Reducing the maximum degree of a graph by deleting edges

Peter Borg Kurt Fenech

Department of Mathematics Faculty of Science University of Malta Malta peter.borg@um.edu.mt kurt.fenech.10@um.edu.mt

Abstract

We investigate the smallest number $\lambda_{e}(G)$ of edges that can be removed from a non-empty graph G so that the resulting graph has a smaller maximum degree. We prove that if m is the number of edges, k is the maximum degree, and t is the number of vertices of degree k, then $\lambda_{e}(G) \leq \frac{m+(k-1)t}{2k-1}$. We also show that $\lambda_{e}(G) \leq \frac{m}{k}$ if G is a tree. For each of these two bounds, we determine the graphs which attain the bound. We provide other sharp bounds for $\lambda_{e}(G)$, relations with other graph parameters, and structural observations.

1 Introduction

Unless stated otherwise, we shall use small letters such as x to denote non-negative integers or functions or elements of a set, and capital letters such as X to denote sets or graphs. The set $\{1, 2, ...\}$ of positive integers is denoted by \mathbb{N} . For any $n \in \mathbb{N}$, the set $\{1, ..., n\}$ is denoted by [n]. For a set X, the set $\{\{x, y\}: x, y \in X, x \neq y\}$ (of all 2-element subsets of X) is denoted by $\binom{X}{2}$. All arbitrary sets are assumed to be finite.

A graph G is a pair (X, Y), where X is a set, called the vertex set of G, and Y is a subset of $\binom{X}{2}$ and is called the *edge set of* G. The vertex set and the edge set of G are denoted by V(G) and E(G), respectively. An element of V(G) is called a vertex of G, and an element of E(G) is called an *edge of* G. We may represent an edge $\{v, w\}$ by vw. If vw is an edge of G, then v and w are said to be *adjacent in* G, and we say that w is a *neighbour of* v in G (and vice-versa). An edge vw is said to be *incident to* x if x = v or x = w.

For $v \in V(G)$, $N_G(v)$ denotes the set of neighbours of v in G, $N_G[v]$ denotes $N_G(v) \cup \{v\}$ and is called the *closed neighbourhood of* v in G, $E_G(v)$ denotes the set of edges of G that are incident to v, and $d_G(v)$ denotes $|N_G(v)| (= |E_G(v)|)$ and is

called the *degree of* v in G. For $X \subseteq V(G)$, we denote $\bigcup_{v \in X} N_G(v)$, $\bigcup_{v \in X} N_G[v]$, and $\bigcup_{v \in X} E_G(v)$ by $N_G(X)$, $N_G[X]$, and $E_G(X)$, respectively. The minimum degree of G is min $\{d_G(v): v \in V(G)\}$ and is denoted by $\delta(G)$. The maximum degree of G is max $\{d_G(v): v \in V(G)\}$ and is denoted by $\Delta(G)$. Let M(G) denote the set of vertices of G of degree $\Delta(G)$. Let G_e denote the subgraph of G given by $(\bigcup_{v \in M(G)} E_G(v), E_G(M(G)))$ (= $(N_G[M(G)], E_G(M(G)))$).

If H and G are graphs such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then H is called a *subgraph of* G, and we say that G contains H. For $X \subseteq V(G)$, $(X, E(G) \cap {\binom{X}{2}})$ is called the *subgraph of* G *induced by* X and is denoted by G[X]. For $S \subseteq V(G)$, G-S denotes the subgraph of G induced by $V(G) \setminus S$. We may abbreviate $G - \{v\}$ to G - v. For $L \subseteq E(G)$, G - L denotes the subgraph of G obtained by removing from G the edges in L, that is, $G - L = (V(G), E(G) \setminus L)$. We may abbreviate $G - \{e\}$ to G - e.

In [3], we investigated the smallest number of vertices that can be removed from a graph so that the new graph obtained has a smaller maximum degree. In the present paper, we investigate the smallest number of edges that can be removed from a graph for the same purpose. The first problem is of *domination* type (see [3]), whereas the second problem is of *edge-covering* type (see below).

We call a subset L of E(G) a Δ -reducing edge set of G if $\Delta(G - L) < \Delta(G)$ or $\Delta(G) = 0$. We denote the size of a smallest Δ -reducing edge set of G by $\lambda_{\rm e}(G)$.

We provide several bounds and equations for $\lambda_{e}(G)$. Before stating our results, we need to add some definitions and notation, and make a few observations.

For $L \subseteq E(G)$ and $X \subseteq V(G)$, we say that L is an edge cover of X in G if for each $v \in X$ with $d_G(v) > 0$, at least one edge in L is incident to v. Note that L is a Δ -reducing edge set of G if and only if L is an edge cover of M(G) in G. Thus,

 $\lambda_{e}(G) = \min\{|L|: L \text{ is an edge cover of } M(G) \text{ in } G\}.$

Consequently, we immediately obtain

$$\lambda_{\rm e}(G) = \lambda_{\rm e}(G_{\rm e}). \tag{1}$$

If G, G_1, \ldots, G_r are graphs such that $V(G) = \bigcup_{i=1}^r V(G_i)$ and $E(G) = \bigcup_{i=1}^r E(G_i)$, then we say that G is the union of G_1, \ldots, G_r .

If X_1, \ldots, X_s are sets such that no r of X_1, \ldots, X_s have a common element, then X_1, \ldots, X_s are said to be r-wise disjoint. Graphs G_1, \ldots, G_s are said to be r-wise vertex-disjoint if $V(G_1), \ldots, V(G_s)$ are r-wise disjoint. Graphs G_1, \ldots, G_s are said to be r-wise edge-disjoint if $E(G_1), \ldots, E(G_s)$ are r-wise disjoint. We may use the term pairwise instead of 2-wise.

If v_1, v_2, \ldots, v_n are the distinct vertices of a graph G with $E(G) = \{v_i v_{i+1} : i \in [n-1]\}$, then G is called a $v_1 v_n$ -path or simply a path. The path $([n], \{\{1, 2\}, \ldots, \{n-1, n\}\})$ is denoted by P_n . For a path P, the length of P, denoted by l(P), is |V(P)| - 1.

For a graph G and $u, v \in V(G)$, the distance of v from u, denoted by $d_G(u, v)$, is given by $d_G(u, v) = 0$ if u = v, $d_G(u, v) = \min\{l(P): P \text{ is a } uv\text{-path}, G \text{ contains } P\}$ if G contains a uv-path, and $d_G(u, v) = \infty$ if G contains no uv-path. A graph H is connected if for every $u, v \in V(H)$ with $u \neq v$, H contains a uvpath. A component of a graph G is a maximal connected subgraph of G (that is, one that is not a subgraph of any other connected subgraph of G). It is easy to see that if G_1, \ldots, G_r are the distinct components of G, then G_1, \ldots, G_r are pairwise vertex-disjoint and hence pairwise edge-disjoint, and G is the union of G_1, \ldots, G_r .

Let H be a graph. A graph G is a copy of H if there exists a bijection $f: V(G) \to V(H)$ such that $E(H) = \{f(u)f(v): uv \in E(G)\}.$

If $n \geq 3$ and v_1, v_2, \ldots, v_n are the distinct vertices of a graph G with $E(G) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}$, then G is called a *cycle*. The cycle $([n], \{\{1, 2\}, \ldots, \{n-1, n\}, \{n, 1\}\})$ is denoted by C_n . A *triangle* is a copy of C_3 .

A tree is a connected graph that contains no cycles. A forest is a graph whose components are trees. For $k \ge 1$, the tree $(\{0\} \cup [k], \{\{0, i\}: i \in [k]\})$ is denoted by $K_{1,k}$. A copy of $K_{1,k}$ will be called a k-star or simply a star.

A graph G is complete if every two vertices of G are adjacent (that is, $E(G) = \binom{V(G)}{2}$). A graph G is empty if no two vertices of G are adjacent (that is, $E(G) = \emptyset$). A graph G is a singleton if |V(G)| = 1, in which case G is complete and empty.

If $k \in \{0\} \cup \mathbb{N}$ and each vertex of a graph G has degree k, then G is called k-regular or simply regular.

We are now ready to state our main results, given in the next section. In Section 3, we investigate $\lambda_{e}(G)$ from a structural point of view; we obtain equations for $\lambda_{e}(G)$ in terms of certain parameters of certain subgraphs of G, and observe how $\lambda_{e}(G)$ changes with the deletion of edges. Some of the structural results are then used in the proofs of the main upper bounds presented in the next section; these proofs are given in Section 4.

2 Main results

In this section, we present our main results, most of which are bounds for $\lambda_{e}(G)$ in terms of basic parameters of G. We start with a lower bound.

Proposition 2.1 If G is a graph, n = |V(G)|, m = |E(G)|, $k = \Delta(G) \ge 1$, and t = |M(G)|, then

$$\lambda_{\mathbf{e}}(G) \ge \max\left\{\left\lceil \frac{2m - (k-1)n}{2} \right\rceil, \left\lceil \frac{t}{2} \right\rceil\right\}.$$

Moreover, equality holds if G is complete.

Proof. Let *L* be a Δ -reducing edge set of *G* of size $\lambda_{e}(G)$. Since $\Delta(G-L) \leq k-1$, the handshaking lemma (applied to G-L) gives us $|E(G-L)| \leq \frac{(k-1)n}{2}$. Since $m = |E(G-L)| + |L| \leq \frac{(k-1)n}{2} + \lambda_{e}(G), \ \lambda_{e}(G) \geq \left\lceil \frac{2m-(k-1)n}{2} \right\rceil$.

Since L is a Δ -reducing edge set of G, each vertex in M(G) is contained in some edge in L. Thus, $M(G) \subseteq \bigcup_{e \in L} e$. Therefore, $t \leq \sum_{e \in L} |e| = 2|L|$, and hence $\lambda_{e}(G) \geq \lfloor \frac{t}{2} \rfloor$.

Suppose that G is a complete graph. Then t = n, k = n - 1, and $m = \frac{n(n-1)}{2}$. Let v_1, \ldots, v_n be the vertices of G. Let $X = \{v_{2i-1}v_{2i} : i \in \mathbb{N}, i \leq \frac{n}{2}\}$. If n is even, then X is a Δ -reducing edge set of G of size $\frac{n}{2} = \lceil \frac{t}{2} \rceil = \lceil \frac{2m - (k-1)n}{2} \rceil$. If n is odd, then $X \cup \{v_n v_1\}$ is a Δ -reducing edge set of G of size $\frac{n+1}{2} = \lceil \frac{t}{2} \rceil = \lceil \frac{2m - (k-1)n}{2} \rceil$. \Box

In the rest of this section, we present upper bounds for $\lambda_{e}(G)$, the proofs of which are given in Section 4. For this purpose, we shall first introduce a class of graphs that attain each of these upper bounds.

For $k \ge 1$, we will call a graph G a special k-star union if $\Delta(G) = k$ and each non-singleton component of G is the union of k-stars that are pairwise edge-disjoint and k-wise vertex-disjoint. In Section 4, we prove the following.

Lemma 2.2 If G is a special k-star union, m = |E(G)|, and t = |M(G)|, then m = kt and $\lambda_{e}(G) = t$.

Theorem 2.3 If G is a graph, m = |E(G)|, $k = \Delta(G) \ge 1$, and t = |M(G)|, then

$$\lambda_{\mathbf{e}}(G) \le \frac{m + (k-1)t}{2k - 1}$$

Moreover, equality holds if and only if G is a special k-star union or each nonsingleton component of G is a 2-star or a triangle.

Remark 2.4 By (1), we may take $m = |E(G_e)|$ in each of the results above, and $n = |V(G_e)|$ in Proposition 2.1. Note that $\Delta(G) = \Delta(G_e)$ and $M(G) = M(G_e)$. Thus, we actually have the following immediate consequence.

Corollary 2.5 If G is a graph, $n = |V(G_e)|$, $m = |E(G_e)|$, $k = \Delta(G) \ge 1$, and t = |M(G)|, then

$$\max\left\{\left\lceil\frac{2m-(k-1)n}{2}\right\rceil, \left\lceil\frac{t}{2}\right\rceil\right\} \le \lambda_{\rm e}(G) \le \frac{m+(k-1)t}{2k-1}.$$

Moreover, the bounds are sharp.

Consider the numbers m, k, and t in Corollary 2.5. By the definition of $G_{\rm e}$, $m \leq kt$. Let $H = G_{\rm e}$. By the handshaking lemma, $2m = \sum_{v \in V(H)} d_H(v) \geq \sum_{v \in M(G)} d_H(v) = kt$ (and equality holds if and only if $G_{\rm e}$ is regular). Thus,

$$\frac{kt}{2} \le m \le kt. \tag{2}$$

Using a probabilistic argument similar to that used by Alon in [1], we prove the following bound.

Theorem 2.6 If G is a graph, $m = |E(G_e)|$, $k = \Delta(G) \ge 2$, and t = |M(G)|, then

$$\lambda_{\mathbf{e}}(G) \le m \left(1 - \frac{k-1}{k} \left(\frac{m}{kt}\right)^{\frac{1}{k-1}}\right).$$

Moreover, equality holds if G_e is a special k-star union.

As we also show in Section 4, a slight adjustment of the proof of Theorem 2.6 yields the following weaker but simpler (and still sharp) result.

Theorem 2.7 If G is a graph, $m = |E(G_e)|, k = \Delta(G) \ge 1$, and t = |M(G)|, then

$$\lambda_{\rm e}(G) \le \frac{m}{k} \left(1 + \ln\left(\frac{kt}{m}\right) \right).$$

Moreover, equality holds if G_e is a special k-star union.

A set of pairwise disjoint edges of G is called a matching of G. The matching number of G is the size of a largest matching of G and is denoted by $\alpha'(G)$. In the next section, we prove the following result.

Theorem 2.8 For every non-empty graph G,

$$\lambda_{\mathbf{e}}(G) = |M(G)| - \alpha'(G[M(G)]).$$

If G is a regular non-empty graph, then M(G) = V(G), and hence, by Theorem 2.8, $\lambda_{e}(G) = |V(G)| - \alpha'(G)$. Thus, for a regular graph G, a lower bound for $\alpha'(G)$ yields an upper bound for $\lambda_{e}(G)$, and vice-versa. For $k \geq 3$, Henning and Yeo [4] established a lower bound for $\alpha'(G)$ for all k-regular graphs G, and showed that the bound is attained for infinitely many k-regular graphs. Biedl, Demaine, Duncan, Fleischer, and Kobourov [2] had proved the bound for k = 3 and several other interesting lower bounds for $\alpha'(G)$. Another important lower bound for k-regular graphs with $k \geq 4$ is given by O and West [6]. The 2-regular graphs are the cycles. It is easy to see that $\{n, 1\} \cup \{\{2i, 2i + 1\}: 1 \leq i \leq \lfloor n/2 \rfloor - 1\}$ is a smallest Δ -reducing edge set of C_n , so

$$\lambda_{\rm e}(C_n) = \left\lceil \frac{n}{2} \right\rceil. \tag{3}$$

For $k \ge 1$, we will call a tree T an *edge-disjoint k-star union* if T is the union of pairwise edge-disjoint k-stars. In Section 4, we prove the following sharp bound for trees.

Theorem 2.9 If T is a tree, n = |V(T)|, m = |E(T)|, and $k = \Delta(T) \ge 1$, then

$$\lambda_{\rm e}(T) \le \frac{n-1}{k} = \frac{m}{k}.$$

Moreover, equality holds if and only if T is an edge-disjoint k-star union.

The trees of maximum degree at most 2 are the paths. It is easy to see that $\{\{2i, 2i+1\}: 1 \leq i \leq \lfloor (n-2)/2 \rfloor\}$ is a smallest Δ -reducing edge set of P_n , so

$$\lambda_{\rm e}(P_n) = \left\lceil \frac{n-2}{2} \right\rceil. \tag{4}$$

Theorem 2.9 yields the following generalization.

Theorem 2.10 If F is a forest, m = |E(F)|, and $k = \Delta(F) \ge 1$, then

$$\lambda_{\rm e}(F) \le \frac{m}{k}.$$

Moreover, equality holds if and only if each non-singleton component of F is an edge-disjoint k-star union.

Proof. Let \mathcal{C} be the set of components of F. Let $\mathcal{D} = \{C \in \mathcal{C} : \Delta(C) = k\}$. Since $\Delta(F) = k, \mathcal{D} \neq \emptyset$. For each $D \in \mathcal{D}, D$ is a tree, so $\lambda_{e}(D) \leq \frac{|E(D)|}{k}$ by Theorem 2.9. By Proposition 3.7 (given in the next section), $\lambda_{e}(F) = \sum_{D \in \mathcal{D}} \lambda_{e}(D) \leq \sum_{D \in \mathcal{D}} \frac{|E(D)|}{k} \leq \frac{m}{k}$. If each non-singleton component of F is an edge-disjoint k-star union, then, by Theorem 2.9, $\lambda_{e}(F) = \sum_{D \in \mathcal{D}} \frac{|E(D)|}{k} = \frac{m}{k}$. Now suppose $\lambda_{e}(F) = \frac{m}{k}$. Then, by the above, $m = \sum_{D \in \mathcal{D}} |E(D)|$ and $\lambda_{e}(D) = \frac{|E(D)|}{k}$ for each $D \in \mathcal{D}$. Thus, each non-singleton component of F is a member of \mathcal{D} , and, by Theorem 2.9, it is an edge-disjoint k-star union.

By the observations in Remark 2.4, we may take $m = |E(G_e)|$ in Theorem 2.10. Thus, for the case where G is a forest, Theorem 2.10 improves each of the upper bounds in Corollary 2.5, Theorem 2.6, and Theorem 2.7. Indeed, since $m \le kt$ (by (2)), we have $\frac{m+(k-1)t}{2k-1} \ge \frac{m+(k-1)(m/k)}{2k-1} = \frac{m}{k}$, $m\left(1 - \frac{k-1}{k}\left(\frac{m}{kt}\right)^{\frac{1}{k-1}}\right) \ge m\left(1 - \frac{k-1}{k}\right) = \frac{m}{k}$, and $\frac{m}{k}\left(1 + \ln\left(\frac{kt}{m}\right)\right) \ge \frac{m}{k}$.

3 Structural results

In this section, we take a close look at how $\lambda_{e}(G)$ is determined by the structure of G and at how it is affected by removing edges from G. Some of the following observations are used in the proofs given in the next section.

Let $M_1(G)$ denote $\{v \in M(G) : vw \in E(G) \text{ for some } w \in M(G) \setminus \{v\}\}$. Let $M_2(G)$ denote $M(G) \setminus M_1(G)$. Thus, $M_2(G) = \{v \in M(G) : d_G(v,w) \ge 2 \text{ for each } w \in M(G) \setminus \{v\}\}$.

Recall the definition of an edge cover, given in Section 1. An edge cover of V(G) in G is called an *edge cover of* G. The *edge-covering number of* G is the size of a smallest edge cover of G and is denoted by $\beta'(G)$. Clearly, $\lambda_{e}(G) = \beta'(G)$ if G is regular. In general, we have the following.

Theorem 3.1 For every non-empty graph G,

$$\lambda_{\rm e}(G) = |M_2(G)| + \beta'(G[M_1(G)]).$$

Proof. We start with a few observations. Let $k = \Delta(G)$. Since G is non-empty, $k \ge 1$. For each $v \in M(G)$, G has exactly k edges incident to v. By definition of $M_2(G)$,

for any $v \in M_2(G)$ and any $e \in E_G(v)$, $e \notin E_G(w)$ for each $w \in M(G) \setminus \{v\}$. (5)

For any $v \in M_1(G)$, $vw \in E(G)$ for some $w \in M(G) \setminus \{v\}$, and therefore $w \in M_1(G)$ and $vw \in G[M_1(G)]$. In other words,

for any $v \in M_1(G)$, $G[M_1(G)]$ has at least one edge incident to v. (6)

Thus, $G[M_1(G)]$ has an edge cover.

Let K be an edge cover of $G[M_1(G)]$ of size $\beta'(G[M_1(G)])$. For each $v \in M_2(G)$, let $e_v \in E_G(v)$. Let $K' = \{e_v : v \in M_2(G)\} \cup K$. Then K' is a Δ -reducing edge set of G. By (5), $|K'| = |M_2(G)| + |K|$. Thus, $\lambda_e(G) \leq |M_2(G)| + \beta'(G[M_1(G)])$.

Now let L be a Δ -reducing edge set of G of size $\lambda_{e}(G)$. For each $v \in M(G)$, there exists some $e_{v} \in E_{G}(v)$ such that $e_{v} \in L$. Let $L_{1} = \{e_{v} : v \in M_{1}(G)\}$ and $L_{2} = \{e_{v} : v \in M_{2}(G)\}$. Then $L_{1} \cup L_{2}$ is a Δ -reducing edge set of G. Thus, since $L_{1} \cup L_{2} \subseteq L$ and $|L| = \lambda_{e}(G)$, $L = L_{1} \cup L_{2}$. By (5), $|L_{1} \cup L_{2}| = |L_{1}| + |M_{2}(G)|$. Let $X = \{v \in M_{1}(G) : e_{v} \notin E(G[M_{1}(G)])\}$. By (6), for each $v \in M_{1}(G)$, there exists some $e'_{v} \in E_{G}(v)$ such that $e'_{v} \in E(G[M_{1}(G)])$. Let $L'_{1} = (L_{1} \setminus \{e_{v} : v \in$ $X\}) \cup \{e'_{v} : v \in X\}$. For each $v \in X$, $e_{v} \cap M_{1}(G) = \{v\}$. Thus, L'_{1} is an edge cover of $G[M_{1}(G)]$, and $|L'_{1}| \leq |L_{1}|$. We have $\lambda_{e}(G) = |L| = |M_{2}(G)| + |L_{1}| \geq$ $|M_{2}(G)| + |L'_{1}| \geq |M_{2}(G)| + \beta'(G[M_{1}(G)])$. Since $\lambda_{e}(G) \leq |M_{2}(G)| + \beta'(G[M_{1}(G)])$, the result follows.

We now prove Theorem 2.8. Using a well-known result of Gallai [5], we then show that Theorems 2.8 and 3.1 are equivalent, meaning that they imply each other.

Proof of Theorem 2.8. Let H = G[M(G)]. Let K be a matching of H of size $\alpha'(H)$. Let $X = \bigcup_{e \in K} e$. Then $X \subseteq M(G)$ and |X| = 2|K|. For each $v \in M(G) \setminus X$, let $e_v \in E_G(v)$. Let $K' = \{e_v : v \in M(G) \setminus X\}$. Then $K \cup K'$ is a Δ -reducing edge set of G. Thus, $\lambda_e(G) \leq |K| + |K'| \leq |K| + |M(G) \setminus X| = |K| + |M(G)| - |X| = |M(G)| - |K| = |M(G)| - \alpha'(H)$.

Now let L be a Δ -reducing edge set of G of size $\lambda_{e}(G)$. Then, for each $v \in M(G)$, there exists some $e'_{v} \in E_{G}(v)$ such that $e'_{v} \in L$. Let J be a largest subset of Lthat is a matching of H. Let $Y = \bigcup_{e \in J} e$. Then $Y \subseteq M(G)$ and |Y| = 2|J|. Let $Y' = M(G) \setminus Y$. Let $J' = \{e'_{v} : v \in Y'\}$. If we assume that $e'_{u} = e'_{v}$ for some $u, v \in Y'$ with $u \neq v$, then we obtain that $e'_{u} = e'_{v} = uv$ and that $J \cup \{uv\}$ is a matching of H of size |J| + 1, which contradicts the choice of J. Thus, |J'| = |Y'|. Now $J \cup J' \subseteq L$ and $J \cap J' = \emptyset$. We have $\lambda_{e}(G) = |L| \geq |J \cup J'| = |J| + |J'| = |J| + |Y'| =$ $|J| + |M(G)| - |Y| = |M(G)| - |J| \geq |M(G)| - \alpha'(H)$. Since $\lambda_{e}(G) \leq |M(G)| - \alpha'(H)$, the result follows. Proposition 3.2 Theorems 2.8 and 3.1 are equivalent.

Proof. By (6), $\delta(G[M_1(G)]) \ge 1$. A result of Gallai [5] tells us that $\alpha'(H) + \beta'(H) = |V(H)|$ for every graph H with $\delta(H) \ge 1$. Thus,

$$\alpha'(G[M_1(G)]) + \beta'(G[M_1(G)]) = |V(G[M_1(G)])| = |M_1(G)|.$$

If $v, w \in M(G)$ such that $vw \in E(G)$, then $vw \in M_1(G)$. Thus, $E(G[M(G)]) = E(G[M_1(G)])$, and hence $\alpha'(G[M_1(G)]) = \alpha'(G[M(G)])$. Therefore, since $|M(G)| = |M_1(G)| + |M_2(G)|$, Theorem 2.8 implies Theorem 3.1, and vice-versa. \Box

From Theorem 3.1 we immediately obtain the next two results.

Proposition 3.3 If G is a non-empty graph, then $\lambda_{e}(G) \leq |M(G)|$, and equality holds if and only if $M_{2}(G) = M(G)$.

Proof. For each $v \in M(G)$, let $e_v \in E_G(v)$. Since $\{e_v : v \in M(G)\}$ is a Δ -reducing edge set of G, $\lambda_e(G) \leq |\{e_v : v \in M(G)\}| \leq |M(G)|$. By Theorem 3.1, $\lambda_e(G) = |M(G)|$ if $M_2(G) = M(G)$. Suppose $M_2(G) \neq M(G)$. Then $M_1(G) \neq \emptyset$. Let $x \in M_1(G)$. By (6), $xy \in E(G[M_1(G)])$ for some $y \in M_1(G) \setminus \{x\}$. Also by (6), for each $v \in M_1(G) \setminus \{x, y\}$, there exists some $e'_v \in E_G(v)$ such that $e'_v \in E(G[M_1(G)])$. Let $L = \{xy\} \cup \{e'_v : v \in M_1(G) \setminus \{x, y\}\}$. Since L is an edge cover of $G[M_1(G)]$, $\beta'(G[M_1(G)]) \leq |L| \leq |M_1(G)| - 1$. Thus, by Theorem 3.1, $\lambda_e(G) \leq |M_2(G)| + |M_1(G)| - 1 < |M(G)|$.

Proposition 3.4 If G is a graph with $M_2(G) \neq M(G)$, then $\Delta(G - M_2(G)) = \Delta(G)$ and $\lambda_e(G) = |M_2(G)| + \lambda_e(G - M_2(G))$.

Proof. Let $H = G - M_2(G)$. Since $M_2(G) \neq M(G)$, $M_1(G) \neq \emptyset$. By (5), $E_G(M_1(G)) \subseteq E(H)$. Together with $M(G) = M_1(G) \cup M_2(G)$, this gives us $M(H) = M_1(G)$. Let K be an edge cover of $G[M_1(G)]$ of size $\beta'(G[M_1(G)])$ (K exists by (6)). Then K is a Δ -reducing edge set of H, and hence $\lambda_e(H) \leq \beta'(G[M_1(G)])$. By Theorem 3.1, $\lambda_e(G) \geq |M_2(G)| + \lambda_e(H)$. Now let L_1 be a Δ -reducing edge set of H of size $\lambda_e(H)$, and let L_2 be as in the proof of Theorem 3.1. Then $L_1 \cup L_2$ is a Δ -reducing edge set of G. Thus, $\lambda_e(G) \leq |L_1| + |L_2| = \lambda_e(H) + |M_2(G)|$. The result follows. \Box

In the rest of the section, we take a look at how $\lambda_{e}(H)$ relates to $\lambda_{e}(G)$ for a subgraph H of G, or rather, how $\lambda_{e}(G)$ is affected by removing edges from G.

Lemma 3.5 If G is a graph, H is a subgraph of G with $\Delta(H) = \Delta(G)$, and L is a Δ -reducing edge set of G, then $L \cap E(H)$ is a Δ -reducing edge set of H.

Proof. Let $J = L \cap E(H)$. It is sufficient to show that for each $v \in M(H)$, $e \in E_H(v)$ for some $e \in J$. Let $v \in M(H)$. Since $\Delta(H) = \Delta(G)$, $v \in M(G)$ and

 $E_H(v) = E_G(v)$. Since $v \in M(G)$, $e \in E_G(v)$ for some $e \in L$. Since $E_G(v) = E_H(v)$, $e \in E(H)$. Therefore, $e \in J$.

We point out that $|L| = \lambda_e(G)$ does not guarantee that $|L \cap E(H)| = \lambda_e(H)$. Indeed, let $k \geq 2$, let G_1 and G_2 be copies of $K_{1,k}$ with $V(G_1) \cap V(G_2) = \emptyset$, and let G be the union of G_1 and G_2 . Let $e_1 \in E(G_1)$ and $e_2 \in E(G_2)$. Let $e \in E(G_2) \setminus \{e_2\}$. Let $H = (V(G), E(G) \setminus \{e\})$. Let $L = \{e_1, e_2\}$. Then L is a Δ -reducing edge set of G of size $\lambda_e(G), L \cap E(H) = \{e_1, e_2\} = L$, but $\{e_1\}$ is a Δ -reducing edge set of H of size $\lambda_e(H)$. Thus, $L \cap E(H)$ is not a smallest Δ -reducing edge set of H.

Corollary 3.6 If H is a subgraph of G such that $\Delta(H) = \Delta(G)$, then $\lambda_{e}(H) \leq \lambda_{e}(G)$.

Proof. Let L be a Δ -reducing edge set of G of size $\lambda_{e}(G)$. Let $J = L \cap E(H)$. By Lemma 3.5, J is a Δ -reducing edge set of H. Therefore, $\lambda_{e}(H) \leq |J| \leq |L| = \lambda_{e}(G)$.

Proposition 3.7 If G is a graph and G_1, \ldots, G_r are the distinct components of G whose maximum degree is $\Delta(G)$, then $\lambda_{\mathbf{e}}(G) = \sum_{i=1}^r \lambda_{\mathbf{e}}(G_i)$.

Proof. Let L be a Δ -reducing edge set of G of size $\lambda_e(G)$. For each $i \in [r]$, let $L_i = L \cap E(G_i)$. Then L_1, \ldots, L_r partition L, so $|L| = \sum_{i=1}^r |L_i|$. By Lemma 3.5, for each $i \in [r]$, L_i is a Δ -reducing edge set of G_i , so $\lambda_e(G_i) \leq |L_i|$. Suppose $\lambda_e(G_j) < |L_j|$ for some $j \in [r]$. Let L'_j be a Δ -reducing edge set of G_j of size $\lambda_e(G_j)$. Then $L'_j \cup \bigcup_{i \in [r] \setminus \{j\}} L_i$ is a Δ -reducing edge set of G that is smaller than L, a contradiction. Thus, $\lambda_e(G_i) = |L_i|$ for each $i \in [r]$. We have $\lambda_e(G) = |L| = \sum_{i=1}^r |L_i| = \sum_{i=1}^r \lambda_e(G_i)$.

Proposition 3.8 If G is a graph, $u, v \in V(G) \setminus M(G)$, and $uv \in E(G)$, then $\lambda_e(G - uv) = \lambda_e(G)$.

Proof. Let e = uv. Since $u, v \notin M(G)$, $\Delta(G - e) = \Delta(G)$. By Corollary 3.6, $\lambda_{e}(G - e) \leq \lambda_{e}(G)$. Let L be a Δ -reducing edge set of G - e of size $\lambda_{e}(G - e)$. Since $u, v \notin M(G)$, M(G - e) = M(G). Thus, L is a Δ -reducing edge set of G, and hence $\lambda_{e}(G) \leq \lambda_{e}(G - e)$. Since $\lambda_{e}(G - e) \leq \lambda_{e}(G)$, the result follows. \Box

Proposition 3.9 If G is a graph and $e \in E(G)$, then $\lambda_e(G) \leq 1 + \lambda_e(G-e)$.

Proof. If $\Delta(G-e) < \Delta(G)$, then $\lambda_{e}(G) = 1$. Suppose $\Delta(G-e) = \Delta(G)$. Then $M(G-e) \subseteq M(G) \cup e$. Let L be a Δ -reducing edge set of G-e of size $\lambda_{e}(G-e)$. Then $L \cup \{e\}$ is a Δ -reducing edge set of G. Thus, $\lambda_{e}(G) \leq |L \cup \{e\}| = 1 + \lambda_{e}(G-e)$. \Box

Corollary 3.10 If e_1, \ldots, e_t are edges of a graph G, then $\lambda_e(G) \leq t + \lambda_e(G - \{e_1, \ldots, e_t\})$.

Proof. The result follows by repeated application of Proposition 3.9.

255

4 Proofs of the main upper bounds

We now prove Lemma 2.2 and Theorems 2.3, 2.6, 2.7, and 2.9.

Proof of Lemma 2.2. Since G is a special k-star union, $\Delta(G) = k$ and $E(G) = E(G_1) \cup \cdots \cup E(G_r)$ for some k-stars G_1, \ldots, G_r that are pairwise edge-disjoint and kwise vertex-disjoint. Thus, m = kr, and for $i \in [r]$, there exist $u_i, v_{i,1}, \ldots, v_{i,k} \in V(G)$ such that $G_i = (\{u_i, v_{i,1}, \ldots, v_{i,k}\}, \{u_i v_{i,1}, \ldots, u_i v_{i,k}\})$. For $i \in [r], |E_{G_i}(u_i)| = k = \Delta(G)$, so we have $E_G(u_i) = E_{G_i}(u_i) = E(G_i)$. Thus, since $E(G_1), \ldots, E(G_r)$ are pairwise disjoint, u_1, \ldots, u_r are distinct. Consider any $w \in V(G) \setminus \{u_1, \ldots, u_r\}$. For each $i \in [r]$ such that $w \in V(G_i), E_G(w) \cap E(G_i) = \{u_i w\}$. Thus, $d_G(w) = |\{i \in [r]: w \in V(G_i)\}|$, and hence, since G_1, \ldots, G_r are k-wise vertex-disjoint, $d_G(w) < k$. Thus, $M(G) = \{u_1, \ldots, u_r\}$, and hence t = r. Since m = kr, m = kt.

Now let L be a Δ -reducing edge set of G of size $\lambda_{e}(G)$. For $i \in [r]$, there exists some $e_i \in E_G(u_i)$ such that $e_i \in L$. Let $L' = \{e_1, \ldots, e_r\}$. For $i, j \in [r]$ with $i \neq j$, $E_G(u_i) \cap E_G(u_j) = E(G_i) \cap E(G_j) = \emptyset$, so $e_i \neq e_j$. Thus, |L'| = r. Now L' is a Δ -reducing edge set of G and $L' \subseteq L$, so $\lambda_e(G) \leq |L'| \leq |L|$. Since $\lambda_e(G) = |L|$, we obtain L' = L, so $\lambda_e(G) = r$. Since t = r, the result is proved. \Box

Proof of Theorem 2.3. If G is a special k-star union, then, by Lemma 2.2, we have m = kt and $\lambda_e(G) = t = \frac{m+(k-1)t}{2k-1}$. If G has exactly $c_1 + c_2 + c_3$ components, c_1 components of G are singletons, c_2 components of G are 2-stars, and c_3 components of G are triangles, then $m = 2c_2 + 3c_3$, k = 2, $t = c_2 + 3c_3$, and, by Proposition 3.7, $\lambda_e(G) = c_2\lambda_e(P_2) + c_3\lambda_e(C_3) = c_2 + 2c_3 = \frac{m+(k-1)t}{2k-1}$.

We now prove the bound in the theorem and show that it is attained only in the cases above. If m = 1, then k = 1, and the result follows immediately. We now proceed by induction on m. Thus, suppose $m \ge 2$. If k = 1, then the edges of G are pairwise disjoint, G is a special 1-star union, and $\lambda_{e}(G) = m = \frac{m+(k-1)t}{2k-1}$. Suppose $k \ge 2$.

Suppose $M_2(G) = M(G)$. Let v_1, \ldots, v_t be the vertices in $M_2(G)$. By (5), $E_G(v_1)$, $\ldots, E_G(v_t)$ are pairwise disjoint, so $|E_G(M_2(G))| = \sum_{i=1}^t |E_G(v_i)| = \sum_{i=1}^t k = kt$. Thus, $m \ge kt$, and equality holds only if $E(G) = \bigcup_{i=1}^t E_G(v_i)$. By Proposition 3.3, $\lambda_e(G) = t = \frac{kt + (k-1)t}{2k-1} \le \frac{m + (k-1)t}{2k-1}$. Suppose $\lambda_e(G) = \frac{m + (k-1)t}{2k-1}$. Then m = kt, and hence $E(G) = \bigcup_{i=1}^t E_G(v_i)$. For $i \in [t]$, let G_i be the k-star $(N_G[v_i], E_G(v_i))$. Then G_1, \ldots, G_t are pairwise edge-disjoint. For $i \in [t]$, we have $d_{G_i}(v_i) = \Delta(G)$, so $v_i \notin V(G_j)$ for $j \in [t] \setminus \{i\}$. Consider any $w \in \bigcup_{i=1}^t V(G_i) \setminus \{v_1, \ldots, v_t\}$. Then $w \notin M(G)$, and hence $d_G(w) < k$. For $i \in [t]$ such that $w \in V(G_i), E_G(w) \cap E(G_i) = \{v_iw\}$. Thus, $|\{i \in [t] : w \in V(G_i)\}| = d_G(w) < k$. We have therefore shown that G_1, \ldots, G_t are k-wise vertex-disjoint. Since $E(G) = \bigcup_{i=1}^t E_G(v_i) = \bigcup_{i=1}^t E(G_i), G$ is a special k-star union.

Now suppose $M_2(G) \neq M(G)$. Then $xy \in E(G)$ for some $x, y \in M(G)$. Let H = G - xy. We have $m \geq |E_G(x) \cup E_G(y)| = |E_G(x)| + |E_G(y)| - |E_G(x) \cap E_G(y)| = 2k - |\{xy\}| = 2k - 1$. If $\Delta(H) < k$, then $M(G) = \{x, y\}$ and $\lambda_e(G) = 1 < \frac{m + (k-1)t}{2k-1}$.

Suppose $\Delta(H) = k$. Then $M(H) = M(G) \setminus \{x, y\}$. By the induction hypothesis, $\lambda_{e}(H) \leq \frac{(m-1)+(k-1)(t-2)}{2k-1}$. By Proposition 3.9,

$$\lambda_{\rm e}(G) \le 1 + \lambda_{\rm e}(H) \le 1 + \frac{(m-1) + (k-1)(t-2)}{2k-1} = \frac{m + (k-1)t}{2k-1}$$

Suppose $\lambda_{e}(G) = \frac{m+(k-1)t}{2k-1}$. Then $\lambda_{e}(G) = 1 + \lambda_{e}(H)$ and $\lambda_{e}(H) = \frac{(m-1)+(k-1)(t-2)}{2k-1}$. By the induction hypothesis, H is a special k-star union or each non-singleton component of H is a 2-star or a triangle.

Suppose that H is a special k-star union. We have |M(H)| = t - 2. Let u_1, \ldots, u_{t-2} be the distinct vertices in M(H). By the proof of Lemma 2.2, $E_H(u_1)$, $\ldots, E_H(u_{t-2})$ partition E(H), and $\lambda_e(H) = |M(H)|$. Since $d_H(x) = |E_G(x) \setminus \{xy\}| = k-1 > 0$, $u_p x \in E(H)$ for some $p \in [t-2]$. Similarly, $u_q y \in E(H)$ for some $q \in [t-2]$. For each $i \in [t-2] \setminus \{p,q\}$, let $e_i \in E_H(u_i)$. Since $M(G) = \{u_1, \ldots, u_{t-2}\} \cup \{x,y\}$, $\{e_i \colon i \in [t-2] \setminus \{p,q\}\} \cup \{u_p x, u_q y\}$ is a Δ -reducing edge set of G. Together with $t-2 = |M(H)| = \lambda_e(H)$, this gives us $\lambda_e(G) \leq \lambda_e(H)$, which contradicts $\lambda_e(G) = 1 + \lambda_e(H)$.

Therefore, each non-singleton component of H is a 2-star or a triangle. Thus, k = 2. For $v \in \{x, y\}$, let H_v be the component of H such that $v \in V(H_v)$. Since $2 = k = d_G(x) = |E_{H_x}(x) \cup \{xy\}| = d_{H_x}(x) + 1$, we have $d_{H_x}(x) = 1$, so H_x is a 2-star and x is a leaf of H_x . Suppose $H_x \neq H_y$. Then there are 6 distinct vertices a_1, \ldots, a_6 of H such that $H_x = (\{a_1, a_2, a_3\}, \{a_1a_2, a_2a_3\}), H_y = (\{a_4, a_5, a_6\}, \{a_4a_5, a_5a_6\}),$ $a_3 = x$, and $a_4 = y$. Let L be a smallest Δ -reducing edge set of H. Since H_x and H_y are components of H, we have $M(H) \cap (V(H_x) \cup V(H_y)) = \{a_2, a_5\}$ and $L \cap E(H_x) \neq \emptyset \neq L \cap E(H_y)$. Let $e_x \in L \cap E(H_x)$ and $e_y \in L \cap E(H_y)$. Let $L' = (L \setminus \{e_x, e_y\}) \cup \{a_2a_3, a_4a_5\}$. Then L' is a Δ -reducing edge set of G. Thus, we have $\lambda_e(G) \leq |L'| = |L| = \lambda_e(H)$, which contradicts $\lambda_e(G) = 1 + \lambda_e(H)$. Therefore, $H_x = H_y$. Let $G_x = (V(H_x), E(H_x) \cup \{xy\})$. Then G_x is a component of G. Since x and y are the two leaves of the 2-star H_x , G_x is a triangle. Consequently, each non-singleton component of G is a 2-star or a triangle. \Box

Proof of Theorem 2.6. We may assume that $E_G(M(G)) = [m]$. By (2), $m \leq kt$. Let $p = 1 - \left(\frac{m}{kt}\right)^{\frac{1}{k-1}}$. We set up m independent random experiments, and in each experiment an edge is chosen with probability p. More formally, for $i \in [m]$, let (Ω_i, P_i) be given by $\Omega_i = \{0, 1\}, P_i(\{1\}) = p$, and $P_i(\{0\}) = 1 - p$. Let $\Omega = \Omega_1 \times \cdots \times \Omega_m$ and let $P: 2^{\Omega} \to [0, 1]$ (where [0, 1] denotes $\{x \in \mathbb{R} : 0 \leq x \leq 1\}$) such that $P(\{\omega\}) = \prod_{i=1}^{m} P_i(\{\omega_i\})$ for each $\omega = (\omega_1, \ldots, \omega_m) \in \Omega$, and $P(A) = \sum_{\omega \in A} P(\{\omega\})$ for each $A \subseteq \Omega$. Then (Ω, P) is a probability space.

For each $\omega = (\omega_1, \ldots, \omega_m) \in \Omega$, let $S_{\omega} = \{i \in [m] : \omega_i = 1\}$ and $T_{\omega} = \{v \in M(G) : \text{ no edge incident to } v \text{ is a member of } S_{\omega}\}.$

Let $X: \Omega \to \mathbb{R}$ be the random variable given by $X(\omega) = |S_{\omega}|$. For $i \in [m]$, let $X_i: \Omega \to \mathbb{R}$ such that, for $\omega = (\omega_1, \ldots, \omega_m) \in \Omega$,

$$X_i(\omega) = \begin{cases} 1 & \text{if } i \in S_\omega; \\ 0 & \text{otherwise} \end{cases}$$

Then $X = \sum_{i=1}^{m} X_i$. For $i \in [m]$, $P(X_i = 1) = P_i(\{1\}) = p$.

Let $Y: \Omega \to \mathbb{R}$ be the random variable given by $Y(\omega) = |T_{\omega}|$. For $v \in M(G)$, let $Y_v: \Omega \to \mathbb{R}$ such that, for $\omega = (\omega_1, \ldots, \omega_m) \in \Omega$,

$$Y_v(\omega) = \begin{cases} 1 & \text{if } v \in T_\omega; \\ 0 & \text{otherwise.} \end{cases}$$

Then $Y = \sum_{v \in M(G)} Y_v$. For $v \in M(G)$, $P(Y_v = 1) = (1 - p)^k$.

For any random variable Z, let E[Z] denote the expected value of Z. By linearity of expectation,

$$E[X + Y] = E[X] + E[Y] = \sum_{i=1}^{m} E[X_i] + \sum_{v \in M(G)} E[Y_v]$$
$$= \sum_{i=1}^{m} P(X_i = 1) + \sum_{v \in M(G)} P(Y_v = 1) = mp + t(1 - p)^k$$

Thus, by the probabilistic pigeonhole principle, there exists some $\omega^* \in \Omega$ such that $X(\omega^*) + Y(\omega^*) \leq mp + t(1-p)^k$. For $v \in T_{\omega^*}$, let $e_v \in E_G(v)$. Let $L_{\omega^*} = S_{\omega^*} \cup \{e_v : v \in T_{\omega^*}\}$. Then L_{ω^*} is a Δ -reducing edge set of G. Thus, $\lambda_e(G) \leq |L_{\omega^*}| \leq |S_{\omega^*}| + |T_{\omega^*}| = X(\omega^*) + Y(\omega^*) \leq mp + t(1-p)^k = m\left(1 - \frac{k-1}{k}\left(\frac{m}{kt}\right)^{\frac{1}{k-1}}\right)$. If G_e is a special k-star union, then, by Lemma 2.2, we have m = kt and $\lambda_e(G) = t$, and hence $\lambda_e(G) = m\left(1 - \frac{k-1}{k}\left(\frac{m}{kt}\right)^{\frac{1}{k-1}}\right)$.

Remark 4.1 Note that the minimum value of the function $f : [0, 1] \to \mathbb{R}$ given by $f(p) = mp + t(1-p)^k$ occurs at $p = 1 - \left(\frac{m}{kt}\right)^{\frac{1}{k-1}}$, hence the choice of p in the proof above.

Proof of Theorem 2.7. Let $p^* = 1 - \left(\frac{m}{kt}\right)^{\frac{1}{k-1}}$ and $q = \frac{1}{k} \ln \left(\frac{kt}{m}\right)$. By (2), $kt/2 \le m \le kt$. Thus, $0 \le q \le \frac{1}{k} \ln 2 < 1$. Let f be as in Remark 4.1. Thus, $f(p^*) \le f(q)$. By the proof of Theorem 2.6, $\lambda_e(G) \le f(p^*) \le f(q) = mq + t(1-q)^k$. Since $1-q \le e^{-q}$, we obtain $\lambda_e(G) \le mq + te^{-qk} = \frac{m}{k} \ln \left(\frac{kt}{m}\right) + te^{-\ln \left(\frac{kt}{m}\right)} = \frac{m}{k} \left(1 + \ln \left(\frac{kt}{m}\right)\right)$. If G_e is a special k-star union, then, by Lemma 2.2, we have m = kt and $\lambda_e(G) = t$, and hence $\lambda_e(G) = \frac{m}{k} \left(1 + \ln \left(\frac{kt}{m}\right)\right)$.

We now prove Theorem 2.9, making use of the following well-known facts.

Lemma 4.2 Let x be a vertex of a tree T. Let $m = \max\{d_T(x, y) : y \in V(T)\}$, and let $D_i = \{y \in V(T) : d_T(x, y) = i\}$ for each $i \in \{0\} \cup [m]$. For each $i \in [m]$ and each $v \in D_i, N_T(v) \cap \bigcup_{j=0}^i D_j = \{u\}$ for some $u \in D_{i-1}$.

Indeed, let $v \in D_i$. By definition of D_i , v can only be adjacent to vertices of distance i - 1, i or i + 1 from x. If v is adjacent to a vertex w of distance i from x, then,

by considering an xv-path and an xw-path, we obtain that T contains a cycle, a contradiction. We obtain the same contradiction if we assume that v is adjacent to two vertices of distance i - 1 from x.

If a vertex v of a graph G has only one neighbour in G, then v is called a *leaf* of G.

Corollary 4.3 If T is a tree, $x, z \in V(T)$, and $d_T(x, z) = \max\{d_T(x, y) : y \in V(T)\}$, then z is a leaf of T.

Proof. Let D_0, D_1, \ldots, D_m be as in Lemma 4.2. Then $z \in D_m$. By Lemma 4.2, $N_T(z) = \{u\}$ for some $u \in D_{m-1}$.

Proof of Theorem 2.9. The result is trivial for $n \leq 2$. We now proceed by induction on n. Thus, consider $n \geq 3$. Since T is connected, $k \geq 2$.

Suppose that T has a leaf z whose neighbour is not in M(T). Let w be the neighbour of z in T. Let T' = T - z. By (1), $\lambda_e(T) = \lambda_e(T')$ as $T_e = T'_e$. By the induction hypothesis, $\lambda_e(T') \leq \frac{n-2}{k} < \frac{n-1}{k}$. Thus, $\lambda_e(T) < \frac{n-1}{k}$. Suppose T is an edge-disjoint k-star union. Then T contains a k-star S such that $z \in V(S)$. Since $N_S(z) \subseteq N_T(z) = \{w\}, z$ is a leaf of S and $S = (\{w, z'_1, \ldots, z'_k\}, \{wz'_1, \ldots, wz'_k\}),$ where $z'_1 = z$ and z'_2, \ldots, z'_k are distinct elements of $V(T) \setminus \{w, z\}$. Thus, we have $d_T(w) = k$, contradicting $w \notin M(T)$. Therefore, T is not an edge-disjoint k-star union.

Now suppose that each leaf of T has its neighbour in M(T). Let x, m, and D_0, \ldots, D_m be as in Lemma 4.2. Let $z \in V(T)$ such that $d_T(x, z) = m$. By Corollary 4.3, z is a leaf of T. Let w be the neighbour of z in T. By Lemma 4.2, $w \in D_{m-1}$.

Suppose w = x. Then m = 1 and $T = (\{x, z_1, \ldots, z_k\}, \{xz_1, \ldots, xz_k\})$ for some distinct vertices z_1, \ldots, z_k in D_m . Thus, T is a k-star. Since xz_1 is a Δ -reducing edge set of T, $\lambda_e(T) = 1 = \frac{n-1}{k}$.

Now suppose $w \neq x$. Together with Lemma 4.2, this implies that $N_T(w) = \{v, z_1, \ldots, z_{k-1}\}$ for some $v \in D_{m-2}$ and some distinct vertices z_1, \ldots, z_{k-1} in D_m . By Corollary 4.3, z_1, \ldots, z_{k-1} are leaves of T. Let e = wv. Let

 $T_1 = T - \{w, z_1, \dots, z_{k-1}\}$ and $T_2 = (\{w, z_1, \dots, z_{k-1}\}, \{wz_1, \dots, wz_{k-1}\}).$

Clearly, T_1 and T_2 are the components of T - e, and they are trees. Let $T'_2 = (\{v\} \cup V(T_2), \{e\} \cup E(T_2))$. If $T = T'_2$, then $\Delta(T-e) < k$, and hence $\lambda_e(T) = 1 = \frac{n-1}{k}$. We have $\Delta(T_2) < k$.

Suppose $\Delta(T_1) < k$. Then $\Delta(T-e) < k$, and hence $\lambda_e(T) = 1 \le \frac{n-1}{k}$. Suppose $\lambda_e(T) = \frac{n-1}{k}$. Then $n = k+1 = |V(T_2)| + 1$. Since $n = |V(T_1)| + |V(T_2)|$, we obtain $|V(T_1)| = 1$, so $V(T_1) = \{v\}$. Thus, T is the k-star T'_2 .

Finally, suppose $\Delta(T_1) = k$. By Proposition 3.7, $\lambda_{\rm e}(T-e) = \lambda_{\rm e}(T_1)$. By the induction hypothesis, $\lambda_{\rm e}(T_1) \leq \frac{n-k-1}{k}$, and equality holds if and only if T_1 is an edge-disjoint k-star union. By Proposition 3.9, $\lambda_{\rm e}(T) \leq 1 + \lambda_{\rm e}(T-e) \leq 1 + \frac{n-k-1}{k} = \frac{n-1}{k}$.

Suppose $\lambda_{e}(T) = \frac{n-1}{k}$. Then $\lambda_{e}(T_{1}) = \frac{n-k-1}{k}$, and hence T_{1} is an edge-disjoint k-star union. Since T is the union of T_{1} and T'_{2} , T is an edge-disjoint k-star union.

We now prove the converse. Thus, suppose that T is an edge-disjoint k-star union. Then there exist pairwise edge-disjoint k-stars G_1, \ldots, G_r such that $z_1 \in V(G_r)$ and T is the union of G_1, \ldots, G_r . Since $N_{G_r}(z_1) \subseteq N_T(z_1) = \{w\}$, $G_r = (\{w, z_1, y_1, \ldots, y_{k-1}\}, \{wz_1, wy_1, \ldots, w_{y_{k-1}}\})$ for some $y_1, \ldots, y_{k-1} \in V(T)$. Since $d_{G_r}(w) = k = d_T(w), N_{G_r}(w) = N_T(w)$. Thus, $\{z_1, y_1, \ldots, y_{k-1}\} = \{z_1, \ldots, z_{k-1}, v\}$, and hence $G_r = T'_2$. Consequently, T_1 is the union of G_1, \ldots, G_{r-1} , and hence $\lambda_e(T_1) = \frac{n-k-1}{k}$. Let L be a Δ -reducing edge set of T of size $\lambda_e(T)$. Let $L_1 = L \cap E(T_1)$ and $L_2 = L \cap E(T'_2)$. Since $E(T_1)$ and $E(T'_2)$ partition $E(T), L_1$ and L_2 partition L. Since $w \in M(T)$ and $E_T(w) = E(T'_2), L_2 \neq \emptyset$. Suppose that L_1 is not a Δ -reducing edge set of T_1 . Then, since $\Delta(T_1) = k$, there exists some $u \in V(T_1)$ such that $d_{T_1}(u) = k$ and $E_T(u) \cap L \subseteq L_2$. Since $V(T_1) \cap V(T'_2) = \{v\}$ and $L_2 \subseteq V(T'_2), u = v$. Now $k \ge |E_T(v)| = |E_{T_1}(v) \cup \{e\}| > |E_{T_1}(v)| = d_{T_1}(v)$, which contradicts $d_{T_1}(v) = d_{T_1}(u) = k$. Thus, L_1 is a Δ -reducing edge set of T_1 . We have $\frac{n-1}{k} \ge \lambda_e(T) = |L| = |L_1| + |L_2| \ge \lambda_e(T_1) + 1 = \frac{n-k-1}{k} + 1 = \frac{n-1}{k}$, so $\lambda_e(T) = \frac{n-1}{k}$.

A basic result in the literature is that |E(G)| = |V(G)| - 1 if G is a tree. This completes the proof.

Acknowledgements

The authors wish to thank the anonymous referees for checking the paper carefully.

References

- N. Alon, Transversal numbers of uniform hypergraphs, Graphs Combin. 6 (1990), 1–4.
- [2] T. Biedl, E. D. Demaine, C. A. Duncan, R. Fleischer and S. G. Kobourov, Tight bounds on maximal and maximum matchings, *Discrete Math.* 285 (2004), 7–15.
- [3] P. Borg and K. Fenech, Reducing the maximum degree of a graph by deleting vertices, *Australas. J. Combin.* 69(1) (2017), 29–40.
- [4] M. A. Henning and A. Yeo, Tight Lower Bounds on the Size of a Maximum Matching in a Regular Graph, *Graphs Combin.* 23 (2007), 647–657.
- [5] T. Gallai, Uber extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959), 133–138.
- [6] Suil O and D. B. West, Matching and edge-connectivity in regular graphs, European J. Combin. 32 (2011), 324–329.