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Abstract

Let T be a tournament whose arcs are colored using at least three colors.
A cycle C in T is called q-switched if there are at most q vertices in C
whose incident arcs in C receive two distinct colors. We prove that if
every cycle in T of length at least four is 3-switched and every cycle of
length three is 2-switched, then T contains a monochromatic sink.

1 Introduction

A tournament is an oriented complete graph. That is, if u and v are vertices in
T , exactly one of uv and vu is an arc in T . A k-arc-colored tournament is one in
which each arc is assigned one of k distinct colors. Such a coloring need not be
proper. A monochromatic path in a k-arc-colored tournament is a directed path,
all of whose arcs are colored the same. In their 1982 work on arc-colored digraphs,
Sands, Sauer, and Woodrow [7] showed, when specialized to tournaments, that every
2-arc-colored tournament contains a vertex v such that for any other vertex w, there
is a monochromatic path from w to v. Such a vertex in an arc-colored tournament
is called a monochromatic sink. It is well-known that in any 1-arc-colored tourna-
ment, there exists a monochromatic sink. Consider any Hamiltonian path of such a
tournament (at least one is guaranteed to exist) and the final vertex of this path.

When attempting to extend this idea to k-arc-colored tournaments for k ≥ 3, one
runs into obstacles. A rainbow cycle is a directed cycle in which no two arcs share
the same color. In particular, a rainbow triangle, denoted Δ3, is a rainbow 3-cycle.
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Consider the vertex set R of a rainbow triangle together with a set X of an arbitrary
number of other vertices such that for all x ∈ X and r ∈ R, there is an arc directed
from x to r. No matter the coloring and directions of the remaining arcs, the resulting
tournament, having vertex set R∪X, does not contain a monochromatic sink. Hence,
a rainbow triangle can be a road block for the existence of a monochromatic sink.
This leads to the following question:

Question 1.1 Let T be a k-arc-colored tournament without rainbow triangles.
Must T contain a monochromatic sink?

We call a tournament without rainbow triangles Δ3-free. Shen [8] provided the
answer to Question 1.1 by constructing a 5-arc-colored Δ3-free tournament without
a monochromatic sink. Later, Galeana-Sánchez and Rojas-Monroy [4] constructed
a 4-arc-colored Δ3-free tournament without a monochromatic sink. However, these
examples contain a rainbow cycle of size five and four, respectively. In light of this
work, the following question remains open:

Question 1.2 Let T be a k-arc-colored Δ3-free tournament without rainbow k-cycles.
Must T contain a monochromatic sink?

We refer the reader to [1], [3], [4], [5], [6], and [8] for background on the work
during the past three decades pertaining to monochromatic sinks in tournaments.
Much of this progress comes in the form of assuming the tournament has an additional
property, usually concerning the coloring of the arcs or the orientations of the arcs.
In this paper, we make an additional assumption of this type. In particular, we
restrict the coloring of the arcs with respect to cycles. Such a restriction is natural
considering rainbow cycles are potentially problematic.

Let C be a directed cycle in an arc-colored tournament T . We will refer to
directed cycles simply as cycles. Similarly, directed paths will be referred to as paths.
Also, since we will only be considering arc colorings of tournaments and never vertex
colorings, it will not be ambiguous to say T is simply a k-colored tournament instead
of a k-arc-colored tournament. We call a vertex v a switch vertex with respect to C
if the arc in C incident from v and the arc in C incident to v have distinct colors.
If v is a switch vertex with respect to C, we will say C contains the switch vertex v.
We call C q-switched if it contains at most q switch vertices. We call a tournament
q-switched if every cycle in the tournament is q-switched. The main result of this
paper is the following.

Theorem 1.3 Let T be a k-colored 3-switched Δ3-free tournament. Then T has a
monochromatic sink.

We will also prove an analogous result for 2-switched tournaments. We leave
it open to consider tournaments that contain cycles having more than three switch
vertices.

Note that T has a monochromatic sink if T has fewer than three vertices. Fur-
thermore, a tournament on three vertices is either transitive or a cycle. In either case,
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it is easily checked that a Δ3-free tournament on three vertices necessarily contains
a monochromatic sink. For this reason, we may assume throughout this paper that
the tournaments we are dealing with have at least four vertices.

This paper is organized as follows. In Section 2, we introduce some notation and
prove a lemma that will be used extensively to establish Theorem 1.3. This lemma
motivates the definition of a special type of cycle called a dominating cycle. In
Sections 3 and 4, we prove Theorem 1.3, dividing our argument into two main cases
depending on the number of switch vertices present in a Hamiltonian dominating
cycle.

2 Preliminaries

In the subsequent sections, we will assume a counterexample to Theorem 1.3 exists
and arrive at a contradiction in each case we consider. Thus, it is important to
develop the structure that is forced when we assume a k-colored tournament is Δ3-
free and has no monochromatic sink, and that is what we do here. We begin with
some useful notation. For general concepts, we refer the reader to [2].

Let i and j be integers with i < j. We use the notation [i, j] to denote the
set of all integers k such that i ≤ k ≤ j. When i = 0, we will abbreviate [i, j] to
[j]. Throughout this paper, we assume the tournament T we are dealing with has n
vertices, and we let the vertex set of T be {v0, v1, . . . , vn−1}. The sub-tournament of
T formed by deleting a single vertex vi will be denoted as T−vi. As previously stated,
we are interested in considering k-colorings of the arcs in a tournament. Thus, we
will be partitioning the set of arcs of T , which we denote by A(T ), into k color classes,
that we will label from the set of distinct colors {c1, c2, . . . , ck}. We will often refer
to the color of a monochromatic path by the color of the arcs in the path. It will be
convenient to have notation to indicate the direction of an arc between two vertices,
as well as the color (or possible colors) of the arc. To this end, we let vi −→ vj
indicate there is an arc between vi and vj that is directed from vi to vj. Also, if we

know the color of such an arc, say it is c1, we write vi
c1−→ vj to indicate that there

is an arc from vi to vj colored c1. When we know the arc from vi to vj is one of two

colors, say c1 or c2, we will write vi
c1,c2−→ vj . If there exists a monochromatic path

from a vertex u to a vertex v, we write u � v. The color, or possible colors, of the
monochromatic path will be notated similarly to that of the arcs. For two vertices
u and v of a path P , we write uPv to indicate the subpath of P from u to v. Such
a path can be empty and as a result, uPu represents the single vertex u. If u and
v are distinct vertices in a k-colored cycle C, we write û, v to indicate that at least
one of u and v is a switch vertex in C. We use the common notation |P | to denote
the number of arcs in a path P .

Definition 2.1 A cycle C = u0u1u2 . . . u�−1u0 in an arc-colored tournament T is a
dominating cycle if for all i in [�− 1], where i is considered modulo �, the vertex ui

is a monochromatic sink in T − ui+1, but there is no monochromatic path from ui+1

to ui in T .
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We call P a hereditary property of an arc-colored tournament T if whenever T
has property P, then every sub-tournament of T has property P. Note that each
of the properties k-colored, q-switched, and Δ3-free are hereditary properties of arc-
colored tournaments. The following lemma by Melcher and Reid [6] was originally
used implicitly by Shen [8]. We omit the proof, which can be found in [6].

Lemma 2.2 Let P be a hereditary property of arc-colored tournaments. Suppose
there exists an arc-colored tournament with property P, but no monochromatic sink.
If T is a smallest arc-colored tournament such that P is a property of T and T
contains no monochromatic sink, then T has a Hamiltonian dominating cycle.

Lemma 2.2 implies that a smallest counterexample to Theorem 1.3 must contain
a Hamiltonian dominating cycle. Consequently, when we prove Theorem 1.3, we
will do so by contradiction and consider T to be a smallest counterexample, gain-
ing the usefulness of the Hamiltonian dominating cycle structure. For this reason,
when referring to a vertex vi in a tournament T , the subscript i will be interpreted
modulo n.

Before further developing the tools needed to prove Theorem 1.3, we prove an
analogous result for k-colored 2-switched tournaments.

Theorem 2.3 Let T be a k-colored 2-switched tournament of order n ≥ 2. Then T
has a monochromatic sink.

Proof. Suppose, to the contrary, the result does not hold. Let T be a smallest
counterexample. Since T does not contain a monochromatic sink, Lemma 2.2 implies
that T contains a Hamiltonian dominating cycle C = v0v1 . . . vn−1v0. We see that C
must contain exactly two switch vertices. Let vs be a switch vertex in C. Up to a
relabeling of colors, we may assume without loss of generality that vs−1

c1−→ vs and
vs

c2−→ vs+1. By Definition 2.1, there exists a monochromatic path P from vs+1 to
vs−1. We know P cannot be colored c1 or c2, since this would imply vs+1

c1� vs or
vs

c2� vs−1, respectively, contradicting Definition 2.1. Now the cycle vsvs+1Pvs−1vs
has three switch vertices, vs−1, vs, and vs+1, contradicting our assumption that T is
2-switched. �

Naturally, one may wonder about such a result for k-colored 1-switched tourna-
ments. Since it is impossible for a cycle to contain exactly one switch vertex, in
such a tournament T , all cycles (if any) are monochromatic. Thus, any vertex in the
terminal strong component of T is a monochromatic sink in T .

The remainder of this paper will focus on the proof of Theorem 1.3. As we have
observed, if T is a smallest counterexample to Theorem 1.3, then T is a k-colored,
Δ3-free, 3-switched tournament without a monochromatic sink, and by Lemma 2.2,
T has a Hamiltonian dominating cycle. Furthermore, by definition, any dominating
cycle cannot be 0-switched, and as stated above, it is impossible for a cycle to be
1-switched. Thus to prove Theorem 1.3 by contradiction, we need only consider
the two cases when a smallest counterexample has a 2-switched or a 3-switched
Hamiltonian dominating cycle. These are the topics of the next two sections. In the
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various situations that arise, we will commonly arrive at two main contradictions.
Namely, we will often either produce a cycle that contains at least four switch vertices,
contradicting the assumption that our tournament is 3-switched, or we will determine
that vi � vi−1 for some i ∈ [n− 1], contradicting Definition 2.1.

3 2-switched dominating cycle

The goal of this section is to rule out the case that a smallest counterexample to
Theorem 1.3 contains a 2-switched Hamiltonian dominating cycle.

Lemma 3.1 If T is a smallest counterexample to Theorem 1.3, then T does not have
a Hamiltonian 2-switched dominating cycle.

Before proving Lemma 3.1, it will be useful to investigate the structure of a
k-colored Δ3-free tournament that contains a Hamiltonian dominating cycle.

Lemma 3.2 If T has a Hamiltonian dominating cycle C = v0v1 . . . vn−1v0 that con-
tains a switch vertex vi for some i ∈ [n− 1], then vi−1 −→ vi+1.

Proof. Suppose to the contrary that vi+1 −→ vi−1. Without loss of generality, we
may assume vi−1

c1−→ vi and vi
c2−→ vi+1. Now, if the arc vi+1vi−1 is not colored c1

or c2, then T contains a Δ3, a contradiction. If vi+1
c1−→ vi−1, then vi+1

c1� vi and
vi is a monochromatic sink in T , while if vi+1

c2−→ vi−1, then vi
c2� vi−1 and vi−1 is a

monochromatic sink in T . In either case a contradiction results. �

Lemma 3.3 If T has a Hamiltonian dominating cycle C = v0v1 . . . vn−1v0 and there
exist i, j ∈ [n − 1] such that j /∈ {i, i − 1}, vi −→ vj, and vj −→ vi−1, then exactly
one of the arcs vivj and vjvi−1 receives the same color as the arc vi−1vi.

Proof. First, note that if the arcs vivj and vjvi−1 are the same color, then vi � vi−1,
contradicting the assumption that C is a dominating cycle. Thus, vivj and vjvi−1

differ in color, and if neither arc is the same color as vi−1vi, we have a Δ3. From
this, the result follows. �

Lemma 3.4 If T has a Hamiltonian dominating cycle C = v0v1 . . . vn−1v0 that con-
tains a switch vertex vi for some i ∈ [n− 1], then there exists a monochromatic path
P from vi+1 to vi−1. Moreover, the color of P is distinct from the colors of the arcs
vi−1vi and vivi+1.

Proof. Since vi−1 is a monochromatic sink in T −vi by the definition of C, and vi+1 is
a vertex in T − vi, such a path P exists in T . If P shares the color of arc vi−1vi, then
there is a monochromatic path from vi+1 to vi. But, by the definition of C, vi is a
monochromatic sink in T −vi+1, so vi is a monochromatic sink in T , a contradiction.
If P shares the color of arc vivi+1, then there is a monochromatic path from vi to
vi−1. But, by the definition of C, vi−1 is a monochromatic sink in T − vi, so vi−1 is
a monochromatic sink in T , a contradiction. �
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Lemma 3.5 Let T be a q-switched tournament, q ≥ 3, and suppose T has a Hamil-
tonian dominating cycle C = v0v1 . . . vn−1v0 containing at least q− 1 switch vertices.
Let vs and vt be switch vertices of C where s < t and let vivj be any arc in T with
s < i < j < t. If either

(i) C has q − 1 switch vertices and vs and vt are consecutive switch vertices in C,
or

(ii) C has q switch vertices and there exists at most one switch vertex vy of C with
i < y < j,

then the color of vivj must either equal the color of vi−1vi or it must equal the color
of vjvj+1.

Proof. Let S be the set of all switch vertices in C. By hypothesis, |S| ≥ q − 1. Let
arc vivj be as is described in the statement, and suppose that vivj differs in color
from both vi−1vi and vjvj+1. Then, no matter whether (i) or (ii) is assumed, the
cycle vivjCvi contains the switch vertices vi and vj as well as q − 1 of the vertices
of S, for a total of q + 1 switch vertices. This contradicts the hypothesis that T is
q-switched. �

Proof of Lemma 3.1. By Lemma 2.2, such a tournament T has a Hamiltonian
dominating cycle C = v0v1 . . . vn−1v0. Suppose, to the contrary, that C is 2-switched.
Let the switch vertices in C be v0 and vs, for some s ∈ [1, n− 1]. Up to relabeling of
colors, we may assume without loss of generality that the path v0Cvs is colored c1,
the path vsCv0 is colored c2, and that vs −→ v0. Thus, s �= 1. If s = n − 1, then
v0 � vn−1, contradicting Definition 2.1. By Lemma 3.2, it must be that vn−1 −→ v1
and vs−1 −→ vs+1. This implies n �= 4 and thus either |v0Cvs| ≥ 3 or |vsCv0| ≥ 3;
otherwise T is a Δ3. It follows that n ≥ 5. The definition of C implies that v0 is a
monochromatic sink of T − v1. If arc vsv0 is colored c1, then the path v1Cvs followed
by the arc vsv0 is a monochromatic path from v1 to v0, making v0 a monochromatic
sink of T , a contradiction. So, arc vsv0 is not colored c1.

Now, by Lemma 3.4, there must exist a monochromatic path P from v1 to vn−1. If
P were colored c1, then vn−1 would be a monochromatic sink of T , and if P were
colored c2, then v0 would be a monochromatic sink of T . It follows that P is not
colored c1 or c2. Thus we may assume the color of P is c3. Moreover, P cannot
contain the vertex v0 since, if it did, there would exist a monochromatic path from
v0 to vn−1, making vn−1 a monochromatic sink in T , which contradicts the definition
of C. Consider the first arc v1vi in P . By Lemma 3.5, we know that i ∈ [s, n − 2].
Suppose i = s. Then v1

c3−→ vs, and since vsv0 is not colored c1 or c3 (else we have a
path from v1 to v0 colored c3), we have a contradiction to Lemma 3.3. Thus, it must
be that i ∈ [s+ 1, n− 2].

Now, by Lemma 3.5, there must exist a first arc vjvk in P , such that j ∈ [s + 1, i]
and k ∈ [2, s]. Moreover, if k < s, then the cycle v1viPvkCvsv0v1 contains the
switch vertices v1, vk, vs, and v0. Hence T is not 3-switched. If k = s, we see that



J. AIKIN AND A. BLAND/AUSTRALAS. J. COMBIN. 73 (1) (2019), 71–83 77

vsv0 is not colored c3 since otherwise, the path v1Pvs followed by the arc vsv0 is
a monochromatic path from v1 to v0 in T , which contradicts the definition of C.
But now the cycle v0Cvs−1vs+1Cvjvsv0 is not 3-switched, as it contains the switch
vertices vs, v0, vj , and ̂vs−1, vs+1. We conclude that T does not have a 2-switched
Hamiltonian dominating cycle. �

4 3-switched dominating cycle

Having proven that a smallest counterexample to Theorem 1.3 cannot have a 2-
switched Hamiltonian dominating cycle, we now show such a tournament cannot
have a 3-switched Hamiltonian dominating cycle. Before proceeding, we state a
result that we consider quite important as it requires very few assumptions about
the structure of T . For a vertex v, we let A+(v) denote the set of arcs incident from
v. We call A+(v) the out-arc set of v. If all of the arcs in A+(v) are the same color,
then we say that v has a monochromatic out-arc set. Analogously, we let A−(v)
denote the in-arc set of v and if all of the arcs in A−(v) are colored the same, then
we say that v has a monochromatic in-arc set.

Lemma 4.1 Let T be a smallest k-colored Δ3-free tournament on n ≥ 2 vertices
that does not contain a monochromatic sink. Then for any vertex v in T , neither
A+(v) nor A−(v) is monochromatic.

Proof. We prove that for any vertex v in T , the set A+(v) is not monochromatic.
A symmetric argument can be used to prove that A−(v) is not monochromatic.
Suppose, to the contrary, that T does not have a monochromatic sink and there
exists a vertex in T with a monochromatic out-arc set. Then by Lemma 2.2, T has a
Hamiltonian dominating cycle C = v0v1v2 . . . vn−1v0. Without loss of generality, we
may assume that A+(v1) is monochromatic and that each arc in A+(v1) is colored
c1. By Definition 2.1, we know there exist monochromatic paths from v1 to vi for
all i ∈ [2, n − 1] and since each arc in A+(v1) is colored c1, we know that all such

monochromatic paths from v1 must be colored c1. If v0
c1−→ v1, then since v1

c1� vn−1,

we see that v0
c1� vn−1, a contradiction. Therefore, v0

cj−→ v1 for some j �= 1. Since
each arc in A+(v1) is colored c1, we have v1

c1−→ v2. As arc v0v1 is not colored c1,
we now see that v1 is a switch vertex in C. Thus, by Lemma 3.4, there exists a
monochromatic path P : v2 = u0u1u2 . . . ut = v0 from v2 to v0. Let the color of the
path P be ci. If i = 1, then v0 is a monochromatic sink in T , while if i = j, then v1
is a monochromatic sink in T . Thus, by the definition of C, we know that i /∈ {1, j}.
Since v1 −→ v2 and v0 −→ v1, there exists a smallest index � ∈ [t − 1] such that
u�+1

cs−→ v1 and thus v1
c1−→ u�, for some s ∈ [1, k]. If s /∈ {1, i}, then v1u�u�+1v1 is a

Δ3. If s = i, then v2Pu�+1v1 is a monochromatic path from v2 to v1, which, by the
definition of C, yields a contradiction. It follows that s = 1. Since C is Hamiltonian,
there exists α ∈ [3, n− 1] such that u�+1 = vα. Now, since v1

c1� vα−1 and vα
c1−→ v1,

we see that vα
c1� vα−1, which again contradicts the definition of C. We conclude

that T has a monochromatic sink. �
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We are now ready to prove Theorem 1.3.

Proof.[Proof of Theorem 1.3] Suppose T is a smallest counterexample to Theorem
1.3. Then, by Lemma 2.2, T has a Hamiltonian dominating cycle C = v0v1 . . . vn−1v0.
We know C is not 0- or 1-switched, and by Lemma 3.1, C is not 2-switched. We
will now show that C is not 3-switched, which will contradict the fact that T is a
3-switched tournament.

To the contrary, suppose that C contains three switch vertices. Let the switch
vertices in C be v0, vs, and vt, for some s, t ∈ [1, n− 1] where s < t. Without loss of
generality, we may assume the path vtCv0 is colored c1, the path v0Cvs is colored c2,
and the path vsCvt is colored c3. By Lemma 3.2, we have vn−1 −→ v1, vs−1 −→ vs+1,
and vt−1 −→ vt+1. We separate our proof into four cases determined by the size of
A(T ) ∩ E ′, where E ′ = {v0vs, vsvt, vtv0}.

Case 1: Let |A(T ) ∩ E ′| = 0. Then v0vt, vtvs, vsv0 ∈ A(T ). It follows that
|v0Cvs|, |vsCvt|, |vtCv0| ≥ 2. If arc vsv0 is colored c2, then the path v1Cvs followed
by the arc vsv0 is a monochromatic path from v1 to v0, which contradicts the defini-
tion of C. Thus arc vsv0 cannot be colored c2. Similarly, arcs vtvs and v0vt cannot
be colored c1, and c3, respectively. If the triangle v0vtvsv0 is not monochromatic,
we may assume, by symmetry, that the color of the arc vtvs is different from the
color of the arc vsv0. Then the cycle v0Cvs−1vs+1Cvtvsv0 is not 3-switched, since it
has switch vertices vt, vs, v0, and ̂vs−1, vs+1. This contradicts our hypothesis that
T is 3-switched, and from this contradiction, we see the triangle v0vtvsv0 must be
monochromatic and it cannot be colored c1, c2, or c3.

Now, since v0 −→ vt and vt −→ vs, there exists a consecutive pair of vertices,
vi and vi+1 where i ∈ [0, s − 1], such that vi −→ vt and vt −→ vi+1. In the
event the color of the arc vivt is different from the color of the arc vtvi+1, the
cycle vivtvi+1CvsCvt−1vt+1Cv0Cvi is not 3-switched, having switch vertices vt, vs,
̂vt−1, vt+1, and v0. Note that this is even the case if i = s − 1, for in this event, the

colors of the arcs vtvs and vsvs+1 must be different, since vtvs cannot be colored c3.
Thus the arcs vivt and vtvi+1 must be colored the same. If this color is not c2, then
the cycle vivtvi+1CvsCvt−1vt+1Cv0Cvi once again is not 3-switched, having switch
vertices vi, vi+1, vs, and v0. Hence vi

c2−→ vt and vt
c2−→ vi+1. Now since the triangle

v0vtvsv0 is monochromatic and cannot be colored c2 or c3, we see that in particular,
the color of the arc vtvs is not c2 or c3. Thus the cycle vivtvsCvt−1vt+1Cv0Cvi is not
3-switched, having switch vertices vt, vs, ̂vt−1, vt+1, and v0 . With this contradiction,
we conclude |A(T ) ∩ E ′| ≥ 1.

Case 2: Let |A(T ) ∩ E ′| = 3. Then v0vs, vsvt, vtv0 ∈ A(T ). Since |V (T )| ≥ 4, we
may assume at least one of v0Cvs, vsCvt, and vtCv0 has size at least two. Suppose
exactly one of these paths, without loss of generality say v0Cvs, has size at least two.
Then by Lemma 3.2, vs −→ v0, which is a contradiction. So we may assume at least
two of v0Cvs, vsCvt, and vtCv0 has size at least two. Without loss of generality,
assume |vsCvt| ≥ 2 and |v0Cvs| ≥ 2.
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Suppose |vtCv0| = 1. Then, by Lemma 3.2, vt −→ v1 and vt−1 −→ v0. Also, if arcs
v0vs and vsvt share the same color, then since t = n− 1, v0vsvt is a monochromatic
path from v0 to vn−1, contradicting the definition of C. Thus arcs v0vs and vsvt
must have distinct colors. If |v0Cvs| ≥ 3 and |vsCvt| ≥ 3, then by Lemma 3.2,
vs−1 −→ vs+1 and so the cycle vsvtv1Cvs−1vs+1Cvt−1v0vs is not 3-switched, having
switch vertices vs, v̂t, v1, ̂vs−1, vs+1, and v̂t−1, v0. Thus at least one of |v0Cvs| and
|vsCvt| is equal to two. If both are equal to two, then s = 2 and t = 4, and by
Lemma 3.2, v1 −→ v3 and v3 −→ v0. By Lemma 3.3, either v1

c2−→ v3 or v3
c2−→ v0.

If the latter is true, then the arc v3v0 followed by the path v0Cv2 is a monochromatic
path from v3 to v2. This contradicts the definition of C, from which it follows that
v1

c2−→ v3. Now, by Lemma 3.3, v4
c3−→ v1, which now implies that v2Cv4 followed by

the arc v4v1 is a monochromatic path from v2 to v1, a contradiction to the definition
of C. From this, we conclude that exactly one of |v0Cvs| and |vsCvt| is at least three
while the other is equal to two. If |v0Cvs| ≥ 3 and |vsCvt| = 2, then t−1 = s+1 and
Lemma 3.2 implies vs−1 −→ vt−1. Hence the cycle vsvtv1Cvs−1vt−1v0vs has at least
four switch vertices: v̂t, v1, ̂vs−1, vt−1, v0, and vs. If |v0Cvs| = 2 and |vsCvt| ≥ 3, then
s = 2 and by Lemma 3.2, v1 −→ vs+1. Hence the cycle vsvtv1vs+1Cvt−1v0vs is not 3-
switched having switch vertices vt, v̂1, vs+1, v̂t−1, v0, and vs. With this contradiction,
we conclude that each of |v0Cvs|, |vsCvt|, and |vtCv0| is at least two.
Since v0 −→ vs and vt −→ v0, there exists i in [s, t − 1] such that v0 −→ vi and
vi+1 −→ v0. Furthermore, by Lemma 3.3, exactly one of these arcs is colored c3. First
suppose v0

c3−→ vi (implying vi+1v0 is not colored with c3). Then, by Definition 2.1,
we see that vtv0 is not colored c3. If the arc vs−1vs+1 is colored something other than

c2 or c3, then the cycle vs−1vs+1Cvs−1 is not 3-switched. Therefore vs−1
c2,c3−→ vs+1.

If i = s, then vi+1v0 is not colored c3 so the cycle v0vsvtCvn−1v1Cvs−1vi+1v0 has
switch vertices v0, v̂s, vt, ̂vn−1, v1, and vi+1. Thus we assume i > s. Consider the
cycle C ′ = v0viCvt−1vt+1Cvn−1v1Cvsvtv0. It is easily seen v0 and v̂s, vt are switch
vertices of C ′. If |vtCv0| ≥ 3, then ̂vt−1, vt+1 and ̂vn−1, v1 are also switch vertices of
C ′. If |vtCv0| = 2, then by Definition 2.1, vt−1vt+1 is not colored c3. If vt−1

c2−→ vt+1,
then the cycle vt−1vt+1Cvt−1 has switch vertices vt+1, v0, vs, and vt−1, so it is not
3-switched. It follows that vt−1 and v̂t+1, v1 are also switch vertices of C ′ when
|vtCv0| = 2. In each scenario, C ′ is not 3-switched, contradicting the hypothesis that
T is 3-switched. Thus, we may now assume vi+1

c3−→ v0. Then by Definition 2.1,

v0vs is not colored c3. If |v0Cvs| = 2, then v1 −→ vs+1. By Lemma 3.5, v1
c2,c3−→ vs+1.

However, if v1
c3−→ vs+1, then v1

c3� v0. With this contradiction, we conclude v1
c2−→

vs+1. Now the cycle v0vsvtCvn−1v1vs+1Cvi+1v0 has switch vertices v0, vs+1, ̂vn−1, v1,
and v̂s, vt. If |v0Cvs| ≥ 3, then the cycle v0vsvtCvn−1v1Cvs−1vs+1Cvi+1v0 has switch
vertices v0, v̂s, vt, ̂vn−1, v1, and ̂vs−1, vs+1, a contradiction.

Case 3: Let |A(T ) ∩ E ′| = 1. Without loss of generality, assume v0vs, vtvs, and
v0vt are all arcs in T . Note that these arcs imply each of |vsCvt| and |vtCv0| is at
least two. It follows from Definition 2.1 that v0vt is not colored c1 and vtvs is not
colored c3. If v0vt and vtvs are colored differently, then the cycle v0vtvsCvt−1vt+1Cv0
has switch vertices v0, vt, vs, and ̂vt−1, vt+1. So both arcs must be colored the same
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and since v0vt cannot be colored c1 and vtvs cannot be colored c3, this color cannot
be c1 or c3. We break this case into two subcases depending on |v0Cvs|.

Subcase 3.1: Assume |v0Cvs| = 1. By Lemma 3.4, there exists a monochromatic
path P from vt+1 to vt−1 and the color of P cannot be c1 or c3. Note that vt is not a
vertex in the path P , since this would imply the existence of a monochromatic path
from vt to vt−1, contradicting the definition of C. Let vt+1vk and v�vt−1, respectively,
be the first and last arcs of P . Then by Lemma 3.5, we have k ∈ [0, t − 2] and
� ∈ [t+2, s]. However, if k = 0, then since the color of P is not c1, neither vt+1v0 nor
v0vt are colored c1, which contradicts Lemma 3.3. Similarly, if � = s, neither vtvs nor
vsvt−1 are colored c3, again contradicting Lemma 3.3. It follows that k ∈ [s, t−2] and
� ∈ [t+ 2, 0]. Therefore, there must be an arc vxvy contained in the vk − v� subpath
of P such that x ∈ [s, t− 2] and y ∈ [t + 2, 0]. Now, if y = 0, then x ∈ [s+ 1, t− 2]
and the arc v0vt must have a color different than the color of P . Hence, the cycle
vxv0vtCvn−1vsCvx is not 3-switched since it contains the switch vertices vx, v0, vt,
and v̂n−1, vs. Similarly, if x = s, then y ∈ [t + 2, n − 1] and the arc vtvs cannot be
the same color as P . Thus, the cycle vxvyCv0vs+1Cvtvx is not 3-switched since it
contains the switch vertices vy, vt, vx, and v̂0, vs+1. Therefore x ∈ [s + 1, t− 2] and
y ∈ [t + 2, n− 1], so the cycle vxvyCvx is not 3-switched since it has switch vertices
vx, vy, v0, and vs. With this contradiction, we conclude |v0Cvs| �= 1.

Subcase 3.2: Now assume |v0Cvs| ≥ 2. By Definition 2.1, there exists a monochro-
matic path P ′ from vs to v0. Let vsvk and v�v0 be the first and final arcs, respec-
tively, of P ′. First consider the possible values of k. If k ∈ [1, s− 2], then the cycle
vsvkCvs−1vs+1Cvt−1vt+1Cv0vtvs has switch vertices vk, v0, and at least one of vs−1

and vt+1. Moreover, at least one of vt and vs is a switch vertex as well, unless the
path v0vtvsvk is monochromatic. However, if v0vtvsvk is a monochromatic path, the
color of this path cannot be c1, c2, or c3. Then the cycle vsvkCvs−1vs+1Cv0vs is not
3-switched since it has switch vertices vk, ̂vs−1, vs+1, vt, and v̂0, vs. Hence k ∈ [1, s−2]
leads to a contradiction of our hypothesis that T is 3-switched.

Suppose k ∈ [t+ 1, n− 1]. Recall the arc vtvs is not colored c1 or c3. Then the cycle
vsvkCv0Cvs−1vs+1Cvtvs is not 3-switched as it has as switch vertices v0, ̂vs−1, vs+1,
v̂s, vk, and vt. We conclude that k ∈ [s + 1, t − 1]. From this, and the observation
that the color of P ′ cannot be c2, we find that in order for the cycle vsvkCv0Cvs
to be 3-switched, the color of P ′ must be c3. In particular, vsvk and v�v0 are both
colored c3.

We now consider the possible values of �. If � ∈ [t+ 1, n− 2], then the cycle v�v0Cv�
is not 3-switched as it has switch vertices v�, v0, vs, and vt. Recall the arc v0vt is not
colored c3 or c1. If � ∈ [2, s− 1], then the cycle v�v0vtCvn−1v1Cv� is not 3-switched
as it has switch vertices v�, vt, v0, and ̂vn−1, v1. We conclude that � ∈ [s + 1, t− 1].
But then the cycle v�v0vtCvn−1v1Cv� is not 3-switched having switch vertices v0, vt,
̂vn−1, v1, and vs. This contradiction concludes our argument for Case 3.

Case 4: Let |A(T ) ∩ E ′| = 2. Without loss of generality, we may assume that
A(T ) ∩ E ′ = {v0vs, vsvt}. It follows that |vtCv0| ≥ 2, and so there exists a vertex
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vn−1, where n − 1 > t. Moreover, if v0vt is c1, then v0vtCvn−1 is a monochromatic
path from v0 to vn−1. Hence, the definition of C guarantees that v0vt is not colored c1.

Suppose s = 1. Then by Lemma 3.2, vn−1 −→ vs and v0 −→ vs+1. Since vn−1 −→ vs
and vs −→ vt, there exists i ∈ [t, n − 2] such that vs −→ vi and vi+1 −→ vs. By
Lemma 3.3, one of these arcs is colored c1 and to avoid a monochromatic path from
vs to v0, the arc vi+1vs must be colored c1. By Definition 2.1, this implies |vsCvt| ≥ 2.
By Lemma 3.4, there is a monochromatic path Q from vs+1 to v0 that is not colored
c2 nor c3. Consider the first arc vs+1vp of path Q. By Lemma 3.5, we have that
p ∈ [t + 1, n − 1]. If this arc is not colored c1, then vs+1vpCvs+1 is not 3-switched
since it has switch vertices v0, vs, vs+1, and vp. Thus path Q is colored c1. If p ≤ i+1,
then vs+1 � vs, a contradiction. Thus p > i + 1. Then vs+1vpCv0vtCvi+1vsvs+1 is
not 3-switched since it has switch vertices v0, vt, vs, and vs+1. We may therefore
assume s > 1.

By Lemma 3.4, there exists a v1 − vn−1 monochromatic path. Let P be such a path
and let v1vf and v�vn−1 be the first and last arcs in P , respectively. In what follows,
our goal will be to deduce that there are no possible values for f and �, thus arriving
at a contradiction. We know by Lemma 3.4 that the color of P cannot be c1 or c2.
Hence Lemma 3.5 implies that f is not in [2, s − 1] and � is not in [t + 1, n − 2].
Eliminating other values for f and � will require further analysis of the structure
of T .

We first show that v0 −→ vi, for all i in [s, t]. Certainly, v0 −→ vs and v0 −→ vt. To-
ward a contradiction, suppose there exists i in [s+1, t−1] such that vi −→ v0. Note
that in the event vs−1vs+1 is not colored c2 or c3, the cycle v0Cvs−1vs+1Cv0 is not 3-
switched. Thus, we know vs−1vs+1 must be colored c2 or c3. Moreover, by Definition
2.1, it cannot be the case that v0vs and vsvt are both colored c1. From these observa-
tions, we deduce that if viv0 is colored c3 for such a vertex vi, then since v0vs could not
be colored c3 (according to Definition 2.1), the cycle viv0vsvtCvn−1v1Cvs−1vs+1Cvi
is not 3-switched since the vertices v0, v̂s, vt, and at least two vertices from the path
vn−1v1Cvs−1vs+1Cvi are switch vertices. If, on the other hand, viv0 is not colored c3,
then the cycle viv0vtCvn−1v1CvsCvi is not 3-switched, having switch vertices vi, vt,
̂vn−1, v1, and vs. It follows that v0 −→ vi for all i ∈ [s, t].

Next, we show that v0 −→ vj , for all j ∈ [1, s−1]. Suppose this is not the case and let
j be the smallest integer in [2, s− 1] such that vj −→ v0. We know that vjv0 cannot
be colored c2. If vjv0 is not colored c3, then the cycle vjv0vsCvtCvn−1v1Cvj is not 3-

switched, since it has switch vertices vs, vt, ̂vn−1, v1, and v̂0, v1. Therefore vj
c3−→ v0.

A similar argument shows that for all q ∈ [j + 1, s], if vq −→ v0, then it is colored

c3. Moreover, for all such q where v0 −→ vq, it must be that v0
c3−→ vq, otherwise

the cycle vjv0vqCvn−1v1Cvj is not 3-switched. Now, if the path P is colored c3, then
P must avoid every vertex vi where i ∈ [j, t]. If this were not the case, then either

v0
c3� vn−1 or v1

c3� v0, contradicting Definition 2.1. Therefore f ∈ [t + 1, n− 2] and
� ∈ [2, j − 1]. Now, as P avoids vi for all i in [j, t], there must exist an arc vxvy in P
such that x ∈ [t+1, n− 2] and y ∈ [2, j− 1]. Since P is colored c3, this produces the
cycle vxvyCvx, which is not 3-switched. We conclude from this contradiction that
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the color of the path P cannot be c3.

With no loss in generality, we may assume P is colored c4, where c4 /∈ {c1, c2, c3}.
Then, by Lemma 3.5, it must be that f ∈ [t, n− 2] and � ∈ [2, s]. However, if � = s,
then vn−1v0vsvn−1 is a Δ3. Hence � < s. It now follows from this and Lemma 3.5
that P contains an arc of the form vαvβ , where α ∈ [s, t] and β ∈ [2, s − 1]. If
α = s, then β < s− 1 and the cycle vαvβCvs−1vs+1CvtCv0vα is not 3-switched since
it contains switch vertices vβ , ̂vs−1, vs+1, vt, and v̂0, vα. Thus α > s. If α = t, then,
since vαvβ is colored c4, the cycle vαvβCvt−1vt+1Cv0vα has switch vertices ̂vt−1, vt+1,
vs, vβ, and v̂0, vα, and is therefore not 3-switched. With this contradiction, we may
assume α ∈ [s + 1, t − 1]. Now, if α > s + 1, then the cycle vαvβCvsvtCv0vα−1vα is
not 3-switched, having switch vertices vβ, v̂s, vt, ̂v0, vα−1, and vα. Hence, it must be
that α = s+ 1. Lemma 3.2 now implies that β < s− 1.

We have already shown that v0 −→ vα. If v0
c4−→ vα, then v0vαPvn−1 is a monochro-

matic path from v0 to vn−1, contradicting Definition 2.1. Now, if the color of arc v0vα
is not c1, then the cycle v0vαvβCvsvtCv0 is not 3-switched, having switch vertices vα,

vβ , v̂s, vt, and v0. We conclude from this contradiction that v0
c1−→ vα.

We now consider the location of vβ relative to vj . If β < j, then the cycle vαvβCvjv0vα
has switch vertices vβ, vj , v0, and vα, and is not 3-switched. If β = j, then v0vαvβv0
is a Δ3. From these contradictions, we may now conclude that β ∈ [j + 1, s − 2].
However, in this case, the switch vertices in the cycle vjv0vαvβCvsvtCvn−1v1Cvj
include the vertices v0, vα, vβ, and vj , which contradicts our hypothesis that T is
3-switched. This contradiction now allows us to conclude that v0 −→ vj, for all
j ∈ [1, s− 1].

Now, by Lemma 4.1, A−(v0) is not monochromatic. Hence there exists an arc vγv0
that is not colored c1. Since v0 −→ vi, for all i in [1, t], it must be that γ ∈ [t+1, n−2].
Furthermore, we have that vγ

c2−→ v0, for otherwise, vγv0Cvγ is a cycle that is not
3-switched. Now, we know v0 −→ vj for all j in [1, s − 1]. If such an arc v0vj is

not colored c2, then the cycle vγv0vjCvγ is not 3-switched. Hence v0
c2−→ vj , for all

j ∈ [1, s− 1].

We claim that for all r ∈ [s, t− 1], the arc v0vr cannot be colored c1. Indeed, if such
an arc is colored c1, then the cycle v0vrCvγv0 is not 3-switched since it contains the
switch vertices v0, vr, vt, and vγ . It is also clear by Definition 2.1 that v0vt cannot
be colored c1. Thus, for all j ∈ [1, t], the arc v0vj cannot be colored c1. Since the
v1 − vn−1 monochromatic path P is not colored c1, if the last arc v�vn−1 of P is such
that � ∈ [1, t], then we arrive at a contradiction to Lemma 3.3. Hence the last arc
v�vn−1 of P is such that � ∈ [t + 1, n − 3]. We have stated that by Lemma 3.5,
this cannot be the case. With this final contradiction, we have now considered all
possibilities, each leading to a contradiction. Therefore, it must be that C has more
than three switch vertices. From this, it follows that no counterexample to Theorem
1.3 exists, thus establishing the result. �



J. AIKIN AND A. BLAND/AUSTRALAS. J. COMBIN. 73 (1) (2019), 71–83 83

Acknowledgements

The authors wish to thank Gaston Brouwer for writing a computer program to aid
in visualizing and finding monochromatic sinks and rainbow triangles in arc-colored
tournaments. Additionally, the authors would like to thank the referees for their
very thorough review. Their feedback contributed greatly to the final version of this
paper.

References

[1] A. Bland, Monochromatic sinks in k-arc colored tournaments, Graphs Combin.
32 (4) (2016), 1279–1291.

[2] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Sixth Ed., CRC
Press, Boca Raton, 2015.

[3] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge
coloured tournaments, Discrete Math. 156 (1-3) (1996), 103–112.

[4] H. Galeana-Sánchez and R. Rojas-Monroy, A counterexample to a conjecture on
edge-coloured tournaments, Discrete Math. 282 (1-3) (2004), 275–276.

[5] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and at most
2-coloured arc sets in edge-coloured tournaments, Graphs Combin. 21 (3) (2005),
307–317.

[6] M. Melcher and K.B. Reid, Monochromatic sinks in nearly transitive arc-colored
tournaments, Discrete Math. 310 (20) (2010), 2697–2704.

[7] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured
digraphs, J. Combin. Theory Ser. B 33 (3) (1982), 271–275.

[8] M. Gang Shen, On monochromatic paths in m-coloured tournaments, J. Combin.
Theory Ser. B 45 (1) (1988), 108–111.

(Received 4 Dec 2017; revised 21 Aug 2018, 24 Oct 2018)


