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Abstract

We construct a class of latin squares of order 2n+1 constructed from the
Cayley tables of cyclic groups of orders n and n + 1. We show that for
n even each of these latin squares has maximal partial transversals of all
possible lengths, and for n odd each of these latin squares has maximal
partial transversals of all possible lengths except one. In the case n > 1
odd, by switching an intercalate we obtain latin squares of order 2n + 1
that have maximal partial transversals of all possible lengths. Hence, for
n odd, n �= 3, there exists a latin square of order n that has maximal
partial transversals of all possible lengths.

1 Introduction

A latin square L of order n is a square matrix of order n with entries from a symbol
set S of order n, each element of S appearing exactly once in each row and column
of L. As an example, the Cayley table of Zn is the latin square Mn = (mij), i, j =
0, . . . , n−1, where mij = i+j mod n. Any latin square obtained from a latin square
L by permuting rows, columns, and symbols or replacing the symbol set by another
set of the same order is an isotope of L and is said to be isotopic to L. A partial
transversal T of a latin square L is a set of cells of L, at most one in each row and
at most one in each column, each symbol of L appearing at most once in a cell of
T : |T | is the length of T . A maximal partial transversal of L is a partial transversal
that cannot be extended to a partial transversal of greater length. Maximal partial
transversals are also called non-extendable in the literature: see [8]. For L a latin
square of order n, a near transversal of L is a partial transversal of length n−1, and
a transversal of L is a partial transversal of length n. If T is a near transversal of L,
then the unique cell of L that is not in the same row or column as a cell of T will be
called the missing cell of T , and the symbol of L that is not in T will be called the
missing symbol of T . The following is a well-known and easily established bound on
the lengths of maximal partial transversals.
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Theorem 1.1 If m is the length of a maximal partial transversal of a latin square
of order n, then ⌈

n

2

⌉
≤ m ≤ n.

Throughout this paper, when we say that a latin square has maximal partial
transversals of all possible lengths, we will mean that the latin square has maximal
partial transversals of all lengths allowed by Theorem 1.1. There is much work in the
literature on transversals and partial transversals: see the surveys by Wanless [7, 8]
or the book by Dénes and Keedwell [3]. However, little has been done on the possible
lengths of maximal partial transversals. It is known that, for n > 4, there exists a
latin square of order n that has a maximal partial transversal of length �n/2�: a
construction that proves this was described by Wanless in [7, 8]. It was recently
proved by Best, Marbach, Stones, and Wanless that, for any n ≥ 5 and any m
satisfying �n/2� ≤ m ≤ n, there exists a latin square of order n with a maximal
partial transversal of length m: see Theorem 12 in [1].

We will study maximal partial transversals of bicyclic latin squares. A bicyclic
latin square of order 2n+ 1 is a latin square

L =

(
A B
C D

)
,

in which

• A is a latin square of order n, on the symbol set Zn, that is isotopic to Mn;

• B is Mn+1 with the last row removed;

• C is Mn+1 with the last column removed; and

• D is obtained from a circulant latin square E of order n+1, on the symbol set
Zn ∪ {∞}, with the ∞s on the main diagonal, by replacing the main diagonal
by the last row of B/last column of C.

Note that E is isotopic to Mn+1. If the first row of D is (n, d1, . . . , dn), we will
denote L by LA,d1,...,dn. To distinguish the elements of Zn from those of Zn+1, we
will write Zn multiplicatively as Zn = 〈g〉 = {g0, g1, . . . , gn−1} and Zn+1 additively
as Zn+1 = {0, 1, . . . , n}, addition modulo n+1. Note that, if di = gi, then, for i �= j,
the ijth entry of D is

dij =

{
gj−i if i < j,

gj−i+1 if i > j.

The bicyclic latin square, LM2,g1,g2, is shown in Figure 1.
As an immediate consequence of Theorem 1.1 we obtain the following bounds on

lengths of maximal partial transversals of bicyclic latin squares.

Theorem 1.2 If T is a maximal partial transversal of length k of a bicyclic latin
square of order 2n+ 1, then n+ 1 ≤ k ≤ 2n + 1.
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⎛
⎜⎜⎜⎜⎝

g0 g1 0 1 2
g1 g0 1 2 0
0 1 2 g1 g0

1 2 g0 0 g1

2 0 g1 g0 1

⎞
⎟⎟⎟⎟⎠

Figure 1: The bicyclic latin square LM2,g1,g2

In Section 2 we will give some needed results on transversals, near transversals,
and latin subsquares of Mn. In Section 3 we will construct maximal partial transver-
sals of bicyclic latin squares of order 2n + 1, n even. We will prove that, if n is
even, then every bicyclic latin square of order 2n + 1 has maximal partial transver-
sals of lengths n + 1 and 2n. We will also prove that, if n is even, then LMn,g1,...,gn

has maximal partial transversals of all possible lengths, i.e., n + 1, . . . , 2n + 1. In
Section 4 we will construct maximal partial transversals of bicyclic latin squares of
order 2n+ 1, n odd. We will prove that, if n is odd, then every bicyclic latin square
of order 2n+1 has maximal partial transversals of lengths n+2 and 2n+1. We will
also prove that, if n is odd, n �= 3, then LMn,g1,...,gn has maximal partial transversals
of all possible lengths but one, n + 1. For the exceptional case, n = 3, we will show
that LM3,g1,g2,g3 has maximal partial transversals of all possible lengths. In Section 5
we will modify LMn,g1,...,gn, n odd, to obtain a class of latin squares with maximal
partial transversals of all possible lengths, thus establishing the existence of latin
squares of all odd orders except three that have maximal partial transversals of all
possible lengths.

2 Transversals and near transversals of Mn

In our constructions of maximal partial transversals of bicyclic latin squares, the
existence of transversals and near transversals of Mn will play a role. Euler [4]
showed that Mn has transversals if n is odd and no transversals if n is even. Using
Euler’s approach the missing symbol of a near transversal of Mn is easily determined.

Lemma 2.1 Let T be a near transversal of Mn with missing symbol a, and let b be
the entry in the missing cell of T . Then, modulo n,

b =

{
a if n is odd;

a+ n/2 if n is even.

Proof: First note that, by simple computation in Zn,

S =
∑
i∈Zn

i =

{
0 if n is odd;

n/2 if n is even.
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Let (s, t) be the missing cell of T : hence b = s+ t. Let (ik, jk), k = 1, . . . , n− 1, be
the cells of T . Then

S =

n−1∑
k=1

(ik + jk) + a = 2S + a− b.

Therefore

b = a+ S =

{
a if n is odd;

a + n/2 if n is even;

as claimed. �

Paige [6], by characterizing finite abelian groups that admit complete mappings,
generalized Euler’s result, implicitly showing that the Cayley table of a finite abelian
group has a transversal if and only if it does not contain a unique involution. Paige’s
proof implicitly yielded a near transversal for the Cayley table of a finite abelian
group that contains a unique involution, in particular for Mn when n is even.

Theorem 2.1 If n is even, then Mn has no transversal, and any cell of Mn can be
the missing cell of a near transversal of Mn.

If n is odd, then Mn has a transversal, and every near transversal of Mn can be
extended to a transversal of Mn.

Proof: If n is even and T is a transversal of Mn, then for the near transversal
of Mn, obtained by removing a cell of T , the missing symbol will be the entry in
the missing cell, contradicting Lemma 2.1. Hence, if n is even, then Mn has no
transversal. For n even, let T consist of the n − 1 cells (0, 0), (1, 1), . . . , (n/2 −
1, n/2 − 1) and (n/2, n/2 + 1), (n/2 + 1, n/2 + 2), . . . , (n − 2, n − 1). The entries
in cells (0, 0), (1, 1), . . . , (n/2 − 1, n/2 − 1) are 0, 2, . . . , n − 2, which are even and
distinct, and the entries in cells (n/2, n/2 + 1), (n/2 + 1, n/2 + 2), . . . , (n− 2, n− 1)
are 1, 3, . . . , n− 3, which are odd and distinct. It follows that T is a near transversal
with missing cell (n−1, n/2). If, for s, t ∈ Zn, T+(s, t) consists of the cells (i+s, j+t),
(i, j) a cell of T , where row and column indices are added modulo n, then T + (s, t)
is a near transversal of Mn with missing cell (n − 1 + s, n/2 + t), where row and
column indices are added modulo n. Hence, if n is even, then any cell of Mn can be
the missing cell of a near transversal of Mn.

If n is odd, then the entries on the main diagonal of Mn are 0, 2, . . . , 2(n − 1).
As gcd(2, n) = 1, these entries are distinct and so the main diagonal of Mn is a
transversal of Mn. Further, if n is odd and T is a near transversal of Mn, then, by
Lemma 2.1, the entry in the missing cell of T is the missing symbol of T , and so T
can be extended to a transversal of Mn. �

A latin subsquare of a latin square L is a square submatrix of L that is a latin
square. If L is a latin square of order n and N is a latin subsquare, of L, of order m,
then N is a trivial latin subsquare if m = 1 or n, and N is a proper latin subsquare
of L otherwise. While the order of a latin subsquare of a latin square L need not
divide the order of L in general, this is the case when L is isotopic to Mn.
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Theorem 2.2 If N is a latin subsquare of order m of an isotope of Mn, then m
divides n.

Proof: This is given as a corollary to Theorem 1.6.4 in [3]. �

An important role in the study of latin squares is played by the intercalates: an

intercalate is a latin subsquare of order two. To switch an intercalate

(
a b
b a

)
is to

replace it by

(
b a
a b

)
. Switching an intercalate in a latin square yields a latin square

with possibly different properties. As an example, while Mn has no transversals if n
is even by Theorem 2.1, this is not the case for a latin square obtained from Mn by
switching an intercalate.

Theorem 2.3 If n is even and L is obtained from Mn by switching an intercalate,
then L has a transversal.

Proof: Let us first note that if (i, j) is a cell of Mn, n even, then the cells (i, j),
(i+n/2, j), (i, j+n/2), and (i+n/2, j+n/2), addition modulo n, form an intercalate
of Mn, the unique intercalate containing the cell (i, j).

Let T be the near transversal of Mn constructed in Theorem 2.1. The missing cell
of T is (n − 1, n/2). No cell of the intercalate containing the cell (n − 1, n/2) is a
cell of T and, if L is the latin square obtained from Mn by switching the intercalate
containing the cell (n − 1, n/2). The entry in the (n − 1, n/2)th cell of L is n − 1,
the missing symbol of T . Hence L has a transversal. This argument can be repeated
with T + (s, t) instead of T and (n− 1+ s, n/2+ t) in place of (n− 1, n/2), as in the
proof of Theorem 2.1. �

An immediate corollary:

Corollary 2.1 If n is even and L is isotopic to a latin square obtained from Mn by
switching an intercalate, then L has a transversal.

There are several tests to determine whether a latin square is isotopic to the
Cayley table of a group. The oldest such test is the Quadrangle Criterion.

Theorem 2.4 (The Quadrangle Criterion) A latin square L = (lij), of order
n, is isotopic to the Cayley table of a group of order n if and only if, for all
i1, i2, j1, j2, s1, s2, t1, t2 ∈ {0, 1, . . . , n − 1}, i1 �= i2, j1 �= j2, s1 �= s2, t1 �= t2, if
li1j1 = ls1t1 = a, li1j2 = ls1t2 = b, li2j1 = ls2t1 = c, and li2j2 = d, then ls2t2 = d.

Proof: See Theorem 1.2.1 in [3]. �

Figure 2 elucidates the Quadrangle Criterion. If the Criterion holds then the “?”
represents the symbol d.

From the Quadrangle Criterion, we can show that certain subarrays in a latin
square L, where L is isotopic to Mn, can be extended to proper latin subsquares
of L.
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L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a · · · b
...

. . .
...

c · · · d

a · · · b
...

. . .
...

c · · · ?

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2: A depiction of the Quadrangle Criterion

Corollary 2.2 Let L be isotopic to Mn and let m ≥ 3. If N is an m × (m − 1)
or (m− 1)×m subarray of L that contains exactly m symbols of L, then N can be
extended to a latin subsquare, of L, of order m.

Proof: Suppose that N is an m × (m − 1) subarray of L, and let S be the set of
symbols in N . As |S| = m and each row of N contains m−1 symbols, in each row of
N one symbol of S, a “missing” entry, does not occur. It is an exercise to show that
these missing entries are distinct: see Exercise 1.5 in [5]. Further, using isotopisms,
we may assume that N occupies rows 0, . . . , m− 1 and columns 0, . . . , m− 2 of L.

Set s1 = t1 = 0 and let a denote the s1t1th entry of N . For some t2 ≥ m − 1, the
s1t2th entry of L is a symbol of N , b say. Pick s2, 1 ≤ s2 ≤ m−1, and let c denote the
s2t1th entry of N . For some i1, 1 ≤ i1 ≤ m−1, there exists j1, j2, 0 ≤ j1, j2 ≤ m−2,
for which the i1j1th entry of N is a and the i1j2th entry is b: the row with missing
entry c for instance. For some i2, the i2j1th entry of N is c. Let d denote the i2j2th
entry of N . Then, by the Quadrangle Criterion, the s2t2th entry of L is d, a symbol
of N . It follows that the 0,t2th through (m− 1),t2th entries of L are symbols of N ,
and, hence, that N can be extended to a latin subsquare of L of order m.

The case N an (m− 1)×m subarray of L is similar. �

3 Maximal partial transversals when n is even

In this section we will construct maximal partial transversals of bicyclic latin squares
of order 2n+1, n even, and will prove that LMn,g1,...,gn has maximal partial transver-
sals of all possible lengths when n is even. For n even, every bicyclic latin square
of order 2n + 1 has a maximal partial transversal of the minimum possible length,
n + 1.

Lemma 3.1 If n is even, then any bicyclic latin square of order 2n+1 has a maximal
partial transversal of length n + 1.
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Proof: Let n be even and let L =

(
A B
C D

)
be a bicyclic latin square of order

2n + 1. Let the cells {(0, j0), . . . , (n, jn)} be a transversal of Mn+1, and form a
partial transversal T of L consisting of the n cells {(0, j0), . . . , (n − 1, jn−1)} of B
and the cell (jn, jn) of D. The symbols of T are precisely the elements of Zn+1 and
every cell containing an element of Zn is in the same row and/or column as a cell of
T . Hence T is a maximal partial transversal of L of length n + 1. �

An alternative proof of Lemma 3.1 is implied in the constructions described in [7,
8]. As D is constructed from a circulant latin square of order n + 1, and any such
square is isotopic to Zn+1, we can construct a partial transversal T of a bicyclic latin
square of order 2n + 1 consisting of n + 1 cells of D, n of these cells containing
elements of Zn. It is easy to see that T is maximal. This construction fails when n
is odd.

When n is even, every bicyclic latin square of order 2n+1 has a near transversal
that is maximal.

Lemma 3.2 If n is even, then any bicyclic latin square of order 2n+1 has a maximal
partial transversal of length 2n.

Proof: Let n be even and let L =

(
A B
C D

)
be a bicyclic latin square of order

2n + 1. Let T consist of the n− 1 cells of a near transversal N of A and the n + 1
cells on the main diagonal of D. As every element of Zn+1 is represented on the
main diagonal of D, T contains every element of Zn+1. The cells of N contain n− 1
distinct elements of Zn, and the only cell of L, containing an element of Zn, that
is not in the same row or column as a cell of T is the missing cell of N , which, by
Lemma 2.1, cannot contain the missing symbol of N . Hence, T is a maximal partial
transversal of L of length 2n. �

As an example to illustrate Lemmas 3.1 and 3.2, for the latin square L in Figure 1,
maximal partial transversals of L of lengths 3 and 4 are shown in Figure 3: the entries
of the maximal partial transversal are shown as i or gi.

⎛
⎜⎜⎜⎜⎝

g0 g1 0 1 2
g1 g0 1 2 0
0 1 2 g1 g0

1 2 g0 0 g1

2 0 g1 g0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

g0 g1 0 1 2
g1 g0 1 2 0
0 1 2 g1 g0

1 2 g0 0 g1

2 0 g1 g0 1

⎞
⎟⎟⎟⎟⎠

Figure 3: Two maximal partial transversals of LM2,g1,g2

The main result of this section is that, if n is even, then LMn,g1,...,gn has maximal
partial transversals of all possible lengths.
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Theorem 3.1 If n is even, then LMn,g1,...,gn has maximal partial transversals of
lengths n+ 1, . . . , 2n+ 1.

Proof: As the result is trivially true if n = 0, we shall assume that n ≥ 2. Suppose

that L =

(
A B
C D

)
= LMn,g1,...,gn and that n is even. By Lemma 3.1, L has a

maximal partial transversal of length n + 1 and by Lemma 3.2, L has a maximal
partial transversal of length 2n.

Three constructions will yield maximal partial transversals of L of the remaining
lengths. The first construction will be of maximal partial transversals of L of length
n + 2m + 1 when 1 ≤ m ≤ n/2 and n/2 is even and 1 ≤ m < n/2 when n/2 is
odd. The second construction will be of maximal partial transversals of L of length
n + 2m when 1 ≤ m < n/2. The last construction will be of a transversal of L.

First construction: For n even, we will construct maximal partial transversals of
L of length n + 2m+ 1; for 1 ≤ m ≤ n/2, when n/2 is even; and for 1 ≤ m < n/2,
when n/2 is odd.

Let T consist of the (0, 0), (1, 1), . . . , (m − 1, m − 1)th cells of B, the (m,m), (m +
1, m + 1), . . . , (n − 1, n − 1)th cells of C, and the (n, n)th cell of D. T is a partial
transversal of L of length n + 1, and the cells of T contain each element of Zn+1

exactly once.

T can only be extended to a longer partial transversal by incorporating cells from the
submatrix Ā = (aij) of A, i = m, . . . , n− 1, j = 0, . . . , m− 1; and/or the submatrix
D̄ = (dij) of D, i = 0, . . . , m− 1, j = m, . . . , n− 1. We can extend T by choosing at
most m cells from Ā and at most m cells from D̄.

Let us extend T to a partial transversal T ′ of L by choosing the (m, 0), (m +
1, 1), . . . , (2m − 1, m − 1)th cells from Ā. The entries in these cells are m distinct
elements of Zn. There are two cases to consider, m even and m odd.

Case 1: If m is even, then the entries in the chosen cells of Ā are all even powers of
g. Let us extend T ′ to a partial transversal T ′′ of L by choosing the (m−1, m), (m−
2, m+1), . . . , (0, 2m−1)th cells of D̄: the entries in these cells are all distinct elements
of Zn, and are all odd powers of g.

The partial transversal T ′′ that we have constructed is a maximal partial transversal
of length n+ 2m+ 1.

Case 2: If m is odd, then the entries in the chosen cells of Ā are all odd powers of
g. If m is odd and m �= n/2, let us extend T ′ to a partial transversal T ′′ of L by
choosing the (m− 1, m+ 1), (m− 2, m+ 2), . . . , (0, 2m)th cells of D: the entries in
these cells are all distinct elements of Zn, and are all even powers of g.

The partial transversal T ′′ that we have constructed is a maximal partial transversal
of length n+ 2m+ 1.
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In each case the partial transversal T ′′ that we have constructed is a maximal partial
transversal of length n+2m+1, where 1 ≤ m ≤ n/2 if n/2 is even and 1 ≤ m < n/2
if n/2 is odd.

Second construction: For n even and 1 ≤ m < n/2, we will construct maximal
partial transversal of length n + 2m of L.

Suppose that 1 ≤ m < n/2. Let T consist of the (0, 0), (1, 1), . . . , (m − 1, m − 1)th
cells of B, the (m+1, m−1), (m+2, m), . . . , (n, n−2)th cells of C, and the (0, n−1)th
cell of C. These cells contain each element of Zn+1 exactly once.

T can only be extended to a longer partial transversal by incorporating cells from the
submatrix Ā = (aij) of A, i = m, . . . , n− 1, j = 0, . . . , m− 2; and/or the submatrix
D̄ = (dij) of D, i = 1, . . . , m, j = m, . . . , n. We can extend T by choosing at most
m− 1 cells from Ā and at most m cells from D̄.

Let us extend T to a partial transversal T ′ of L by choosing the (m, 0), (m +
1, 1), . . . , (2m − 2, m − 2)th cells from Ā. The entries in these cells are distinct
elements of Zn. There are two cases to consider, m even and m odd.

Case 1: If m is even, then the entries in the chosen cells of Ā are all even powers of
g. Let us extend T ′ to a partial transversal T ′′ of L by choosing the (m,m+1), (m−
1, m+ 2), . . . , (1, 2m)th cells of D̄: the entries in these cells are all distinct elements
of Zn, and are all odd powers of g.

Case 2: If m is odd, then the entries in the chosen cells of Ā are all odd powers of
g. Let us extend T ′ to a partial transversal T ′′ of L by choosing the (m,m+2), (m−
1, m + 3), . . . , (1, 2m + 1)th cells from D̄: the entries in these cells are all distinct
elements of Zn, and are all even powers of g.

In each case the partial transversal T ′′ that we have constructed is a maximal partial
transversal of length n+2m. This construction yields a maximal partial transversal
of length n+ 2m, where 1 ≤ m < n/2.

Third construction: The first construction yielded a transversal of L when n/2 is
even. It remains to show that L has a transversal when n/2 is odd.

Let T be a near transversal of A with missing cell (n/2−2, n/2+1): the existence of
such a near transversal is guaranteed by Theorem 2.1. As the entry of this missing
cell is gn−1, by Lemma 2.1, the missing symbol of T is g(n/2)−1.

Let us extend T to T ′ by adding the cell (n/2− 2, 0) of B, the cell (n/2− 1, n/2+1)
of C, and the cells (1, 1), . . . , (n/2− 2, n/2− 2) and (n/2, n/2), . . . , (n, n) of D. The
entries of these added cells are precisely the elements of Zn+1 and so T ′ is a partial
transversal of L of length 2n. The only cell of L that is not in a row or column of T ′

is the (0, n/2− 1)th cell of D. The entry of this cell is g(n/2)−1, the missing symbol
of T . It follows that adding the (0, n/2 − 1)th cell of D to T ′ yields a transversal
of L. �
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4 Maximal partial transversals when n is odd

In this section we will construct maximal partial transversals of bicyclic latin squares
of order 2n+1, n odd, and will prove that LMn,g1,...,gn has maximal partial transversals
of all possible lengths except one when n is odd, n �= 3, and of all possible lengths if
n = 3. For n odd, every bicyclic latin square of order 2n + 1 has a maximal partial
transversal of length, n+ 2.

Lemma 4.1 If n is odd, then any bicyclic latin square of order 2n+1 has a maximal
partial transversal of length n + 2.

Proof: Let n be odd and let L =

(
A B
C D

)
be a bicyclic latin square of order 2n+1.

Let the cells {(0, j0), . . . , (n− 1, jn−1)} form a near transversal of Mn+1 with missing
cell (n, jn) and missing symbol n−1: the existence of such a near transversal follows
from Lemma 2.1 and Theorem 2.1. Let T consist of the cells {(0, j0), . . . , (n−1, jn−1)}
of B, and the cell (0, n− 1) of C. The symbols of T are precisely the n+ 1 elements
of Zn+1. Let us next extend T to a partial transversal T ′ of L by adding the (1, jn)th
cell of D if jn �= 1, or the (2, jn)th cell of D if jn = 1.

As every cell of L with an entry from Zn is in the same row and/or column as a cell
of T ′, T ′ is a maximal partial transversal of L of length n + 2. �

When n is odd, every bicyclic latin square of order 2n+ 1 has a transversal, i.e.,
a maximal partial transversal of length 2n+ 1.

Lemma 4.2 If n is odd, then any bicyclic latin square of order 2n+1 has a maximal
partial transversal of length 2n+ 1.

Proof: Let n be odd and let L =

(
A B
C D

)
be a bicyclic latin square of order 2n+1.

A transversal of A combined with the main diagonal of D is a maximal partial
transversal of length 2n+ 1, i.e., a transversal. �

Theorem 4.1 If n is odd, n �= 3, then LMn,g1,...,gn has no maximal partial transversal
of length n + 1.

Proof: Let n be odd, let L =

(
A B
C D

)
be a bicyclic latin square of order 2n + 1,

and suppose that T is a maximal partial transversal of L of length n + 1. Let α be
the number of rows among the first n rows of L that contain cells of T , and let β be
the number of columns among the first n columns of L that contain cells of T . Then
n + 1 − α is the number of rows among the last n + 1 rows of L that contain cells
of T , and n + 1 − β is the number of columns among the last n + 1 columns of L
that contain cells of T . There are several cases to consider. First, let us note, as any
latin square of order 3 is isotopic to M3 and no near transversal of M3 is maximal
by Theorem 2.1, the result is true for n = 1, and so we will assume that n ≥ 5.
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Case 1. α = β = 0.

All the cells of T are in D. For T to be maximal, the cells of T must contain all
n elements of Zn and one element of Zn+1. But this would imply that Mn+1 has a
transversal, violating Theorem 2.1.

Case 2. α = β = n.

There are two possibilities; either T consists of a transversal of A and one cell of D;
or T consists of n− 1 cells of A and one cell each from B and C.

Subcase 2a. Suppose that T consists of a transversal of A and one cell of D. As
every element of Zn is a symbol of T in A, the cell of T in D must be on the main
diagonal of D. But then T is not maximal as it can be extended to a longer partial
transversal by adding another cell from the main diagonal of D.

Subcase 2b. Suppose that T consists of n− 1 cells of A and one cell each from B
and C. As n ≥ 5, there must exist a cell on the main diagonal of D, not in the same
row as the cell of T in C or the same column as the cell of T in B, whose entry is
not a symbol of T . Hence, T cannot be maximal.

Case 3. {α, β} = {0, n}.
Without loss of generality α = 0 and β = n. T consists of n cells from C and one
from D. The cell of D cannot contain an element of Zn+1 as that would imply the
existence of a transversal of Mn+1, violating Theorem 2.1. Thus the cell of T from
D contains an element of Zn. One element of Zn+1 is not contained in T and this is
an entry in at least one cell of B that is not in the same column as any cell of T .
Hence, T is not maximal.

Case 4. Exactly one of α, β is 0 and the other is neither 0 nor n.

Without loss of generality 0 = α < β < n. T contains β cells of C and n + 1 − β
cells of D. As n−β > 0 of the columns of A contain no cells of T and T is maximal,
each element of Zn must be a symbol of T . This can only occur if β = 1; C contains
one cell of T , whose entry is c ∈ Zn+1; and D contains n cells of T , none on the main
diagonal. T can then be extended to a longer partial transversal by adding a cell of
B that is not in the same column as any cell of T , and that does not have entry c.

Case 5. Exactly one of α, β is n and the other is neither 0 nor n.

Without loss of generality 0 < α < β = n. T has n cells in the first n columns of L
and one “lonely” cell in either B or D. In either case let M be the submatrix of L
consisting of those cells that are not in the same row or column as a cell of T . Now
M contains n cells from at least one row of B and n cells from at least one row of
D. It follows that the entries of M consist of at least n elements of Zn+1 and at least
n − 1 elements of Zn. Hence T can be extended to a longer partial transversal by
appending a cell of M .
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Case 6. α, β �= 0, n.

Let Ā be the submatrix of A consisting of those cells of A that are not in the same
row or column as a cell of T . Let us define B̄, C̄, D̄ similarly. It follows that Ā is
an (n − α) × (n − β) array, B̄ is an (n − α) × β array, C̄ is an α × (n − β) array,
and D̄ is an α × β array: see Figure 4. As in Case 5, let M be the submatrix of L
consisting of those cells that are not in the same row or column as a cell of T . Thus

M =

(
Ā B̄
C̄ D̄

)
.

n− β β

n− α

α

⎛
⎜⎜⎜⎜⎜⎜⎝

(
Ā
) (

B̄
)

(
C̄
) (

D̄
)

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 4: Cells of L not in the same row and/or column as cells of T

As T is maximal, each entry of Ā, B̄, C̄, and D̄ must be a symbol of T . Now, the
number of elements of Zn in M is at least max{n− α, n− β, α− 1, β − 1}, and the
number of elements of Zn+1 in M is at least max{α, β, n− α, n− β}. Hence

max{n− α, n− β, α− 1, β − 1}+max{α, β, n− α, n− β} ≤ n + 1.

It follows that (n− α) + (n − α) ≤ n + 1 and α + (α − 1) ≤ n + 1: similarly for β.
Hence

n− 1

2
≤ α, β ≤ n+ 1

2
.

Without loss of generality α ≤ β. There are three subcases to consider.

Subcase 6a. α = β = (n− 1)/2.

M contains exactly (n+1)/2 elements of Zn and exactly (n+1)/2 elements of Zn+1.
It follows that Ā is a latin subsquare of A. Hence, by Theorem 2.2, (n+1)/2 divides
n, an impossibility.

Subcase 6b. α = (n− 1)/2, and β = (n + 1)/2.

M contains exactly (n+1)/2 elements of Zn and exactly (n+1)/2 elements of Zn+1.
Hence, A has an (n+1)/2×(n−1)/2 array, Ā, containing exactly (n+1)/2 symbols.
Thus, A contains a latin subsquare of order (n + 1)/2 by Corollary 2.2. Hence,
(n + 1)/2 divides n by Theorem 2.2: an impossibility.

Subcase 6c. α = β = (n + 1)/2.
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Ā contains either (n − 1)/2 or (n + 1)/2 elements of Zn. If Ā contains (n − 1)/2
elements of Zn, then Ā is a latin subsquare of order (n − 1)/2 of A. Then, by
Theorem 2.2, (n − 1)/2 divides n, an impossibility. It follows that Ā, B̄, C̄, and D̄
contain exactly (n+ 1)/2 elements of Zn and exactly (n + 1)/2 elements of Zn+1.

By Corollary 2.2, both B̄ and C̄ can be “extended” to latin subsquares of Mn+1 of
order (n+1)/2. Thus, if N is the set of entries of B̄ and C̄, then N is a coset of the
subgroup of Zn+1 of index two. Hence, if j1, . . . , j(n−1)/2 are the columns of C̄, then,
for 1 ≤ s < t ≤ (n− 1)/2, jt − js is even. Similarly for the rows i1, . . . , i(n−1)/2 of B̄.

For n > 5, we will show that Ā contains more than (n + 1)/2 elements in Zn. Let
Āst denote the submatrix of A with rows i1+s, . . . , i(n−1)/2+s and columns j1+t, . . . ,
j(n−1)/2+t, the subscripts being added modulo n. As Āst contains the same number
of distinct entries as Ā, we need only show that the submatrix Ā0 of A with rows
0, 2, . . . , n−3 and columns 0, 2, . . . , n−3 contains more than (n+1)/2 distinct entries
if n > 5. But then, the entries of Ā0 include 0, 2, . . . , n− 3 and n− 1 and 1. Hence,
Ā0 contains more than (n+ 1)/2 distinct entries: a contradiction.

If n = 5, let T contain x cells from A. Then, T contains 3 − x cells from B, 3 − x
cells from C, and x cells from D. Let y be the number of cells in T that are in D
and have entries that are elements of Z6. Counting the number of symbols from Z5

in T , we see that 2x− y = 3. It follows that x = 2 and y = 1, or x = y = 3.

If x = 2 and y = 1, then B̄ is a 2 × 3 submatrix of B whose entries must consist of
precisely three elements of Z6. By Corollary 2.2, B̄ extends to a latin subsquare N
of order three of M6. Let H be the set consisting of the three elements of Z6 that
are elements of B̄: these are also the three elements of Z6 that are also symbols of
T . As y = 1, all rows of N are included in B. Thus no cell on the main diagonal of
D, whose entry is not an element of H , can be in the same column as a cell of T . By
a similar argument no cell on the main diagonal of D, whose entry is not an element
of H , can be in the same row as a cell of T . It follows that T can be extended to
a longer partial transversal of L by appending any cell on the main diagonal of D,
whose entry is not an element of H . Thus, T is not a maximal partial transversal
of L.

Hence the only possibility is x = y = 3. It follows that T can be extended to a longer
partial transversal of L by including another cell from the main diagonal of D. �

A maximal partial transversal of LM3,g1,g2,g3 of length 4 is shown in Figure 5: the
entries of the maximal partial transversal are shown as i or gi.

The main result of this section is that, if n is odd, n �= 3, then LMn,g1,...,gn has
maximal partial transversals of all possible lengths except one. For the exception,
n = 3, LM3,g1,g2,g3 has maximal partial transversals of all possible lengths.

Theorem 4.2 If n is odd, n �= 3, then LMn,g1,...,gn has maximal partial transversals
of each of the lengths n+ 2, . . . , 2n+ 1 and no other. If n = 3, then LM3,g1,g2,g3 has
maximal partial transversals of each of the lengths 4, 5, 6, and 7.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0 g1 g2 0 1 2 3
g1 g2 g0 1 2 3 0
g2 g0 g1 2 3 0 1
0 1 2 3 g1 g2 g0

1 2 3 g0 0 g1 g2

2 3 0 g2 g0 1 g1

3 0 1 g1 g2 g0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 5: A maximal partial transversal of LM3,g1,g2,g3 of length 4.

Proof: Suppose that L =

(
A B
C D

)
= LMn,g1,...,gn and n is odd. By Lemma 4.1, L

has a maximal partial transversal of length n + 2, by Lemma 4.2, L has a maximal
partial transversal of length 2n + 1, and by Theorem 4.1, if n �= 3, then L has
no maximal partial transversal of length n + 1. A maximal partial transversal of
LM3,g1,g2,g3 of length 4 is shown in Figure 5.

Three constructions will yield maximal partial transversals of L of the remaining
lengths. The first construction will be of maximal partial transversals of L of length
2n− 2m− 1 when 0 ≤ m < (n− 3)/2. The second construction will be of maximal
partial transversals of L of length 2n− 2(m+ 1) when 0 ≤ m ≤ (n− 5)/2. The last
construction will be of a maximal partial transversal of length 2n.

First construction: For n odd and 0 ≤ m < (n− 3)/2, we will construct maximal
partial transversals of L of length 2n− 2m− 1.

Suppose that 0 ≤ m < (n− 3)/2. Let T consist of the (m+ 1, m+ 1), (m+ 2, m+
2), . . . , ((n − 1)/2, (n − 1)/2)th cells of B, the (0, 0), (1, 1), . . . , (m,m)th cells of C,
and the ((n+1)/2, (n−1)/2), ((n+3)/2, (n+1)/2), . . . , (n, n−1)th cell of C. These
cells contain each element of Zn+1 exactly once.

T can only be extended to a longer partial transversal by incorporating cells from
the submatrix Ā = (aij) of A, i ∈ {0, 1, . . . , m} ∪ {(n + 1)/2, (n + 3)/2, . . . , n − 1},
j = m+ 1, . . . , (n− 3)/2; and/or the submatrix D̄ = (dij) of D, i = m+ 1, . . . , (n−
1)/2, j ∈ {0, . . . , m} ∪ {(n + 1)/2, . . . , n}. We can extend T by choosing at most
(n− 3)/2−m cells from Ā and at most (n− 1)/2−m cells from D̄.

There are two cases to consider.

Case 1. (n+ 3)/2 +m even.

Set 2M = (n + 3)/2 + m. Let us extend T to a partial transversal T ′ of L by
choosing the cells ((n+ 1)/2 + j,m+ 1+ j), j = 0, . . . , (n− 1)/2−M , and the cells
((n + 1)/2 + j + 1, m+ 1 + j), j = (n + 1)/2−M, . . . , (n− 5)/2−m, from Ā: the
entries in these cells are all distinct elements of Zn, and are all even powers of g.
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Let us extend T ′ to a partial transversal T ′′ of L by choosing the cells ((n− 1)/2−
i, (n + 1)/2 + i), i = 0, . . . , (n− 3)/2−m, from D̄: the entries in these cells are all
distinct elements of Zn, and are all odd powers of g.

The partial transversal T ′′ that we have constructed is a maximal partial transversal
of length 2n − 2m − 1. This construction yields a maximal partial transversal of
length 2n− 2m− 1, where 1 ≤ m < n/2.

Case 2. (n+ 3)/2 +m odd.

Set 2M = (n + 1)/2 + m. Let us extend T to a partial transversal T ′ of L by
choosing the cells ((n+ 1)/2 + j,m+ 1+ j), j = 0, . . . , (n− 3)/2−M , and the cells
((n + 1)/2 + j + 1, m + 1 + j), j = (n − 1)/2 −M, . . . , (n− 5)/2 −m, from Ā: the
entries in these cells are all distinct elements of Zn, and are all odd powers of g.

Let us extend T ′ to a partial transversal T ′′ of L by choosing the cells ((n− 1)/2−
i, (n + 1)/2 + 1 + i), i = 0, . . . , (n− 3)/2−m, from D̄: the entries in these cells are
all distinct elements of Zn, and are all even powers of g.

The partial transversal T ′′ that we have constructed is a maximal partial transversal
of length 2n − 2m − 1. This construction yields a maximal partial transversal of
length 2n− 2m− 1, where 1 ≤ m < n/2.

Second construction: For n odd and 0 ≤ m ≤ (n−5)/2, we will construct maximal
partial transversals of L of length 2n− 2(m+ 1).

Suppose that 0 ≤ m ≤ (n − 5)/2. Let T consist of the (0, 0), (1, 1), . . . , (m,m)th
cells of B, the ((n− 1)/2, (n− 3)/2), ((n+ 1)/2, (n− 1)/2), . . . , (n− 1, n− 2)th cells
of B, the (m+ 1, m+ 1), (m+ 2, m+ 2), . . . , ((n− 3)/2, (n− 3)/2)th cells of C, and
the (n, n)th cell of D. These cells contain each element of Zn+1 exactly once.

T can only be extended to a longer partial transversal by incorporating cells from
the submatrix Ā = (aij) of A, i = m + 1, . . . , (n − 3)/2, j =∈ {0, . . . , m} ∪ {(n −
1)/2, . . . , n − 1}; and/or the submatrix D̄ = (dij) of D, i =∈ {0, . . . , m} ∪ {(n −
1)/2, . . . , n−1}, j ∈ {m+1, . . . , (n−5)/2}∪{n−1}. We can extend T by choosing
at most (n− 3)/2−m cells from Ā and at most (n− 3)/2−m cells from D̄.

There are two cases to consider.

Case 1. m = (n− 5)/2.

Let us extend T to a partial transversal T ′ of L by choosing the ((n− 3)/2, 0)th cell
from Ā and the (0, n− 1)th cell of D̄.

The partial transversal T ′ that we have constructed is a maximal partial transversal
of length n+ 3.

Case 2. m < (n− 5)/2.

If (n− 1)/2 +m is odd, let us extend T to a partial transversal T ′ of L by choosing
the (m + j, (n − 1)/2 + j)th cells, j = 1, . . . , ((n − 1)/2 −m − 1)/2, and the (m +
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j, (n+ 1)/2 + j)th cells, j = ((n− 1)/2−m+ 1)/2, . . . , (n− 3)/2−m, from Ā. The
entries in these cells are distinct elements of Zn that are odd powers of g.

If (n− 1)/2+m is even, let us extend T to a partial transversal T ′ of L by choosing
the (m + j, (n + 1)/2 + j)th cells, j = 1, . . . , ((n− 1)/2 −m− 2)/2, and the ((m +
j, (n + 3)/2 + j))th cells, j = ((n − 1)/2 − m)/2, . . . , (n − 3)/2 − m, from Ā. The
entries in these cells are distinct elements of Zn that are odd powers of g.

If m is even, let us extend T ′ to a partial transversal T ′′ of L by choosing the
(0, n − 1)th cell, and the (n − i − 1, m + i)th cells, i = 1, . . . , (n − 5)/2 −m, of D̄.
The entries in these cells are all distinct elements of Zn, and are all even powers of g.

Ifm is odd, let us extend T ′ to a partial transversal T ′′ of L by choosing the (0, n−1)th
cell, and the (n − i,m + i)th cells, i = 1, . . . , (n − 5)/2 − m, of D̄. The entries in
these cells are all distinct elements of Zn, and are all even powers of g.

In each case, the partial transversal T ′′ that we have constructed is a maximal partial
transversal of length 2n − 2(m + 1). This construction yields a maximal partial
transversal of length 2n− 2(m+ 1) when 1 ≤ m < n/2.

Third construction: For n odd, we will show that L has a maximal partial transver-
sal of length 2n.

Let T be a near transversal of A with missing cell (0, n− 1): the existence of such a
near transversal is guaranteed by Theorem 2.1. As the entry of this missing cell is
gn−1, by Lemma 2.1, the missing symbol of T is gn−1.

Let us extend T to T ′ by adding the cell (0, n− 1) of B, the cell (n, n− 1) of C, and
the cells (0, 0), . . . , (n− 2, n− 2) of D. The entries of these added cells are precisely
the elements of Zn+1 and so T ′ is a partial transversal of L of length 2n. The only
cell of L that is not in a row or column of T ′ is the (n− 1, n)th cell of D. The entry
of this cell is g, which is not the missing symbol of T . It follows that T ′ is a maximal
partial transversal of L of length 2n. �

5 A related class of latin squares

In this section we will construct a class of latin squares of order 2n + 1, n odd,
n ≥ 5, that have maximal partial transversals of all possible lengths. These latin
squares will be obtained from bicyclic latin squares by switching an intercalate. If

n is odd and L =

(
A B
C D

)
is a bicyclic latin square of order 2n + 1, then a

bicyclic latin square L′ =
(

A B
C D′

)
obtained from L by switching an intercalate

in D will be called a switched square. Note that no intercalate in D can contain a
cell on the main diagonal of D. One class of switched squares will be of particular

interest to us: if L′ =
(

A B
C D′

)
is the latin square obtained from LMn,g1,...,gn by

switching the intercalate in D, with cells (0, 1), (0, (n + 3)/2), ((n + 1)/2, 1), and
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((n + 1)/2, (n + 3)/2), we will denote L′ by L′
Mn,g1,...,gn

. We proved in Theorem 4.1
that LMn,g1,...,gn has no maximal partial transversal of length n+1 if n is odd, n �= 3.
This is not the case for switched squares.

Lemma 5.1 If n is odd, n ≥ 5, and L′ =
(

A B
C D′

)
is a switched square of order

2n + 1, then L′ has a maximal partial transversal of length n+ 1.

Proof: Recall that, if L =

(
A B
C D

)
is a bicyclic latin square of order 2n+1, n odd,

then D is obtained from a circulant latin square E, isotopic toMn+1, by replacing the
elements on the main diagonal. By Theorem 2.3, if any intercalate of E is switched,
then the resulting latin square has a transversal. This yields a “transversal” of D′

that is a maximal partial transversal of L of length n + 1. �

Any switched square of order 2n + 1, n odd, n �= 1, has a maximal partial
transversal of length n+ 2.

Lemma 5.2 If n is odd, n �= 1, and L′ =
(

A B
C D′

)
is a switched square of order

2n + 1, then L′ has a maximal partial transversal of length n+ 2.

Proof: As in the proof of Lemma 5.1, D′ has a “transversal” T . Form a partial
transversal T ′ of L′ by removing the cell of T on the main diagonal of D′; adding a
cell of B in the same column as this removed cell; and adding a cell of C, containing
a different entry than the added cell in B, in the same row as this removed cell. It
is easy to see that T ′ is a maximal partial transversal of L′ of length n+ 2. �

Any switched square of order 2n+ 1, n odd, n ≥ 5, has a transversal.

Lemma 5.3 If n is odd, n ≥ 5, and L′ is a switched square of order 2n+1, then L′

has a transversal.

Proof: The proof is the same as for Lemma 4.2. �

Our class of switched squares have maximal partial transversals of all possible
lengths.

Theorem 5.1 If n is odd, n ≥ 5, then L′
Mn,g1,...,gn

has maximal partial transversals
of all possible lengths.

Proof: Suppose that L′ =

(
A B
C D′

)
= L′

Mn,g1,...,gn
and n is odd, n ≥ 5. By

Lemma 5.1, L′ has a maximal partial transversal of length n + 1; by Lemma 5.2,
L′ has a maximal partial transversal of length n + 2; and by Lemma 5.3, L′ has a
maximal partial transversal of length 2n+ 1.
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Let L =

(
A B
C D′

)
= LMn,g1,...,gn and let I be the intercalate of D that is switched

to yield L′. Then the cells of I are the cells (0, 1), (0, (n+ 3)/2), ((n+ 1)/2, 1), and
((n+1)/2, (n+3)/2) of D; and the symbols of I are g and g(n+3)/2. We will show that
most of the maximal partial transversals of L of the remaining lengths, constructed
in Theorem 4.2, are also maximal partial transversals of L′.

The proof of Theorem 4.2 uses three constructions. Let T ′′ be a maximal partial
transversal of L obtained from the first construction. As T ′′ contains the cells (0, 0)
and ((n+1)/2, (n−1)/2) of C, no cell of I can be a cell of T ′′ and each cell of I is in
the same row as a cell of T ′′. Hence, T ′′ is also a maximal partial transversal of L′.

As part of the second construction of maximal partial transversals of L in
Theorem 4.2, a maximal partial transversal of length eight was obtained for
LM5,g1,g2,g3,g4,g5. A maximal partial transversal of length eight for L′

M5,g1,g2,g3,g4,g5

is shown in Figure 6: the entries of the maximal partial transversal are shown as i
or gi. For n ≥ 7, let T ′′ be a maximal partial transversal of L obtained from the
second construction in the proof of Theorem 4.2. Thus, T ′′ is of length 2n−2(m+1),
where 0 ≤ m ≤ (n− 5)/2. No cell of I is also a cell of T ′′. If m ≥ 1, then the cells
((n + 5)/2, (n + 3)/2) and (1, 1) of B are also cells of T ′′ and so each cell of I is in
the same column as a cell of T ′′. Hence, T ′′ is also a maximal partial transversal of
L′. If m = 0, then the cell ((n+5)/2, (n+3)/2) of B and the cell (n− 2, 1) of D are
also cells of T ′′ and so each cell of I is in the same column as a cell of T ′′. Hence, T ′′

is also a maximal partial transversal of L′.

Let T ′ be a maximal partial transversal of L obtained from the third construction
in the proof of Theorem 4.2. No cell of I is also a cell of T ′. As the cells (0, 0) and
(1, 1) of D are cells of T ′, the only cell of I that might not be in the same row or
column as a cell of T ′ is ((n+1)/2, (n+3)/2). In L′, the entry of this cell is g(n+3)/2,
which, if n �= 5, is also the entry of a cell of T ′ in A. Hence, if n �= 5, T ′ is also a
maximal partial transversal of L′. A maximal partial transversal of L′ of length 10
is shown in Figure 7: the entries of the maximal partial transversal are shown as i
or gi.

It follows that L′ has maximal partial transversals of all possible lengths. �

We are now in a position to determine all odd orders for which there exists a
latin square that has maximal partial transversals of all possible lengths.

Corollary 5.1 If n is odd, n �= 3, then there exists a latin square of order n that
has maximal partial transversals of all possible lengths.

Proof: This follows from Theorems 3.1 and 5.1. �

6 Final remarks

In this paper, we have studied the spectra of lengths of maximal partial transversals
of bicyclic latin squares and switched squares. More generally, we might ask the
following question.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0 g1 g2 g3 g4 0 1 2 3 4 5
g1 g2 g3 g4 g0 1 2 3 4 5 0
g2 g3 g4 g0 g1 2 3 4 5 0 1
g3 g4 g0 g1 g2 3 4 5 0 1 2
g4 g0 g1 g2 g3 4 5 0 1 2 3
0 1 2 3 4 5 g4 g2 g3 g1 g0

1 2 3 4 5 g0 0 g1 g2 g3 g4

2 3 4 5 0 g4 g0 1 g1 g2 g3

3 4 5 0 1 g3 g1 g0 2 g4 g2

4 5 0 1 2 g2 g3 g4 g0 3 g1

5 0 1 2 3 g1 g2 g3 g4 g0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 6: A maximal partial transversal of L′
M5,g1,g2,g3,g4,g5

of length 8.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0 g1 g2 g3 g4 0 1 2 3 4 5
g1 g2 g3 g4 g0 1 2 3 4 5 0
g2 g3 g4 g0 g1 2 3 4 5 0 1
g3 g4 g0 g1 g2 3 4 5 0 1 2
g4 g0 g1 g2 g3 4 5 0 1 2 3
0 1 2 3 4 5 g4 g2 g3 g1 g0

1 2 3 4 5 g0 0 g1 g2 g3 g4

2 3 4 5 0 g4 g0 1 g1 g2 g3

3 4 5 0 1 g3 g1 g0 2 g4 g2

4 5 0 1 2 g2 g3 g4 g0 3 g1

5 0 1 2 3 g1 g2 g3 g4 g0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 7: A maximal partial transversal of L′
M5,g1,g2,g3,g4,g5

of length 10.
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Question. Given a latin square L, what is the spectrum of lengths of maximal
partial transversals of L?

We may also ask the following:

Question. Given a positive integer n, what are the possible spectra for lengths of
maximal partial transversals of latin squares of order n?

An alternative way to describe latin squares is as a set of ordered triples. For
convenience, let us assume that the symbol set of a latin square L is the same as
the indexing set for its rows and columns. A latin square L of order n can then be
regarded as a set of n2 ordered triples in which each symbol of L appears exactly
once in each position: think of the first position in each triple as representing a
row, the second a column, and the third an entry. A conjugate of L is any latin
square obtained from the set of ordered triples representing L by permuting the
positions. Two latin squares L and L′ of the same order are main class isotopic if
L is isotopic to a conjugate of L′. Main class isotopy is an equivalence relation and
the equivalence classes are called main classes. The spectrum of lengths of maximal
partial transversals of a latin square is a main class invariant.

For small n, representatives of the main classes of latin squares of order n can
be found in Section III.1.3 of [2]. For n ≤ 3, the representatives of the main classes
are M1, M2, and M3. The spectrum of lengths of maximal partial transversals of
M1 is trivially {1}, while the spectra of lengths of maximal partial transversals of
M2 and M3 follow from Theorem 2.1. For n = 4, the representatives of the main
classes are M4 and M2×2, the Cayley table of the elementary abelian group of order
4. By Theorem 2.1, M4 has no transversal, but does possess a near transversal that is
maximal, and by results in [6],M2×2 has no near transversal that is maximal, but does
possess a transversal. The reader can verify that neither of these latin squares has
a maximal partial transversal of length two. For n = 5, representatives of the main
classes are M5 and the bicyclic latin square LM2,g,g2. In Theorem 3.1, we showed
that LM2,g,g2 possesses maximal partial transversals of all possible lengths; and in
Theorem 2.1, we showed that M5 has a transversal, but has no near transversal that
is maximal. A maximal partial transversal of M5 of length 3 is shown in Figure 8:
the entries in this maximal partial transversal are shown in bold.

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

⎞
⎟⎟⎟⎟⎠

Figure 8: A maximal partial transversal of M5 of length 3.

In Theorems 3.1, 4.2, and 5.1, we gave a partial answer to the following question.
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Question. For which n does there exist a latin square of order n with maximal
partial transversals of all possible lengths?

We answered this question when n is odd. It remains to answer this question
when n is even. Closely related to this question: an implication of Theorem 13
in [1] is that almost all latin squares do not have maximal partial transversals of all
possible lengths.
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