Upper bounds on the k-tuple domination number and k-tuple total domination number of a graph

Nader Jafari Rad
Department of Mathematics
Shahed University
Tehran
Iran
n.jafarirad@gmail.com

Abstract

Given a positive integer k, a subset S of vertices of a graph G is called a k-tuple dominating set in G if for every vertex $v \in V(G),|N[v] \cap S| \geq k$. The minimum cardinality of a k-tuple dominating set in G is the k-tuple domination number $\gamma_{\times k}(G)$ of G. A subset S of vertices of a graph G is called a k-tuple total dominating set in G if for every vertex $v \in V(G)$, $|N(v) \cap S| \geq k$. The minimum cardinality of a k-tuple total dominating set in G is the k-tuple total domination number $\gamma_{\times k, t}(G)$ of G. We present probabilistic upper bounds for the k-tuple domination number of a graph as well as for the k-tuple total domination number of a graph, and improve previous bounds given in [J. Harant and M.A. Henning, Discuss. Math. Graph Theory 25 (2005), 29-34], [E.J. Cockayne and A.G. Thomason, J. Combin. Math. Combin. Comput. 64 (2008), 251-254], and [M.A. Henning and A.P. Kazemi, Discrete Appl. Math. 158 (2010), 1006-1011] for graphs with sufficiently large minimum degree under certain assumptions.

1 Introduction

For graph theory notation and terminology not given here we refer to [10], and for the probabilistic methods notation and terminology we refer to [1]. We consider finite, undirected and simple graphs G with vertex set $V=V(G)$ and edge set $E=E(G)$. The number of vertices of G is called the order of G and is denoted by $n=n(G)$. The open neighborhood of a vertex $v \in V$ is $N(v)=N_{G}(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N[v]=N_{G}[v]=N(v) \cup\{v\}$. The degree of a vertex v, denoted by $\operatorname{deg}(v)\left(\right.$ or $\operatorname{deg}_{G}(v)$ to refer to $\left.G\right)$, is the cardinality of its open
neighborhood. We denote by $\delta(G)$ and $\Delta(G)$, the minimum and maximum degrees among all vertices of G, respectively. For a subset S of $V(G)$, the subgraph of G induced by S is denoted by $G[S]$. A subset $S \subseteq V$ is a dominating set of G if every vertex in $V-S$ has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A set $S \subseteq V$ is a total dominating set if each vertex in V is adjacent to at least one vertex of S, while the minimum cardinality of a total dominating set is the total domination number $\gamma_{t}(G)$ of G.

For a positive integer k, a set $S \subseteq V(G)$ is called a k-tuple dominating set in G if for every vertex $v \in V(G),|N[v] \cap S| \geq k$. The minimum cardinality of a k-tuple dominating set in G is the k-tuple domination number $\gamma_{\times k}(G)$ of G. For the case $k=2$, the k-tuple domination is also called double domination. The concept of k-tuple domination number was introduced by Harary and Haynes [9], and further studied for example in $[4,6,7,8,14,15,17]$. Henning and Kazemi [11] introduced the concept of k-tuple total domination in graphs. For a positive integer k, a subset S of V is a k-tuple total dominating set of G if for every vertex $v \in V,|N(v) \cap S| \geq k$. The k-tuple total domination number $\gamma_{\times k, t}(G)$ is the minimum cardinality of a k tuple total dominating set of G. The concept of k-tuple total domination number was further studied for example in $[2,3,5,12,13,16]$. We note that if a graph G has a k-tuple dominating set, then clearly, $\delta \geq k-1$, and if a graph G has a k-tuple total dominating set then $\delta \geq k$.

Harant and Henning obtained the following probabilistic upper bound on the double domination number of a graph.

Theorem 1.1 (Harant and Henning, [8]) If G is a graph of order n with minimum degree $\delta \geq 1$ and average degree d, then

$$
\gamma_{\times 2}(G) \leq\left(\frac{\ln (1+d)+\ln \delta+1}{\delta}\right) n
$$

Cockayne and Thomason [4] improved Theorem 1.1.
Theorem 1.2 (Cockayne and Thomason [4]) If G is a graph of order n with minimum degree $\delta \geq 1$, then

$$
\gamma_{\times 2}(G) \leq\left(\frac{\ln (1+\delta)+\ln \delta+1}{\delta}\right) n .
$$

They also presented the following probabilistic upper bound on the k-tuple domination number of a graph.

Theorem 1.3 (Cockayne and Thomason [4]) Let G be a graph of order n with minimum degree $\delta \geq 1$. If k is fixed and δ is sufficiently large, then

$$
\gamma_{\times k}(G) \leq n\left(\frac{\ln \delta+(k-1+o(1)) \ln \ln \delta}{\delta}\right)
$$

Henning and Kazemi proved the following.

Theorem 1.4 (Henning and Kazemi [11]) If G is a graph of order n with minimum degree $\delta \geq 2$, then

$$
\gamma_{\times 2, t}(G) \leq\left(\frac{\ln (2+\delta)+\ln \delta+1}{\delta}\right) n
$$

Theorem 1.5 (Henning and Kazemi [11]) Let G be a graph of order n with minimum degree δ. If k is fixed and δ is sufficiently large, then

$$
\gamma_{\times k, t}(G) \leq n\left(\frac{\ln \delta+(k-1+o(1)) \ln \ln \delta}{\delta}\right)
$$

In the proof of Theorems $1.2,1.3,1.4$ and 1.5 it is assumed that δ is sufficiently large and k is fixed. In this paper, we first obtain new probabilistic upper bounds for the k-tuple domination number of a graph with sufficiently large δ, explicitly, when $\delta \geq 3 k-4$, and we improve both Theorems 1.2 and 1.3 under some certain assumptions. We next obtain new probabilistic upper bounds for the k-tuple total domination number of a graph with sufficiently large δ, explicitly, when $\delta \geq 3 k-2$, and we improve both Theorems 1.4 and 1.5 in such a case and under some certain assumptions. The main probabilistic methods are similar to those presented in the proof of Theorems 1.2, 1.3, 1.4 and 1.5.

For two subset A and B of vertices of G, and an integer k, we say that $A k$-tuple dominates B if for any vertex $v \in B,|N[v] \cap A| \geq k$. Similarly, we say that $A k$-tuple total dominates B if for any vertex $v \in B, \mid N(v)] \cap A \mid \geq k$. For a random variable X, we denote by $\mathbb{E}(X)$ the expectation of X.

2 Bounds for the k-tuple domination number

We first prove the following important lemma.

Lemma 2.1 Let $k \geq 1$ be a positive integer and G be a graph on n vertices with minimum degree $\delta \geq 3 k-4$ and maximum degree Δ. Let $A \subseteq V(G)$ be a set obtained by choosing each vertex $v \in V(G)$ independently with probability $p \in(0,1)$, $A^{\prime}=\left\{v \in A:\left|N_{G}(v)-A\right| \leq k-2\right\}$, and $A^{\prime \prime}=\left\{v \in A^{\prime}:\left|N_{G}(v)-A^{\prime}\right| \leq 2 k-3\right\}$. Then there is a subset $S \subseteq A^{\prime}$ such that S-tuple dominates $A^{\prime \prime}$ and $|S| \leq t\left|A^{\prime}\right|$, where

$$
t=p+\sum_{i=0}^{k-1}(k-i)\binom{\delta+1}{i} p^{i}(1-p)^{\delta-2 k+4-i}
$$

Proof. Let $\delta_{1}=\min \left\{\operatorname{deg}_{G\left[A^{\prime}\right]}(v): v \in A^{\prime \prime}\right\}$. For any vertex $v \in A^{\prime \prime}$ we have $\operatorname{deg}_{G\left[A^{\prime}\right]}(v)=\operatorname{deg}_{G}(v)-\left|N_{G}(v)-A^{\prime}\right| \geq \operatorname{deg}_{G}(v)-(2 k-3) \geq \delta-(2 k-3)$. Thus $\delta_{1} \geq \delta-(2 k-3) \geq k-1$. For each vertex $v \in A^{\prime \prime}$, pick a set N_{v} comprising v and δ_{1} of its neighbors in A^{\prime}, so $\left|N_{v}\right|=\delta_{1}+1$.

Create a subset $A_{1} \subseteq A^{\prime}$ by choosing each vertex $v \in A^{\prime}$ independently with probability p. Let $V_{i}=\left\{v \in A^{\prime \prime}:\left|N_{v} \cap A_{1}\right|=i\right\}$, for $0 \leq i \leq k-1$. Form the set X_{i} by placing within it $k-i$ members of $N_{v}-A_{1}$ for each $v \in V_{i}$. Note that $\left|X_{i}\right| \leq(k-i)\left|V_{i}\right|$. Let $B_{1}=\bigcup_{i=0}^{k-1} X_{i}$. Then the set $D=A_{1} \cup B_{1}, k$-tuple-dominates any vertex of $A^{\prime \prime}$. We now compute the expectation of $|D|$. Clearly, $\mathbb{E}\left(\left|A_{1}\right|\right)=\left|A^{\prime}\right| p$, since $\left|A_{1}\right|$ can be denoted as the sum of $\left|A^{\prime}\right|$ random variables. For each vertex $v \in A^{\prime \prime}, \operatorname{Pr}\left(v \in V_{i}\right)=\binom{\delta_{1}+1}{i} p^{i}(1-p)^{\delta_{1}+1-i}$. Thus by the linearity property of the expectation,

$$
\begin{aligned}
\mathbb{E}(|D|) & =\mathbb{E}\left(\left|A_{1}\right|\right)+\mathbb{E}\left(\left|B_{1}\right|\right) \\
& \leq \mathbb{E}\left(\left|A_{1}\right|\right)+\sum_{i=0}^{k-1} \mathbb{E}\left(\left|X_{i}\right|\right) \\
& \leq \mathbb{E}\left(\left|A_{1}\right|\right)+\sum_{i=0}^{k-1}(k-i) \mathbb{E}\left(\left|V_{i}\right|\right) \\
& \leq\left|A^{\prime}\right| p+\left|A^{\prime}\right| \sum_{i=0}^{k-1}(k-i)\binom{\delta_{1}+1}{i} p^{i}(1-p)^{\delta_{1}+1-i} \\
& =\left|A^{\prime}\right|\left[p+\sum_{i=0}^{k-1}(k-i)\binom{\delta_{1}+1}{i} p^{i}(1-p)^{\delta_{1}+1-i}\right] \\
& \leq\left|A^{\prime}\right|\left[p+\sum_{i=0}^{k-1}(k-i)\binom{\delta+1}{i} p^{i}(1-p)^{\delta-2 k+4-i}\right]=t\left|A^{\prime}\right| .
\end{aligned}
$$

Hence, by the pigeonhole property of the expectation there is a subset $S \subseteq A^{\prime}$ such that $S k$-tuple dominates $A^{\prime \prime}$ and $|S| \leq t\left|A^{\prime}\right|$.

Theorem 2.2 Let $k \geq 1$ be a positive integer and $p \in(0,1)$ be a real number. For any graph G on n vertices with minimum degree $\delta \geq 3 k-4$ and maximum degree Δ,

$$
\begin{aligned}
\gamma_{\times k}(G) & \leq n\left(p+\sum_{i=0}^{k-1}(k-i)\binom{\delta+1}{i} p^{i}(1-p)^{\delta+1-i}\right) \\
& -n\left[1-p-\sum_{i=0}^{k-1}(k-i)\binom{\delta+1}{i} p^{i}(1-p)^{\delta-2 k+4-i}\right]\binom{\delta}{k-2} p^{3+\Delta-k}
\end{aligned}
$$

Proof. Let $k \geq 1$ be a positive integer, and let G be a graph on n vertices with minimum degree $\delta \geq 3 k-4$ and maximum degree Δ. Create a subset $A \subseteq V(G)$ by
choosing each vertex $v \in V(G)$ independently with probability p. Let $A^{\prime}=\{v \in A$: $|N(v)-A| \leq k-2\}$, and $A^{\prime \prime}=\left\{v \in A^{\prime}:\left|N(v)-A^{\prime}\right| \leq 2 k-3\right\}$. For any vertex $v \in A^{\prime}-A^{\prime \prime},\left|N(v) \cap\left(A-A^{\prime}\right)\right|=\left|N(v)-A^{\prime}\right|-|N(v)-A| \geq 2 k-2-(k-2)=k$. Thus any vertex of $A^{\prime}-A^{\prime \prime}$ is k-tuple-dominated by some vertex of $A-A^{\prime}$. Let $V_{i}=\{v \in V:|N[v] \cap A|=i\}$ for $0 \leq i \leq k-1$. Clearly $V_{i} \cap A^{\prime}=\emptyset$, since $|N(v) \cap A| \geq \operatorname{deg}(v)-|N(v)-A| \geq \delta-(k-2) \geq 3 k-4-(k-2)=2(k-1)>k$ for any vertex $v \in A^{\prime}$. Thus, $V_{i} \subseteq V(G)-A^{\prime}$. For each vertex $v \in V_{i}$, pick a set N_{v} comprising v and δ of its neighbors in $V(G)-A^{\prime}$, so $\left|N_{v}\right|=\delta+1$. Form the set X_{i} by placing within it $k-i$ members of $N_{v}-A$ for each $v \in V_{i}$. Note that $\left|X_{i}\right| \leq(k-i)\left|V_{i}\right|$. Let $B=\bigcup_{i=0}^{k-1} X_{i}$. For each vertex $v \in V(G), \operatorname{Pr}\left(v \in V_{i}\right)=\binom{\delta+1}{i} p^{i}(1-p)^{\delta+1-i}$.

By Lemma 2.1, there is a set $S \subseteq A^{\prime}$ such that $S k$-tuple-dominates any vertex of $A^{\prime \prime}$, and $|S| \leq t\left|A^{\prime}\right|$, where

$$
t=p+\sum_{i=0}^{k-1}(k-i)\binom{\delta+1}{i} p^{i}(1-p)^{\delta-2 k+4-i}
$$

Evidently, $D=\left(A-A^{\prime}\right) \cup B \cup S$ is a k-tuple dominating set in G. We compute the expectation of $|D|$ as follows. Note that

$$
\begin{aligned}
|D| & =\left|\left(A-A^{\prime}\right) \cup B \cup S\right| \\
& =\left|A-A^{\prime}\right|+|B|+|S| \\
& =|A|-\left|A^{\prime}\right|+|B|+|S| \\
& \leq|A|+|B|-\left|A^{\prime}\right|+t\left|A^{\prime}\right| \\
& =|A|+|B|-(1-t)\left|A^{\prime}\right| .
\end{aligned}
$$

By the linearity property of the expectation, $\gamma_{\times k}(G) \leq \mathbb{E}(|D|) \leq \mathbb{E}(|A|)+\mathbb{E}(|B|)-$ $(1-t) \mathbb{E}\left(\left|A^{\prime}\right|\right)$. It is routine to see that $\mathbb{E}(|A|)=n p$ and $\mathbb{E}(|B|) \leq n \sum_{i=0}^{k-1}(k-$ i) $\binom{\delta+1}{i} p^{i}(1-p)^{\delta+1-i}$. For a vertex v, if $v \in A^{\prime}$ then $v \in A$ and at least $\operatorname{deg}(v)-(k-2)$ of its neighbors belong to A. Thus,

$$
\begin{aligned}
\operatorname{Pr}\left(v \in A^{\prime}\right) & =\binom{\operatorname{deg}(v)}{\operatorname{deg}(v)-(k-2)} p^{1+\operatorname{deg}(v)-(k-2)} \\
& =\binom{\operatorname{deg}(v)}{k-2} p^{1+\operatorname{deg}(v)-(k-2)} \geq\binom{\delta}{k-2} p^{3+\Delta-k}
\end{aligned}
$$

Thus $\mathbb{E}\left(\left|A^{\prime}\right|\right) \geq n\binom{\delta}{k-2} p^{3+\Delta-k}$. Now a simple calculation yields the result.
Using the fact that $1-x \leq e^{-x}$, for $0 \leq x \leq 1$ from Theorem 2.2, we obtain the following.

Corollary 2.3 Let $k \geq 1$ be a positive integer and $p \in(0,1)$ be a real number. For any graph G on n vertices with minimum degree $\delta \geq 3 k-4$ and maximum degree Δ,

$$
\begin{aligned}
& \gamma_{\times k}(G) \leq \\
& \quad n\left(\frac{\ln \delta+(k-1+o(1)) \ln \ln \delta}{\delta}\right)-n\left\{\binom{\delta}{k-2}\left(\frac{\delta-\ln \delta-(k-1+o(1)) \ln \ln \delta}{\delta}\right)\right. \\
& \\
& \left.\quad\left(\frac{\ln \delta+(k-1+o(1)) \ln \ln \delta}{\delta}\right)^{3+\Delta-k}\right\}
\end{aligned}
$$

Proof. Let $\varepsilon>0$ and $p=(\ln \delta+(k-1+\varepsilon) \ln \ln \delta) /(\delta-k+2)$. By Theorem 2.2,

$$
\begin{aligned}
\gamma_{\times k}(G) \leq & n\left(p+\sum_{i=0}^{k-1}(k-i)\binom{\delta+1}{i} p^{i}(1-p)^{\delta+1-i}\right) \\
& -n\left[1-p-\sum_{i=0}^{k-1}(k-i)\binom{\delta+1}{i} p^{i}(1-p)^{\delta-2 k+4-i}\right]\binom{\delta}{k-2} p^{3+\Delta-k} \\
\leq & n\left(p+\sum_{i=0}^{k-1} k(\delta+1)^{i} p^{i}(1-p)^{\delta+1-i}\right) \\
& -n\left[1-p-\sum_{i=0}^{k-1} k(\delta+1)^{i} p^{i}(1-p)^{\delta-2 k+4-i}\right]\binom{\delta}{k-2} p^{3+\Delta-k} \\
\leq & n\left(p+k^{2}((\delta+1) p)^{k-1} e^{-p(\delta-k+2)}\right) \quad\left(1-x \leq e^{-x}\right) \\
& -n\left(1-p-k^{2}((\delta+1) p)^{k-1} e^{-p(\delta-3 k+5)}\right)\binom{\delta}{k-2} p^{3+\Delta-k} .
\end{aligned}
$$

But if δ is large, then

$$
\begin{aligned}
((\delta+1) p)^{k-1} e^{-p(\delta-k+2)} & =(1+o(1))(\ln \delta)^{k-1}(\ln \delta)^{-(k-1+\varepsilon)}(\delta)^{-1} \\
& =(1+o(1)) \frac{1}{\delta(\ln \delta)^{\varepsilon}}<\frac{\varepsilon}{\delta},
\end{aligned}
$$

and also

$$
((\delta+1) p)^{k-1} e^{-p(\delta-3 k+5)}=(1+o(1))(\ln \delta)^{k-1}(\ln \delta)^{-(k-1+\varepsilon)}(\delta)^{-1}<\frac{\varepsilon}{\delta} .
$$

Thus $p+k^{2}((\delta+1) p)^{k-1} e^{-p(\delta-k+2)} \leq p+\frac{k^{2} \varepsilon}{\delta}$, and

$$
p+k^{2}((\delta+1) p)^{k-1} e^{-p(\delta-3 k+5)} \leq p+\frac{k^{2} \varepsilon}{\delta}
$$

Since $\varepsilon>0$ is arbitrary, we find that $p+k^{2}((\delta+1) p)^{k-1} e^{-p(\delta-k+2)} \leq p$, and $p+k^{2}((\delta+1) p)^{k-1} e^{-p(\delta-3 k+5)} \leq p$. Now the result follows.

Similarly, letting $p=\frac{\ln (1+\delta)+\ln \delta}{\delta}$, we obtain the following.

Corollary 2.4 For any graph G on n vertices with minimum degree $\delta \geq 2$ and maximum degree $\Delta, \quad \gamma_{\times 2}(G) \leq$

$$
\left(\frac{\ln (1+\delta)+\ln \delta+1}{\delta}\right) n-n\left(\frac{\delta-\ln (1+\delta)-\ln \delta-1}{\delta}\right)\left(\frac{\ln (0+\delta)+\ln \delta}{\delta}\right)^{1+\Delta}
$$

We note that Corollary 2.3 improves Theorem 1.3 if δ is sufficiently large and $\delta-\ln \delta-(k-1+o(1)) \ln \ln \delta>0$ (for example if k is fixed or $k=o(\delta)$), and Corollary 2.4 improves Theorem 1.2 if δ is sufficiently large and $\delta-\ln (1+\delta)-\ln \delta-1>0$ (for example if k is fixed or $k=o(\delta))$.

3 Bounds for the k-tuple total domination number

We begin with the following important lemma.

Lemma 3.1 Let $k \geq 1$ be a positive integer and G be a graph on n vertices with minimum degree $\delta \geq 3 k-2$ and maximum degree Δ. Let $A \subseteq V(G)$ be a set obtained by choosing each vertex $v \in V(G)$ independently with probability $p \in(0,1)$, $A^{\prime}=\{v \in V(G):|N(v)-A| \leq k-1\}$, and $A^{\prime \prime}=\left\{v \in A^{\prime}:\left|N_{G}(v)-A^{\prime}\right| \leq 2 k-2\right\}$. Then there is a subset $S \subseteq A^{\prime}$ such that $S k$-tuple total dominates $A^{\prime \prime}$ and $|S| \leq t\left|A^{\prime}\right|$, where

$$
t=p+\sum_{i=0}^{k-1}(k-i)\binom{\delta}{i} p^{i}(1-p)^{\delta-(2 k-2)-i}
$$

Proof. Let $\delta_{1}=\min \left\{\operatorname{deg}_{G\left[A^{\prime}\right]}(v): v \in A^{\prime \prime}\right\}$. For any vertex $v \in A^{\prime \prime}$ we have $\operatorname{deg}_{G\left[A^{\prime}\right]}(v)=\operatorname{deg}_{G}(v)-\left|N_{G}(v)-A^{\prime}\right| \geq \operatorname{deg}_{G}(v)-(2 k-3) \geq \delta-(2 k-2)$. Thus $\delta_{1} \geq \delta-(2 k-2) \geq k$. For each vertex $v \in A^{\prime \prime}$, pick a set N_{v} consisting of δ_{1} of its neighbors in A^{\prime}, so $\left|N_{v}\right|=\delta_{1}$.

Create a subset $A_{1} \subseteq A^{\prime}$ by choosing each vertex $v \in A^{\prime}$ independently with probability p. Let $V_{i}=\left\{v \in A^{\prime \prime}:\left|N_{v} \cap A_{1}\right|=i\right\}$, for $0 \leq i \leq k-1$. Form the set X_{i} by placing within it $k-i$ members of $N_{v}-A_{1}$ for each $v \in V_{i}$. Note that $\left|X_{i}\right| \leq(k-i)\left|V_{i}\right|$. Let $B_{1}=\bigcup_{i=0}^{k-1} X_{i}$. Then the set $D=A_{1} \cup B_{1}, k$-tuple-dominates any vertex of $A^{\prime \prime}$. We now compute the expectation of $|D|$. Clearly, $\mathbb{E}\left(\left|A_{1}\right|\right)=\left|A^{\prime}\right| p$. For each vertex $v \in A^{\prime \prime}, \operatorname{Pr}\left(v \in V_{i}\right)=\binom{\delta_{1}}{i} p^{i}(1-p)^{\delta_{1}-i}$. Thus by the linearity property of the expectation,

$$
\begin{aligned}
\mathbb{E}(D) & =\mathbb{E}\left(\left|A_{1}\right|\right)+\mathbb{E}\left(\left|B_{1}\right|\right) \\
& \leq \mathbb{E}\left(\left|A_{1}\right|\right)+\sum_{i=0}^{k-1} \mathbb{E}\left(\left|X_{i}\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mathbb{E}\left(\left|A_{1}\right|\right)+\sum_{i=0}^{k-1}(k-i) \mathbb{E}\left(\left|V_{i}\right|\right) \\
& \leq\left|A^{\prime}\right| p+\left|A^{\prime}\right| \sum_{i=0}^{k-1}(k-i)\binom{\delta_{1}}{i} p^{i}(1-p)^{\delta_{1}-i} \\
& =\left|A^{\prime}\right|\left[p+\sum_{i=0}^{k-1}(k-i)\binom{\delta_{1}}{i} p^{i}(1-p)^{\delta_{1}-i}\right] \\
& \leq\left|A^{\prime}\right|\left[p+\sum_{i=0}^{k-1}(k-i)\binom{\delta}{i} p^{i}(1-p)^{\delta-(2 k-2)-i}\right]=t\left|A^{\prime}\right| .
\end{aligned}
$$

Hence, there is a subset $S \subseteq A^{\prime}$ such that $S k$-tuple dominates $A^{\prime \prime}$ and $|S| \leq t\left|A^{\prime}\right|$.

Theorem 3.2 Let $k \geq 1$ be a positive integer and $p \in(0,1)$ be a real number. For any graph G on n vertices with minimum degree $\delta \geq 3 k-2$ and maximum degree Δ,

$$
\begin{aligned}
\gamma_{\times k, t}(G) \leq & n\left(p+\sum_{i=0}^{k-1}(k-i)\binom{\delta}{i} p^{i}(1-p)^{\delta-i}\right) \\
& -n\left[1-p-\sum_{i=0}^{k-1}(k-i)\binom{\delta}{i} p^{i}(1-p)^{\delta-(2 k-2)-i}\right]\binom{\delta}{k-1} p^{1+\Delta-(k-1)}
\end{aligned}
$$

Proof. Let $k \geq 1$ be a positive integer and let G be a graph on n vertices with minimum degree $\delta \geq 3 k-2$ and maximum degree Δ. Create a subset $A \subseteq V(G)$ by choosing each vertex $v \in V(G)$ independently with probability p. Let $A^{\prime}=\{v \in A$: $|N(v)-A| \leq k-1\}$, and $A^{\prime \prime}=\left\{v \in A^{\prime}:\left|N(v)-A^{\prime}\right| \leq 2 k-2\right\}$. For any vertex $v \in A^{\prime}-A^{\prime \prime},\left|N(v) \cap\left(A-A^{\prime}\right)\right|=\left|N(v)-A^{\prime}\right|-|N(v)-A| \geq 2 k-1-(k-1)=k$. Thus any vertex of $A^{\prime}-A^{\prime \prime}$ is k-tuple total-dominated by some vertex of $A-A^{\prime}$. Let $V_{i}=\{v \in V:|N[v] \cap A|=i\}$ for $0 \leq i \leq k-1$. Clearly $V_{i} \cap A^{\prime}=\emptyset$, since $|N(v) \cap A| \geq \operatorname{deg}(v)-|N(v)-A| \geq \delta-(k-1)>k$ for any vertex $v \in A^{\prime}$. Thus, $V_{i} \subseteq V(G)-A^{\prime}$. For each vertex $v \in V_{i}$, pick a set N_{v} consisting of δ of its neighbors in $V(G)-A^{\prime}$, so $\left|N_{v}\right|=\delta$. Form the set X_{i} by placing within it $k-i$ members of $N_{v}-A$ for each $v \in V_{i}$. Note that $\left|X_{i}\right| \leq(k-i)\left|V_{i}\right|$. Let $B=\bigcup_{i=0}^{k-1} X_{i}$. For each vertex $v \in V(G), \operatorname{Pr}\left(v \in V_{i}\right)=\binom{\delta}{i} p^{i}(1-p)^{\delta-i}$.

By Lemma 3.1, there is a set $S \subseteq A^{\prime}$ such that $S k$-tuple-dominates any vertex of $A^{\prime \prime}$, and $|S| \leq t\left|A^{\prime}\right|$, where

$$
t=p+\sum_{i=0}^{k-1}(k-i)\binom{\delta}{i} p^{i}(1-p)^{\delta-(2 k-2)-i}
$$

Evidently, $D=\left(A-A^{\prime}\right) \cup B \cup S$ is a k-tuple total dominating set in G. We compute the expectation of $|D|$ as follows. Note that

$$
\begin{aligned}
|D| & =\left|\left(A-A^{\prime}\right) \cup B \cup S\right| \\
& =\left|A-A^{\prime}\right|+|B|+|S| \\
& =|A|-\left|A^{\prime}\right|+|B|+|S| \\
& \leq|A|+|B|-\left|A^{\prime}\right|+t\left|A^{\prime}\right| \\
& =|A|+|B|-(1-t)\left|A^{\prime}\right| .
\end{aligned}
$$

By the linearity property of the expectation, $\gamma_{\times k}(G) \leq \mathbb{E}(|D|) \leq \mathbb{E}(|A|)+\mathbb{E}(|B|)-$ $(1-t) \mathbb{E}\left(\left|A^{\prime}\right|\right)$. It is routine to see that $\mathbb{E}(|A|)=n p$ and

$$
\mathbb{E}(|B|) \leq n \sum_{i=0}^{k-1}(k-i)\binom{\delta}{i} p^{i}(1-p)^{\delta-i}
$$

For a vertex v,

$$
\begin{aligned}
\operatorname{Pr}\left(v \in A^{\prime}\right) & =\binom{\operatorname{deg}(v)}{\operatorname{deg}(v)-(k-1)} p^{1+\operatorname{deg}(v)-(k-1)} \\
& =\binom{\operatorname{deg}(v)}{k-1} p^{1+\operatorname{deg}(v)-(k-1)} \geq\binom{\delta}{k-1} p^{1+\Delta-(k-1)} .
\end{aligned}
$$

Thus $\mathbb{E}\left(\left|A^{\prime}\right|\right) \geq n\binom{\delta}{k-1} p^{1+\Delta-(k-1)}$. Now a simple calculation yields the result.
Using the fact that $1-x \leq e^{-x}$, for $0 \leq x \leq 1$ from Theorem 3.2, we obtain the following by letting $p=(\ln \delta+(k-1+\varepsilon) \ln \ln \delta) /(\delta-k+2)$ for $\varepsilon>0$.

Corollary 3.3 Let $k \geq 1$ be a positive integer. For any graph G on n vertices with minimum degree $\delta \geq 3 k-2$ and maximum degree Δ,

$$
\begin{aligned}
\gamma_{\times k, t}(G) \leq & n\left(\frac{\ln \delta+(k-1+o(1)) \ln \ln \delta}{\delta}\right)-n\binom{\delta}{k-1} \\
& \left(\frac{\delta-\ln \delta-(k-1+o(1)) \ln \ln \delta}{\delta}\right) i\left(\frac{\ln \delta+(k-1+o(1)) \ln \ln \delta}{\delta}\right)^{1+\Delta-(k-1)} .
\end{aligned}
$$

Proof. Let $\varepsilon>0$ and $p=(\ln \delta+(k-1+\varepsilon) \ln \ln \delta) /(\delta-k+2)$. By Theorem 3.2,

$$
\begin{aligned}
\gamma_{\times k}(G) \leq & n\left(p+\sum_{i=0}^{k-1}(k-i)\binom{\delta}{i} p^{i}(1-p)^{\delta-i}\right) \\
& -n\left[1-p-\sum_{i=0}^{k-1}(k-i)\binom{\delta}{i} p^{i}(1-p)^{\delta-(2 k-2)-i}\right]\binom{\delta}{k-1} p^{1+\Delta-(k-1)} \\
\leq & n\left(p+k^{2}(\delta p)^{k-1} e^{-p(\delta-k+1)}\right) \quad\left(1-x \leq e^{-x},\binom{\delta}{i} \leq \delta^{i}\right)
\end{aligned}
$$

$$
-n\left(1-p-k^{2}(\delta p)^{k-1} e^{-p(\delta-3 k+5)}\right)\binom{\delta}{k-1} p^{1+\Delta-(k-1)}
$$

But if δ is large, then $(\delta p)^{k-1} e^{-p(\delta-k+1)}=(1+o(1))(\ln \delta)^{k-1}(\ln \delta)^{-(k-1+\varepsilon)}(\delta)^{-1}<$ $\frac{\varepsilon}{\delta}$, and also $(\delta p)^{k-1} e^{-p(\delta-3 k+5)}=(1+o(1))(\ln \delta)^{k-1}(\ln \delta)^{-(k-1+\varepsilon)}(\delta)^{-1}<\frac{\varepsilon}{\delta}$. Thus $p+k^{2}(\delta p)^{k-1} e^{-p(\delta-k+1)} \leq p+\frac{k^{2} \varepsilon}{\delta}$, and $p+k^{2}\left((\delta p)^{k-1} e^{-p(\delta-3 k+5)} \leq p+\frac{k^{2} \varepsilon}{\delta}\right.$. Since $\varepsilon>0$ is arbitrary, we have $p+k^{2}(\delta p)^{k-1} e^{-p(\delta-k+1)} \leq p$, and $p+k^{2}\left((\delta p)^{k-1} e^{-p(\delta-3 k+5)} \leq p\right.$. Now the result follows.

Similarly, letting $p=\frac{\ln (2+\delta)+\ln \delta}{\delta}$, we obtain the following.
Corollary 3.4 For any graph G on n vertices with minimum degree $\delta \geq 4$ and maximum degree Δ,
$\gamma_{\times 2, t}(G) \leq\left(\frac{\ln (2+\delta)+\ln \delta+1}{\delta}\right) n-n(\delta-\ln (2+\delta)-\ln \delta+1)\left(\frac{\ln (1+\delta)+\ln \delta}{\delta}\right)^{\Delta}$.
We note that Corollary 3.3 improves Theorem 1.5 if δ is sufficiently large and $\delta-\ln \delta-(k-1+o(1)) \ln \ln \delta>0$ (for example, if k is fixed or $k=o(\delta)$), and Corollary 3.4 improves Theorem 1.4.

Acknowledgements

I would like to express my sincere thank to the referee(s) for very careful review and many helpful comments.

References

[1] N. Alon and J. Spencer, The Probabilistic Method, in: Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, Chichester, (2000).
[2] S. Bermudo, J. C. Hernández-Gómez and J. M. Sigarreta, On the total k domination in graphs, Discuss. Math. Graph Theory 38 (2018), 301-317.
[3] S. Bermudo, J. L. Sánchez and J. M. Sigarreta, Total k-domination in Cartesian product graphs, Periodica Math. Hung. 75 (2017), 255-267.
[4] E. J. Cockayne and A. G. Thomason, An upper bound for the k-tuple domination number, J. Combin. Math. Combin. Comput. 64 (2008), 251-254.
[5] H. Fernau, J. A. Rodríguez-Velázquez and J. M. Sigarreta, Global powerful ralliances and total k-domination in graphs, Utilitas Math. 98 (2015), 127-147.
[6] A. Gagarin, Improved upper bounds for the k-tuple domination number, Australas. J. Combin. 41 (2008), 257-261.
[7] A. Gagarin and V.E. Zverovich, A generalized upper bound for the k-tuple domination number, Discrete Math. 308 (2008), 880-885.
[8] J. Harant and M. A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005), 29-34.
[9] F. Harary and T. W. Haynes, The k-tuple domatic number of a graph, Math. Slovaka 48 (1998), 161-166.
[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[11] M. A. Henning and A.P. Kazemi, k-tuple total domination in graphs, Discrete Appl. Math. 158 (2010), 1006-1011.
[12] M. A. Henning and A.P. Kazemi, k-tuple total domination in cross product of graphs, J. Comb. Opt. 24 (2012), 339-346.
[13] J. K. Lan and G. J. Chang, On the algorithmic complexity of k-tuple total domination, Discrete Appl. Math. 174 (2014), 81-91.
[14] C. S. Liao and G. J. Chang, k-tuple domination in graphs, Inform. Process. Lett. 87 (2003), 45-50.
[15] C. S. Liao and G. J. Chang, Algorithmic aspects of k-tuple domination in graphs, Taiwanese J. Math. 6 (2002), 415-420.
[16] D. Pradhan, Algorithmic aspects of k-tuple total domination in graphs, Inf. Proc. Lett. 112 (2012), 816-822.
[17] D. Rautenbach and L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007), 98-102.
(Received 20 July 2017; revised 15 Nov 2018)

