such that S k-tuple-dominates any vertex
of A′′, and |S| ≤ t|A′|, where

t = p+

k−1∑
i=0

(k − i)

(
δ + 1
i

)
pi(1− p)δ−2k+4−i.

Evidently, D = (A−A′) ∪ B ∪ S is a k-tuple dominating set in G. We compute
the expectation of |D| as follows. Note that

|D| = |(A− A′) ∪ B ∪ S|
= |A− A′|+ |B|+ |S|
= |A| − |A′|+ |B|+ |S|
≤ |A|+ |B| − |A′|+ t|A′|
= |A|+ |B| − (1− t)|A′|.

By the linearity property of the expectation, γ×k(G) ≤ E(|D|) ≤ E(|A|) + E(|B|)−
(1 − t)E(|A′|). It is routine to see that E(|A|) = np and E(|B|) ≤ n

∑k−1
i=0 (k −

i)

(
δ + 1
i

)
pi(1 − p)δ+1−i. For a vertex v, if v ∈ A′ then v ∈ A and at least

deg(v)− (k − 2) of its neighbors belong to A. Thus,

Pr(v ∈ A′) =

(
deg(v)

deg(v)− (k − 2)

)
p1+deg(v)−(k−2)

=

(
deg(v)
k − 2

)
p1+deg(v)−(k−2) ≥

(
δ

k − 2

)
p3+Δ−k.

Thus E(|A′|) ≥ n

(
δ

k − 2

)
p3+Δ−k. Now a simple calculation yields the result.

Using the fact that 1− x ≤ e−x, for 0 ≤ x ≤ 1 from Theorem 2.2, we obtain the
following.

Corollary 2.3 Let k ≥ 1 be a positive integer and p ∈ (0, 1) be a real number. For
any graph G on n vertices with minimum degree δ ≥ 3k− 4 and maximum degree Δ,
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γ×k(G) ≤

n

(
ln δ + (k − 1 + o(1)) ln ln δ

δ

)
− n

{(
δ

k − 2

)(
δ − ln δ − (k−1 + o(1)) ln ln δ

δ

)

(
ln δ + (k − 1 + o(1)) ln ln δ

δ

)3+Δ−k}
.

Proof. Let ε > 0 and p = (ln δ + (k − 1 + ε) ln ln δ)/(δ − k + 2). By Theorem 2.2,

γ×k(G) ≤ n

(
p+

k−1∑
i=0

(k − i)

(
δ + 1
i

)
pi(1− p)δ+1−i

)

−n

[
1− p−

k−1∑
i=0

(k − i)

(
δ + 1
i

)
pi(1− p)δ−2k+4−i

](
δ

k − 2

)
p3+Δ−k

≤ n

(
p+

k−1∑
i=0

k(δ + 1)ipi(1− p)δ+1−i

)

−n

[
1− p−

k−1∑
i=0

k(δ + 1)ipi(1− p)δ−2k+4−i

](
δ

k − 2

)
p3+Δ−k

≤ n

(
p+ k2((δ + 1)p)k−1e−p(δ−k+2)

)
(1− x ≤ e−x)

−n

(
1− p− k2((δ + 1)p)k−1e−p(δ−3k+5)

)(
δ

k − 2

)
p3+Δ−k.

But if δ is large, then

((δ + 1)p)k−1e−p(δ−k+2) = (1 + o(1))(ln δ)k−1(ln δ)−(k−1+ε)(δ)−1

= (1 + o(1))
1

δ(ln δ)ε
<

ε

δ
,

and also

((δ + 1)p)k−1e−p(δ−3k+5) = (1 + o(1))(ln δ)k−1(ln δ)−(k−1+ε)(δ)−1 <
ε

δ
.

Thus p+ k2((δ + 1)p)k−1e−p(δ−k+2) ≤ p+ k2ε
δ
, and

p+ k2((δ + 1)p)k−1e−p(δ−3k+5) ≤ p+
k2ε

δ
.

Since ε > 0 is arbitrary, we find that p + k2((δ + 1)p)k−1e−p(δ−k+2) ≤ p, and
p + k2((δ + 1)p)k−1e−p(δ−3k+5) ≤ p. Now the result follows.

Similarly, letting p =
ln(1 + δ) + ln δ

δ
, we obtain the following.
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Corollary 2.4 For any graph G on n vertices with minimum degree δ ≥ 2 and
maximum degree Δ, γ×2(G) ≤(

ln(1 + δ) + ln δ + 1

δ

)
n− n

(
δ − ln(1 + δ)− ln δ − 1

δ

)(
ln(0 + δ) + ln δ

δ

)1+Δ

.

We note that Corollary 2.3 improves Theorem 1.3 if δ is sufficiently large and
δ− ln δ−(k−1+o(1)) ln ln δ > 0 (for example if k is fixed or k = o(δ)), and Corollary
2.4 improves Theorem 1.2 if δ is sufficiently large and δ− ln(1+ δ)− ln δ−1 > 0 (for
example if k is fixed or k = o(δ)).

3 Bounds for the k-tuple total domination number

We begin with the following important lemma.

Lemma 3.1 Let k ≥ 1 be a positive integer and G be a graph on n vertices with
minimum degree δ ≥ 3k − 2 and maximum degree Δ. Let A ⊆ V (G) be a set
obtained by choosing each vertex v ∈ V (G) independently with probability p ∈ (0, 1),
A′ = {v ∈ V (G) : |N(v)− A| ≤ k − 1}, and A′′ = {v ∈ A′ : |NG(v)− A′| ≤ 2k − 2}.
Then there is a subset S ⊆ A′ such that S k-tuple total dominates A′′ and |S| ≤ t|A′|,
where

t = p+
k−1∑
i=0

(k − i)

(
δ
i

)
pi(1− p)δ−(2k−2)−i.

Proof. Let δ1 = min{degG[A′](v) : v ∈ A′′}. For any vertex v ∈ A′′ we have
degG[A′](v) = degG(v) − |NG(v) − A′| ≥ degG(v) − (2k − 3) ≥ δ − (2k − 2). Thus
δ1 ≥ δ − (2k − 2) ≥ k. For each vertex v ∈ A′′, pick a set Nv consisting of δ1 of its
neighbors in A′, so |Nv| = δ1.

Create a subset A1 ⊆ A′ by choosing each vertex v ∈ A′ independently with
probability p. Let Vi = {v ∈ A′′ : |Nv ∩ A1| = i}, for 0 ≤ i ≤ k − 1. Form the
set Xi by placing within it k − i members of Nv − A1 for each v ∈ Vi. Note that
|Xi| ≤ (k − i)|Vi|. Let B1 =

⋃k−1
i=0 Xi. Then the set D = A1 ∪B1, k-tuple-dominates

any vertex of A′′. We now compute the expectation of |D|. Clearly, E(|A1|) = |A′|p.
For each vertex v ∈ A′′, Pr(v ∈ Vi) =

(
δ1
i

)
pi(1 − p)δ1−i. Thus by the linearity

property of the expectation,

E(D) = E(|A1|) + E(|B1|)

≤ E(|A1|) +
k−1∑
i=0

E(|Xi|)
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≤ E(|A1|) +
k−1∑
i=0

(k − i)E(|Vi|)

≤ |A′|p+ |A′|
k−1∑
i=0

(k − i)

(
δ1
i

)
pi(1− p)δ1−i

= |A′|
[
p+

k−1∑
i=0

(k − i)

(
δ1
i

)
pi(1− p)δ1−i

]

≤ |A′|
[
p+

k−1∑
i=0

(k − i)

(
δ
i

)
pi(1− p)δ−(2k−2)−i

]
= t|A′|.

Hence, there is a subset S ⊆ A′ such that S k-tuple dominates A′′ and |S| ≤ t|A′|.

Theorem 3.2 Let k ≥ 1 be a positive integer and p ∈ (0, 1) be a real number. For
any graph G on n vertices with minimum degree δ ≥ 3k− 2 and maximum degree Δ,

γ×k,t(G) ≤ n

(
p+

k−1∑
i=0

(k − i)

(
δ
i

)
pi(1− p)δ−i

)

−n

[
1−p−

k−1∑
i=0

(k − i)

(
δ
i

)
pi(1− p)δ−(2k−2)−i

](
δ

k − 1

)
p1+Δ−(k−1).

Proof. Let k ≥ 1 be a positive integer and let G be a graph on n vertices with
minimum degree δ ≥ 3k− 2 and maximum degree Δ. Create a subset A ⊆ V (G) by
choosing each vertex v ∈ V (G) independently with probability p. Let A′ = {v ∈ A :
|N(v) − A| ≤ k − 1}, and A′′ = {v ∈ A′ : |N(v) − A′| ≤ 2k − 2}. For any vertex
v ∈ A′ − A′′, |N(v) ∩ (A− A′)| = |N(v)−A′| − |N(v)− A| ≥ 2k − 1− (k − 1) = k.
Thus any vertex of A′ − A′′ is k-tuple total-dominated by some vertex of A − A′.
Let Vi = {v ∈ V : |N [v] ∩ A| = i} for 0 ≤ i ≤ k − 1. Clearly Vi ∩ A′ = ∅, since
|N(v) ∩ A| ≥ deg(v) − |N(v) − A| ≥ δ − (k − 1) > k for any vertex v ∈ A′. Thus,
Vi ⊆ V (G)−A′. For each vertex v ∈ Vi, pick a set Nv consisting of δ of its neighbors
in V (G) − A′, so |Nv| = δ. Form the set Xi by placing within it k − i members of
Nv − A for each v ∈ Vi. Note that |Xi| ≤ (k − i)|Vi|. Let B =

⋃k−1
i=0 Xi. For each

vertex v ∈ V (G), Pr(v ∈ Vi) =

(
δ
i

)
pi(1− p)δ−i.

By Lemma 3.1, there is a set S ⊆ A′ such that S k-tuple-dominates any vertex
of A′′, and |S| ≤ t|A′|, where

t = p+

k−1∑
i=0

(k − i)

(
δ
i

)
pi(1− p)δ−(2k−2)−i.
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Evidently, D = (A − A′) ∪ B ∪ S is a k-tuple total dominating set in G. We
compute the expectation of |D| as follows. Note that

|D| = |(A− A′) ∪ B ∪ S|
= |A− A′|+ |B|+ |S|
= |A| − |A′|+ |B|+ |S|
≤ |A|+ |B| − |A′|+ t|A′|
= |A|+ |B| − (1− t)|A′|.

By the linearity property of the expectation, γ×k(G) ≤ E(|D|) ≤ E(|A|) + E(|B|)−
(1− t)E(|A′|). It is routine to see that E(|A|) = np and

E(|B|) ≤ n
∑k−1

i=0 (k − i)

(
δ
i

)
pi(1− p)δ−i.

For a vertex v,

Pr(v ∈ A′) =

(
deg(v)

deg(v)− (k − 1)

)
p1+deg(v)−(k−1)

=

(
deg(v)
k − 1

)
p1+deg(v)−(k−1) ≥

(
δ

k − 1

)
p1+Δ−(k−1).

Thus E(|A′|) ≥ n

(
δ

k − 1

)
p1+Δ−(k−1). Now a simple calculation yields the result.

Using the fact that 1− x ≤ e−x, for 0 ≤ x ≤ 1 from Theorem 3.2, we obtain the
following by letting p = (ln δ + (k − 1 + ε) ln ln δ)/(δ − k + 2) for ε > 0.

Corollary 3.3 Let k ≥ 1 be a positive integer. For any graph G on n vertices with
minimum degree δ ≥ 3k − 2 and maximum degree Δ,

γ×k,t(G) ≤ n

(
ln δ + (k − 1 + o(1)) ln ln δ

δ

)
− n

(
δ

k − 1

)
(
δ − ln δ − (k−1+o(1)) ln ln δ

δ

)
i

(
ln δ + (k−1 + o(1)) ln ln δ

δ

)1+Δ−(k−1)
.

Proof. Let ε > 0 and p = (ln δ+(k−1+ ε) ln ln δ)/(δ−k+2). By Theorem 3.2,

γ×k(G) ≤ n

(
p+

k−1∑
i=0

(k − i)

(
δ
i

)
pi(1− p)δ−i

)

−n

[
1− p−

k−1∑
i=0

(k − i)

(
δ
i

)
pi(1− p)δ−(2k−2)−i

](
δ

k − 1

)
p1+Δ−(k−1)

≤ n

(
p+ k2(δp)k−1e−p(δ−k+1)

)
(1− x ≤ e−x,

(
δ
i

)
≤ δi)
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−n

(
1− p− k2(δp)k−1e−p(δ−3k+5)

)(
δ

k − 1

)
p1+Δ−(k−1).

But if δ is large, then (δp)k−1e−p(δ−k+1) = (1 + o(1))(ln δ)k−1(ln δ)−(k−1+ε)(δ)−1 <
ε
δ
, and also (δp)k−1e−p(δ−3k+5) = (1 + o(1))(ln δ)k−1(ln δ)−(k−1+ε)(δ)−1 < ε

δ
. Thus

p+k2(δp)k−1e−p(δ−k+1) ≤ p+ k2ε
δ
, and p+k2((δp)k−1e−p(δ−3k+5) ≤ p+ k2ε

δ
. Since ε > 0

is arbitrary, we have p+ k2(δp)k−1e−p(δ−k+1) ≤ p, and p+ k2((δp)k−1e−p(δ−3k+5) ≤ p.
Now the result follows.

Similarly, letting p =
ln(2 + δ) + ln δ

δ
, we obtain the following.

Corollary 3.4 For any graph G on n vertices with minimum degree δ ≥ 4 and
maximum degree Δ,

γ×2,t(G)≤
(
ln(2 + δ) + ln δ + 1

δ

)
n− n(δ − ln(2 + δ)− ln δ + 1)

(
ln(1 + δ) + ln δ

δ

)Δ

.

We note that Corollary 3.3 improves Theorem 1.5 if δ is sufficiently large and
δ − ln δ − (k − 1 + o(1)) ln ln δ > 0 (for example, if k is fixed or k = o(δ)), and
Corollary 3.4 improves Theorem 1.4.
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