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Abstract

A decomposition of a graphG into r copies of the cycle Cm1 and s copies of
the cycle Cm2 is denoted by a {Cr

m1
, Cs

m2
}-decomposition of G. In this pa-

per, a necessary condition for the existence of a {Cr
3 , C

s
6}-decomposition

of the complete tripartite graph Ka, b, c, a ≤ b ≤ c, is obtained. Further,
a sufficient condition for the existence of a {Cr

3 , C
s
6}-decomposition of

Ka, b, c, a ≤ b ≤ c, is given. As a corollary, the graph Km,m,m is shown to
have a {Cr

3 , C
s
6}-decomposition.

1 Introduction

Let Cm denote the cycle on m vertices. If H1, H2, . . . , Hk are edge-disjoint subgraphs
of G such that E(G) = E(H1)∪E(H2)∪· · ·∪E(Hk), then we say that H1, H2, . . . , Hk

decompose G and we write this as G = H1 ⊕H2 ⊕ · · · ⊕Hk, where ⊕ denotes edge
disjoint union of graphs. If each Hi � H , 1 ≤ i ≤ k, then we say that H decomposes
G and we denote this by H |G. If each Hi � Cm, the cycle of length m, then we
write Cm |G and in this case we say that G has a Cm-decomposition or an m-cycle
decomposition. A decomposition of G into r copies of Cm1 and s copies of Cm2 is
denoted by a {Cr

m1
, Cs

m2
}-decomposition of G. For a graph G, G(λ) denotes the

graph obtained from G by replacing each edge of G by λ edges. The complete graph
on n vertices is denoted by Kn and the complete multipartite graph with partite
sets having sizes a1, a2, . . . , ak is denoted by Ka1,a2,...,ak . In particular, the complete
tripartite graph with partite sets having sizes a, b, c with a ≤ b ≤ c is denoted
by Ka,b,c. The complete m-partite graph with each of its partite sets having size n
is called a complete equipartite graph and it is denoted by Km(n). Throughout this
paper, the partite sets of the complete tripartite graph Ka,b,c, a ≤ b ≤ c, are assumed
to be {x1, x2, x3, . . . , xa}, {y1, y2, y3, . . . , yb} and {z1, z2, z3, . . . , zc}.
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A latin square of order k is a k × k array, each cell of which contains exactly
one of the symbols in {1, 2, . . . , k}, such that each row and each column of the array
contains each of the symbols in {1, 2, . . . , k} exactly once. A latin square of order
k is said to be idempotent if the cell (s, s) contains the symbol s, 1 ≤ s ≤ k. A
latin square of order k is said to be cyclic if the 1st row entries are a1, a2, a3, . . . , ak,
and the sth row entries are as, as+1, as+2, . . . , as−1, in order. As in [9], a cell (i, j) is
termed “empty” if it contains no entry and “filled” otherwise. For our convenience,
when we represent a partial latin square we avoid drawing empty cells. Definitions
which are not given here can be found in [5, 21].

Decompositions of complete graphs and complete multipartite graphs into cycles
of fixed length are well-studied. Decomposition of the complete graph Kn (respec-
tively Kn−I, where I is a perfect matching of Kn) when n is odd (respectively, even)
into cycles has been considered by various authors: see [2, 18, 28] and [11]. Billing-
ton et al. considered a C5-decomposition of a λ-fold complete equipartite graph:
see [6]. Further, Manikandan and Paulraja proved that Cp |Km(n), p ≥ 5 a prime,
whenever the obvious necessary conditions are satisfied: see [23, 24, 25]. More-
over, in [29, 30, 31], Smith studied the existence of a k-cycle decomposition for
k ∈ {2p, 3p, p2}, of Km(n), where p ≥ 3 is a prime. Further, existence of a 2k-cycle
decomposition of a λ-fold complete equipartite graph was obtained by Muthusamy
and Shanmuga Vadivu: see [27]. Very recently, the authors of [12] actually solved the
existence problem for a Ck-decomposition of Km(n)(λ) whose cycle-set can be parti-
tioned into 2-regular graphs containing all the vertices except those belonging to one
part. In [20], Jordon and Morris studied the cyclic Hamiltonian cycle decomposition
of K2n− I, where I is a perfect matching. In [26], Merola et al. obtained a necessary
and sufficient condition for the existence of a cyclic and symmetric Hamiltonian cycle
decomposition of Km(n) for any even m.

Chou et al. [15] obtained a necessary and sufficient condition for the existence of
a decomposition of Ka,b (respectively, Km,m−I, where m ≥ 3 is odd and I denotes a
perfect matching) into cycles of lengths 4, 6 and 8. In [16], Chou and Fu considered
a {Cr

4 , C
s
2t}-decomposition of Ka,b and Km,m − I, where m is odd and I denotes a

perfect matching. Later, Fu et al. [17] proved that the necessary conditions for the
existence of a decomposition of Km,m (respectively, Km,m − I) into cycles of distinct
lengths are sufficient whenever m is even (respectively, odd) except when m = 4.
Recently, Asplund et al. [3] established necessary and sufficient conditions for the
existence of a decomposition of Ka,b(λ) into cycles of arbitrary lengths. Existence
of a {Cr

4 , C
s
5}-decomposition of Km(n) was proved by Huang and Fu [19]. Moreover,

Bahmanian and Šajna [4] showed that if Km(λn) has a decomposition into cycles of
lengths k1, k2, . . . , kt (plus a perfect matching if λn(m − 1) is odd), then Km(n)(λ)
has a decomposition into cycles of lengths k1n, k2n, . . . , ktn (plus a perfect matching
if λn(m− 1) is odd).

But not many results have been obtained in the study of decomposition of com-
plete multipartite graphs when the partite sets have different sizes. Mahmoodian
and Mirzakhani proved the existence of a C5-decomposition of Ka,b,c whenever the
necessary conditions are satisfied and two of the partite sets have equal size, except
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when a = b ≡ 0 (mod 5) and c 	≡ 0 (mod 5); see [22]. The authors of [1, 10, 13, 14]
also studied this problem; but the problem remains open when the partite sets have
different sizes and are odd. In [7], Billington obtained a necessary and sufficient
condition for the existence of a {Cr

3 , C
s
4}-decomposition of the graph Ka,b,c. Further,

Billington et al. [8] obtained a necessary and sufficient condition for the existence of
a 2k-cycle decomposition of complete multipartite graphs for k ∈ {2, 3, 4}.

In this paper we give the necessary conditions for the existence of a {Cr
3 , C

s
6}-

decomposition of the complete tripartite graph Ka,b,c, a ≤ b ≤ c. Also, we give a
sufficient condition for the existence of a {Cr

3 , C
s
6}-decomposition of Ka,b,c, a ≤ b ≤ c.

Using this, we prove that the graph Km,m,m admits a {Cr
3 , C

s
6}-decomposition.

Often we recall the following remark.

Remark 1.1. Let the partite sets of the graph Ka,a,a, a ≥ 1, be {x1, x2, . . . , xa},
{y1, y2, . . . , ya} and {z1, z2, z3, . . . , za}. A C3-decomposition of Ka,a,a can be achieved
from a latin square L of order a as follows: an entry s in the cell (i, j) of L, 1 ≤
i, j, s ≤ a, corresponds to the 3-cycle (xi, yj, zs) of Ka,a,a. All the cells of the latin
square give a C3-decomposition of Ka,a,a; see [7].

In this paper we prove the following main theorem.

Theorem 1.2. Let Ka,b,c be the complete tripartite graph with a ≤ b ≤ c and let
Ka,b,c 	= K1,1,c, when c ≡ 1 (mod 6) and c > 1. If a ≡ b ≡ c (mod 6), then Ka,b,c

admits a {Cr
3 , C

s
6}-decomposition for any r ≡ a (mod 2), with 0 ≤ r ≤ ab.

Corollary 1.3. The complete tripartite graph Km,m,m admits a {Cr
3 , C

s
6}-decompos-

ition.

2 Necessary conditions

In this section we prove the necessary conditions for the existence of a {Cr
3 , C

s
6}-

decomposition of Ka,b,c.

Theorem 2.1. Let a, b, c be positive integers with a ≤ b ≤ c. If the graph Ka,b,c 	=
K1,1,c, when c ≡ 1 (mod 6) and c > 1, admits a {Cr

3 , C
s
6}-decomposition, then

(i) a ≡ b ≡ c (mod 2);

(ii) ab+ ac+ bc ≡ 0 (mod 3);

(iii) either a ≡ b ≡ c (mod 3) or two of them are multiples of three;

(iv) r ≡ a (mod 2) with 0 ≤ r ≤ ab.

Proof. The conditions (i) and (ii) are obvious. For (iii), let a = 3A+A′, b = 3B+B′

and c = 3C + C ′, where 0 ≤ A′, B′, C ′ ≤ 2 and A,B,C ≥ 0. Then

ab+ ac+ bc = (3A+ A′)(3B +B′) + (3A+ A′)(3C + C ′) + (3B +B′)(3C + C ′)

= 9(AB + AC +BC) + 3(AB′ +BA′ + AC ′ + CA′ +BC ′ + CB′)

+A′B′ + A′C ′ +B′C ′.
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From (ii), 3 | (A′B′+A′C ′+B′C ′), and from this we conclude that either A′ = B′ = C ′,
or two of them must be zero.

Next we prove (iv). If there exists a {Cr
3 , C

s
6}-decomposition in Ka,b,c, then 3r +

6s = ab + ac + bc. Suppose by way of contradiction that r is odd (respectively,
even) and a, b and c are even (respectively, odd); then ab + ac + bc − 3r is odd but
6s = ab + ac + bc− 3r is even, by (i), a contradiction. Hence a, b, c and r have the
same parity. In a tripartite graph each C3 meets all the three partite sets and hence
r ≤ ab. This proves (iv).

3 Some useful lemmas

We prove some useful lemmas before giving a proof of the main theorem.

Lemma 3.1. The graph K3,3,3 has a {Cr
3 , C

s
6}-decomposition.

Proof. Let the partite sets of K3,3,3 be {x1, x2, x3}, {y1, y2, y3} and {z1, z2, z3}. Us-
ing the idempotent latin square L of order 3 given below, we exhibit a {Cr

3 , C
s
6}-

decomposition ofK3,3,3. Since a is odd, by Theorem 2.1, also r is odd, with 0 ≤ r ≤ 9.
Moreover, 3r + 6s = 27, so we have to consider the following cases:

L =
1 3 2
3 2 1
2 1 3

,

(1) r = 9 and s = 0.

Then the required decomposition follows by Remark 1.1.

(2) r = 7 and s = 1.

The three C3 of K3,3,3 corresponding to the three cells (2, 1), (2, 2) and (3, 1) of L
give one 6-cycle and one 3-cycle, namely, (x2, y2, z2, x3, y1, z3) and (x2, y1, z2). The
remaining cells of L correspond to six 3-cycles, by Remark 1.1.

(3) r = 5 and s = 2.

The edges of the four C3 of K3,3,3 corresponding to the cells (1, 2), (1, 3), (2, 1) and
(3, 1) of L can be partitioned into two 6-cycles, namely, (x1, z3, x2, y1, x3, z2) and
(x1, y2, z3, y1, z2, y3), and the remaining cells yield five 3-cycles, by Remark 1.1.

(4) r = 3 and s = 3.

The diagonal cells of L correspond to three 3-cycles of K3,3,3 and the edges not on
these three 3-cycles can be partitioned into three 6-cycles, namely, (x1, y2, x3, y1, x2,
y3), (y1, z2, y3, z1, y2, z3) and (x1, z2, x3, z1, x2, z3).

(5) r = 1 and s = 4.

The cells of L, except the cell (1, 1), correspond to four 6-cycles, (x1, z3, x2, y1, x3, z2),
(x1, y2, z3, y1, z2, y3), (x2, y2, x3, z3, y3, z1) and (x2, y3, x3, z1, y2, z2). The C3 corre-
sponding to the cell (1, 1) is (x1, y1, z1).
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Lemma 3.2. The graph K5,5,5 has a {Cr
3 , C

s
6}-decomposition.

Proof. Let the partite sets of K5,5,5 be {x1, x2, x3, x4, x5}, {y1, y2, y3, y4, y5} and
{z1, z2, z3, z4, z5}. Consider the idempotent latin square L of order 5 given below:

L =

1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

.

From L above, we obtain five cell-disjoint partial latin squares L1, L2, L3, L4 and
L5, respectively, as shown below, where ci and rj denote the ith column and jth row
of L, respectively.

c1 c2 c3
r1 1 4 2
r2 4 2 5
r3 2 5 3

,
c4 c5

r2 3 1
r3 1 4

,
c2 c3

r4 3 1
r5 1 4

,
c4 c5

r4 4 2
r5 2 5

,

c1 c4 c5
r1 5 3
r4 5
r5 3

.

L1 L2 L3 L4 L5

From the cells of the partial latin square Li, 2 ≤ i ≤ 5, we obtain four 3-cycles,
by Remark 1.1, and the edges of these four C3 can be partitioned into two 6-cycles;
they are listed below:

(i) 6-cycles corresponding to L2 are (x2, y4, x3, z4, y5, z1), (x2, z3, y4, z1, x3, y5).

(ii) 6-cycles corresponding to L3 are (x4, y2, x5, z4, y3, z1), (x4, z3, y2, z1, x5, y3).

(iii) 6-cycles corresponding to L4 are (x4, y4, x5, z5, y5, z2), (x4, z4, y4, z2, x5, y5).

(iv) 6-cycles corresponding to L5 are (x1, z3, x5, y1, x4, z5), (x1, y4, z5, y1, z3, y5).

Now we consider the partial latin square L1. The cells of L1 correspond to one
3-cycle and four 6-cycles, or three 3-cycles and three 6-cycles, or seven 3-cycles and
one 6-cycle, or nine 3-cycles as shown below:

(1) (x1, y1, z1), (x1, z2, x3, y1, x2, z4), (x1, y2, z4, y1, z2, y3), (x2, y2, x3, z3, y3, z5),
(x2, y3, x3, z5, y2, z2).

(2) (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x1, y2, x3, y1, x2, y3), (y1, z2, y3, z5, y2, z4),
(x1, z2, x3, z5, x2, z4).

(3) (x1, y1, z1), (x1, y3, z2), (x2, y3, z5), (x3, y1, z2), (x3, y2, z5), (x3, y3, z3),
(x2, y2, z4), (x1, y2, z2, x2, y1, z4).

(4) nine 3-cycles by Remark 1.1.

Depending on r and s, we choose the 3-cycles and 6-cycles from the above list to
obtain a {Cr

3 , C
s
6}-decomposition of K5,5,5. This completes the proof.

We quote the following theorem for our future reference.

Theorem 3.3. [32] For positive integers a, b and k, Ck |Ka,b if and only if a, b and
k are all even with a ≥ k

2
, b ≥ k

2
and k | ab.
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Lemma 3.4. If b ≡ 1 (mod 6) and 3r + 6s = 2b + b2, 1 ≤ r ≤ b, then K1,b,b has a
{Cr

3 , C
s
6}-decomposition.

Proof. Let b = 6b′ + 1, where b′ ≥ 0. Let the partite sets of K1,b,b be {x0},
{y0, y1, y2, . . . , y6b′} and {z0, z1, z2, . . . , z6b′}. Delete the edges of the 3-cycle C =
{x0, y0, z0} from K1,b,b; the resulting subgraph can be decomposed into b′ copies
of the graph isomorphic to K1,7,7 − E(C) and b′(b′ − 1) copies of K6,6. Since
C6 |K6,6, by Theorem 3.3, it is enough to obtain a {Cr1

3 , Cs1
6 }-decomposition of

K1,7,7 − E(C) for suitable r1 and s1. We exhibit a {Cr1
3 , Cs1

6 }-decomposition of
K1,7,7 −E(C) as follows, where we assume that the partite sets of K1,7,7 −E(C) are
{x0}, {y0, y1, y2, y3, y4, y5, y6} and {z0, z1, z2, z3, z4, z5, z6}.

(1) If r1 = 0 and s1 = 10, then the edge disjoint cycles are

(x0, y2, z1, y1, z0, y4), (x0, y3, z2, y2, z0, y5), (x0, y1, z3, y3, z0, y6),
(x0, z3, y0, z1, y3, z6), (x0, z1, y4, z2, y0, z4), (x0, z2, y5, z6, y0, z5),
(y5, z1, y6, z2, y1, z5), (y6, z4, y1, z6, y2, z5), (y2, z4, y3, z5, y4, z3),
(y4, z4, y5, z3, y6, z6).

(2) If r1 = 2 and s1 = 9, then the required set of edge disjoint 3-cycles and
6-cycles are C ′, C ′′, C1, C2, C3, C4, C5, C6, C7, D1, D2, where

C ′ = (x0, y1, z1), C
′′ = (x0, y2, z2), C

1 = (y0, z1, y2, z0, y1, z2),

C2 = (x0, y5, z5, y0, z6, y6), C
3 = (x0, z5, y6, z0, y5, z6), C

4 = (y1, z3, y5, z1, y6, z4),

C5 = (y2, z3, y6, z2, y5, z4), C
6 = (y1, z5, y3, z1, y4, z6), C

7 = (y2, z5, y4, z2, y3, z6),

D1 = (x0, y3, z3, y0, z4, y4), D
2 = (x0, z3, y4, z0, y3, z4).

(3) If r1 = 4 and s1 = 8, from the above decomposition for the case r1 = 2
and s1 = 9, the union of the edges of D1 and D2 can be partitioned into two
copies of C3 and a copy of C6, namely, C ′′′ = (x0, y3, z3), C

′′′′ = (x0, y4, z4) and
C8 = (y0, z3, y4, z0, y3, z4). Hence the required decomposition is given by C ′, C ′′, C ′′′,
C ′′′′, C1, C2, C3, C4, C5, C6, C7 and C8.

(4) If r1 = 6 and s1 = 7, then the cycles are

C ′, C ′′, C ′′′, C ′′′′, (x0, y5, z5), (x0, y6, z6), (y0, z1, y3, z0, y1, z3),

(y1, z2, y4, z1, y2, z4), (y2, z3, y5, z2, y3, z5), (y3, z4, y6, z3, y4, z6),

(y4, z5, y0, z4, y5, z0), (y5, z6, y1, z5, y6, z1), (y6, z0, y2, z6, y0, z2),

where C ′, C ′′, C ′′′ and C ′′′′ are as in the case (r1, s1) = (4, 8).

For our convenience we use the following definition given in [7].

If a latin square L contains a subsquare of the type

α α+ 1
α+ 1 α

,

then we call it a ‘subsquare of the form (α)’.

The following lemma is in [7]; as we extensively use it in our proof, we give a
proof of it here.
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Lemma 3.5. [7] For any k ≥ 3, there exists a latin square of order 2k+1 containing
k(k − 1) 2× 2 cell-disjoint subsquares of the form (α).

Proof. Consider an idempotent latin square L′ of order k, on the set {1, 2, . . . , k}.
From L′, we obtain a new latin square, L′′ of order 2k by replacing each entry l in
L′ with

2l− 1 2l
2l 2l− 1

From L′′, we obtain the required latin square L of order 2k + 1 on the set
{0, 1, 2, . . . , 2k}, by adjoining a new top row and new left-hand column to L′′, and
appropriately replacing the 2× 2 squares on the diagonal of L′′ as follows:

Let (ri, cj) denote the cell in the ith row and jth column of a latin square. Since L′

is an idempotent latin square, the 2× 2 subsquares on the “diagonal” of L′′ are the
following:

1 2
2 1

,
3 4
4 3

,. . . ,
2k − 1 2k
2k 2k − 1

.

The required latin square L is obtained by replacing the diagonal 2 × 2 subsquares
of L′′ of the form (2l), that is,

2l− 1 2l
2l 2l− 1

by
2l − 1 0

0 2l
,

place 0 in the cell (0, 0) and place 2l (respectively, 2l−1) in the cells (0, 2l−1), (2l−
1, 0) (respectively, (0, 2l), (2l, 0)); see Example 3.6. The remaining 2× 2 subsquares
of L′′ in L are unchanged. The resulting latin square is the required latin square,
since the 2×2 subsquares corresponding to the non-diagonal cells of L′ become 2×2
subsquares of type (α); see Example 3.6.

Example 3.6. For k = 3, let

L′ =
1 3 2
3 2 1
2 1 3

. Then L′′ =

1 2 5 6 3 4
2 1 6 5 4 3
5 6 3 4 1 2
6 5 4 3 2 1
3 4 1 2 5 6
4 3 2 1 6 5

and

L =

0th col
0th row 0 2 1 4 3 6 5

2 1 0 5 6 3 4
1 0 2 6 5 4 3
4 5 6 3 0 1 2
3 6 5 0 4 2 1
6 3 4 1 2 5 0
5 4 3 2 1 0 6

.

To prove the next theorem, we need a particular idempotent latin square, Ik,
which is defined here; see [21]. For an odd integer k ≥ 3, consider the cyclic latin
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square, C, of order k, on the set {1, 2, 3, . . . , k} with the ith row i, i + 1, . . . , i − 1,
in order. Let k = 2k′ + 1, for some k′ ≥ 1. Now we rename the entry i in C
by the rule i → 1 + (i − 1)n (mod k), where n = k′ + 1; see the example below.
The resulting latin square Ik is idempotent and the entries of the cells in T =
{(1, 2), (2, 3), . . . , (k − 1, k), (k, 1)} of Ik is a transversal of Ik. Now applying the
technique of stripping the transversal T (see [21]), an idempotent latin square of
even order k + 1 is obtained. Thus, for all k ≥ 3, we have an idempotent latin
square, which we denote by Ik. For example, when k = 7, the latin squares C, I7
and I8, respectively, are given below. This Ik is extensively used throughout the
paper.

C =

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4
6 7 1 2 3 4 5
7 1 2 3 4 5 6

I7 =

1 5 2 6 3 7 4
5 2 6 3 7 4 1
2 6 3 7 4 1 5
6 3 7 4 1 5 2
3 7 4 1 5 2 6
7 4 1 5 2 6 3
4 1 5 2 6 3 7

Bold letters form a transversal T for I7

I8 =

1 8 2 6 3 7 4 5
5 2 8 3 7 4 1 6
2 6 3 8 4 1 5 7
6 3 7 4 8 5 2 1
3 7 4 1 5 8 6 2
7 4 1 5 2 6 8 3
8 1 5 2 6 3 7 4
4 5 6 7 1 2 3 8

I8 is obtained from I7 by the technique of stripping the transversal T .

Remark 3.7. Here we list some useful observations about Ik for our future reference.

Observation 1. For odd k = 2k′ + 1, by our construction of Ik, the entries of the
first row of Ik are

c1 c2 c3 c4 . . . ck−1 ck
r1 1 k′ + 2 2 k′ + 3 . . . k k′ + 1

and the entries in the (i+ 1)st row of Ik, 1 ≤ i ≤ k − 1, are of the following form:

c1 c2 c3 c4 . . . ck−1 ck
ri+1 m m+ n m+ 2n m+ 3n . . . m− 2n m− n

,

where n = k′ + 1, m = 1 + i · n.
Observation 2. As Ik, k = 2k′ + 1, is cyclic, any three consecutive rows of Ik are
of the form
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c1 c2 c3 c4 . . . ck−1 ck
ri+1 m m+ n m+ 2n m+ 3n . . . m− 2n m− n
ri+2 m+ n m+ 2n m+ 3n m+ 4n . . . m− n m
ri+3 m+ 2n m+ 3n m+ 4n m+ 5n . . . m m+ n

,

where n = k′ + 1 and m = 1 + i · n.
Observation 3. Since Ik+1, k+1 = 2k′′, is obtained from Ik, any three consecutive
rows of Ik+1, except its last three rows, are as shown below, where n = k′′, m = 1+i·n
and the entries are taken modulo k, except the entry k + 1 in each of the cells
(i+1, i+2), (i+2, i+3) and (i+3, i+4), which is shown in bold face letters in the
partial latin square below; these (k + 1)’s arise out of the stripping of a transversal.

c1 c2 c3 . . . ci+1 ci+2 ci+3 ci+4 . . . ck ck+1

ri+1 m m
+
n

m
+
2
n

. . . i
+
1

k
+
1

i
+
2

m
+
(i
+
3
)n

. . . m
−
n

m
+
(i
+
1
)n

ri+2 m
+
n

m
+
2
n

m
+
3
n

. . . m
+
(i
+
1
)n

i
+
2

k
+
1

m
+
(i
+
4
)n

. . . m m
+
(i
+
3
)n

ri+3 m
+

2
n

m
+
3
n

m
+
4
n

. . . i
+
2

m
+
(i
+
3
)n

i
+
3

k
+
1

. . . m
+
n

m
+
(i
+
5
)n

.

Observation 4. The last three rows of Ik+1, k + 1 = 2k′′, are given below:

c1 c2 c3 c4 c5 c6 . . . ck−1 ck ck+1

rk−1 k k
′′

2
k
′′

3
k
′′

4
k
′′

5
k
′′

. . . k
−
1

k
+
1

k
′′
−
1

rk k
+
1

2
k
′′

3
k
′′

4
k
′′

5
k
′′

6
k
′′

. . . k
′′
−
1

k k
′′

rk+1 k
′′

k
′′
+
1

k
′′
+
2

k
′′
+
3

k
′′
+
4

k
′′
+
5

. . . k
′′
−
2

k
′′
−
1

k
+
1

,

where the entries are taken modulo k, except the entries in the cells (k− 1, k), (k, 1)
and (k + 1, k + 1) which arise out of the stripping of a transversal.

Theorem 3.8. Let a and b be positive integers with 1 ≤ a ≤ b. If a ≡ b (mod 6),
then Ka,b,b admits a {Cr

3 , C
s
6}-decomposition for any r ≡ a (mod 2), with 0 ≤ r ≤ ab.

Proof. We split the proof into two cases.

Case 1. a is even.
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Let a = 2a′ and b = 2b′, 1 ≤ a′ ≤ b′. Let C be a cyclic latin square of order b′

with the first row entries 1, 2, . . . , b′, in order. From C, we obtain a new latin square
C ′ of order b on the set {1, 2, . . . , b} by replacing the (i, j)th entry i+ j − 1 = � of C
into a 2× 2 subsquare of the form (2�− 1), where 1 ≤ i, j, � ≤ b′; that is, we replace
the entry � of C by

2�− 1 2�
2� 2�− 1

(1)

The first a rows of C ′ contain exactly a′b′ 2× 2 cell-disjoint subsquares of the form
(α). Each of these 2×2 subsquares corresponds to four 3-cycles, or two 3-cycles and
one 6-cycle, or two 6-cycles ofKa,b,b which are listed below; the cycles described below
are based on the subsquare of the form (2�−1) in (1), where � = i+j−1. The entries
2l−1 and 2l correspond to the cells (r2i−1, c2j−1), (r2i, c2j) and (r2i−1, c2j), (r2i, c2j−1),
respectively, of C ′.

(i) (x2i−1, y2j−1, z2�−1), (x2i−1, y2j, z2�), (x2i, y2j−1, z2�), (x2i, y2j, z2�−1).

(ii) (x2i−1, y2j−1, z2�), (x2i, y2j, z2�−1), (x2i−1, y2j, z2�, x2i, y2j−1, z2�−1).

(iii) (x2i−1, y2j−1, z2�−1, x2i, z2�, y2j), (x2i, y2j, z2�−1, x2i−1, z2�, y2j−1).

⎫⎪⎬
⎪⎭

(2)

The maximum number of 3-cycles in Ka,b,b cannot exceed ab. To obtain r copies
of C3, choose � r

4
�, 2× 2 subsquares of the form (α) in the first a rows of C ′. These

subsquares give the required r copies of C3, as the 12 edges of Ka,b,b corresponding to
each of these subsquares of the form (α) can be partitioned into either four C3 or two
C3 and one C6 by (2). Since the 12 edges corresponding to any 2×2 subsquare of the
form (α) can be decomposed into two C6 by (2), the remaining a′b′−� r

4
� subsquares

of the form (α) within the first a = 2a′ rows of C ′, give s1 = 2(a′b′ − � r
4
�) cycles of

length six. If a = b, then the above decomposition is the required decomposition. So
we assume that a < b.

Observe that all the edges incident with the partite set of size a are on the triangles
corresponding to the entries of the cells in the first a rows of C ′. Consequently, after
the deletion of the edges of r C3 and s1 C6 from Ka,b,b, corresponding to the cells in
the first a rows of C ′, the resulting edge induced subgraph is a bipartite subgraph,
say, H , of Kb,b contained in Ka,b,b. We now decompose this bipartite graph H into
cycles of length six. Observe that if the (a + i, j)th entry of C ′ is l, then this entry
now denotes only the edge yjzl of H , because all the edges incident with the partite
set of size a have been used by rC3 and s1C6 obtained above.

The edges of Ka,b,b corresponding to the cells of the remaining b − a rows of C ′

can be decomposed into 6-cycles as follows: since b−a ≡ 0 (mod 6), we partition the
b − a rows of C ′ into six consecutive rows each, namely, C ′

i, 1 ≤ i ≤ b−a
6
, beginning

from the (a + 1)th row. A partial latin square, C ′
i of C

′, consisting of six rows is of
the following form:
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c1 c2 c3 c4 . . . cb−1 cb
rt t t+ 1 t+ 2 t+ 3 . . . t− 2 t− 1

rt+1 t+ 1 t t+ 3 t+ 2 . . . t− 1 t− 2
rt+2 t+ 2 t+ 3 t+ 4 t+ 5 . . . t t+ 1
rt+3 t+ 3 t+ 2 t+ 5 t+ 4 . . . t+ 1 t
rt+4 t+ 4 t+ 5 t+ 6 t+ 7 . . . t+ 2 t+ 3
rt+5 t+ 5 t+ 4 t+ 7 t+ 6 . . . t+ 3 t+ 2

,

where t = a+6i−5, 1 ≤ i ≤ b−a
6
. Now partition C ′

i into 6×4 subsquares, consisting
of four consecutive columns of C ′

i, beginning from the first column if b ≡ 0 (mod 4),
or into 6 × 4 subsquares except the last subsquare which is a 6 × 6 subsquare if
b ≡ 2 (mod 4).

Let the 6 × 4 subsquare of C ′
i be C ′

ij , 1 ≤ j ≤ b
4
, if b ≡ 0 (mod 4); let C ′

ij,

1 ≤ j ≤ b−6
4
, and C ′

i∞ be the 6 × 4 and 6 × 6 subsquares, respectively, of C ′
i if

b ≡ 2 (mod 4). The entries of C ′
ij and C ′

i∞ are shown below.

C′
ij =

c4j−3 c4j−2 c4j−1 c4j
rt t+ 4j − 4 t+ 4j − 3 t+ 4j − 2 t+ 4j − 1

rt+1 t+ 4j − 3 t+ 4j − 4 t+ 4j − 1 t+ 4j − 2
rt+2 t+ 4j − 2 t+ 4j − 1 t+ 4j t+ 4j + 1
rt+3 t+ 4j − 1 t+ 4j − 2 t+ 4j + 1 t+ 4j
rt+4 t+ 4j t+ 4j + 1 t+ 4j + 2 t+ 4j + 3
rt+5 t+ 4j + 1 t+ 4j t+ 4j + 3 t+ 4j + 2

and

C′
i∞ =

cb−5 cb−4 cb−3 cb−2 cb−1 cb
rt t− 6 t− 5 t− 4 t− 3 t− 2 t− 1

rt+1 t− 5 t− 6 t− 3 t− 4 t− 1 t− 2
rt+2 t− 4 t− 3 t− 2 t− 1 t t+ 1
rt+3 t− 3 t− 4 t− 1 t− 2 t+ 1 t
rt+4 t− 2 t− 1 t t+ 1 t+ 2 t+ 3
rt+5 t− 1 t− 2 t+ 1 t t+ 3 t+ 2

.

As each cell of C ′
ij or C ′

i∞ corresponds to exactly one edge of H , all the entries of
C ′

ij and C ′
i∞ correspond to 24 and 36 edges of H , respectively; see Figure 1. If the

(p, q)th entry of C ′
ij (respectively, C

′
i∞) is �, then that entry represents the edge yqz�

of H . We now partition the edges corresponding to C ′
ij and C ′

i∞ into four 6-cycles
and six 6-cycles, respectively, as follows:

A set of four 6-cycles of H corresponding to the cells of C ′
ij is

(y4j−3, zt+4j−3, y4j−2, zt+4j−2, y4j, zt+4j−1), (y4j−3, zt+4j−4, y4j−2, zt+4j−1, y4j−1, zt+4j−2),

(y4j−3, zt+4j , y4j−1, zt+4j+3, y4j, zt+4j+1), (y4j−2, zt+4j+1, y4j−1, zt+4j+2, y4j, zt+4j);

see Figure 1(a).

A set of six 6-cycles of H corresponding to the cells of C ′
i∞ is

(yb−5, zt−4, yb−3, zt−1, yb−2, zt−3), (yb−4, zt−3, yb−3, zt−2, yb−2, zt−4),

(yb−3, zt, yb−1, zt+3, yb, zt+1), (yb−2, zt+1, yb−1, zt+2, yb, zt),

(yb−5, zt−6, yb−4, zt−1, yb−1, zt−2), (yb−5, zt−5, yb−4, zt−2, yb, zt−1);

see Figure 1(b).
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� � � �

� � � � � � � �

y4j−3 y4j−2 y4j−1 y4j

zt+4j−4 zt+4j−3 zt+4j−2 zt+4j−1 zt+4j zt+4j+1 zt+4j+2 zt+4j+3

(a)

� � � � � �

� � � � � � � � � �

yb−5 yb−4 yb−3 yb−2 yb−1 yb

zt−6 zt−5 zt−4 zt−3 zt−2 zt−1 zt zt+1 zt+2 zt+3

(b)

Figure 1: The subgraph of H corresponding to the cells of C′
ij (respectively C′

i∞) is shown in (a)
(respectively (b)).

Let s2 be the number of six cycles of H corresponding to the cells of the last
b − a rows of C ′. Thus we have obtained r 3-cycles and s1 6-cycles corresponding
to the cells of the first a rows of C ′ and s2 6-cycles corresponding to the cells of the
remaining b− a rows of C ′; and (3r + 6s1) + 6s2 = 3ab+ (b− a)b = 2ab+ b2, which
is the number of edges of Ka,b,b. This completes the proof of this case.

Case 2. a is odd.

Because a and b have same parity, let a = 2a′ + 1 and let b = 2b′ + 1, for some
b′ ≥ a′. The graph K1,1,1 can be decomposed into one C3 and no C6. Since the case
a = 1 with b ≡ 1 (mod 6), and the cases a = b = 3 and a = b = 5 are dealt with in
Lemmas 3.4, 3.1 and 3.2, respectively, we do not consider them here.

Consider an idempotent latin square Ib′ of order b′, on the set {1, 2, . . . , b′}, as
described in Remark 3.7. From Ib′ , we obtain a latin square L of order b, using
Lemma 3.5, on the set {0, 1, 2, . . . , 2b′}. Part of the entries of L, obtained from Ib′,
are given in Figure 2; the 2 × 2 subsquares, in order, without entries, in Figure 2,
are subsquares of the form (α).

Let La, Lb and Lc be three partial latin squares of L, see Figure 3; note that if
b 	= a, then the partial latin squares Lb and Lc of L exist.

A sketch of the rest of the proof of this case is described here. Our aim is to
partition the cells of L into subsets La, Lb and Lc and decompose the subgraphs of
Ka,b,b corresponding to these subsets of cells according to our requirement. Using the
cells of La (respectively, Lb) we obtain r′ (respectively, r′′) copies of 3-cycles and s1
(respectively, s2) copies of 6-cycles; s1 (respectively, s2) may be zero. These r = r′+r′′

3-cycles and s′ = s1 + s2 6-cycles contain all the edges of Ka,b,b incident with the
partite set of size a. Edges not on these cycles induce a subgraph H ⊂ Kb,b ⊂ Ka,b,b.
Each cell in Lc now represents an edge of H . We partition the edges corresponding
to the cells of Lc into cycles of length six.
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L =

c0 c1 c2 c3 c4 . . . c2a′−1 c2a′ . . . c2b′−1 c2b′
r0 0 2 1 4 3 2a′ 2a′ − 1 2b′ 2b′ − 1

r1 2 1 0
r2 1 0 2

r3 4 3 0
r4 3 0 4

..

.

r2a′−1 2a′ 2a′ − 1 0
r2a′ 2a′ − 1 0 2a′

..

.

r2b′−1 2b′ 2b′ − 1 0
r2b′ 2b′ − 1 0 2b′

Figure 2: The latin square L. In the partial latin square obtained from L by deleting its 0th row
and 0th column, all 2× 2 subsquares are of the form (α), except the “diagonal” 2× 2 cells which

are of the form
2i− 1 0

0 2i
.

We now proceed to the proof of the theorem.

Initially we partition the edges of Ka,b,b corresponding to the cells of La of L into
r′ 3-cycles and s1 (possibly zero) 6-cycles.

We fix the 3-cycle C = (x0, y0, z0) of Ka,b,b corresponding to the entry 0 in the cell
(0, 0) of La. Clearly, La without its 0

th row and 0th column contains 2×2 subsquares

of the form
c2i−1 c2i

r2i−1 2i− 1 0
r2i 0 2i

, 1 ≤ i ≤ a′, along the “diagonal”; see Figure 2. This

subsquare together with four other cells of La, namely, two of the cells (0, 2i−1) and
(0, 2i), for each i, in the 0th row and two cells (2i−1, 0) and (2i, 0) in the 0th column

give the partial latin square Lai of La, where Lai =

c0 c2i−1 c2i
r0 2i 2i− 1

r2i−1 2i 2i− 1 0
r2i 2i− 1 0 2i

.

Each Lai, 1 ≤ i ≤ a′, with 8 entries, as shown above, is equivalent to 24 edges of
Ka,b,b and a {Cr1

3 , Cs1
6 }-decomposition of these 24 edges is listed below:

(1) If r1 = 8 and s1 = 0, it is clear as each cell corresponds to a C3.

(2) If r1 = 6 and s1 = 1, then a required set of cycles is

(x0, y2i−1, z2i), (x0, y2i, z2i−1), (x2i−1, y2i, z0), (x2i, y2i−1, z0),

(x2i, y2i, z2i), (x2i−1, y0, z2i−1), (x2i, y0, z2i, x2i−1, y2i−1, z2i−1).

(3) If r1 = 4 and s1 = 2, then a required set of cycles is

(x2i−1, y2i−1, z2i−1), (x2i−1, y2i, z0), (x2i, y2i−1, z0), (x2i, y2i, z2i),

C ′ = (x0, y2i, z2i−1, x2i, y0, z2i), C
′′ = (x0, y2i−1, z2i, x2i−1, y0, z2i−1).

(4) If r1 = 2 and s1 = 3, then a required set of cycles is

(x2i−1, y2i−1, z0), (x2i, y2i, z2i), C
′, C ′′, (x2i, y2i−1, z2i−1, x2i−1, y2i, z0),
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First a rows of L.

Last b− a rows of L.

First a columns of L. Last b− a columns of L.

La Lb

Lc

Figure 3: Three partial latin squares of L.

where C ′ and C ′′ are as in (3) above.

(5) If r1 = 0 and s1 = 4, then a set of cycles is (x2i−1, z2i−1, y2i−1, x2i, y2i, z0),
(x2i, z2i, y2i, x2i−1, y2i−1, z0), C

′, C ′′, where C ′ and C ′′ are as in (3) above.

The subgraphs of Ka,b,b corresponding to these Lai’s contain, besides other edges,
all the edges corresponding to the cells of the 0th row and 0th column of La except
the cell (0, 0), for which the triangle C = (x0, y0, z0) has already been fixed. The
remaining cells of La are the cells of the a′(a′ − 1) 2× 2 subsquares of the form (α)
(which are not on the “diagonal”). Each of these 2 × 2 subsquares of the form (α)
can be decomposed into two C6, or one C6 and two C3, or four C3; see (2) in Case
(i) above. Thus the edges of Ka,b,b corresponding to the cells of La are partitioned
into r′, 1 ≤ r′ ≤ a2, 3-cycles and s1 (which may be zero) 6-cycles; the value of r′ = 0
is excluded here as the 3-cycle C = (x0, y0, z0) is available in the decomposition
obtained above.

Next we partition the edges of Ka,b,b corresponding to the cells of Lb into r′′

3-cycles and s2 (possibly zero) 6-cycles.

From the construction of L, Lb (see Figure 3) contains a
′(b′−a′) 2×2 subsquares

of the form (α). We partition Lb into L1
b and L2

b , where L1
b contains the first three

rows of Lb and L2
b contains the rest of the rows of Lb. Here L1

b is partitioned into
b′ − a′ 3× 2 subsquares of the form shown below:

c2a′+2j−1 c2a′+2j

r0 2a′ + 2j 2a′ + 2j − 1
r1 α α+ 1
r2 α+ 1 α

,

where 1 ≤ j ≤ b′ − a′.

Each of these 3×2 subsquares of the above form corresponds to 18 edges of Ka,b,b,
and possible partitions of these edges into C3 and C6 are listed below:
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(1) Three 6-cycles: (x0, z2a′+2j−1, y2a′+2j , x1, y2a′+2j−1, z2a′+2j),

(x1, zα, y2a′+2j−1, x2, y2a′+2j , zα+1), (x2, zα, y2a′+2j , x0, y2a′+2j−1, zα+1).

(2) Two 6-cycles and two 3-cycles: C ′ = (x0, y2a′+2j−1, z2a′+2j),

C ′′ = (x0, y2a′+2j , z2a′+2j−1), (x1, y2a′+2j, x2, zα+1, y2a′+2j−1, zα),

(x1, y2a′+2j−1, x2, zα, y2a′+2j , zα+1).

(3) One 6-cycle and four 3-cycles: (x1, y2a′+2j , zα+1, x2, y2a′+2j−1, zα), C
′, C ′′,

(x1, y2a′+2j−1, zα+1) and (x2, y2a′+2j , zα).

(4) Six 3-cycles: the six 3-cycles correspond to the six entries in the six cells.

This proves that L1
b can be decomposed into a suitable number of C3 and C6.

Next we consider L2
b .

The cells in L2
b can be partitioned into (a′ − 1)(b′ − a′) 2 × 2 subsquares of

the form (α) and the 12 edges corresponding to each of these subsquares can be
decomposed into four C3, or two C3 and one C6, or two C6; see (2) in Case (i) above.
Corresponding to L2

b we have obtained r′′, 0 ≤ r′′ ≤ a(b− a), C3 and s2 (which may
be zero) C6. So far we have obtained r = r′+r′′, 1 ≤ r ≤ ab, 3-cycles and s′ = s1+s2
(possibly zero) 6-cycles of Ka,b,b corresponding to the cells of La and Lb.

Next we shall partition the edges of Ka,b,b corresponding to the cells in Lc.

Recall that each of the cells in Lc represents exactly one edge of Kb,b ⊂ Ka,b,b,
as the above rC3 and s′C6 obtained through La, L

1
b and L2

b contain all the edges
incident with the partite set of size a. For example, the entry k of the cell (i, j) in Lc

represents the edge yjzk in Ka,b,b. Let H be the bipartite subgraph of Kb,b ⊆ Ka,b,b

corresponding to the cells of Lc. Clearly, Lc contains b
′ − a′ 2× 2 subsquares of the

form:
c2a′+2i−1 c2a′+2i

r2a′+2i−1 2a′ + 2i− 1 0
r2a′+2i 0 2a′ + 2i

, 1 ≤ i ≤ b′ − a′.

These b′ − a′ 2 × 2 subsquares together with the cells in the 0th column of Lc can
be partitioned into 2× 3 subsquares of the form Lci , 1 ≤ i ≤ b′ − a′, where

Lci =

c0 c2a′+2i−1 c2a′+2i

r2a′+2i−1 2a′ + 2i 2a′ + 2i− 1 0
r2a′+2i 2a′ + 2i− 1 0 2a′ + 2i

;

see the structure in Figure 2. Six edges of H corresponding to the six cells of Lci

induce the 6-cycle (y0, z2a′+2i−1, y2a′+2i−1, z0, y2a′+2i, z2a′+2i). Let H0 be the subgraph
of H corresponding to the entries of the cells of L′

c, where L
′
c is obtained from Lc by

deleting the cells Lci , 1 ≤ i ≤ b′ − a′; see Figure 4. Now partition the cells of L′
c into

(b− a)/6 partial latin squares L′
ci
, 1 ≤ i ≤ b−a

6
, where L′

ci
consists of six consecutive

rows, beginning from the first row, of L′
c. We shall now show that the subgraph of

H0 corresponding to the cells of each L′
ci

can be decomposed into cycles of length
six.
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C0

Last b− a columns.

r2a′+1

r2a′+2
r2a′+3
r2a′+4
r2a′+5

r2a′+6

r2b′
r2b′−1

Diagonal 2 × 2 cells, of L in Lc, are of the form

x+ 1

x 0

0

Figure 4: L′
c consists of all the cells of Lc which are not shown explicitly. Part of the 2 × 2

“diagonal” cells of L and the cells of the 0th column of Lc are shown explicitly.

Subcase 2.1. b′ is odd.

A 6-cycle decomposition of the subgraph of H0 corresponding to L′
ci
, 1 ≤ i ≤ b−a

6
,

is determined here. The six rows of L′
ci
arise out of three rows of Ib′ , except the three

cells of Ib′ ; see Figure 5 and Observation 2 of Remark 3.7.
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Figure 5: The three rows of the partial latin square of Ib′ corresponding to the six rows of
L′
ci , 1 ≤ i ≤ b−a

6 , is given above, wherein the three entries of the cells with ∗ are already used by

Lci . Here t stands for a′ + 3i− 2, n = � b′
2 � and m = 1 + n(t− 1).

The cells of Ib′ in these three rows of it are partitioned into three cells each, according
to t ≡ 1 or 0 (mod 2), where t = a′ + 3i − 2; see Figure 6(a) or Figure 6(b),
respectively. Note that in Figure 6(b) the first two cells in the last column and the
first cell of the row t of Ib′ give rise to twelve entries in L′

ci
; similarly, the three

cells (rt+1, c1), (rt+2, c1) and (rt+2, cb′) of Ib′ yield twelve cells in L′
ci
. Each of the

three cells of Ib′ (shown by bold lines in Figure 6) give rise to twelve cells in L′
ci
.

Each of the subgraphs, having twelve edges, corresponding to these twelve cells, is
isomorphic to the graph G (since in the three cells of Ib′ , shown by the bold lines
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covering three cells, two of the cells have the same symbol); see Figure 7(c), which
can be decomposed into two cycles each of length six.

rt
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· · ·

· · ·

· · ·
c 1 · · ·

· · ·

· · ·

· · ·

· · ·c t
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c t
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+
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+
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+
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c b
′ −

1

c b
′

c 2 c 3 c 4

(a)

· · ·

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

(b)

�

�

�

�

�

�

rt

rt+1

rt+2

c 1 c 2 c 3 c t
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2
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−
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c t

c t
+
1

c t
+
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c t
+
3

c t
+
4

c b
′ −

1

c b
′

c b
′ −

2

Figure 6: In (a) and (b), the edges of Ka,b,b corresponding to the cells with bullets have been used
by Lci.

rt

rt+1

c 1 c 2

(b)

(c)

� � � �

� � � �

y1 y2 y3 y4

z2m−1 z2m z2(m+n)−1 z2(m+n)

G ⊂ H0

2m− 1

2m− 12m

2m 2(m+ n)− 1 2(m+ n)

2(m+ n)− 12(m+ n)

2(m+ n)− 1 2(m+ n)

2(m+ n)− 12(m+ n)

r2t−1

r2t

r2t+1

r2t+2

c 1 c 2 c 3 c 4

(a)

Figure 7: Twelve cells of L′
ci corresponding to the three cells of Ib′ , covered by bold lines of (a),

are shown in (b). The subgraph of H0 corresponding to the twelve cells in (b) is shown in (c) with
a C6-decomposition.

Subcase 2.2. b′ is even.

First we complete the proof of the case (a, b) 	= (3, 9).

Let b′ = 2b′′ for some b′′ ≥ 3. Here we obtain a C6-decomposition of the subgraph
of H0 corresponding to the cells of L′

ci
, 1 ≤ i < (b − a)/6, and L′

c(b−a)/6
(note that,

by our construction, L′
c(b−a)/6

is different from L′
ci
and so we deal with it separately).

The six rows of L′
ci
(respectively, L′

c(b−a)/6
) correspond to the three rows t, t+ 1 and

t + 2 (respectively, the last three rows) of Ib′, except its three cells; see Figure 8
(respectively, Figure 10),
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Figure 8: The entries of the three rows t, t + 1 and t + 2 of Ib′ , except the three cells with ∗
symbol, where n = b′′ and m = 1 + n(t − 1) and the entries are taken modulo b′ − 1 except the
entries in the cells (rt, ct+1), (rt+1, ct+2) and (rt+2, ct+3).

see Observation 3 (respectively, Observation 4) of Remark 3.7, where t = a′ +3i− 2.
Now we partition the cells of Figure 8 (respectively, Figure 10) into three cells each,
according to Figure 9 (respectively, Figure 11), where three of the cells with entry
αj , 1 ≤ j ≤ 5, form a member of the partition. Each of these three cells of Figure 8
(respectively, Figure 10) give rise to twelve cells in L′

ci
(respectively, L′

c(b−a)/6
) and

the subgraph of H0 corresponding to these twelve cells is isomorphic to the graph G
shown in Figure 7(c), which can be decomposed into two cycles of length six.
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Figure 9

Now we complete the proof for the case when a = 3 and b = 9.

By the construction of L, the partial latin square L′
c of Lc is given in Figure 12.

A C6-decomposition of H0 corresponding to the entries of the cells of L′
c is given

below:

(y1, z5, y3, z2, y4, z6), (y2, z5, y4, z1, y3, z6), (y1, z7, y5, z2, y6, z8),

(y2, z7, y6, z1, y5, z8), (y1, z3, y7, z1, y8, z4) and (y2, z3, y8, z2, y7, z4).

This completes the proof.
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Figure 10: The entries of the last three rows of Ib′ , except the three cells with ∗ symbol, are given
above, where the entries are taken modulo b′ − 1 except the entries in the cells (rb′−2, cb′−1) and
(rb′−1, c1).
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c1 c2 c3 c4 c5 c6 c7 c8
r3 5 6 7 8 1 2
r4 6 5 8 7 2 1
r5 7 8 1 2 3 4
r6 8 7 2 1 4 3
r7 3 4 5 6 1 2
r8 4 3 6 5 2 1

Figure 12: The entries of L′
c of L of order 9 are shown above.

Now we are ready to prove our main theorem.

Proof of Theorem 1.2

Clearly, Ka,b,c = Ka,b,b ⊕ Ka+b,c−b. By hypothesis, a, b, c ≡ t(mod 6), where
t ∈ {0, 1, 2, 3, 4, 5}; hence a + b is even and c − b ≡ 0 (mod 6). The graph Ka+b,c−b

admits a C6-decomposition, by Theorem 3.3. Since the maximum number of triangles
in Ka,b,c and Ka,b,b are the same and Ka+b,c−b has a C6-decomposition, it is enough to
consider a {Cr1

3 , Cs1
6 }-decomposition of Ka,b,b. By Theorem 3.8 such a decomposition

exists.
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