Reducing the maximum degree of a graph by deleting edges

Peter Borg Kurt Fenech

Department of Mathematics
Faculty of Science
University of Malta
Malta
peter.borg@um.edu.mt kurt.fenech.10@um.edu.mt

Abstract

We investigate the smallest number $\lambda_{\mathrm{e}}(G)$ of edges that can be removed from a non-empty graph G so that the resulting graph has a smaller maximum degree. We prove that if m is the number of edges, k is the maximum degree, and t is the number of vertices of degree k, then $\lambda_{\mathrm{e}}(G) \leq \frac{m+(k-1) t}{2 k-1}$. We also show that $\lambda_{e}(G) \leq \frac{m}{k}$ if G is a tree. For each of these two bounds, we determine the graphs which attain the bound. We provide other sharp bounds for $\lambda_{\mathrm{e}}(G)$, relations with other graph parameters, and structural observations.

1 Introduction

Unless stated otherwise, we shall use small letters such as x to denote non-negative integers or functions or elements of a set, and capital letters such as X to denote sets or graphs. The set $\{1,2, \ldots\}$ of positive integers is denoted by \mathbb{N}. For any $n \in \mathbb{N}$, the set $\{1, \ldots, n\}$ is denoted by $[n]$. For a set X, the set $\{\{x, y\}: x, y \in X, x \neq y\}$ (of all 2-element subsets of X) is denoted by $\binom{X}{2}$. All arbitrary sets are assumed to be finite.

A graph G is a pair (X, Y), where X is a set, called the vertex set of G, and Y is a subset of $\binom{X}{2}$ and is called the edge set of G. The vertex set and the edge set of G are denoted by $V(G)$ and $E(G)$, respectively. An element of $V(G)$ is called a vertex of G, and an element of $E(G)$ is called an edge of G. We may represent an edge $\{v, w\}$ by $v w$. If $v w$ is an edge of G, then v and w are said to be adjacent in G, and we say that w is a neighbour of v in G (and vice-versa). An edge $v w$ is said to be incident to x if $x=v$ or $x=w$.

For $v \in V(G), N_{G}(v)$ denotes the set of neighbours of v in $G, N_{G}[v]$ denotes $N_{G}(v) \cup\{v\}$ and is called the closed neighbourhood of v in $G, E_{G}(v)$ denotes the set of edges of G that are incident to v, and $d_{G}(v)$ denotes $\left|N_{G}(v)\right|\left(=\left|E_{G}(v)\right|\right)$ and is
called the degree of v in G. For $X \subseteq V(G)$, we denote $\bigcup_{v \in X} N_{G}(v), \bigcup_{v \in X} N_{G}[v]$, and $\bigcup_{v \in X} E_{G}(v)$ by $N_{G}(X), N_{G}[X]$, and $E_{G}(X)$, respectively. The minimum degree of G is $\min \left\{d_{G}(v): v \in V(G)\right\}$ and is denoted by $\delta(G)$. The maximum degree of G is $\max \left\{d_{G}(v): v \in V(G)\right\}$ and is denoted by $\Delta(G)$. Let $M(G)$ denote the set of vertices of G of degree $\Delta(G)$. Let G_{e} denote the subgraph of G given by $\left(\bigcup_{v \in M(G)} E_{G}(v), E_{G}(M(G))\right)\left(=\left(N_{G}[M(G)], E_{G}(M(G))\right)\right)$.

If H and G are graphs such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then H is called a subgraph of G, and we say that G contains H. For $X \subseteq V(G),(X, E(G) \cap$ $\binom{X}{2}$) is called the subgraph of G induced by X and is denoted by $G[X]$. For $S \subseteq V(G)$, $G-S$ denotes the subgraph of G induced by $V(G) \backslash S$. We may abbreviate $G-\{v\}$ to $G-v$. For $L \subseteq E(G), G-L$ denotes the subgraph of G obtained by removing from G the edges in L, that is, $G-L=(V(G), E(G) \backslash L)$. We may abbreviate $G-\{e\}$ to $G-e$.

In [3], we investigated the smallest number of vertices that can be removed from a graph so that the new graph obtained has a smaller maximum degree. In the present paper, we investigate the smallest number of edges that can be removed from a graph for the same purpose. The first problem is of domination type (see [3]), whereas the second problem is of edge-covering type (see below).

We call a subset L of $E(G)$ a Δ-reducing edge set of G if $\Delta(G-L)<\Delta(G)$ or $\Delta(G)=0$. We denote the size of a smallest Δ-reducing edge set of G by $\lambda_{e}(G)$.

We provide several bounds and equations for $\lambda_{e}(G)$. Before stating our results, we need to add some definitions and notation, and make a few observations.

For $L \subseteq E(G)$ and $X \subseteq V(G)$, we say that L is an edge cover of X in G if for each $v \in X$ with $d_{G}(v)>0$, at least one edge in L is incident to v. Note that L is a Δ-reducing edge set of G if and only if L is an edge cover of $M(G)$ in G. Thus,

$$
\lambda_{\mathrm{e}}(G)=\min \{|L|: L \text { is an edge cover of } M(G) \text { in } G\} .
$$

Consequently, we immediately obtain

$$
\begin{equation*}
\lambda_{\mathrm{e}}(G)=\lambda_{\mathrm{e}}\left(G_{\mathrm{e}}\right) \tag{1}
\end{equation*}
$$

If G, G_{1}, \ldots, G_{r} are graphs such that $V(G)=\bigcup_{i=1}^{r} V\left(G_{i}\right)$ and $E(G)=\bigcup_{i=1}^{r} E\left(G_{i}\right)$, then we say that G is the union of G_{1}, \ldots, G_{r}.

If X_{1}, \ldots, X_{s} are sets such that no r of X_{1}, \ldots, X_{s} have a common element, then X_{1}, \ldots, X_{s} are said to be r-wise disjoint. Graphs G_{1}, \ldots, G_{s} are said to be r-wise vertex-disjoint if $V\left(G_{1}\right), \ldots, V\left(G_{s}\right)$ are r-wise disjoint. Graphs G_{1}, \ldots, G_{s} are said to be r-wise edge-disjoint if $E\left(G_{1}\right), \ldots, E\left(G_{s}\right)$ are r-wise disjoint. We may use the term pairwise instead of 2-wise.

If $v_{1}, v_{2}, \ldots, v_{n}$ are the distinct vertices of a graph G with $E(G)=\left\{v_{i} v_{i+1}: i \in\right.$ $[n-1]\}$, then G is called a $v_{1} v_{n}$-path or simply a path. The path $([n],\{\{1,2\}, \ldots,\{n-$ $1, n\}\})$ is denoted by P_{n}. For a path P, the length of P, denoted by $l(P)$, is $|V(P)|-1$.

For a graph G and $u, v \in V(G)$, the distance of v from u, denoted by $d_{G}(u, v)$, is given by $d_{G}(u, v)=0$ if $u=v, d_{G}(u, v)=\min \{l(P): P$ is a $u v$-path, G contains $P\}$ if G contains a $u v$-path, and $d_{G}(u, v)=\infty$ if G contains no $u v$-path.

A graph H is connected if for every $u, v \in V(H)$ with $u \neq v, H$ contains a $u v$ path. A component of a graph G is a maximal connected subgraph of G (that is, one that is not a subgraph of any other connected subgraph of G). It is easy to see that if G_{1}, \ldots, G_{r} are the distinct components of G, then G_{1}, \ldots, G_{r} are pairwise vertex-disjoint and hence pairwise edge-disjoint, and G is the union of G_{1}, \ldots, G_{r}.

Let H be a graph. A graph G is a copy of H if there exists a bijection $f: V(G) \rightarrow$ $V(H)$ such that $E(H)=\{f(u) f(v): u v \in E(G)\}$.

If $n \geq 3$ and $v_{1}, v_{2}, \ldots, v_{n}$ are the distinct vertices of a graph G with $E(G)=$ $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$, then G is called a cycle. The cycle $([n],\{\{1,2\}, \ldots$, $\{n-1, n\},\{n, 1\}\})$ is denoted by C_{n}. A triangle is a copy of C_{3}.

A tree is a connected graph that contains no cycles. A forest is a graph whose components are trees. For $k \geq 1$, the tree $(\{0\} \cup[k],\{\{0, i\}: i \in[k]\})$ is denoted by $K_{1, k}$. A copy of $K_{1, k}$ will be called a k-star or simply a star.

A graph G is complete if every two vertices of G are adjacent (that is, $E(G)=$ $\binom{V(G)}{2}$). A graph G is empty if no two vertices of G are adjacent (that is, $E(G)=\emptyset$). A graph G is a singleton if $|V(G)|=1$, in which case G is complete and empty.

If $k \in\{0\} \cup \mathbb{N}$ and each vertex of a graph G has degree k, then G is called k-regular or simply regular.

We are now ready to state our main results, given in the next section. In Section 3, we investigate $\lambda_{\mathrm{e}}(G)$ from a structural point of view; we obtain equations for $\lambda_{\mathrm{e}}(G)$ in terms of certain parameters of certain subgraphs of G, and observe how $\lambda_{\mathrm{e}}(G)$ changes with the deletion of edges. Some of the structural results are then used in the proofs of the main upper bounds presented in the next section; these proofs are given in Section 4.

2 Main results

In this section, we present our main results, most of which are bounds for $\lambda_{e}(G)$ in terms of basic paramaters of G. We start with a lower bound.

Proposition 2.1 If G is a graph, $n=|V(G)|, m=|E(G)|, k=\Delta(G) \geq 1$, and $t=|M(G)|$, then

$$
\lambda_{\mathrm{e}}(G) \geq \max \left\{\left\lceil\frac{2 m-(k-1) n}{2}\right\rceil,\left\lceil\frac{t}{2}\right\rceil\right\} .
$$

Moreover, equality holds if G is complete.
Proof. Let L be a Δ-reducing edge set of G of size $\lambda_{\mathrm{e}}(G)$. Since $\Delta(G-L) \leq k-1$, the handshaking lemma (applied to $G-L)$ gives us $|E(G-L)| \leq \frac{(k-1) n}{2}$. Since $m=|E(G-L)|+|L| \leq \frac{(k-1) n}{2}+\lambda_{\mathrm{e}}(G), \lambda_{\mathrm{e}}(G) \geq\left\lceil\frac{2 m-(k-1) n}{2}\right\rceil$.

Since L is a Δ-reducing edge set of G, each vertex in $M(G)$ is contained in some edge in L. Thus, $M(G) \subseteq \bigcup_{e \in L} e$. Therefore, $t \leq \sum_{e \in L}|e|=2|L|$, and hence $\lambda_{\mathrm{e}}(G) \geq\left\lceil\frac{t}{2}\right\rceil$.

Suppose that G is a complete graph. Then $t=n, k=n-1$, and $m=\frac{n(n-1)}{2}$. Let v_{1}, \ldots, v_{n} be the vertices of G. Let $X=\left\{v_{2 i-1} v_{2 i}: i \in \mathbb{N}, i \leq \frac{n}{2}\right\}$. If n is even, then X is a Δ-reducing edge set of G of size $\frac{n}{2}=\left\lceil\frac{t}{2}\right\rceil=\left\lceil\frac{2 m-(k-1) n}{2}\right\rceil$. If n is odd, then $X \cup\left\{v_{n} v_{1}\right\}$ is a Δ-reducing edge set of G of size $\frac{n+1}{2}=\left\lceil\frac{t}{2}\right\rceil=\left\lceil\frac{2 m-(k-1) n}{2}\right\rceil$.

In the rest of this section, we present upper bounds for $\lambda_{e}(G)$, the proofs of which are given in Section 4. For this purpose, we shall first introduce a class of graphs that attain each of these upper bounds.

For $k \geq 1$, we will call a graph G a special k-star union if $\Delta(G)=k$ and each non-singleton component of G is the union of k-stars that are pairwise edge-disjoint and k-wise vertex-disjoint. In Section 4, we prove the following.

Lemma 2.2 If G is a special k-star union, $m=|E(G)|$, and $t=|M(G)|$, then $m=k t$ and $\lambda_{\mathrm{e}}(G)=t$.

Theorem 2.3 If G is a graph, $m=|E(G)|, k=\Delta(G) \geq 1$, and $t=|M(G)|$, then

$$
\lambda_{\mathrm{e}}(G) \leq \frac{m+(k-1) t}{2 k-1}
$$

Moreover, equality holds if and only if G is a special k-star union or each nonsingleton component of G is a 2 -star or a triangle.

Remark 2.4 By (1), we may take $m=\left|E\left(G_{\mathrm{e}}\right)\right|$ in each of the results above, and $n=\left|V\left(G_{\mathrm{e}}\right)\right|$ in Proposition 2.1. Note that $\Delta(G)=\Delta\left(G_{\mathrm{e}}\right)$ and $M(G)=M\left(G_{\mathrm{e}}\right)$. Thus, we actually have the following immediate consequence.

Corollary 2.5 If G is a graph, $n=\left|V\left(G_{\mathrm{e}}\right)\right|, m=\left|E\left(G_{\mathrm{e}}\right)\right|, k=\Delta(G) \geq 1$, and $t=|M(G)|$, then

$$
\max \left\{\left\lceil\frac{2 m-(k-1) n}{2}\right\rceil,\left\lceil\frac{t}{2}\right\rceil\right\} \leq \lambda_{\mathrm{e}}(G) \leq \frac{m+(k-1) t}{2 k-1}
$$

Moreover, the bounds are sharp.
Consider the numbers m, k, and t in Corollary 2.5. By the definition of G_{e}, $m \leq k t$. Let $H=G_{\mathrm{e}}$. By the handshaking lemma, $2 m=\sum_{v \in V(H)} d_{H}(v) \geq$ $\sum_{v \in M(G)} d_{H}(v)=k t$ (and equality holds if and only if G_{e} is regular). Thus,

$$
\begin{equation*}
\frac{k t}{2} \leq m \leq k t \tag{2}
\end{equation*}
$$

Using a probabilistic argument similar to that used by Alon in [1], we prove the following bound.

Theorem 2.6 If G is a graph, $m=\left|E\left(G_{\mathrm{e}}\right)\right|, k=\Delta(G) \geq 2$, and $t=|M(G)|$, then

$$
\lambda_{e}(G) \leq m\left(1-\frac{k-1}{k}\left(\frac{m}{k t}\right)^{\frac{1}{k-1}}\right) .
$$

Moreover, equality holds if G_{e} is a special k-star union.
As we also show in Section 4, a slight adjustment of the proof of Theorem 2.6 yields the following weaker but simpler (and still sharp) result.

Theorem 2.7 If G is a graph, $m=\left|E\left(G_{\mathrm{e}}\right)\right|, k=\Delta(G) \geq 1$, and $t=|M(G)|$, then

$$
\lambda_{\mathrm{e}}(G) \leq \frac{m}{k}\left(1+\ln \left(\frac{k t}{m}\right)\right) .
$$

Moreover, equality holds if G_{e} is a special k-star union.
A set of pairwise disjoint edges of G is called a matching of G. The matching number of G is the size of a largest matching of G and is denoted by $\alpha^{\prime}(G)$. In the next section, we prove the following result.

Theorem 2.8 For every non-empty graph G,

$$
\lambda_{\mathrm{e}}(G)=|M(G)|-\alpha^{\prime}(G[M(G)])
$$

If G is a regular non-empty graph, then $M(G)=V(G)$, and hence, by Theorem 2.8, $\lambda_{\mathrm{e}}(G)=|V(G)|-\alpha^{\prime}(G)$. Thus, for a regular graph G, a lower bound for $\alpha^{\prime}(G)$ yields an upper bound for $\lambda_{\mathrm{e}}(G)$, and vice-versa. For $k \geq 3$, Henning and Yeo [4] established a lower bound for $\alpha^{\prime}(G)$ for all k-regular graphs G, and showed that the bound is attained for infinitely many k-regular graphs. Biedl, Demaine, Duncan, Fleischer, and Kobourov [2] had proved the bound for $k=3$ and several other interesting lower bounds for $\alpha^{\prime}(G)$. Another important lower bound for k-regular graphs with $k \geq 4$ is given by O and West [6]. The 2-regular graphs are the cycles. It is easy to see that $\{n, 1\} \cup\{\{2 i, 2 i+1\}: 1 \leq i \leq\lceil n / 2\rceil-1\}$ is a smallest Δ-reducing edge set of C_{n}, so

$$
\begin{equation*}
\lambda_{\mathrm{e}}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil . \tag{3}
\end{equation*}
$$

For $k \geq 1$, we will call a tree T an edge-disjoint k-star union if T is the union of pairwise edge-disjoint k-stars. In Section 4, we prove the following sharp bound for trees.

Theorem 2.9 If T is a tree, $n=|V(T)|, m=|E(T)|$, and $k=\Delta(T) \geq 1$, then

$$
\lambda_{e}(T) \leq \frac{n-1}{k}=\frac{m}{k} .
$$

Moreover, equality holds if and only if T is an edge-disjoint k-star union.

The trees of maximum degree at most 2 are the paths. It is easy to see that $\{\{2 i, 2 i+$ $1\}: 1 \leq i \leq\lceil(n-2) / 2\rceil\}$ is a smallest Δ-reducing edge set of P_{n}, so

$$
\begin{equation*}
\lambda_{e}\left(P_{n}\right)=\left\lceil\frac{n-2}{2}\right\rceil . \tag{4}
\end{equation*}
$$

Theorem 2.9 yields the following generalization.
Theorem 2.10 If F is a forest, $m=|E(F)|$, and $k=\Delta(F) \geq 1$, then

$$
\lambda_{\mathrm{e}}(F) \leq \frac{m}{k}
$$

Moreover, equality holds if and only if each non-singleton component of F is an edge-disjoint k-star union.

Proof. Let \mathcal{C} be the set of components of F. Let $\mathcal{D}=\{C \in \mathcal{C}: \Delta(C)=k\}$. Since $\Delta(F)=k, \mathcal{D} \neq \emptyset$. For each $D \in \mathcal{D}, D$ is a tree, so $\lambda_{e}(D) \leq \frac{|E(D)|}{k}$ by Theorem 2.9. By Proposition 3.7 (given in the next section), $\lambda_{\mathrm{e}}(F)=\sum_{D \in \mathcal{D}} \lambda_{\mathrm{e}}(D) \leq \sum_{D \in \mathcal{D}} \frac{|E(D)|}{k} \leq$ $\frac{m}{k}$. If each non-singleton component of F is an edge-disjoint k-star union, then, by Theorem 2.9, $\lambda_{\mathrm{e}}(F)=\sum_{D \in \mathcal{D}} \frac{|E(D)|}{k}=\frac{m}{k}$. Now suppose $\lambda_{\mathrm{e}}(F)=\frac{m}{k}$. Then, by the above, $m=\sum_{D \in \mathcal{D}}|E(D)|$ and $\lambda_{\mathrm{e}}(D)=\frac{|E(D)|}{k}$ for each $D \in \mathcal{D}$. Thus, each non-singleton component of F is a member of \mathcal{D}, and, by Theorem 2.9, it is an edge-disjoint k-star union.

By the observations in Remark 2.4, we may take $m=\left|E\left(G_{\mathrm{e}}\right)\right|$ in Theorem 2.10. Thus, for the case where G is a forest, Theorem 2.10 improves each of the upper bounds in Corollary 2.5, Theorem 2.6, and Theorem 2.7. Indeed, since $m \leq k t$ (by (2)), we have $\frac{m+(k-1) t}{2 k-1} \geq \frac{m+(k-1)(m / k)}{2 k-1}=\frac{m}{k}, m\left(1-\frac{k-1}{k}\left(\frac{m}{k t}\right)^{\frac{1}{k-1}}\right) \geq m\left(1-\frac{k-1}{k}\right)=$ $\frac{m}{k}$, and $\frac{m}{k}\left(1+\ln \left(\frac{k t}{m}\right)\right) \geq \frac{m}{k}$.

3 Structural results

In this section, we take a close look at how $\lambda_{e}(G)$ is determined by the structure of G and at how it is affected by removing edges from G. Some of the following observations are used in the proofs given in the next section.

Let $M_{1}(G)$ denote $\{v \in M(G): v w \in E(G)$ for some $w \in M(G) \backslash\{v\}\}$. Let $M_{2}(G)$ denote $M(G) \backslash M_{1}(G)$. Thus, $M_{2}(G)=\left\{v \in M(G): d_{G}(v, w) \geq 2\right.$ for each $w \in M(G) \backslash\{v\}\}$.

Recall the definition of an edge cover, given in Section 1. An edge cover of $V(G)$ in G is called an edge cover of G. The edge-covering number of G is the size of a smallest edge cover of G and is denoted by $\beta^{\prime}(G)$. Clearly, $\lambda_{e}(G)=\beta^{\prime}(G)$ if G is regular. In general, we have the following.

Theorem 3.1 For every non-empty graph G,

$$
\lambda_{\mathrm{e}}(G)=\left|M_{2}(G)\right|+\beta^{\prime}\left(G\left[M_{1}(G)\right]\right)
$$

Proof. We start with a few observations. Let $k=\Delta(G)$. Since G is non-empty, $k \geq 1$. For each $v \in M(G), G$ has exactly k edges incident to v. By definition of $M_{2}(G)$,
for any $v \in M_{2}(G)$ and any $e \in E_{G}(v), e \notin E_{G}(w)$ for each $w \in M(G) \backslash\{v\}$.
For any $v \in M_{1}(G)$, $v w \in E(G)$ for some $w \in M(G) \backslash\{v\}$, and therefore $w \in M_{1}(G)$ and $v w \in G\left[M_{1}(G)\right]$. In other words,

$$
\begin{equation*}
\text { for any } v \in M_{1}(G), G\left[M_{1}(G)\right] \text { has at least one edge incident to } v \text {. } \tag{6}
\end{equation*}
$$

Thus, $G\left[M_{1}(G)\right]$ has an edge cover.
Let K be an edge cover of $G\left[M_{1}(G)\right]$ of size $\beta^{\prime}\left(G\left[M_{1}(G)\right]\right)$. For each $v \in M_{2}(G)$, let $e_{v} \in E_{G}(v)$. Let $K^{\prime}=\left\{e_{v}: v \in M_{2}(G)\right\} \cup K$. Then K^{\prime} is a Δ-reducing edge set of G. $\operatorname{By}(5),\left|K^{\prime}\right|=\left|M_{2}(G)\right|+|K|$. Thus, $\lambda_{\mathrm{e}}(G) \leq\left|M_{2}(G)\right|+\beta^{\prime}\left(G\left[M_{1}(G)\right]\right)$.

Now let L be a Δ-reducing edge set of G of size $\lambda_{\mathrm{e}}(G)$. For each $v \in M(G)$, there exists some $e_{v} \in E_{G}(v)$ such that $e_{v} \in L$. Let $L_{1}=\left\{e_{v}: v \in M_{1}(G)\right\}$ and $L_{2}=\left\{e_{v}: v \in M_{2}(G)\right\}$. Then $L_{1} \cup L_{2}$ is a Δ-reducing edge set of G. Thus, since $L_{1} \cup L_{2} \subseteq L$ and $|L|=\lambda_{e}(G), L=L_{1} \cup L_{2}$. By (5), $\left|L_{1} \cup L_{2}\right|=\left|L_{1}\right|+\left|M_{2}(G)\right|$. Let $X=\left\{v \in M_{1}(G): e_{v} \notin E\left(G\left[M_{1}(G)\right]\right)\right\}$. By (6), for each $v \in M_{1}(G)$, there exists some $e_{v}^{\prime} \in E_{G}(v)$ such that $e_{v}^{\prime} \in E\left(G\left[M_{1}(G)\right]\right)$. Let $L_{1}^{\prime}=\left(L_{1} \backslash\left\{e_{v}: v \in\right.\right.$ $X\}) \cup\left\{e_{v}^{\prime}: v \in X\right\}$. For each $v \in X, e_{v} \cap M_{1}(G)=\{v\}$. Thus, L_{1}^{\prime} is an edge cover of $G\left[M_{1}(G)\right]$, and $\left|L_{1}^{\prime}\right| \leq\left|L_{1}\right|$. We have $\lambda_{\mathrm{e}}(G)=|L|=\left|M_{2}(G)\right|+\left|L_{1}\right| \geq$ $\left|M_{2}(G)\right|+\left|L_{1}^{\prime}\right| \geq\left|M_{2}(G)\right|+\beta^{\prime}\left(G\left[M_{1}(G)\right]\right)$. Since $\lambda_{\mathrm{e}}(G) \leq\left|M_{2}(G)\right|+\beta^{\prime}\left(G\left[M_{1}(G)\right]\right)$, the result follows.

We now prove Theorem 2.8. Using a well-known result of Gallai [5], we then show that Theorems 2.8 and 3.1 are equivalent, meaning that they imply each other.

Proof of Theorem 2.8. Let $H=G[M(G)]$. Let K be a matching of H of size $\alpha^{\prime}(H)$. Let $X=\bigcup_{e \in K} e$. Then $X \subseteq M(G)$ and $|X|=2|K|$. For each $v \in M(G) \backslash X$, let $e_{v} \in E_{G}(v)$. Let $K^{\prime}=\left\{e_{v}: v \in M(G) \backslash X\right\}$. Then $K \cup K^{\prime}$ is a Δ-reducing edge set of G. Thus, $\lambda_{\mathrm{e}}(G) \leq|K|+\left|K^{\prime}\right| \leq|K|+|M(G) \backslash X|=|K|+|M(G)|-|X|=$ $|M(G)|-|K|=|M(G)|-\alpha^{\prime}(H)$.

Now let L be a Δ-reducing edge set of G of size $\lambda_{\mathrm{e}}(G)$. Then, for each $v \in M(G)$, there exists some $e_{v}^{\prime} \in E_{G}(v)$ such that $e_{v}^{\prime} \in L$. Let J be a largest subset of L that is a matching of H. Let $Y=\bigcup_{e \in J} e$. Then $Y \subseteq M(G)$ and $|Y|=2|J|$. Let $Y^{\prime}=M(G) \backslash Y$. Let $J^{\prime}=\left\{e_{v}^{\prime}: v \in Y^{\prime}\right\}$. If we assume that $e_{u}^{\prime}=e_{v}^{\prime}$ for some $u, v \in Y^{\prime}$ with $u \neq v$, then we obtain that $e_{u}^{\prime}=e_{v}^{\prime}=u v$ and that $J \cup\{u v\}$ is a matching of H of size $|J|+1$, which contradicts the choice of J. Thus, $\left|J^{\prime}\right|=\left|Y^{\prime}\right|$. Now $J \cup J^{\prime} \subseteq L$ and $J \cap J^{\prime}=\emptyset$. We have $\lambda_{e}(G)=|L| \geq\left|J \cup J^{\prime}\right|=|J|+\left|J^{\prime}\right|=|J|+\left|Y^{\prime}\right|=$ $|J|+|M(G)|-|Y|=|M(G)|-|J| \geq|M(G)|-\alpha^{\prime}(H)$. Since $\lambda_{\mathrm{e}}(G) \leq|M(G)|-\alpha^{\prime}(H)$, the result follows.

Proposition 3.2 Theorems 2.8 and 3.1 are equivalent.
Proof. By (6), $\delta\left(G\left[M_{1}(G)\right]\right) \geq 1$. A result of Gallai [5] tells us that $\alpha^{\prime}(H)+\beta^{\prime}(H)$ $=|V(H)|$ for every graph H with $\delta(H) \geq 1$. Thus,

$$
\alpha^{\prime}\left(G\left[M_{1}(G)\right]\right)+\beta^{\prime}\left(G\left[M_{1}(G)\right]\right)=\left|V\left(G\left[M_{1}(G)\right]\right)\right|=\left|M_{1}(G)\right| .
$$

If $v, w \in M(G)$ such that $v w \in E(G)$, then $v w \in M_{1}(G)$. Thus, $E(G[M(G)])=$ $E\left(G\left[M_{1}(G)\right]\right)$, and hence $\alpha^{\prime}\left(G\left[M_{1}(G)\right]\right)=\alpha^{\prime}(G[M(G)])$. Therefore, since $|M(G)|=$ $\left|M_{1}(G)\right|+\left|M_{2}(G)\right|$, Theorem 2.8 implies Theorem 3.1, and vice-versa.

From Theorem 3.1 we immediately obtain the next two results.
Proposition 3.3 If G is a non-empty graph, then $\lambda_{\mathrm{e}}(G) \leq|M(G)|$, and equality holds if and only if $M_{2}(G)=M(G)$.

Proof. For each $v \in M(G)$, let $e_{v} \in E_{G}(v)$. Since $\left\{e_{v}: v \in M(G)\right\}$ is a Δ reducing edge set of $G, \lambda_{e}(G) \leq\left|\left\{e_{v}: v \in M(G)\right\}\right| \leq|M(G)|$. By Theorem 3.1, $\lambda_{\mathrm{e}}(G)=|M(G)|$ if $M_{2}(G)=M(G)$. Suppose $M_{2}(G) \neq M(G)$. Then $M_{1}(G) \neq \emptyset$. Let $x \in M_{1}(G)$. By (6), $x y \in E\left(G\left[M_{1}(G)\right]\right)$ for some $y \in M_{1}(G) \backslash\{x\}$. Also by (6), for each $v \in M_{1}(G) \backslash\{x, y\}$, there exists some $e_{v}^{\prime} \in E_{G}(v)$ such that $e_{v}^{\prime} \in E\left(G\left[M_{1}(G)\right]\right)$. Let $L=\{x y\} \cup\left\{e_{v}^{\prime}: v \in M_{1}(G) \backslash\{x, y\}\right\}$. Since L is an edge cover of $G\left[M_{1}(G)\right]$, $\beta^{\prime}\left(G\left[M_{1}(G)\right]\right) \leq|L| \leq\left|M_{1}(G)\right|-1$. Thus, by Theorem 3.1, $\lambda_{e}(G) \leq\left|M_{2}(G)\right|+$ $\left|M_{1}(G)\right|-1<|M(G)|$.

Proposition 3.4 If G is a graph with $M_{2}(G) \neq M(G)$, then $\Delta\left(G-M_{2}(G)\right)=\Delta(G)$ and $\lambda_{\mathrm{e}}(G)=\left|M_{2}(G)\right|+\lambda_{\mathrm{e}}\left(G-M_{2}(G)\right)$.

Proof. Let $H=G-M_{2}(G)$. Since $M_{2}(G) \neq M(G), M_{1}(G) \neq \emptyset$. By (5), $E_{G}\left(M_{1}(G)\right) \subseteq E(H)$. Together with $M(G)=M_{1}(G) \cup M_{2}(G)$, this gives us $M(H)=$ $M_{1}(G)$. Let K be an edge cover of $G\left[M_{1}(G)\right]$ of size $\beta^{\prime}\left(G\left[M_{1}(G)\right]\right)$ (K exists by (6)). Then K is a Δ-reducing edge set of H, and hence $\lambda_{e}(H) \leq \beta^{\prime}\left(G\left[M_{1}(G)\right]\right)$. By Theorem 3.1, $\lambda_{\mathrm{e}}(G) \geq\left|M_{2}(G)\right|+\lambda_{\mathrm{e}}(H)$. Now let L_{1} be a Δ-reducing edge set of H of size $\lambda_{\mathrm{e}}(H)$, and let L_{2} be as in the proof of Theorem 3.1. Then $L_{1} \cup L_{2}$ is a Δ-reducing edge set of G. Thus, $\lambda_{\mathrm{e}}(G) \leq\left|L_{1}\right|+\left|L_{2}\right|=\lambda_{\mathrm{e}}(H)+\left|M_{2}(G)\right|$. The result follows.

In the rest of the section, we take a look at how $\lambda_{e}(H)$ relates to $\lambda_{e}(G)$ for a subgraph H of G, or rather, how $\lambda_{\mathrm{e}}(G)$ is affected by removing edges from G.

Lemma 3.5 If G is a graph, H is a subgraph of G with $\Delta(H)=\Delta(G)$, and L is a Δ-reducing edge set of G, then $L \cap E(H)$ is a Δ-reducing edge set of H.

Proof. Let $J=L \cap E(H)$. It is sufficient to show that for each $v \in M(H)$, $e \in E_{H}(v)$ for some $e \in J$. Let $v \in M(H)$. Since $\Delta(H)=\Delta(G), v \in M(G)$ and
$E_{H}(v)=E_{G}(v)$. Since $v \in M(G), e \in E_{G}(v)$ for some $e \in L$. Since $E_{G}(v)=E_{H}(v)$, $e \in E(H)$. Therefore, $e \in J$.

We point out that $|L|=\lambda_{\mathrm{e}}(G)$ does not guarantee that $|L \cap E(H)|=\lambda_{\mathrm{e}}(H)$. Indeed, let $k \geq 2$, let G_{1} and G_{2} be copies of $K_{1, k}$ with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, and let G be the union of G_{1} and G_{2}. Let $e_{1} \in E\left(G_{1}\right)$ and $e_{2} \in E\left(G_{2}\right)$. Let $e \in E\left(G_{2}\right) \backslash\left\{e_{2}\right\}$. Let $H=(V(G), E(G) \backslash\{e\})$. Let $L=\left\{e_{1}, e_{2}\right\}$. Then L is a Δ-reducing edge set of G of size $\lambda_{\mathrm{e}}(G), L \cap E(H)=\left\{e_{1}, e_{2}\right\}=L$, but $\left\{e_{1}\right\}$ is a Δ-reducing edge set of H of size $\lambda_{e}(H)$. Thus, $L \cap E(H)$ is not a smallest Δ-reducing edge set of H.

Corollary 3.6 If H is a subgraph of G such that $\Delta(H)=\Delta(G)$, then $\lambda_{\mathrm{e}}(H) \leq$ $\lambda_{\mathrm{e}}(G)$.

Proof. Let L be a Δ-reducing edge set of G of size $\lambda_{e}(G)$. Let $J=L \cap E(H)$. By Lemma 3.5, J is a Δ-reducing edge set of H. Therefore, $\lambda_{e}(H) \leq|J| \leq|L|=$ $\lambda_{\mathrm{e}}(G)$.

Proposition 3.7 If G is a graph and G_{1}, \ldots, G_{r} are the distinct components of G whose maximum degree is $\Delta(G)$, then $\lambda_{\mathrm{e}}(G)=\sum_{i=1}^{r} \lambda_{\mathrm{e}}\left(G_{i}\right)$.

Proof. Let L be a Δ-reducing edge set of G of size $\lambda_{e}(G)$. For each $i \in[r]$, let $L_{i}=L \cap E\left(G_{i}\right)$. Then L_{1}, \ldots, L_{r} partition L, so $|L|=\sum_{i=1}^{r}\left|L_{i}\right|$. By Lemma 3.5, for each $i \in[r], L_{i}$ is a Δ-reducing edge set of G_{i}, so $\lambda_{\mathrm{e}}\left(G_{i}\right) \leq\left|L_{i}\right|$. Suppose $\lambda_{\mathrm{e}}\left(G_{j}\right)<\left|L_{j}\right|$ for some $j \in[r]$. Let L_{j}^{\prime} be a Δ-reducing edge set of G_{j} of size $\lambda_{\mathrm{e}}\left(G_{j}\right)$. Then $L_{j}^{\prime} \cup \bigcup_{i \in[r] \backslash\{j\}} L_{i}$ is a Δ-reducing edge set of G that is smaller than L, a contradiction. Thus, $\lambda_{\mathrm{e}}\left(G_{i}\right)=\left|L_{i}\right|$ for each $i \in[r]$. We have $\lambda_{\mathrm{e}}(G)=|L|=$ $\sum_{i=1}^{r}\left|L_{i}\right|=\sum_{i=1}^{r} \lambda_{\mathrm{e}}\left(G_{i}\right)$.

Proposition 3.8 If G is a graph, $u, v \in V(G) \backslash M(G)$, and $u v \in E(G)$, then $\lambda_{\mathrm{e}}(G-$ $u v)=\lambda_{e}(G)$.

Proof. Let $e=u v$. Since $u, v \notin M(G), \Delta(G-e)=\Delta(G)$. By Corollary 3.6, $\lambda_{\mathrm{e}}(G-e) \leq \lambda_{\mathrm{e}}(G)$. Let L be a Δ-reducing edge set of $G-e$ of size $\lambda_{\mathrm{e}}(G-e)$. Since $u, v \notin M(G), M(G-e)=M(G)$. Thus, L is a Δ-reducing edge set of G, and hence $\lambda_{\mathrm{e}}(G) \leq \lambda_{\mathrm{e}}(G-e)$. Since $\lambda_{\mathrm{e}}(G-e) \leq \lambda_{\mathrm{e}}(G)$, the result follows.

Proposition 3.9 If G is a graph and $e \in E(G)$, then $\lambda_{\mathrm{e}}(G) \leq 1+\lambda_{\mathrm{e}}(G-e)$.
Proof. If $\Delta(G-e)<\Delta(G)$, then $\lambda_{e}(G)=1$. Suppose $\Delta(G-e)=\Delta(G)$. Then $M(G-e) \subseteq M(G) \cup e$. Let L be a Δ-reducing edge set of $G-e$ of size $\lambda_{e}(G-e)$. Then $L \cup\{e\}$ is a Δ-reducing edge set of G. Thus, $\lambda_{\mathrm{e}}(G) \leq|L \cup\{e\}|=1+\lambda_{\mathrm{e}}(G-e)$.

Corollary 3.10 If e_{1}, \ldots, e_{t} are edges of a graph G, then $\lambda_{\mathrm{e}}(G) \leq t+\lambda_{\mathrm{e}}(G-$ $\left\{e_{1}, \ldots, e_{t}\right\}$).

Proof. The result follows by repeated application of Proposition 3.9.

4 Proofs of the main upper bounds

We now prove Lemma 2.2 and Theorems 2.3, 2.6, 2.7, and 2.9.

Proof of Lemma 2.2. Since G is a special k-star union, $\Delta(G)=k$ and $E(G)=$ $E\left(G_{1}\right) \cup \cdots \cup E\left(G_{r}\right)$ for some k-stars G_{1}, \ldots, G_{r} that are pairwise edge-disjoint and k wise vertex-disjoint. Thus, $m=k r$, and for $i \in[r]$, there exist $u_{i}, v_{i, 1}, \ldots, v_{i, k} \in V(G)$ such that $G_{i}=\left(\left\{u_{i}, v_{i, 1}, \ldots, v_{i, k}\right\},\left\{u_{i} v_{i, 1}, \ldots, u_{i} v_{i, k}\right\}\right)$. For $i \in[r],\left|E_{G_{i}}\left(u_{i}\right)\right|=k=$ $\Delta(G)$, so we have $E_{G}\left(u_{i}\right)=E_{G_{i}}\left(u_{i}\right)=E\left(G_{i}\right)$. Thus, since $E\left(G_{1}\right), \ldots, E\left(G_{r}\right)$ are pairwise disjoint, u_{1}, \ldots, u_{r} are distinct. Consider any $w \in V(G) \backslash\left\{u_{1}, \ldots, u_{r}\right\}$. For each $i \in[r]$ such that $w \in V\left(G_{i}\right), E_{G}(w) \cap E\left(G_{i}\right)=\left\{u_{i} w\right\}$. Thus, $d_{G}(w)=\mid\{i \in$ $\left.[r]: w \in V\left(G_{i}\right)\right\} \mid$, and hence, since G_{1}, \ldots, G_{r} are k-wise vertex-disjoint, $d_{G}(w)<k$. Thus, $M(G)=\left\{u_{1}, \ldots, u_{r}\right\}$, and hence $t=r$. Since $m=k r, m=k t$.

Now let L be a Δ-reducing edge set of G of size $\lambda_{\mathrm{e}}(G)$. For $i \in[r]$, there exists some $e_{i} \in E_{G}\left(u_{i}\right)$ such that $e_{i} \in L$. Let $L^{\prime}=\left\{e_{1}, \ldots, e_{r}\right\}$. For $i, j \in[r]$ with $i \neq j$, $E_{G}\left(u_{i}\right) \cap E_{G}\left(u_{j}\right)=E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$, so $e_{i} \neq e_{j}$. Thus, $\left|L^{\prime}\right|=r$. Now L^{\prime} is a Δ-reducing edge set of G and $L^{\prime} \subseteq L$, so $\lambda_{\mathrm{e}}(G) \leq\left|L^{\prime}\right| \leq|L|$. Since $\lambda_{\mathrm{e}}(G)=|L|$, we obtain $L^{\prime}=L$, so $\lambda_{\mathrm{e}}(G)=r$. Since $t=r$, the result is proved.

Proof of Theorem 2.3. If G is a special k-star union, then, by Lemma 2.2, we have $m=k t$ and $\lambda_{\mathrm{e}}(G)=t=\frac{m+(k-1) t}{2 k-1}$. If G has exactly $c_{1}+c_{2}+c_{3}$ components, c_{1} components of G are singletons, c_{2} components of G are 2 -stars, and c_{3} components of G are triangles, then $m=2 c_{2}+3 c_{3}, k=2, t=c_{2}+3 c_{3}$, and, by Proposition 3.7, $\lambda_{\mathrm{e}}(G)=c_{2} \lambda_{\mathrm{e}}\left(P_{2}\right)+c_{3} \lambda_{\mathrm{e}}\left(C_{3}\right)=c_{2}+2 c_{3}=\frac{m+(k-1) t}{2 k-1}$.

We now prove the bound in the theorem and show that it is attained only in the cases above. If $m=1$, then $k=1$, and the result follows immediately. We now proceed by induction on m. Thus, suppose $m \geq 2$. If $k=1$, then the edges of G are pairwise disjoint, G is a special 1 -star union, and $\lambda_{\mathrm{e}}(G)=m=\frac{m+(k-1) t}{2 k-1}$. Suppose $k \geq 2$.

Suppose $M_{2}(G)=M(G)$. Let v_{1}, \ldots, v_{t} be the vertices in $M_{2}(G)$. By (5), $E_{G}\left(v_{1}\right)$, $\ldots, E_{G}\left(v_{t}\right)$ are pairwise disjoint, so $\left|E_{G}\left(M_{2}(G)\right)\right|=\sum_{i=1}^{t}\left|E_{G}\left(v_{i}\right)\right|=\sum_{i=1}^{t} k=k t$. Thus, $m \geq k t$, and equality holds only if $E(G)=\bigcup_{i=1}^{t} E_{G}\left(v_{i}\right)$. By Proposition 3.3, $\lambda_{\mathrm{e}}(G)=t=\frac{k t+(k-1) t}{2 k-1} \leq \frac{m+(k-1) t}{2 k-1}$. Suppose $\lambda_{\mathrm{e}}(G)=\frac{m+(k-1) t}{2 k-1}$. Then $m=k t$, and hence $E(G)=\bigcup_{i=1}^{t} E_{G}\left(v_{i}\right)$. For $i \in[t]$, let G_{i} be the k-star $\left(N_{G}\left[v_{i}\right], E_{G}\left(v_{i}\right)\right)$. Then G_{1}, \ldots, G_{t} are pairwise edge-disjoint. For $i \in[t]$, we have $d_{G_{i}}\left(v_{i}\right)=\Delta(G)$, so $v_{i} \notin$ $V\left(G_{j}\right)$ for $j \in[t] \backslash\{i\}$. Consider any $w \in \bigcup_{i=1}^{t} V\left(G_{i}\right) \backslash\left\{v_{1}, \ldots, v_{t}\right\}$. Then $w \notin M(G)$, and hence $d_{G}(w)<k$. For $i \in[t]$ such that $w \in V\left(G_{i}\right), E_{G}(w) \cap E\left(G_{i}\right)=\left\{v_{i} w\right\}$. Thus, $\left|\left\{i \in[t]: w \in V\left(G_{i}\right)\right\}\right|=d_{G}(w)<k$. We have therefore shown that G_{1}, \ldots, G_{t} are k-wise vertex-disjoint. Since $E(G)=\bigcup_{i=1}^{t} E_{G}\left(v_{i}\right)=\bigcup_{i=1}^{t} E\left(G_{i}\right), G$ is a special k-star union.

Now suppose $M_{2}(G) \neq M(G)$. Then $x y \in E(G)$ for some $x, y \in M(G)$. Let $H=G-x y$. We have $m \geq\left|E_{G}(x) \cup E_{G}(y)\right|=\left|E_{G}(x)\right|+\left|E_{G}(y)\right|-\left|E_{G}(x) \cap E_{G}(y)\right|=$ $2 k-|\{x y\}|=2 k-1$. If $\Delta(H)<k$, then $M(G)=\{x, y\}$ and $\lambda_{\mathrm{e}}(G)=1<\frac{m+(k-1) t}{2 k-1}$.

Suppose $\Delta(H)=k$. Then $M(H)=M(G) \backslash\{x, y\}$. By the induction hypothesis, $\lambda_{\mathrm{e}}(H) \leq \frac{(m-1)+(k-1)(t-2)}{2 k-1}$. By Proposition 3.9,

$$
\lambda_{\mathrm{e}}(G) \leq 1+\lambda_{\mathrm{e}}(H) \leq 1+\frac{(m-1)+(k-1)(t-2)}{2 k-1}=\frac{m+(k-1) t}{2 k-1}
$$

Suppose $\lambda_{e}(G)=\frac{m+(k-1) t}{2 k-1}$. Then $\lambda_{e}(G)=1+\lambda_{e}(H)$ and $\lambda_{e}(H)=\frac{(m-1)+(k-1)(t-2)}{2 k-1}$. By the induction hypothesis, H is a special k-star union or each non-singleton component of H is a 2 -star or a triangle.

Suppose that H is a special k-star union. We have $|M(H)|=t-2$. Let u_{1}, \ldots, u_{t-2} be the distinct vertices in $M(H)$. By the proof of Lemma 2.2, $E_{H}\left(u_{1}\right)$, $\ldots, E_{H}\left(u_{t-2}\right)$ partition $E(H)$, and $\lambda_{\mathrm{e}}(H)=|M(H)|$. Since $d_{H}(x)=\left|E_{G}(x) \backslash\{x y\}\right|=$ $k-1>0, u_{p} x \in E(H)$ for some $p \in[t-2]$. Similarly, $u_{q} y \in E(H)$ for some $q \in[t-2]$. For each $i \in[t-2] \backslash\{p, q\}$, let $e_{i} \in E_{H}\left(u_{i}\right)$. Since $M(G)=\left\{u_{1}, \ldots, u_{t-2}\right\} \cup\{x, y\}$, $\left\{e_{i}: i \in[t-2] \backslash\{p, q\}\right\} \cup\left\{u_{p} x, u_{q} y\right\}$ is a Δ-reducing edge set of G. Together with $t-2=|M(H)|=\lambda_{\mathrm{e}}(H)$, this gives us $\lambda_{\mathrm{e}}(G) \leq \lambda_{\mathrm{e}}(H)$, which contradicts $\lambda_{\mathrm{e}}(G)=$ $1+\lambda_{\mathrm{e}}(H)$.

Therefore, each non-singleton component of H is a 2 -star or a triangle. Thus, $k=2$. For $v \in\{x, y\}$, let H_{v} be the component of H such that $v \in V\left(H_{v}\right)$. Since $2=k=d_{G}(x)=\left|E_{H_{x}}(x) \cup\{x y\}\right|=d_{H_{x}}(x)+1$, we have $d_{H_{x}}(x)=1$, so H_{x} is a 2-star and x is a leaf of H_{x}. Suppose $H_{x} \neq H_{y}$. Then there are 6 distinct vertices a_{1}, \ldots, a_{6} of H such that $H_{x}=\left(\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{1} a_{2}, a_{2} a_{3}\right\}\right), H_{y}=\left(\left\{a_{4}, a_{5}, a_{6}\right\},\left\{a_{4} a_{5}, a_{5} a_{6}\right\}\right)$, $a_{3}=x$, and $a_{4}=y$. Let L be a smallest Δ-reducing edge set of H. Since H_{x} and H_{y} are components of H, we have $M(H) \cap\left(V\left(H_{x}\right) \cup V\left(H_{y}\right)\right)=\left\{a_{2}, a_{5}\right\}$ and $L \cap E\left(H_{x}\right) \neq \emptyset \neq L \cap E\left(H_{y}\right)$. Let $e_{x} \in L \cap E\left(H_{x}\right)$ and $e_{y} \in L \cap E\left(H_{y}\right)$. Let $L^{\prime}=\left(L \backslash\left\{e_{x}, e_{y}\right\}\right) \cup\left\{a_{2} a_{3}, a_{4} a_{5}\right\}$. Then L^{\prime} is a Δ-reducing edge set of G. Thus, we have $\lambda_{\mathrm{e}}(G) \leq\left|L^{\prime}\right|=|L|=\lambda_{\mathrm{e}}(H)$, which contradicts $\lambda_{\mathrm{e}}(G)=1+\lambda_{\mathrm{e}}(H)$. Therefore, $H_{x}=H_{y}$. Let $G_{x}=\left(V\left(H_{x}\right), E\left(H_{x}\right) \cup\{x y\}\right)$. Then G_{x} is a component of G. Since x and y are the two leaves of the 2 -star H_{x}, G_{x} is a triangle. Consequently, each non-singleton component of G is a 2 -star or a triangle.

Proof of Theorem 2.6. We may assume that $E_{G}(M(G))=[m]$. By (2), $m \leq k t$. Let $p=1-\left(\frac{m}{k t}\right)^{\frac{1}{k-1}}$. We set up m independent random experiments, and in each experiment an edge is chosen with probability p. More formally, for $i \in[m]$, let $\left(\Omega_{i}, P_{i}\right)$ be given by $\Omega_{i}=\{0,1\}, P_{i}(\{1\})=p$, and $P_{i}(\{0\})=1-p$. Let $\Omega=\Omega_{1} \times$ $\cdots \times \Omega_{m}$ and let $P: 2^{\Omega} \rightarrow[0,1]$ (where $[0,1]$ denotes $\{x \in \mathbb{R}: 0 \leq x \leq 1\}$) such that $P(\{\omega\})=\prod_{i=1}^{m} P_{i}\left(\left\{\omega_{i}\right\}\right)$ for each $\omega=\left(\omega_{1}, \ldots, \omega_{m}\right) \in \Omega$, and $P(A)=\sum_{\omega \in A} P(\{\omega\})$ for each $A \subseteq \Omega$. Then (Ω, P) is a probability space.

For each $\omega=\left(\omega_{1}, \ldots, \omega_{m}\right) \in \Omega$, let $S_{\omega}=\left\{i \in[m]: \omega_{i}=1\right\}$ and $T_{\omega}=\{v \in$ $M(G)$: no edge incident to v is a member of $\left.S_{\omega}\right\}$.

Let $X: \Omega \rightarrow \mathbb{R}$ be the random variable given by $X(\omega)=\left|S_{\omega}\right|$. For $i \in[m]$, let $X_{i}: \Omega \rightarrow \mathbb{R}$ such that, for $\omega=\left(\omega_{1}, \ldots, \omega_{m}\right) \in \Omega$,

$$
X_{i}(\omega)= \begin{cases}1 & \text { if } i \in S_{\omega} \\ 0 & \text { otherwise }\end{cases}
$$

Then $X=\sum_{i=1}^{m} X_{i}$. For $i \in[m], P\left(X_{i}=1\right)=P_{i}(\{1\})=p$.
Let $Y: \Omega \rightarrow \mathbb{R}$ be the random variable given by $Y(\omega)=\left|T_{\omega}\right|$. For $v \in M(G)$, let $Y_{v}: \Omega \rightarrow \mathbb{R}$ such that, for $\omega=\left(\omega_{1}, \ldots, \omega_{m}\right) \in \Omega$,

$$
Y_{v}(\omega)= \begin{cases}1 & \text { if } v \in T_{\omega} \\ 0 & \text { otherwise }\end{cases}
$$

Then $Y=\sum_{v \in M(G)} Y_{v}$. For $v \in M(G), P\left(Y_{v}=1\right)=(1-p)^{k}$.
For any random variable Z, let $\mathrm{E}[Z]$ denote the expected value of Z. By linearity of expectation,

$$
\begin{aligned}
\mathrm{E}[X+Y] & =\mathrm{E}[X]+\mathrm{E}[Y]=\sum_{i=1}^{m} \mathrm{E}\left[X_{i}\right]+\sum_{v \in M(G)} \mathrm{E}\left[Y_{v}\right] \\
& =\sum_{i=1}^{m} P\left(X_{i}=1\right)+\sum_{v \in M(G)} P\left(Y_{v}=1\right)=m p+t(1-p)^{k} .
\end{aligned}
$$

Thus, by the probabilistic pigeonhole principle, there exists some $\omega^{*} \in \Omega$ such that $X\left(\omega^{*}\right)+Y\left(\omega^{*}\right) \leq m p+t(1-p)^{k}$. For $v \in T_{\omega^{*}}$, let $e_{v} \in E_{G}(v)$. Let $L_{\omega^{*}}=S_{\omega^{*}} \cup$ $\left\{e_{v}: v \in T_{\omega^{*}}\right\}$. Then $L_{\omega^{*}}$ is a Δ-reducing edge set of G. Thus, $\lambda_{e}(G) \leq\left|L_{\omega^{*}}\right| \leq$ $\left|S_{\omega^{*}}\right|+\left|T_{\omega^{*}}\right|=X\left(\omega^{*}\right)+Y\left(\omega^{*}\right) \leq m p+t(1-p)^{k}=m\left(1-\frac{k-1}{k}\left(\frac{m}{k t}\right)^{\frac{1}{k-1}}\right)$. If G_{e} is a special k-star union, then, by Lemma 2.2, we have $m=k t$ and $\lambda_{\mathrm{e}}(G)=t$, and hence $\lambda_{\mathrm{e}}(G)=m\left(1-\frac{k-1}{k}\left(\frac{m}{k t}\right)^{\frac{1}{k-1}}\right)$.

Remark 4.1 Note that the minimum value of the function $f:[0,1] \rightarrow \mathbb{R}$ given by $f(p)=m p+t(1-p)^{k}$ occurs at $p=1-\left(\frac{m}{k t}\right)^{\frac{1}{k-1}}$, hence the choice of p in the proof above.

Proof of Theorem 2.7. Let $p^{*}=1-\left(\frac{m}{k t}\right)^{\frac{1}{k-1}}$ and $q=\frac{1}{k} \ln \left(\frac{k t}{m}\right)$. By (2), $k t / 2 \leq m \leq$ $k t$. Thus, $0 \leq q \leq \frac{1}{k} \ln 2<1$. Let f be as in Remark 4.1. Thus, $f\left(p^{*}\right) \leq f(q)$. By the proof of Theorem 2.6, $\lambda_{e}(G) \leq f\left(p^{*}\right) \leq f(q)=m q+t(1-q)^{k}$. Since $1-q \leq e^{-q}$, we obtain $\lambda_{\mathrm{e}}(G) \leq m q+t e^{-q k}=\frac{m}{k} \ln \left(\frac{k t}{m}\right)+t e^{-\ln \left(\frac{k t}{m}\right)}=\frac{m}{k}\left(1+\ln \left(\frac{k t}{m}\right)\right)$. If G_{e} is a special k-star union, then, by Lemma 2.2, we have $m=k t$ and $\lambda_{e}(G)=t$, and hence $\lambda_{\mathrm{e}}(G)=\frac{m}{k}\left(1+\ln \left(\frac{k t}{m}\right)\right)$.

We now prove Theorem 2.9, making use of the following well-known facts.
Lemma 4.2 Let x be a vertex of a tree T. Let $m=\max \left\{d_{T}(x, y): y \in V(T)\right\}$, and let $D_{i}=\left\{y \in V(T): d_{T}(x, y)=i\right\}$ for each $i \in\{0\} \cup[m]$. For each $i \in[m]$ and each $v \in D_{i}, N_{T}(v) \cap \bigcup_{j=0}^{i} D_{j}=\{u\}$ for some $u \in D_{i-1}$.

Indeed, let $v \in D_{i}$. By definition of D_{i}, v can only be adjacent to vertices of distance $i-1, i$ or $i+1$ from x. If v is adjacent to a vertex w of distance i from x, then,
by considering an $x v$-path and an $x w$-path, we obtain that T contains a cycle, a contradiction. We obtain the same contradiction if we assume that v is adjacent to two vertices of distance $i-1$ from x.

If a vertex v of a graph G has only one neighbour in G, then v is called a leaf of G.

Corollary 4.3 If T is a tree, $x, z \in V(T)$, and $d_{T}(x, z)=\max \left\{d_{T}(x, y): y \in V(T)\right\}$, then z is a leaf of T.

Proof. Let $D_{0}, D_{1}, \ldots, D_{m}$ be as in Lemma 4.2. Then $z \in D_{m}$. By Lemma 4.2, $N_{T}(z)=\{u\}$ for some $u \in D_{m-1}$.

Proof of Theorem 2.9. The result is trivial for $n \leq 2$. We now proceed by induction on n. Thus, consider $n \geq 3$. Since T is connected, $k \geq 2$.

Suppose that T has a leaf z whose neighbour is not in $M(T)$. Let w be the neighbour of z in T. Let $T^{\prime}=T-z$. By (1), $\lambda_{\mathrm{e}}(T)=\lambda_{\mathrm{e}}\left(T^{\prime}\right)$ as $T_{\mathrm{e}}=T_{\mathrm{e}}^{\prime}$. By the induction hypothesis, $\lambda_{\mathrm{e}}\left(T^{\prime}\right) \leq \frac{n-2}{k}<\frac{n-1}{k}$. Thus, $\lambda_{\mathrm{e}}(T)<\frac{n-1}{k}$. Suppose T is an edge-disjoint k-star union. Then T contains a k-star S such that $z \in V(S)$. Since $N_{S}(z) \subseteq N_{T}(z)=\{w\}, z$ is a leaf of S and $S=\left(\left\{w, z_{1}^{\prime}, \ldots, z_{k}^{\prime}\right\},\left\{w z_{1}^{\prime}, \ldots, w z_{k}^{\prime}\right\}\right)$, where $z_{1}^{\prime}=z$ and $z_{2}^{\prime}, \ldots, z_{k}^{\prime}$ are distinct elements of $V(T) \backslash\{w, z\}$. Thus, we have $d_{T}(w)=k$, contradicting $w \notin M(T)$. Therefore, T is not an edge-disjoint k-star union.

Now suppose that each leaf of T has its neighbour in $M(T)$. Let x, m, and D_{0}, \ldots, D_{m} be as in Lemma 4.2. Let $z \in V(T)$ such that $d_{T}(x, z)=m$. By Corollary $4.3, z$ is a leaf of T. Let w be the neighbour of z in T. By Lemma 4.2, $w \in D_{m-1}$.

Suppose $w=x$. Then $m=1$ and $T=\left(\left\{x, z_{1}, \ldots, z_{k}\right\},\left\{x z_{1}, \ldots, x z_{k}\right\}\right)$ for some distinct vertices z_{1}, \ldots, z_{k} in D_{m}. Thus, T is a k-star. Since $x z_{1}$ is a Δ-reducing edge set of $T, \lambda_{\mathrm{e}}(T)=1=\frac{n-1}{k}$.

Now suppose $w \neq x$. Together with Lemma 4.2, this implies that $N_{T}(w)=$ $\left\{v, z_{1}, \ldots, z_{k-1}\right\}$ for some $v \in D_{m-2}$ and some distinct vertices z_{1}, \ldots, z_{k-1} in D_{m}. By Corollary 4.3, z_{1}, \ldots, z_{k-1} are leaves of T. Let $e=w v$. Let

$$
T_{1}=T-\left\{w, z_{1}, \ldots, z_{k-1}\right\} \quad \text { and } \quad T_{2}=\left(\left\{w, z_{1}, \ldots, z_{k-1}\right\},\left\{w z_{1}, \ldots, w z_{k-1}\right\}\right)
$$

Clearly, T_{1} and T_{2} are the components of $T-e$, and they are trees. Let $T_{2}^{\prime}=$ $\left(\{v\} \cup V\left(T_{2}\right),\{e\} \cup E\left(T_{2}\right)\right)$. If $T=T_{2}^{\prime}$, then $\Delta(T-e)<k$, and hence $\lambda_{\mathrm{e}}(T)=1=\frac{n-1}{k}$. We have $\Delta\left(T_{2}\right)<k$.

Suppose $\Delta\left(T_{1}\right)<k$. Then $\Delta(T-e)<k$, and hence $\lambda_{e}(T)=1 \leq \frac{n-1}{k}$. Suppose $\lambda_{\mathrm{e}}(T)=\frac{n-1}{k}$. Then $n=k+1=\left|V\left(T_{2}\right)\right|+1$. Since $n=\left|V\left(T_{1}\right)\right|+\left|V\left(T_{2}\right)\right|$, we obtain $\left|V\left(T_{1}\right)\right|=1$, so $V\left(T_{1}\right)=\{v\}$. Thus, T is the k-star T_{2}^{\prime}.

Finally, suppose $\Delta\left(T_{1}\right)=k$. By Proposition 3.7, $\lambda_{\mathrm{e}}(T-e)=\lambda_{\mathrm{e}}\left(T_{1}\right)$. By the induction hypothesis, $\lambda_{\mathrm{e}}\left(T_{1}\right) \leq \frac{n-k-1}{k}$, and equality holds if and only if T_{1} is an edgedisjoint k-star union. By Proposition 3.9, $\lambda_{\mathrm{e}}(T) \leq 1+\lambda_{\mathrm{e}}(T-e) \leq 1+\frac{n-k-1}{k}=\frac{n-1}{k}$.

Suppose $\lambda_{\mathrm{e}}(T)=\frac{n-1}{k}$. Then $\lambda_{\mathrm{e}}\left(T_{1}\right)=\frac{n-k-1}{k}$, and hence T_{1} is an edge-disjoint k-star union. Since T is the union of T_{1} and T_{2}^{\prime}, T is an edge-disjoint k-star union.

We now prove the converse. Thus, suppose that T is an edge-disjoint k-star union. Then there exist pairwise edge-disjoint k-stars G_{1}, \ldots, G_{r} such that $z_{1} \in$ $V\left(G_{r}\right)$ and T is the union of G_{1}, \ldots, G_{r}. Since $N_{G_{r}}\left(z_{1}\right) \subseteq N_{T}\left(z_{1}\right)=\{w\}, G_{r}=$ $\left(\left\{w, z_{1}, y_{1}, \ldots, y_{k-1}\right\},\left\{w z_{1}, w y_{1}, \ldots, w_{y_{k-1}}\right\}\right)$ for some $y_{1}, \ldots, y_{k-1} \in V(T)$. Since $d_{G_{r}}(w)=k=d_{T}(w), N_{G_{r}}(w)=N_{T}(w)$. Thus, $\left\{z_{1}, y_{1}, \ldots, y_{k-1}\right\}=\left\{z_{1}, \ldots, z_{k-1}, v\right\}$, and hence $G_{r}=T_{2}^{\prime}$. Consequently, T_{1} is the union of G_{1}, \ldots, G_{r-1}, and hence $\lambda_{\mathrm{e}}\left(T_{1}\right)=\frac{n-k-1}{k}$. Let L be a Δ-reducing edge set of T of $\operatorname{size} \lambda_{\mathrm{e}}(T)$. Let $L_{1}=$ $L \cap E\left(T_{1}\right)$ and $L_{2}=L \cap E\left(T_{2}^{\prime}\right)$. Since $E\left(T_{1}\right)$ and $E\left(T_{2}^{\prime}\right)$ partition $E(T), L_{1}$ and L_{2} partition L. Since $w \in M(T)$ and $E_{T}(w)=E\left(T_{2}^{\prime}\right), L_{2} \neq \emptyset$. Suppose that L_{1} is not a Δ-reducing edge set of T_{1}. Then, since $\Delta\left(T_{1}\right)=k$, there exists some $u \in V\left(T_{1}\right)$ such that $d_{T_{1}}(u)=k$ and $E_{T}(u) \cap L \subseteq L_{2}$. Since $V\left(T_{1}\right) \cap V\left(T_{2}^{\prime}\right)=\{v\}$ and $L_{2} \subseteq V\left(T_{2}^{\prime}\right), u=v$. Now $k \geq\left|E_{T}(v)\right|=\left|E_{T_{1}}(v) \cup\{e\}\right|>\left|E_{T_{1}}(v)\right|=d_{T_{1}}(v)$, which contradicts $d_{T_{1}}(v)=d_{T_{1}}(u)=k$. Thus, L_{1} is a Δ-reducing edge set of T_{1}. We have $\frac{n-1}{k} \geq \lambda_{\mathrm{e}}(T)=|L|=\left|L_{1}\right|+\left|L_{2}\right| \geq \lambda_{\mathrm{e}}\left(T_{1}\right)+1=\frac{n-k-1}{k}+1=\frac{n-1}{k}$, so $\lambda_{\mathrm{e}}(T)=\frac{n-1}{k}$.

A basic result in the literature is that $|E(G)|=|V(G)|-1$ if G is a tree. This completes the proof.

Acknowledgements

The authors wish to thank the anonymous referees for checking the paper carefully.

References

[1] N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin. 6 (1990), 1-4.
[2] T. Biedl, E. D. Demaine, C. A. Duncan, R. Fleischer and S. G. Kobourov, Tight bounds on maximal and maximum matchings, Discrete Math. 285 (2004), 7-15.
[3] P. Borg and K. Fenech, Reducing the maximum degree of a graph by deleting vertices, Australas. J. Combin. 69 (1) (2017), 29-40.
[4] M. A. Henning and A. Yeo, Tight Lower Bounds on the Size of a Maximum Matching in a Regular Graph, Graphs Combin. 23 (2007), 647-657.
[5] T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959), 133-138.
[6] Suil O and D. B. West, Matching and edge-connectivity in regular graphs, European J. Combin. 32 (2011), 324-329.

