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Abstract

For prime p we define magic squares of order kp3, called type-p Franklin
squares, whose properties specialize to those of classical Franklin squares
in the case p = 2. We construct type-p Franklin squares in prime-power
orders.

1 Introduction

1.1 Purpose, Briefly Stated

For prime p we define magic squares of order kp3, called type-p Franklin squares,
whose properties specialize to those of classical Franklin squares in the case p = 2.
We construct such squares in prime power orders. Our construction is motivated
by a relationship, first noted in [11] and further explored in [6], between classical
most-perfect magic squares of triply even order and pandiagonal classical Franklin
squares.

1.2 Franklin Squares

Classical Franklin squares are natural semi-magic squares of doubly even order
first constructed by Benjamin Franklin in the mid 1730’s (two in order 8, one in
order 16) to fend off boredom while clerking in the Pennsylvania Assembly. They
have the following additional magic properties:

(i) Half-rows and half-columns add to half of the magic sum.

(ii) The symbols in any 2×2 subsquare formed from consecutive rows and columns
(allowing toric wraparound) sum to 2(n2 − 1).
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(iii) Entries in each set of bent diagonals add to the magic sum. Bent diagonals
come in four varieties: up, right, down, and left. An up-diagonal is formed by
half of a broken main diagonal (allowing vertical wraparound) beginning at the
left edge of the square, together with its reflection across the vertical midline.
The right, down, and left varieties are obtained from the up-diagonal locations
by 90◦, 180◦, and 270◦ clockwise rotations of the ambient square, respectively.

Item (ii) above assumes, as we do throughout, that the symbol set for an order-n
natural magic square is {0, 1, . . . , n2− 1}. Franklin’s famous order-8 square is shown
in Figure 1.

51 60 3 12 19 28 35 44
13 2 61 50 45 34 29 18
52 59 4 11 20 27 36 43
10 5 58 53 42 37 26 21
54 57 6 9 22 25 38 41
8 7 56 55 40 39 24 23
49 62 1 14 17 30 33 46
15 0 63 48 47 32 31 16

12 19
13 50 45 18

59 36
58 37

9 22 38
24

49 62 1 14 33
31

Figure 1: Left: Franklin’s famous order-8 square with symbols 0 through 63. Right:
An indication of its properties. Numbers 13, 59, . . . , 36, 18 form an up-diagonal.

Investigation of classical Franklin squares largely fits into three categories. The
first is historical: Franklin’s method of constructing his squares remains unknown.
His correspondence makes only brief mention of them, including a lament concerning
the time he wasted in such activities. Pasles’ article [8] and book [9] contain a
thorough historical account of Franklin’s squares and a survey of methods he may
have used to construct them. The most plausible of these methods appears to be
the one conjectured in [3]. Another category is existential: The definition of classical
Franklin squares allows for doubly even orders, but the only Franklin squares that
have been discovered thus far are of triply even order. Franklin squares exist in
orders 8k for each k ∈ Z+ (e.g., [3] and [6]). Meanwhile, there are no Franklin
squares of order 4 or 12 (see [2]), and the existential question is unresolved for other
orders of the form 8k+4. The third category concerns construction and enumeration:
One example is [1], in which Hilbert bases for polyhedral cones are used to place an
upper bound on the number of Franklin squares. Another example is [11], in which
an involution on arrays is used to define an injection from the set of most-perfect
squares of order 8 to the set of pandiagonal Franklin squares of order 8, thus giving
a reasonable lower bound on the number of order-8 Franklin squares. Importantly,
this latter work was generalized in [6] to squares of order 8k for any k ∈ Z+.

1.3 Most-perfect Squares

This article makes vital use of most-perfect squares. Let n be a natural number
divisible by p. A natural pandiagonal magic square R of order n is said to be a
most-perfect square of type-p if the following two properties hold:
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(i) (Complementary property) Starting from any location in R, consider the
symbol in that location together with the p − 1 other symbols lying in the
same broken main-diagonal n/p units apart from one another. The sum of

these symbols is
p(n2 − 1)

2
.

(ii) (p×p property) The symbols in any p×p subsquare formed from consecutive

rows and columns (allowing toric wraparound) sum to
p2(n2 − 1)

2
.

Examples of type-2 and type-3 most-perfect squares are given in Figure 2.

0 31 48 47 56 39 8 23
59 36 11 20 3 28 51 44
6 25 54 41 62 33 14 17
61 34 13 18 5 26 53 42
7 24 55 40 63 32 15 16
60 35 12 19 4 27 52 43
1 30 49 46 57 38 9 22
58 37 10 21 2 29 50 45

0 16 23 63 79 59 45 34 41
64 80 57 46 35 39 1 17 21
47 33 40 2 15 22 65 78 58
7 14 18 70 77 54 52 32 36
71 75 55 53 30 37 8 12 19
51 31 38 6 13 20 69 76 56
5 9 25 68 72 61 50 27 43
66 73 62 48 28 44 3 10 26
49 29 42 4 11 24 67 74 60

Figure 2: Left: A type-2 (classical) most-perfect square of order-8. Right: A type-3
most-perfect square of order 9. The gridlines serve as an aid in locating complemen-
tary entries.

Type-p most-perfect squares specialize to classical most-perfect squares when p =
2, in which case n must be doubly even [10]. The tasks of counting and constructing
classical most-perfect squares were first approached by McClintock [5] and culminate
in the work of Ollerenshaw and Bree [7], which gives a count of the classical most-
perfect squares for any doubly even order n, along with a construction method for all
such squares. As mentioned above, classical most-perfect squares are used in [11] and
[6] for constructing Franklin squares. When p ≥ 2, a linear construction of type-p
most-perfect squares of order pr (r ≥ 2) is given in [4].

1.4 Type-p Franklin Squares

Let p be prime. We say that a natural square S of order n = kp3 is a Franklin
square of type p if it has the following properties:

• (p× p property): This is as described above for type-p most-perfect squares.

• (1/p-property for both rows and columns): We say that S possesses the
1/p column property if upon splitting a column of R naturally into p parts, the

entries in each part add to 1
p

times the magic sum, or rather
n(n2 − 1)

2p
. The

1/p row property is defined similarly.

• (Franklin pattern property): The numbers in every Franklin pattern in S

add to the magic sum
n(n2 − 1)

2
. Franklin patterns specialize to bent diagonals

in the case p = 2. A detailed description of these patterns is given in Section 3.
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An example of a type-3 Franklin square of order 27 is given in Figure 3. The
following discussion assumes that Figure 3 has been rotated 90◦ clockwise, so that
the square is viewed in its ordinary orientation. In the lower region of this square
the boxed entries indicate the 1/3-row and column properties and the 3×3 property.
In the upper portion of the square we observe a collection of boxed entries sitting
within a frame of 3× 3 subsquares. These boxed entries, when taken together, look
like the letter “W.” This collection of entries is a Franklin-up pattern. These entries
add to the magic sum and can be translated vertically throughout the square (with
vertical wraparound). There are also analogous downward Franklin patterns, as well
as left and right versions. A detailed description of Franklin patterns is given in
Section 3. In Sections 4 and 5 we show that type-p Franklin squares exist in orders
pr with r ≥ 3. The appendix contains a larger rendition of this square (Figure 6.)

Inspiration for these results comes chiefly from [11] and [6], where the authors
introduce an involution θ that maps classical most-perfect squares into pandiagonal
classical Franklin squares. This involution may be generalized (see Section 2) so that
it applies to type-p most-perfect squares, examples of which exist in all orders pr with
r ≥ 2 by [4]. Therefore, in searching for a reasonable definition for type-p Franklin
squares, one could do worse than studying θ(R) where R is a type-p most-perfect
square. One readily finds that θ(R) is pandiagonal, has the p× p property, and has
the 1/p-row and column properties (see Section 2). Determining reasonable Franklin
patterns is considerably harder, but we are guided by the complementary property
of R and Lemma 4.2 (see Sections 4 and 5). The type-3 order-27 Franklin square
given above has the form θ(R), where R is a (linear) most-perfect square constructed
using the method of [4].

2 An Involution and its Application to Most-Perfect Squares
of Type-p

Let n = kpr with r ≥ 2 and let R be an array of order n. We may view R as an
order-p2 array

R = (Ri,j) with 0 ≤ i, j ≤ p2 − 1, (1)

where each Ri,j is an array of order n
p2

. We define an involution θ on arrays of order
n by

[θ(R)]i,j = Rī,j̄ (2)

where, if i = `p + m with `,m ∈ {0, 1, . . . , p − 1} then ī = mp + `. We emphasize
that θ depends on p.

By way of illustration, if p = 2 then

R =
R0,0 R0,1 R0,2 R0,3

R1,0 R1,1 R1,2 R1,3

R2,0 R2,1 R2,2 R2,3

R3,0 R3,1 R3,2 R3,3

=⇒ θ(R) =
R0,0 R0,2 R0,1 R0,3

R2,0 R2,2 R2,1 R2,3

R1,0 R1,2 R1,1 R1,3

R3,0 R3,2 R3,1 R3,3

.

Likewise, if p = 3 then
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Figure 3: A type-3 Franklin square of order 27.
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R =

R0,0 R0,1 R0,2 R0,3 R0,4 R0,5 R0,6 R0,7 R0,8
R1,0 R1,1 R1,2 R1,3 R1,4 R1,5 R1,6 R1,7 R1,8
R2,0 R2,1 R2,2 R2,3 R2,4 R2,5 R2,6 R2,7 R2,8

R3,0 R3,1 R3,2 R3,3 R3,4 R3,5 R3,6 R3,7 R3,8
R4,0 R4,1 R4,2 R4,3 R4,4 R4,5 R4,6 R4,7 R4,8
R5,0 R5,1 R5,2 R5,3 R5,4 R5,5 R5,6 R5,7 R5,8

R6,0 R6,1 R6,2 R6,3 R6,4 R6,5 R6,6 R6,7 R6,8
R7,0 R7,1 R7,2 R7,3 R7,4 R7,5 R7,6 R7,7 R7,8
R8,0 R8,1 R8,2 R8,3 R8,4 R8,5 R8,6 R8,7 R8,8

implies

θ(R) =

R0,0 R0,3 R0,6 R0,1 R0,4 R0,7 R0,2 R0,5 R0,8
R3,0 R3,3 R3,6 R3,1 R3,4 R3,7 R3,2 R3,5 R3,8
R6,0 R6,3 R6,6 R6,1 R6,4 R6,7 R6,2 R6,5 R6,8

R1,0 R1,3 R1,6 R1,1 R1,4 R1,7 R1,2 R1,5 R1,8
R4,0 R4,3 R4,6 R4,1 R4,4 R4,7 R4,2 R4,5 R4,8
R7,0 R7,3 R7,6 R7,1 R7,4 R7,7 R7,2 R7,5 R7,8

R2,0 R2,3 R2,6 R2,1 R2,4 R2,7 R2,2 R2,5 R2,8
R5,0 R5,3 R5,6 R5,1 R5,4 R5,7 R5,2 R5,5 R5,8
R8,0 R8,3 R8,6 R8,1 R8,4 R8,7 R8,2 R8,5 R8,8

.

The mapping θ specializes to the involution given in [11] in the case p = 2 and n = 8;
the reader may check that if R is the square in the left portion of Figure 2, then
θ(R) is a Franklin square of order 8.

It is our intention to provide examples of type-p Franklin squares by applying θ
to most-perfect squares of type p. We begin this process over the next several results,
culminating in Proposition 2.6.

Proposition 2.1 Suppose n is triply divisible by p and that R is a square of order
n possessing the p× p property. Then θ(R) has the p× p property.

Proof: Observe that R has the p× p property if and only if for any (p+ 1)× (p+ 1)-
subsquare A of R formed from consecutive rows and columns (allowing wraparound),
with

A =

a11 a12 . . . a1p a1,p+1

a21 a22 . . . a2p a2,p+1
...

...
...

...
...

ap1 ap2 . . . app ap,p+1

ap+1,1 ap+1,2 . . . ap+1,p ap+1,p+1

,

we have

p∑
j=1

a1j =

p∑
j=1

ap+1,j and

p∑
j=1

aj1 =

p∑
j=1

aj,p+1. Also, we may define variants

θrow and θcol of θ by

[θrow(R)]i,j = Rī,j and [θcol(R)]i,j = Ri,j̄,

where ī and j̄ are as in (2).

We first show that θrow(R) possesses the p × p property. We may view obtaining
θrow(R) from R by swapping one pair of rows at a time. Let r be a row of R lying
in the band Ri,0, Ri,1, . . . , Ri,p2−1 of subsquares. According to the definition of θrow,
we swap r with a row r̄ in R that lies in the same relative position in the band of
subsquares Rī,0, Rī,1, . . . , Rī,p2−1. Therefore r is being swapped with a row r̄ that lies
|i− ī|(n/p2) units distant from r. Because n

p2
is a multiple of p, the characterization
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of the p × p property given at the beginning of this proof indicates that the p × p
property remains intact after this row swap. It follows that θrow(R) possesses the
p× p property. A similar argument shows that θcol(R) possesses the p× p property,
and a combination of these two results gives that θ(R) = θcol(θrow(R)) possesses the
p× p property. 2

Proposition 2.2 Let n be triply divisible by a prime p and let R be a type-p most-
perfect square of order n. Then θ(R) has the 1/p row and column properties.

Proof: It suffices to show that θrow(R) has the 1/p column property. First we establish
some notation: Fix k ∈ {0, . . . , n

p2
− 1} and let σi,j denote the sum of the entries in

the k-th column of Ri,j. This sum has n/p2 terms, a fact that will be important later
in the proof. Similarly let σ̃i,j denote the sum of the entries in the k-th column of
[θrow(R)]i,j. Recall throughout that i, j ∈ {0, 1, . . . , p2 − 1}.
Observe that σ̃0,j + · · · + σ̃p−1,j is the sum of the first n/p entries of the j · n

p2
+ k

column of θrow(R). (We could address another collection of n/p entries in this same
column by replacing σ̃0,j with σ̃i+0,j, etc., but this clutters the indices so we consider
the top n/p entries only.) Applying Equation (2), the p× p property of R (actually
the characterization given at the beginning of the proof of Proposition 2.1), and the
complementary property of R in succession, we obtain

σ̃0,j + σ̃1,j + · · ·+ σ̃p−1,j = σ0,j + σp,j + σ2p,j + · · ·+ σ(p−1)p,j

= σ0,j + σp,j+p + σ2p,j+2p + · · ·+ σ(p−1)p,j+(p−1)p

=
n

p2
· p(n

2 − 1)

2
=
n(n2 − 1)

2p
,

as desired. The use of the complementary property to obtain the last line of the
displayed equation requires a bit more explanation: Gather the first terms of each

sum σ`p,j+`p. These add to p(n2−1)
2

by the complementary property, as does the

collection of second terms, etc. Since each σ`p,j+`p has n
p2

terms, we obtain p(n2−1)
2

exactly n
p2

times. 2

Next we go about showing that if R is a type-p most-perfect square of order n,
then θ(R) is pandiagonal. We begin with a pair of lemmas.

Lemma 2.3 Let m,n ∈ N and consider a nonnegative integer array A of size (mp+
1)× (np+ 1) with

A =

a v b

u D w

c z d

.

Here a, b, c, d ∈ Z, u,w are lists of length mp− 1, v, z are lists of length np− 1, and
D is an (mp−1)×(np−1) array. If A possesses the p×p property then a+d = c+b.
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Proof: By the p× p property

a+ u+ v +D = b+ v + w +D = c+ u+ z +D = d+ z + w +D,

where the additions indicate the total sums of symbols in each type of list. It follows
that

(a+ u+ v +D) + (d+ z + w +D) = (b+ v + w +D) + (c+ u+ z +D),

and cancellation gives the result. 2

Lemma 2.4 Let m ∈ Z+ and A = (ai,j) be an m×m array such that if

(
ai1,j1 ai1,j2
ai2,j1 ai2,j2

)
is a 2× 2 subarray of A, then ai1,j1 + ai2,j2 = ai1,j2 + ai2,j1. Then all transversals of
A have the same sum.

Proof: Let T = {a1,j1 , a2,j2 , . . . , am,jm} be a transversal for A. We show that the sum
of the elements of T equals the sum of the main diagonal elements of A. This is done
by constructing a chain of transversals, culminating in the diagonal transversal, each
of which has the same sum. We form a new transversal T1 from T as follows: if
a1,j1 = a1,1, then T1 = T . If a1,j1 6= a1,1, then, because T is a transversal, there exists
1 < k ≤ m with jk = 1. Using the the fact that jk = 1 and the array property in the
hypothesis, we have that

ak,j1 + a1,1 = ak,j1 + a1,jk = a1,j1 + ak,jk .

So if we declare T1 to be the set we obtain from T by replacing a1,j1 and ak,jk
by a1,1 and ak,j1 , then T1 and T have the same sum, and, importantly, a1,1 ∈ T1.
Furthermore, T1 is a transversal of A because all rows and columns of A are still
accounted for in T1.

Observe that if we eliminate the first row and column from A and remove a1,1 from
T1, then the remaining elements of T1 form a transversal of the new array, and we
can repeat the process above to obtain a transversal T2 = {a1,1, a2,2, . . . , am,jm} of A
that has the same sum as T1, with a1,1 and a2,2 in T2. Continuing in this fashion,
we see that the sum of T is equal to the sum of Tm, which is the main diagonal
transversal of A. 2

Proposition 2.5 Let p be prime and n triply divisible by p. If R is a type-p most-
perfect square of order n then θ(R) is pandiagonal.

Proof: Let d0, . . . , dn−1 denote the elements of a broken diagonal in θ(R) with dj
lying in the j-th column of θ(R). Let k ∈ {0, 1, . . . , n

p2
− 1} and put

ai = di· n
p2

+k (0 ≤ i ≤ p2 − 1).
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We claim that a0 + a1 + · · ·+ ap2−1 = p2(n2−1)
2

. If this is true then

n−1∑
j=0

dj =
n

p2
· p

2(n2 − 1)

2
=
n(n2 − 1)

2
,

as desired.

We set about proving the claim. Due to their construction, all of the ak’s lie in the
same (relative) location within an [θ(R)]i,j. Because the mapping R 7→ θ(R) is of
order two and merely permutes the Ri,j’s without altering the relative locations of
entries within Ri,j’s (see Equation (2)), we also know that if B = (bi,j) is the p2× p2

subarray of R consisting of all entries lying in this same relative location within
some Ri,j, then {a0, a1, . . . , ap2−1} is a transversal of B. Because R has the p × p
property and n is triply divisible by p, we may apply Lemma 2.3 to the various 2× 2
subarrays of B, and so the hypotheses of Lemma 2.4 are satisfied for B. Therefore
a0 + a1 + · · · + ap2−1 is equal to the sum b0,0 + b1,1 + · · · bp2−1,p2−1 of the diagonal
transversal of B.

Observe that adjacent terms of the sum b0,0 +b1,1 + · · · bp2−1,p2−1 are actually n
p2

units
apart on the main diagonal of R. Therefore if we rewrite this sum as

b0,0 + b1,1 + · · ·+ bp2−1,p2−1 = (b0,0 + bp,p + b2p,2p + · · ·+ b(p−1)p,(p−1)p)

+ (b1,1 + b1+p,1+p + b1+2p,1+2p + · · ·+ b1+(p−1)p,1+(p−1)p)

+ · · ·+ (bp−1,p−1 + b2p−1,2p−1 + · · ·+ bp2−1,p2−1)

then within each parenthetical summand there are p terms and adjacent terms are
n/p units apart in R. Because R possesses the complementary property, we then

know that each parenthetical summand adds to p(n2−1)
2

. Because there are p paren-
thetical summands, we may then conclude that

a0 + a1 + · · ·+ ap2−1 = b0,0 + b1,1 + · · · bp2−1,p2−1 = p · p(n
2 − 1)

2
=
p2(n2 − 1)

2
.

Therefore the claim is proved. 2

We may summarize the previous results as follows:

Proposition 2.6 Let n be triply divisible by p and suppose R is a type-p most-perfect
square of order n. Then θ(R) is semi-magic, possesses the p× p property, possesses
the 1/p row and column properties, and is pandiagonal.

3 Defining Type-p Franklin Squares: Bent Diagonals

In the introduction we established precise characteristics of type-p Franklin squares,
with the exception of the bent diagonals, which we address presently. We will refer
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to the type-p analogs of bent diagonals as Franklin patterns. In the interest
of simplicity we describe Franklin patterns first in the special case n = p3 before
addressing the general case n = kp3 (Section 5). These squares, except for the
smallest few primes, are large, so we will be using the special cases p = 2, 3, 5 to
illustrate several key points. Also, we will first focus our attention on the construction
of a particular Franklin pattern, called a Franklin-up pattern, an example of which
is given in Section 1.4. These patterns specialize to classical Franklin “V” patterns
when p = 2.

Consider a collection of n/p = p2 consecutive rows of S, which we intend to serve
as a frame for a Franklin-up pattern W . This frame can be partitioned into a p×p2

array T whose entries are subsquares Ti,j, each of size p × p, where 0 ≤ i ≤ p and
0 ≤ j ≤ p2−1. Square Ti,j, which we occasionally refer to as a block, lies in the i-row
and j-column of T . We describe which subsquares of T have non-trivial intersection
with W . The array T can be partitioned into p × p subarrays B0, . . . , Bp−1 (called
bands), each containing p columns of T , where B0 contains the leftmost p columns
of T , B1 contains the next p columns of T , and so on. For 0 ≤ j < p−1

2
, the

Franklin-up pattern W intersects each entry of the main diagonal of Bj when j is
even, and each entry of the off-diagonal of Bj when j is odd. The locations of these
intersections reflect across the central band B(p−1)/2, so that W intersects each entry
of the off-diagonal of B(p−1)−j when j is even, and each entry of the main diagonal
of B(p−1)−j when j is odd. When p is odd there will be a central band B(p−1)/2, in
which intersection with W will rise to a central peak when (p−1)/2 is odd and fall to
central valley when (p− 1)/2 is even. These intersections of W with T are indicated
below in cases p = 2, 3, 5; double vertical lines separate bands.

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

In the figure above, we emphasize that each small rectangle represents some p × p
array Ti,j in T , not an individual entry in S.

In case the description above is not sufficiently specific, the Franklin-up pattern
we construct in this frame will intersect the following subsquares:

Tj,2mp+j and Tj,(p2−1)−(2mp+j) for 0 ≤ j ≤ p− 1 and 0 ≤ m <
p− 1

4
,

and

Tj,(2mp−1)−j and Tj,(p2−1)−((2mp−1)−j) for 0 ≤ j ≤ p− 1 and 0 < m ≤ p− 1

4
.



J. LORCH/AUSTRALAS. J. COMBIN. 73 (1) (2019), 84–106 94

Further, if p is odd, then W will also intersect the following subsquares, depending
on the parity of (p− 1)/2: If (p− 1)/2 is even then W intersects T

p−1, p
2−1
2

and

T
j,

p(p−1)
2

+b j
2
c and T

j,
p(p−1)

2
+(p−1)−b j

2
c for 0 ≤ j < p− 1.

On the other hand, if (p− 1)/2 is odd then W intersects T
0, p

2−1
2

and

T
j, p

2−1
2
−d j

2
e and T

j, p
2−1
2
−d j

2
e for 0 < j ≤ p− 1.

We’ve seen which of the arrays Ti,j intersect W non-trivially, and we now need to
determine those intersections precisely. For 0 ≤ j ≤ p− 1 with j 6= (p− 1)/2, we let
Bi
j denote the p×p square in the i-th row of Bj that intersects W . Further, when p is

odd, we let Bi,0
p−1
2

and Bi,1
p−1
2

denote the left and right squares, respectively, in the i-th

row of B p−1
2

. These squares will coincide exactly when i = 0 and p−1
2

is odd or when

i = p−1 and p−1
2

is even. (Each Bi
j is a Tk,` for some k, `, and while we can make this

connection explicitly, it seems unnecessary and perhaps counterproductive.) Below
we indicate the positions of the Bi

j in cases p = 2, 3, 5:

B0
0 B0

1

B1
0 B1

1

B0
0 B0,0

1 = B0,1
1 B0

2

B1
0 B1,0

1 B1,1
1 B1

2

B2
0 B2,0

1 B2,1
1 B2

2

B0
0 B0

1 B0,0
2 B0,1

2 B0
3 B0

4

B1
0 B1

1 B1,0
2 B1,1

2 B1
3 B1

4

B2
0 B2

1 B2,0
2 B2,1

2 B2
3 B2

4

B3
0 B3

1 B3,0
2 B3,1

2 B3
3 B3

4

B4
0 B4

1 B4,0
2 = B4,1

2 B4
3 B4

4

Let 1 ≤ α, β < p with α+ β = p, and let 0 ≤ j < (p− 1)/2. Recall that each Bi
j

is a p × p array. The Franklin-up pattern W will intersect the Bi
j as follows, where

in each instance 1 ≤ i ≤ p.

• If j is even then Bi
j ∩W consists of the first α entries in row 2j and the last β

entries in row 2j + 1 of Bi
j.

• If j is even then Bi
p−1−j ∩W consists of the last β entries in row 2j and the

first α entries in row 2j + 1 of Bi
p−1−j.

• If j is odd then Bi
j ∩W consists of the last β entries in row 2j and the first α

entries in row 2j + 1 of Bi
j.

• If j is odd then Bi
p−1−j ∩W consists of the first α entries of row 2j and the

last β entries of row 2j + 1.

A pictorial representation of these intersections is given in Figure 4.



J. LORCH/AUSTRALAS. J. COMBIN. 73 (1) (2019), 84–106 95

j even:

Bi
j

· · · · ·︸ ︷︷ ︸
α

· · · · · ·︸ ︷︷ ︸
β

rows 2j and 2j + 1

Bi
p−1−j

· · · · · · ·︸ ︷︷ ︸
β

· · · · ·︸ ︷︷ ︸
α

j odd:

Bi
j

· · · · · ·︸ ︷︷ ︸
β

· · · · ·︸ ︷︷ ︸
α

rows 2j and 2j + 1

Bi
p−1−j
· · · · ·︸ ︷︷ ︸
α

· · · · · · ·︸ ︷︷ ︸
β

Figure 4: Intersections of Bi
j and Bi

p−1−j with W when 0 ≤ j < (p− 1)/2.

It remains to see how, when p is odd, the squares Bi,k
p−1
2

in the central band will

intersect W :

• If i is even then Bi,0
p−1
2

∩W consists of the first α entries in the bottom row of

Bi,0
p−1
2

.

• If i is even then Bi,1
p−1
2

∩W consists of the last β entries in the bottom row of

Bi,1
p−1
2

.

• If i is odd then Bi,0
p−1
2

∩W consists of the last β entries in the bottom row of

Bi,0
p−1
2

.

• If i is odd then Bi,1
p−1
2

∩W consists of the first α entries in the bottom row of

Bi,1
p−1
2

.

• In the special case that Bi,0
p−1
2

= Bi,1
p−1
2

, their intersection with W consists of the

entire bottom row of Bi,0
p−1
2

.

Below is a pictorial representation of these intersections:

In the case p = 3, α = 1, and β = 2, the intersections described above, which
characterize a Franklin-up W pattern, are illustrated in the order-27 square shown
in Section 1.4.

We observe that within its frame, a Franklin-up pattern W intersects each column
of S exactly once, and each row exactly p times, so W has n = p3 entries. Also,
while W does not have vertical midline symmetry when p > 2, the blocks containing
W do possess this symmetry. Finally, we can obtain Franklin-right, Franklin-down,
and Franklin-left patterns from a Franklin-up pattern via clockwise rotations of the
ambient square S through 90◦, 180◦, and 270◦, respectively. These constitute the
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i even:

Bi,0
p−1
2

α︷ ︸︸ ︷
· · · · ·

Bi,1
p−1
2

β︷ ︸︸ ︷
· · · · · ·

i odd:

Bi,0
p−1
2

β︷ ︸︸ ︷
· · · · · ·

Bi,1
p−1
2

α︷ ︸︸ ︷
· · · · ·

Figure 5: Intersections of Bi,k
p−1
2

with W .

entirety of Franklin patterns in S, and they specialize to the classical Franklin “V”
patterns when p = 2. Therefore, we are now able to make the following definition:

Definition 3.1 We say that a natural square S of order n = p3 is a Franklin
square of type p if it has the p × p property, the 1/p-property for both rows and
columns, and the numbers in every Franklin pattern in S add to the magic sum
n(n2 − 1)

2
.

The Franklin pattern requirement in Definition 3.1 applies to patterns arising
from any partition α + β = p with 1 ≤ α, β < p. One might reasonably weaken
Definition 3.1 by only requiring the existence of a partition α + β of p such that all
corresponding Franklin patterns have entries adding to the magic sum. Definition
3.1 and its weakened version both specialize to the definition of classical Franklin
squares in the case p = 2.

4 Construction of Type-p Franklin Squares

Let p be prime and let R be a type-p most-perfect square of order p3. Such squares
exist; a linear construction is given in [4]. In this section we show that S = θ(R) is a
pandiagonal type-p Franklin square, where θ is the involution introduced in Section
2. Proposition 2.6 says S is pandiagonal, has the 1/p row and column properties, and
has the p× p property. It remains to show that the Franklin patterns of S (defined
in Section 3) add to the magic sum. A similar verification for orders pr with r ≥ 3
is indicated in Section 5.

Lemma 4.1 Let m,n, p ∈ N with p ≥ 2, and consider a nonnegative integer array
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A of size (mp+ 1)× np with

A =

a b1 · · · bp−1

· · ·
D · · ·

· · ·
c d1 · · · dp−1

.

Here a, bi, c, di ∈ Z for 1 ≤ i ≤ p − 1 and D is an (mp − 1) × (n − 1)p array. If A

possesses the p× p property then a+

p−1∑
i=1

bi = c+

p−1∑
i=1

di.

Proof: If n = 1 this follows immediately from the p×p property, so we assume n ≥ 2.
Rewrite A as

A =

a b0 b1 · · · bp−1

· · ·
D′ · · ·

· · ·
c d0 d1 · · · dp−1

where b0, d0 ∈ Z and D′ is an array of size (mp − 1) × ((n − 1)p − 1). By Lemma
2.3 we have a + d0 = c + b0. Also, because A has the p × p property, we have
b0 + · · ·+ bp−1 = d0 + · · ·+ dp−1. Therefore

a+ d0 = c+ b0 =⇒ a+ (

p−1∑
i=0

bi −
p−1∑
i=1

di) = c+ b0 =⇒ a+

p−1∑
i=1

bi = c+

p−1∑
i=1

di.

2

If A as in the lemma has the p × p property, then the result of the lemma will
continue to hold true if all other instances of p are replaced by a fixed multiple of p.
Lemma 4.1 has a useful generalization:

Lemma 4.2 Let m,n, k, p ∈ N with p ≥ 2 and 1 ≤ k < p, and consider a nonnega-
tive integer array A of size (mp+ 1)× np with

A =

a1 · · · ak bk+1 · · · bp
· · ·

D · · ·
· · ·

c1 · · · ck dk+1 · · · dp

.

Here all entries are integers and D is an (mp− 1)× (n− 1)p array. If A possesses

the p× p property then
k∑
i=1

ai +

p−k∑
j=1

bk+j =
k∑
i=1

ci +

p−k∑
j=1

dk+j.
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Proof: If n = 1 this follows immediately from the p × p property, so we assume
n ≥ 2. Let b1, . . . , bk be the entries in A immediately preceding bk+1 in the same row
and bp+1, . . . , bp+k the entries immediately succeeding bp in the same row. Similarly
define d1, . . . , dk and dp+1, . . . , dp+k. Applying Lemma 4.1 we have

aj + (bj+1 + · · ·+ bj+p−1) = cj + (dj+1 + · · ·+ dj+p−1)

for 1 ≤ j ≤ k. Adding gives

k∑
j=1

[aj + (bj+1 + · · ·+ bj+p−1)] =
k∑
j=1

[cj + (dj+1 + · · ·+ dj+p−1)].

Upon rearrangement, one can see that a great deal of cancellation occurs in the previ-
ous equation. Note that by borrowing terms from the first summand and distributing
them among the other summands, we obtain

k∑
j=1

[aj + (bj+1 + · · ·+ bj+p−1)] = [a1 + (bk+1 + · · ·+ bp)]

+
k∑
j=2

[aj + (bj + · · ·+ bj+p−1)]

=
k∑
i=1

ai +

p−k∑
j=1

bk+j +
k∑
j=2

(bj + · · ·+ bj+p−1).

Likewise

k∑
j=1

[cj + (dj+1 + · · ·+ dj+p−1)] =
k∑
i=1

ci +

p−k∑
j=1

dk+j +
k∑
j=2

(dj + · · ·+ dj+p−1).

Finally, due to the p× p property, the sums
k∑
j=2

(bj + · · ·+ bj+p−1) and
k∑
j=2

(dj + · · ·+

dj+p−1) are equal (in fact they are equal term by term), so cancellation gives

k∑
i=1

ai +

p−k∑
j=1

bk+j =
k∑
i=1

ci +

p−k∑
j=1

dk+j,

as desired. 2

Observe that the result of Lemma 4.2 still holds if the statement 1 ≤ k ≤ p is
replaced by 1 ≤ k ≤ `p where ` ∈ Z+.

Theorem 4.3 Let p be prime and n = p3. If R is a type-p most-perfect square of
order n, then θ(R) is an order-n pandiagonal Franklin square of type p. Further,
such squares R exist for every prime p.
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Proof: Type-p most-perfect squares of order n = p3 exist due to [4]. Also, the square
θ(R) has the 1/p-property for rows and columns, is pandiagonal, and has the p× p
property by Proposition 2.6. It remains to show that Franklin patterns in θ(R) add
to the magic sum.

Let p = α + β with 1 ≤ α, β < p and let W be a Franklin-up pattern in θ(R)
corresponding to this partition of p. We establish the following notation concerning
W :

• Let W i
j denote W ∩ Bi

j and wij denote the sum of the elements of W i
j for 0 ≤

i, j ≤ p− 1, with j 6= p−1
2

.

• W intersects Bi
j in two consecutive rows of Bi

j. For 0 ≤ i, j ≤ p−1 with j 6= p−1
2

,
let W i

j,t denote the portion of W i
j coming from the top-most of these two rows

in Bi
j, and let W i

j,b denote the portion of W i
j coming from the bottom-most of

these two rows in Bi
j. Let wij,t denote the sum of the entries in W i

j,t and wij,b
denote the sum of the entries in W i

j,b. Note W i
j = W i

j,t∪W i
j,b and wij = wij,t+w

i
j,b.

The need for this distinction between “t” and “b” will be made clear later in
the proof when we apply Lemma 4.2.

• If p is odd, let W i,k
p−1
2

denote Bi,k
p−1
2

∩ W , and let wi,kp−1
2

denote the sum of the

elements of W i,k
p−1
2

.

• For 0 ≤ j < p−1
2

we put sj =

p−1∑
i=0

(wij + wip−1−j).

• If p is odd, put s p−1
2

=

p−1∑
i=0

(
wi,0p−1

2

+ wi,1p−1
2

)
. In the special case that Bi,0

p−1
2

=

Bi,1
p−1
2

, the corresponding term in s p−1
2

is just wi,0p−1
2

, not wi,0p−1
2

+wi,1p−1
2

, as otherwise

we would incur duplication.

Observe that the sum of the entries in W is
∑

0≤j≤ p−1
2

sj. We claim that sj = p2(p6−1)

when 0 ≤ j < p−1
2

, and that s p−1
2

=
p2(p6 − 1)

2
when p is odd. Assuming this claim,

we have that the sum of the entries of W is∑
0≤j≤ p−1

2

sj =
p− 1

2
[p2(p6 − 1)] +

p2(p6 − 1)

2
=
p3(p6 − 1)

2
=
n(n2 − 1)

2

when p is odd, and the sum is∑
0≤j≤ p−1

2

sj = s0 = p2(p6 − 1) =
p3(p6 − 1)

2
=
n(n2 − 1)

2

when p = 2. In either case, the sum of the entries of W is the magic sum, as desired.
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To finish, we need to verify the claims about the sums sj. We first present an
overview: If S = θ(R), then we can follow the entries in W ⊆ S, and hence the
terms of the sums sj, back to R by considering θ(S). Then we use the complementary
property of R together with Lemma 4.2 to replace sums sj with equivalent sums s̃j
that have the claimed values.

And now on to details of the argument, which takes two cases: 0 ≤ j < p−1
2

and

j = p−1
2

. First suppose that 0 ≤ j < p−1
2

. Observe that for 0 ≤ i < p − 1, each
entry of W i

j,t ∪W i
p−1−j,t is p columns distant from its counterpart in W i+1

j,t ∪W i+1
p−1−j,t

in S = θ(R), with no repetition of columns. (Here “counterparts” lies in the same
relative position within a block.) Further, we note that the columns of the subsquare
frame array T for W coincide with the columns of the subsquare array (S`,m) as in
Equation 1. (This is not generally true for rows of T .) Also, for 0 ≤ i ≤ p−1, W i

j,t lies
wholly within band Bj, which in turn coincides with a natural band of p consecutive
columns in the subsquare array (S`,m). A similar statement is true for W i

p−1−j,t.
Therefore subsquares in S`,m containing a pair of counterparts in W i

j,t ∪ W i
p−1−j,t

and W i+1
j,t ∪ W i+1

p−1−j,t must lie in consecutive columns in S`,m. Taking all of this
into account, upon applying Equation (2), we find that elements in W i

j,t ∪W i
p−1−j,t

are p2 = n/p columns distant from their counterparts in W i+1
j,t ∪ W i+1

p−1−j,t within
R = θ(S), with no repetition of columns. (Another way to view this is that the
squares containing these counterparts are p columns distant in the subsquare array
R`,m.) These same observations and conclusion are also true if W i

j,t ∪ W i
p−1−j,t is

replaced with W i
j,b ∪W i

p−1−j,b.

We have established that as i varies from 0 to p − 1, elements in W i
j,t ∪ W i

p−j−1,t

are p2 = n/p columns apart from their counterparts in W i+1
j,t ∪W i+1

p−j−1,t in R, and
similarly when “t” is replaced by “b”. If these same statements were also true with
“rows” in place of “columns”, then we could repeatedly apply the complementary
property of R to obtain

sj =

p−1∑
i=0

wij + wip−1−j

=

p−1∑
i=0

(wij,t + wip−1−j,t) +

p−1∑
i=0

(wij,b + wip−1−j,b)

= p

[
p(p6 − 1)

2

]
+ p

[
p(p6 − 1)

2

]
= p2(p6 − 1),

as claimed. (Here the multiplications by p in the penultimate line are due to the fact
that there are a+b = p members of W i

j,t∪W i
p−1−j,t, and similarly for W i

j,b∪W i
p−1−j,b).

Unfortunately, because the rows of the frame array T = (T`,m) do not generally
coincide with a natural band of p consecutive rows in (S`,m), it is not always true
that elements in W i

j,t ∪W i
p−j−1,t are p2 = n/p rows apart from their counterparts in

W i+1
j,t ∪W i+1

p−j−1,t in R.

Lemma 4.2 can be used to rectify this problem. Elements in W i+1
j,t ∪W i+1

p−j−1,t may
not be p2 = n/p rows distant in R from elements in W i

j,t∪W i
p−j−1,t, but this distance
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is some multiple of p due to our construction of W and to Equation (2). By moving
vertically in R from W i+1

j,t ∪W i+1
p−j−1,t by some appropriate multiple of p units (possibly

zero), we encounter a set W̃ i+1
j,t ∪ W̃ i+1

p−j−1,t of p elements in R that is n/p = p2 rows
distant from W i

j,t ∪W i
p−j−1,t:

W i+1
j,t W i+1

p−1−j,t
· · · · · · · · · · ·
↓ ↓
· · · · · · · · · · ·
W̃ i+1
j,t W̃ i+1

p−1−j,t

Further, by applying Lemma 4.2, we have

wi+1
j,t + wi+1

p−j−1,t = w̃i+1
j,t + w̃i+1

p−j−1,t,

where w̃i+1
j,t is the sum of the elements in W̃ i+1

j,t , and likewise for w̃i+1
p−j−1,t. The

vertical nature of this replacement has no effect on the relationship among columns:
it is still true that an element in W i

j,t ∪ W i
p−j−1,t and its counterpart in W̃ i+1

j,t ∪
W̃ i+1
p−j−1,t are n/p = p2 columns distant from one another. These statements are also

true if “t” is replaced by “b”. By making these replacements systematically and
judiciously, so as to avoid repetition of rows, we may apply Lemma 4.2 together with
the complementary property in R to obtain

sj =

p−1∑
i=0

wij + wip−1−j

=

p−1∑
i=0

(wij,t + wip−1−j,t) +

p−1∑
i=0

(wij,b + wip−1−j,b)

=

p−1∑
i=0

(w̃ij,t + w̃ip−1−j,t) +

p−1∑
i=0

(w̃ij,b + w̃ip−1−j,b)

= p

[
p(p6 − 1)

2

]
+ p

[
p(p6 − 1)

2

]
= p2(p6 − 1),

(3)

thereby proving the first portion of our claim on the sums sj.

Finally, we address the claimed value of s p−1
2

. Without loss of generality we assume

that B0,0
p−1
2

= B0,1
p−1
2

. For each 1 ≤ i ≤ p − 1, we may use Lemma 4.2 to consider

elements W̃ i,0
p−1
2

∪ W̃ i,1
p−1
2

lying above W i,0
p−1
2

∪W i,1
p−1
2

and in the same row as W 0,0
p−1
2

as
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illustrated here:

W̃ 2,0
p−1
2︷︸︸︷

∗ ∗ ∗

W̃ 1,0
p−1
2︷ ︸︸ ︷

∗ ∗ ∗ ∗

W 0,0
p−1
2︷ ︸︸ ︷

∗ ∗ ∗ ∗ ∗ ∗ ∗∗

W̃ 1,1
p−1
2︷︸︸︷

∗ ∗ ∗

W̃ 2,1
p−1
2︷ ︸︸ ︷

∗ ∗ ∗ ∗
↑ ↑ ↑ ↑

∗ ∗ ∗ ∗ ∗ ∗ ∗
↑ W 1,0

p−1
2

W 1,1
p−1
2

↑
∗ ∗ ∗ ∗ ∗ ∗ ∗
W 2,0

p−1
2

W 2,1
p−1
2

If we let w̃i,0p−1
2

+ w̃i,1p−1
2

be the corresponding sum of elements, we find by applying the

1/p row property of θ(R) (Proposition 2.2) that

s p−1
2

= w0,0
p−1
2

+

p−1∑
i=1

(
wi,0p−1

2

+ wi,1p−1
2

)
= w0,0

p−1
2

+

p−1∑
i=1

(
w̃i,0p−1

2

+ w̃i,1p−1
2

)
=

1

p

[
n(n2 − 1)

2

]
=

1

p

[
p3(p6 − 1)

2

]
=
p2(p6 − 1)

2
,

(4)

as claimed. The other Franklin pattern categories (right, down, and left) have similar
verifications.

2

5 Type-p Franklin Squares of Order kp3 with k > 1.

In this section we indicate how type-p Franklin squares of order kp3 can be defined,
and argue that these squares exist when k = pr for r ≥ 0. This extends the results of
Sections 3 and 4, where we addresed the special case k = 1. Terminology and ideas
of Sections 3 and 4 will be used throughout.

The description in Section 1.4 characterizes type-p Franklin squares of order kp3

except for the Franklin patterns. As in Section 3, we focus on describing Franklin-up
patterns; the other varieties (right, down, and left) are obtained from Franklin-up
locations by rotating the ambient square. Let S be a square of order n = kp3, let
α + β = p with 1 ≤ α, β < p, and let W be a Franklin-up pattern in S. The frame
for W consists of n

p
= kp2 consecutive rows of S. As in Section 3, we can partition

this frame into a p× p2 array (Ti,j) where Ti,j is an array of size kp× kp. Therefore,

each of the squares Bi
j and Bp−1−j should be of size kp × kp, as should be Bk,l

p−1
2

in

case p is odd. To determine W it is necessary to describe the intersection of these
squares with W .
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We first address W ∩Bi
j with 0 ≤ j < p−1

2
. View Bi

j as a k×k array whose entries
are p×p subarrays. If j is even, recall that as i increases from 0 to p−1, the squares
Bi
j lie on a broken main diagonal of the array (Ti,j). In this case we declare that

W intersects Bi
j in each of the p × p submatrices on the main block diagonal of Bi

j

in the manner described in Section 3 (Figure 4). If j is odd, recall that the squares
Bi
j lie on a broken off diagonal of the array (Ti,j). In this case we declare that W

intersects Bi
j in each of the p× p submatrices occupying the off block diagonal of Bi

j

in the manner of Section 3. Intersections of W with Bi
p−1−j are determined similarly.

A figure illustrating W ∩ Bi
j with j even is shown below, where the smaller arrays

along the main diagonal are of size p× p.

W ∩Bi
j =

∗
∗∗

∗
∗∗

. .
.

∗
∗∗

.

Also, here is a frame showing all blocks Bi
j in the classical case p = 2 and n = 2 ·23 =

16:
∗ ∗

∗ ← B0
0 B0

1 → ∗
∗ ∗

∗ ∗
∗ ∗

B1
0 → ∗ ∗ ← B1

1
∗ ∗

∗ ∗

It remains to address the intersection of the Franklin-up pattern W with the
middle band B p−1

2
in the case that p is odd. Unlike the other bands, we will continue

to partition B p−1
2

into p × p subsquares as we did in Section 3. (This is reasonable

because we do not apply θ to this band in Theorem 5.1, and so we do not need a
partition into squares of order n

p2
= kp.) Further, we define Bi,0

p−1
2

and Bi,1
p−1
2

, as well

as their intersections with W just as we did in Section 3, except that 0 ≤ i ≤ kp− 1
rather than 0 ≤ i ≤ p − 1 (Figure 5). We note that in the special case that Bi,0

p−1
2

and Bi,1
p−1
2

coincide, then the intersection with W is the entire bottom row of this

square; this will happen when k is odd. Meanwhile, in the special case that Bi,0
p−1
2

and Bi,1
p−1
2

are adjacent (borders touching) then their intersection with W consists of

the entire bottom row of both squares. This latter case, which happens when k is
even, produces a row in the frame for W that intersects W in 2p locations rather
than p locations. An illustration is given in the following figure, which shows the
middle band B1 in the case n = kp3 = 3 ·33. Each entry is a 3×3 array; the asterisks
are the Bi,`

1 ’s. The boxed asterisk is B8,1
1 ; its intersection with W is shown in the

right portion of the figure (assuming α = 1 and β = 2).

∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

B8,1
1 ∩W =

• •
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Theorem 5.1 Let p be prime, k ∈ Z+, and n = kp3. If R is a type-p most-perfect
square of order n then θ(R) is an order-n pandiagonal type-p Franklin square. Fur-
ther, such squares R exist when k = pr for any prime p and any r ≥ 0.

Proof: The proof, which shall be abridged, closely follows that for Theorem 4.3.
Notation will be identical to that of Theorem 4.3, with the exception that wij will be
split into 2k summands rather than just two summands wij,t and wij,b. This is due to
the fact that W intersects Bi

j in 2k rows rather than 2 rows. (A similar adjustment
is made for wip−1−j.)

Let S = θ(R). Due to Proposition 2.6, to establish that S is a type-p Franklin
square it remains to show that entries in Franklin patterns add to the magic sum. We
verify this for Franklin-up patterns only, the other patterns have similar verifications.
Following the proof of Theorem 4.3, and Equation (3) in particular, the use of Lemma
4.2 and the complementary property in R gives

sj =

p−1∑
i=0

wij + wip−1−j = p

[
p(n2 − 1)

2

]
+ · · ·+ p

[
p(n2 − 1)

2

]
︸ ︷︷ ︸

2k times

=
n(n2 − 1)

p

when 0 ≤ j < p−1
2

. Likewise, in the case that p is odd, applying Lemma 4.2 together

with the 1/p-row property of S as in Equation (4) gives s p−1
2

= n(n2−1)
2p

. It follows

that the sum of the entries in W is∑
0≤j≤ p−1

2

sj =
n(n2 − 1)

2
,

as desired.

Finally, the existence of type-p most-perfect squares of order ps (s ≥ 3) is guaranteed
by [4]. 2

6 Appendix

Appearing in Figure 6 is a larger version of the order-27, type-3 Franklin square
given initially in Section 1.4.
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