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62210, Cuernavaca, Morelos
Mexico

jfg77 sigma@hotmail.com gilberto@matcuer.unam.mx

Abstract

A clutter on a ground set E is a collection of incomparable (inclusion-
wise) subsets of E. A map on clutters is a function from the class of all
clutters on E to itself. Examples of maps on clutters are the blocking
and the complementary maps. Let M be a matroid; the complementary
and blocker maps give some relations between the clutters of M ; however,
b(H), the blocker of the hyperplanes of M , has not been studied. An ax-
iomatic characterization of b(H) seems difficult to find, so in this paper
we give some structural properties of such a clutter. In particular, nec-
essary conditions about the dual rank of the members of b(H) are given.
We show how b(H) can be decomposed in the blockers of the hyperplanes
of submatroids of M . A characterization of the clutter of hyperplanes of
a matroid and its blocker through forbidden minors is also given.

1 Introduction

It is assumed that the reader is familiar with the basic facts of matroid theory and
graph theory. A standard reference to these are the books of Oxley [7] and Bondy
and Murty [1], respectively. Clutters are also known in the literature as Sperner
families; the references included here contain almost all of the concepts that we use.
Two reference books about clutters are Cornuéjols [9] and Engel [10].

A clutter is an ordered pair (E,K) consisting of a finite ground set E and a
collection K of incomparable inclusionwise subsets of E. The hereditary closure of a
clutter (E,K) is the collection K↓= {A ⊆ K : K ∈ K}; similarly, the upward closure
of a clutter (E,K) is the collection K↑= {A ⊇ K : K ∈ K}. A set K ⊆ E is a
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transversal of the clutter (E,K) if K intersects all the members of the collection K.
A map on clutters is a function defined from the class of all clutters on E to itself.
The complementary map c is a map on clutters that sends the clutter (E,K) to the
clutter c((E,K)) := (E, {E − K : K ∈ K}), called the complementary clutter of
(E,K). The blocker map b is a map on clutters that sends the clutter (E,K) to the
blocker clutter b((E,K)) := (E,min{D ⊆ E : D ∩ K 	= ∅, for all K ∈ K}), where
min is an operator on a family of sets that renders its minimal elements; note that
{D ⊆ E : D ∩K 	= ∅, for all K ∈ K} is the collection of transversals of (E,K), so
the blocker map sends a clutter (E,K) to the clutter of its minimal transversals. We
recall that the complementary and the blocker maps are involutions, and a proof of
this fact can be found in the paper of Edmonds and Fulkerson [3].

While finding the complementary clutter of a given clutter (E,K) is straightfor-
ward, finding the blocker clutter may be extremely difficult. An extensive research
in that direction was performed by Khachiyan, Boros and Gurvich [4].

Through this document, b and c will denote the blocker map and the comple-
mentary map, respectively. When no confusion is possible we may use K instead
of (E,K), b(K) instead of b((E,K)) and c(K) instead of c((E,K)). Also, we will
denote by M = (E, I) (or only M) a matroid over a set E, by M∗ its dual, and by
B,B∗, C, C∗,H,H∗, respectively, the collections of bases, cobases, circuits, cocircuits,
hyperplanes and cohyperplanes of M . We also follow the usual notation for the rank,
r, and the corank, r∗, functions of M ; and recall that these two functions are related
by r∗(X) = r(E − X) + |X| − r(M) for all X ⊆ E. The following are well-known
relations among some important clutters of a matroid:

i. c(B) = B∗ and c(B∗) = B;
ii. c(C) = H∗ and c(H) = C∗;
iii. b(B) = C∗ and b(B∗) = C.

Observe that b(H) does not appear in these relations, and it is easy to find
examples (like the Vámos matroid) where b(H) is none of the clutters involved in
the above list, so this clutter is a different object.

On the other hand, the property of involution of the blocker map implies that
b(H) determines the matroid, because b(b(H)) = H; therefore, we can construct a
matroid if we know the blocker of its hyperplanes. So we think that it is worthwhile
to study b(H) and in fact all the clutters obtained by the alternate application of
maps b and c. Here we restrict our attention to b(H).

In this paper, we show some properties of b(H) and we describe a way to construct
b(H) using the blockers of the hyperplanes of the simple matroids associated with
the restrictions of the matroid to each of its connected components. Finally, we show
the effect on the blocker clutter of the hyperplanes when we perform the relaxation of
a circuit-hyperplane. We are planning to publish a second part of this paper, where
we will give some characterizations of the blocker of the set of hyperplanes of some
classes of matroids.
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2 A characterization of b(H)
We start this section with a simple but remarkable fact about clutters.

Lemma 2.1. For any clutter K on E, the pair (b(K)↑, c(K)↓) is a partition of 2E,
the power set of E.

Proof: b(K)↑ is the set of transversals of K while every A ∈ c(K) avoids at least
one element of K, namely E \ A. So A is not a transversal of K, and neither are
their subsets. So b(K)↑ ∩ c(K)↓= ∅. Now consider S 	∈ c(K)↓. For every K ∈ K,
S 	⊆ E \K. So S ∩K 	= ∅ and so S ∈ b(K)↑. �

Corollary 2.2. For any clutter K on E,

K1) b(K) = min{2E − c(K)↓}; and
K2) c(K) = max{2E − b(K)↑}.

where min and max render the minimal and the maximal elements of a family of
sets, respectively. �

We call P(K) := (b(K)↑, c(K)↓) a partition structure on E. Consider P(b(K)) =
(b(b(K))↑, c(b(K))↓) = (K ↑, c(b(K))↓); observe that P(K) and P(b(K)) are related
by the extended complementary map, c : 2E → 2E where c(S) = E \ S. In fact,
for any clutter J on E, it is true that c((J ↑)) = (c(J ))↓, so c(b(K)↑) = c(b(K))↓
and c((K ↑)) = (c(K)) ↓. Nicoletti [5], and Nicoletti and White [6] observed that
the complementary map not only defines a matroid duality but also a duality of
statements in matroid theory. In fact, this is true in the more general context of
hypergraphs. Here we make the point that when the blocking map is considered, a
nicer picture (Figure 2.3) arises.
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c(K)↓

b(K)

c(K)

Figure 2.3. The lattice of subsets of E with two partition structures related by the
extended complementary map c.
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In fact c is an automorphism on 2E that associates each partition structure P(K)
with P(b(K)). So every true statement on P(K) renders a true statement on P(b(K))
much as duality in projective geometry.

A beautiful example is obtained by considering the clutter B of bases of a matroid
as a starting point. From B we obtain the partition structure P(B) = (b(B)↑, c(B)↓)
= (C∗ ↑,B∗ ↓) and its complementary structure P(b(B)) = (B ↑,H↓). So the well-
known statement: “For any cobasis B∗ ∈ B∗ and any x 	∈ B∗, B∗ ∪ {x} contains
exactly one cocircuit C∗” translates into: “For any basis B and any x ∈ B, B −{x}
is contained in exactly one hyperplane H = cl(B − {x})” where cl is the closure
operator of matroids.

If instead of B we take H as a starting point, we obtain another pair of dual parti-
tion structures P(H) = (b(H) ↑, c(H) ↓) = (b(H) ↑, C∗ ↓) and P(b(H)) =
(H ↑, c(b(H)) ↓). This is the pair of structures we are interested in. In this sec-
tion we will give some results along these lines.

Although the characterization that the members of the blocker of the hyperplanes
are the minimal sets not contained in cocircuits follows from the expression b(K) =
min{2E − (c(K))↓}, there exist special necessary conditions for a clutter to be the
blocker of the hyperplanes of a matroid.

Theorem 2.4. Let M = (E, I) be a matroid. Then D is a member of b(H) if and
only if D satisfies exactly one of the following properties.

i) For all x ∈ D, D − x ∈ C∗.
ii) There exists a unique x ∈ D such that D − x ∈ C∗, and for all y ∈ D − x,

D − y ∈ C∗↓ − C∗.
iii) D /∈ C∗↓, and for all x ∈ D, we have D − x ∈ C∗↓ − C∗. �

The following example illustrates the three cases above.

We recall that in the cycle matroid M(G) of a graph G, the cocircuits of the ma-
troid correspond to the bonds of G and the hyperplanes correspond to complements
of bonds.

Example 2.5. Consider the cycle matroid of the graph G in Figure 2.6.
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Figure 2.6. A graph G.
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The sets {6, 7, 8}, {1, 2, 3} and {1, 4, 7} are members of the blocker of the hy-
perplanes of M(G) and they correspond, respectively, to cases i), ii), and iii) of
Theorem 2.4. �

The proof of Theorem 2.4 follows by duality from Theorem 2.7. In Example 2.5,
the complements of the sets {6, 7, 8}, {1, 2, 3} and {1, 4, 7} correspond, respectively,
to cases 1), 2), and 3) of Theorem 2.7.

Theorem 2.7. Let M = (E, I) be a matroid. Then A is a member of c(b(H)) if and
only if A satisfies exactly one of the following properties:

1) For all x ∈ E − A, A ∪ {x} ∈ H.
2) There exists a unique element x ∈ E − A such that A ∪ {x} ∈ H, and for all

y ∈ (E − A)− x, we have A ∪ {y} ∈ H↑ − H.
3) A /∈ H↑, and for all x ∈ E −A, we have A ∪ {x} ∈ H↑ − H.

Proof of Theorem 2.7: If a set A ⊆ E satisfies one of the conditions enumerated
above, then A is a maximal set which does not contains hyperplanes, and therefore
A ∈ c(b(H)).

To prove the converse implication, let A ∈ c(b(H)), because the members of
c(b(H)) are maximal sets not containing hyperplanes; in particular, the members of
c(b(H)) cannot be hyperplanes, so they are not closed sets of M or their rank is not
r(M)− 1.

On the other hand, since for x ∈ E−A, A∪{x} contains a hyperplane, it follows
that r(A ∪ {x}) ≥ r(M)− 1. So r(A) ≥ r(M) − 2. It then follows that the rank of
A is between r(M) and r(M) − 2. For A ∈ c(b(H)), each possibility for r(A) gives
rise to one of the following three cases:

1) r(A) = r(M) − 2. In this case, considering that A is a maximal set not con-
taining hyperplanes, we have for all x ∈ E−A, A∪{x} contains a hyperplane,
and so r(A ∪ {x}) ≥ r(M)− 1.

But since r(A) = r(M)−2, we have r(A∪{x}) = r(M)−1. Therefore A∪{x} is
a hyperplane, because it is a set of rank r(M)−1 which contains a hyperplane,
and the hyperplanes are maximal sets with rank r(M)− 1.

2) r(A) = r(M)− 1. In this case A is not a closed set since otherwise A would be
a hyperplane.

So there exists x ∈ cl(A)−A. Moreover, since A∪ {x} contains a hyperplane,
cl(A) − A = cl(A ∪ {x}) − A = (A ∪ {x}) − A = {x}. Therefore there exists
a unique x ∈ cl(A) − A, that is, there exists a unique x ∈ E − A such that
A∪{x} is a hyperplane. Any other y ∈ E−A, such that y 	= x, is not in cl(A)
and so A ∪ {y} has rank r(M) and properly contains a hyperplane.
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3) r(A) = r(M) so A /∈ H. On the other hand, A ∈ c(b(H)) and so A is a
maximal set not containing hyperplanes; that is, for all x ∈ E − A, we have
A ∪ {x} ∈ H↑ − H.
The cases 1), 2) and 3) of this proof correspond, respectively, to the cases 1),
2), and 3) in the statement of the theorem. �

As a corollary of Theorem 2.7 we have

Corollary 2.8. Let M = (E, I) be a matroid. If D is a member of b(H), then
|D| − 2 ≤ r∗(D) ≤ |D|.

Proof: This follows from Theorem 2.7 and the relation r∗(X) = r(E −X) + |X| −
r(M) for all X ⊆ E. �

This corollary suggests that the blocker clutter of the hyperplanes of a matroid
M is an object of the dual matroid of M , in the same way as b(B) are the circuits of
M∗. So usually we will denote b(H) by D∗.

3 Decomposition of the Blocker of the Set of Hyperplanes

3.1 Decomposition of b(H) through si(M)

Given a matroid M , the simple matroid associated with M is the matroid obtained
from M by deleting all the loops, and for each parallel class {a1, a2, . . . , am} with
cardinality greater than one, identifying the parallel class with a distinguished el-
ement α ∈ {a1, a2, . . . , am}; we denote this matroid by si(M). In this section we
give a way to construct the blocker of the hyperplanes of M using the blocker of the
hyperplanes of si(M).

Let M = (E, I) be a matroid and let (E,H) be its clutter of hyperplanes. For
S ⊂ E we define the collection H\\S = {H − S : H ∈ H}.
Theorem 3.1. Let M = (E, I) be a matroid. If S = {e1, e2, . . . , em} is the set of
loops of M , then

b(H) = {{e1}, {e2}, . . . , {em}} ∪ b(H\\S).

Proof: Let D ∈ b(H). We have two cases.

Case 1: the set D contains a loop: In this case D is precisely a loop, because the
loops are contained in all the hyperplanes, and D is a minimal transversal because
of its cardinality.

Case 2: the setD does not contain a loop. In this case, the setD necessarily intersects
all the hyperplanes in elements which are not contained in S. So D ∈ b(H\\S).

To prove the reverse inclusion, let D ∈ {{e1}, {e2}, . . . , {em}} ∪ b(H\\S). If D
is a loop then clearly D ∈ b(H). If D ∈ b(H\\S), then D ∩ S = ∅ and D intersects
all the hyperplanes of M . The set D is a minimal transversal of H because for all
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e ∈ D, there exists a hyperplane H such that (D− e)∩ (H −S) = ∅ and this implies
(D − e) ∩H = ∅. Therefore D ∈ b(H). �

As a consequence of the last result, if a clutter (E, b(H)) 	= (E, {∅}) is a blocker
of the hyperplanes of a matroid M = (E, I), we can add a new singleton {α}, α /∈ E
and obtain a blocker of the hyperplanes of another new matroid M ′ = (E ∪ α, I).

Now we will focus our attention on the treatment of parallel elements. Let S =
{S1, S2, . . . , Sk} be a collection of disjoint sets. Consider the set S = {s1, s2, . . . , sk},
where si ∈ Si for i = 1, 2, . . . , k. For a set A ⊆ S, we define the expansion of A by
S as the collection

A ·S := {A′ : A′ ⊆ (

k⋃

i=1

Si), |A′ ∩ Si| = 1⇔ si ∈ A, |A′ ∩ Si| = 0⇔ si /∈ A}.

If (
⋃k

i=1 Si,K) is a clutter, we define the expansion of K by S as the collection

K ·S = ∪{A ·S : A ∈ K}. It is not difficult to see that (
⋃k

i=1 Si,K ·S) is a clutter.

Let E = {E1, E2, . . . , Ek} be the collection of parallel classes of a matroid M =
(E, I) without loops. For each parallel class Ei we distinguish a unique element
ei ∈ Ei to build si(M); this is E ′:= {e1, e2, . . . , ek}, the ground set of si(M).

We will consider this particular construction of si(M) in the following theorem.

Theorem 3.2. Let M = (E, I) be a matroid without loops, and let E = {E1, E2,
. . . , Ek} be its set of parallel classes. Let (E ′, si(H)) be the clutter of hyperplanes of
si(M). Then b(H) = b(si(H)) · E .
Proof: In this proof Ei will denote the parallel class that contains the identified
element ei that we used to build si(M); similarly, if we are talking about an element
ei, we mean the element identified in the parallel class Ei of M to build si(M). We
use this convention to avoid the use of maps between matroids just for relabelling
elements, and in this way, the element ei is an element of M and si(M).

Before getting into the details of the proof, let us make the observation that the
elements of M which belong to the same parallel class are contained in a unique atom
of the lattice of closed sets of M , so if a hyperplane H of M contains an element ei,
then H must contain all the elements of the parallel class Ei; as a consequence of
this fact, we have that H is a hyperplane of si(M) if and only if H ′ = ∪{Ei : ei ∈ H}
is a hyperplane of M .

LetD ∈ b(H). We claim that A = {ei ∈ E ′ : D∩Ei 	= ∅} is an element of b(si(H)).
Suppose, to the contrary, that the set A does not intersect a hyperplane Hj of si(M).
Then the set D does not intersect the hyperplane H ′

j = ∪{Ei : ei ∈ Hj} of M and
this contradicts our assumption that D ∈ b(H). Similarly, if A is a transversal set of
si(H) and it is not minimal, then there exists an element ei of A such that A−ei is a
transversal of si(H), but this implies that there exists an element e ∈ D in the same
parallel class as ei and such that D−e is a transversal set of H. This contradicts the
minimality of D. Hence we have A ∈ b(si(H)), and therefore D ∈ A · E ⊆ b(si(H)).

Now, we will prove containment the other way around: if A is a member of
b(E ′, si(H)), then A has at most one member of each Ei. If ei ∈ A, the set A − ei



J.L. FIGUEROA AND G. CALVILLO /AUSTRALAS. J. COMBIN. 73 (1) (2019), 25–41 32

does not intersect all the members of si(H), because A is a minimal transversal of
the hyperplanes of si(H); hence the members of (A − ei) · E are not transversals of
the hyperplanes of M (they do not intersect the hyperplanes which contain Ei), but
if we choose an element of e′i ∈ Ei, then the members of ((A− ei) ∪ e′i) · E intersect
all the hyperplanes of M and they are minimal, so the sets in A · E are members of
(E, b(H)). Applying the same arguments with the remaining elements of b(si(H)),
we conclude that b(H) = b(si(H)) · E . �

3.2 Decomposition through Connected Components

In this section we show how to construct the blocker of the hyperplanes of a non
connected matroid using the blocker of the hyperplanes of the restrictions of the
matroid to each one of the connected components.

Theorem 3.3. If M = (E, I) is a simple matroid, let T1, . . . , Tk be its connected
components, and let Hi be the clutter of hyperplanes of M |Ti. If for 1 ≤ i ≤ k,
Hi 	= {∅}, then

b(H) =
k⋃

i=1

{b(Hi) : Hi 	= {∅}} ∪ {{a, b} : a ∈ Ti, b ∈ Tj , i 	= j}.

Proof: M = (M |T1)⊕ · · · ⊕ (M |Tk) and its clutter of hyperplanes is the collection
H = {Hi ∪ (E − Ti) : i ∈ {1, . . . , k}}.

If D 	= ∅ is contained in a component Ti and is a member of the blocker of
the hyperplanes of M |Ti, then D intersects all the hyperplanes of M because all the
hyperplanes of M contain Ti or they are of the form Hi∪(E−Ti) with Hi hyperplane
of M |Ti. On the other hand, if D ⊆ Ti, D 	= ∅ is not a member of b(H), then D
does not intersect a hyperplane Hi of M |Ti, and D does not intersect the hyperplane
Hi ∪ (E − Ti) of M . So the sets contained in exactly one component Ti are blockers
of M if and only if they are blockers of the hyperplanes of M |Ti. Now, Hi = {∅} if
and only if E−Ti is a hyperplane of M , and this happens if and only if there are no
members of b(H) contained in Ti.

If we take an element a in a component Ti and an element b in a component
Tj , such that Tj 	= Ti, every hyperplane either contains Ti or Tj, and so {a, b} is a
transversal of the clutter H, and it is minimal because M is simple. �

In the following example we ilustrate the theorems of this section about the
decomposition of the blocker of the hyperplanes.

Example 3.4. Here we will use the notation (a1a2 . . . ak) to denote a set {a1, a2, . . . ,
ak} so that the notation does not become overwhelming. Let M be the matroid of
cycles of the graph G′ represented in Figure 3.5.
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Figure 3.5. A graph G′.

The clutter of hyperplanes of M is the collection of sets H = {(7123458), (34568),
(24568), (23568), (23468), (714568), (713568), (713468), (712568), (712468),
(712368)}. We can construct b(H) through si(M), the simple matroid asociated
with M . In this case, si(M) is isomorphic to the cycle matroid of the graph G′′ in
Figure 3.6.

1 2

3

4

5

6

Figure 3.6. A graph G′′.

The simple matroid si(M) has two connected components E1 = (12345) and
E2 = (6). The hyperplanes of si(M)|E1 are H1 = {A ⊆ E1 : |A| = 3}; and the
hyperplanes of si(M)|E2 are H2 = (∅). The blockers of these clutters are b(H1) =
{A ⊆ E1 : |A| = 2} and b(H2) = ∅, respectively.

Now, by Theorem 3.3, the blocker of the hyperplanes of si(M) is the clut-
ter {(16), (26), (36), (46), (56), (123), (124), (125), (134), (135), (145), (234), (235),
(245), (345)}, and by Theorems 3.1 and 3.2 the blocker of the hyperplanes of M(G) is
the clutter {(16), (26), (36), (46), (56), (123), (124), (125), (134), (135), (145), (234),
(235), (245), (345)} ∪ {(8), (76), (723), (724), (725), (734), (735), (745)}. �

4 Relaxation of Hyperplanes

The next proposition appears in Oxley’s book [7].

Proposition 4.1. Let M = (E, I) be a matroid and let X ⊆ E be a circuit-
hyperplane of M . Then B′ = B ∪ {X} is the set of bases of a matroid M ′ on
the same ground set E of M .
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The matroid M ′ is called a relaxation of M . In particular, we say that it is the
result of relaxing the circuit-hyperplane X .

Let M = (E, I) be a matroid of rank r on a set E of cardinality n. In this section
Hr = {H1, H2, . . . , Hs} will denote the hyperplanes of M with cardinality greater or
equal than r and Hr−1 = {Ĥ1, Ĥ2, . . . , Ĥt} the hyperplanes of M with cardinality
equal to r − 1. Let b(H) be the blocker clutter of the hyperplanes of M . We have
the following theorem.

Theorem 4.2. Let M = (E, I) be a rank r matroid. If we relax a circuit-hyperplane
Hi ∈ Hr, then b(H−), the blocker of the hyperplanes of the matroid M− obtained
after the relaxation of Hi is given by:

b(H−) = min{{D ∈ b(H) : |D∩Hi| > 1}∪{D∪x : |D∩Hi| = 1, x ∈ Hi−D,D ∈
b(H)}}.

To prove the above theorem we need the following lemma.

Lemma 4.3. Every transversal T of the hyperplanes of the matroid M− obtained
relaxing a circuit-hyperplane Hi either contains a member of {D ∈ b(H) : |D∩Hi| >
1} or, there exists D ∈ {D̂ ∈ b(H) : |D̂ ∩Hi| = 1} and there exists x ∈ Hi such that
D ∪ {x} ⊆ T .

Proof: Let T be a transversal of the hyperplanes of M−. Then it is clear that T is
a member of the blocker of the hyperplanes of M− or contains properly a member
of the blocker of the hyperplanes of M−.

Case 1: If T contains a member of {D ∈ b(H) : |D ∩Hi| > 1} then there is nothing
to prove.

Case 2: If T only contains members of b(H) such that |D ∩ Hi| = 1, let D be one
of them, that is, D ⊆ T . If D ∩ Hi = {e}, then e ∈ T ∩ Hi and Hi − e is a
hyperplane of M−. But then D ∩ (Hi− e) = ∅, so D is a proper subset of T because
T is a transversal of the hyperplanes of M−; in particular, T ∩ (Hi − e) 	= ∅. Let
x ∈ T ∩ (Hi− e); clearly x /∈ D because D∩ (Hi− e) = ∅. It follows that D∪x ⊆ T .

�
Proof of Theorem 4.2: Note that the sets of hyperplanes of M− with cardinalities
greater or equal than r and r − 1, are respectively H−

r = Hr − {Hi} and H−
r−1 =

Hr−1 ∪ {Hi − x : x ∈ Hi}.
First, we prove that the members of {D ∈ b(H) : |D ∩Hi| > 1} are transversals

of the hyperplanes of M−. If D ∈ b(H) and |D ∩ Hi| > 1, then for all x ∈ Hi,
|D∩(Hi−x)| > 0, this is, D intersects the sets of cardinality r−1 that are hyperplanes
of the matroidM− but are not hyperplanes ofM . On the other hand, D is in b(H), so
D intersects every member of (Hr ∪Hr−1)−{Hi} because these sets are hyperplanes
of M . Therefore, we have proved the members of {D ∈ b(H) : |D ∩ Hi| > 1} are
transversals of the hyperplanes of M−.

Now, if D ∈ b(H) and |D ∩Hi| = 1, then there exists a unique e ∈ E such that
D ∩ Hi = {e}, so D ∩ (Hi − {e}) = ∅; the set Hi − {e} is a hyperplane of M−, it
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follows that D is not transversal of the hyperplanes of the matroid M−. However, if
we choose y ∈ Hi−{e}, then (D ∪ {y})∩ (Hi−{e}) = {y}. Now D ∪ {y} intersects
all the members of (Hr ∪Hr−1)−{Hi} because D is a transversal of the hyperplanes
of M ; even more, D ∪ {y} intersects all the members of {Hi − {x} : x ∈ Hi − {e}}
because all of them contain the element y, therefore, D ∪ {y} is a transversal of the
hyperplanes of M−.

Now, by Lemma 4.3 the members of {D∪x : |D∩Hi| = 1, x ∈ Hi−D,D ∈ b(H)}
and {D ∈ b(H) : |D ∩Hi| > 1} are transversals of the hyperplanes of M− and every
transversal of the hyperplanes of M− contains a member of these collections, in
particular, the members of the blocker of the hyperplanes of M− contain members
of these collections and by minimality, they are members of these collections. �

Example 4.4. Consider the Fano matroid F7 with the geometric representation of
Figure 4.5.

4

1

3

2
6

5

7

Figure 4.5. F7, the Fano matroid

The collection of hyperplanes of F7 is H = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6},
{2, 5, 7}, {3, 4, 7}, {3, 5, 6}}; in this case b(H) = H. If we relax the circuit-hyperplane
{3, 5, 6} we obtain the matroid F−

7 . We observe that the unique set in b(H) that
intersects {3, 5, 6} in more than one element is {3, 5, 6} itself, so by Theorem 4.2 we
have that the blocker of the hyperplanes of F−

7 is the clutter

{{3, 5, 6}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 3, 4, 5}, {1, 3, 6, 7}, {1, 4, 5, 6},
{1, 5, 6, 7}, {2, 3, 4, 6}, {2, 3, 5, 7}, {2, 4, 5, 6}, {2, 5, 6, 7}, {3, 4, 5, 7}, {3, 4, 6, 7}}.

�

5 A Characterization of the Clutter of Hyperplanes of a
Matroid by Excluded Minors

In the paper “Clutters and matroids”, Cordovil et al. [2] define two pairs of operations
to obtain minors of clutters and give an excluded minor characterizations of bases
and circuits of a matroid using the complementary and the blocker maps. We follow
their approach and define two new operations on clutters (suggested by the sets of
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hyperplanes of the minors of a matroid) and we use them to give forbidden minors
for a clutter to be the collection of hyperplanes of a matroid. Also we give another
characterization of the clutter of hyperplanes using the blocker, the complementary,
and another map that sends the hyperplanes of a matroid M into hyperplanes of the
dual matroid of M . We conclude that a similar process can be performed to obtain
new operations and forbidden minors for a clutter to be the blocker (respectively the
complementary clutter of the blocker) clutter of the hyperplanes of a matroid.

5.1 Minors of clutters

The minor of a matroid is another matroid obtained from the original by deleting
and/or contracting elements of the ground set of the matroid. These operations can
be translated into operations on the main clutters of a matroid in such a way that a
minor of the collection of circuits(respectively bases, hyperplanes) is itself a clutter of
circuits (respectively bases, hyperplanes) of the minor of the matroid. Cordovil et al.
defined such operations for circuits and bases. Here we define them for hyperplanes:

Definition 5.1. Let (E,L) be a clutter and e an element of E. The clutter obtained
by “deletion” of e, denoted by L\\e, is the clutter:

L\\e := (E − e,max{L− e � E − e : L ∈ L}),

and the clutter obtained by “contraction” of e, denoted by L//e is:

L//e := (E − e, {L− e � E − e : e ∈ L ∈ L}). �

We now define the pair of operations used in [2]; if (E,K) is the clutter of circuits
of a matroid M we obtain, respectively, the clutters of circuits of the minors of M
obtained by deletion and contraction of an element e ∈ E.

Definition 5.2. Let (E,K) be a clutter and e and element of E. The clutter obtained
by deletion of e, denoted by K\e is the clutter:

K\e := (E − e, {K : e /∈ K ∈ K}),

and the clutter obtained by contraction of e, denoted by K/e is:

K/e := (E − e,min{K − e : K ∈ K, K − e 	= ∅}). �

Proposition 5.3. If (E,K) is a clutter, and (E,L) is the complementary clutter of
(E,K). For every e ∈ E the diagrams in Figure 5.4 and Figure 5.5 are commutative:

(E,K) ←− c −→ (E,L)

� �

/ � \\

(E − e,K/e) ←− c −→ (E − e,L\\e)
Figure 5.4. Commutativity induced by the operators / and \\.
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(E,K) ←− c −→ (E,L)

� �

\ � //

(E − e,K/e) ←− c −→ (E − e,L\\e)
Figure 5.5. Commutativity induced by the operators \ and //.

Proof: For the first diagram, it is sufficient to prove that c(E − e,K/e) = (E −
e,L\\e).

First, we will show that c(E − e,K/e) ⊆ (E − e,L\\e). Let K̂ ∈ (E − e,K/e)
by definition, K̂ = K1 − e for some K1 ∈ K, moreover, E − K1 = L1 ∈ (E,L) so
(E−e)−K̂ = (E−e)−(K1−e) = (E−K1)−e = L1−e. Observe that L1−e 	= E−e
because K̂ 	= ∅.

Let us now prove that L1 − e is maximal in {L − e � E − e : L ∈ L}. Suppose
L1 − e is not maximal, then there exists L2 ∈ L such that L1 − e � L2− e. We have
to examine four cases:

1. If e /∈ L1 and e /∈ L2, then L1 � L2.

2. If e /∈ L1 and e ∈ L2, then L1 ⊂ L2 − e � L2.

3. If e ∈ L1 and e ∈ L2, then L1 − e � L2 − e, this implies L2 � L1.

4. e ∈ L1 and e /∈ L2.

The first three cases are not possible, because L is a clutter. So we must have
e ∈ L1 − L2. Let K2 = E − L2 ∈ K, then e ∈ K2 −K1 and L1 − e � L2 − e = L2,
so, taking complements in E, K2 � K1 ∪ e, but e ∈ K2 − K1, so K2 − e � K1 =
K1 − e = K̂ which contradicts the minimality of K̂. Therefore L1 − e is maximal in
{L− e � E − e : L ∈ L} and we have proved the first inclusion.

Now, we will prove the other direction of the statement, that is L\\e ⊆ c(K/e).
Let L̂ ∈ L\\e = (E − e,max{L − e � E − e : L ∈ L}), we have to prove that
L̂ = (E−e)−K̂ ∈ K for some K̂ ∈ K/e. Since L̂ = L1−e for some L1 ∈ L we obtain
that E−L1 = K1 ∈ K. So we have L̂ = L1− e = (E−K1)− e = (E− e)− (K1− e).
We note that K1− e 	= ∅ because L̂ cannot be (E − e) (members of L\\e are proper
subsets of E − e ).

So, it only remains to be proved thatK1−e is minimal in {K−e : K ∈ K, K−e 	=
∅}. Suppose K1− e is not minimal in {K− e : K ∈ K, K− e 	= ∅}, then, there exists
K2 ∈ K such that K2 − e � K1 − e. We have the next four cases:

1. If e /∈ K1 and e /∈ K2, then K2 � K1.

2. If e ∈ K1 and e /∈ K2, then K2 = K2 − e � K1 − e � K1.

3. If e ∈ K1 and e ∈ K2, then K2 − e � K1 − e implies K2 � K1.



J.L. FIGUEROA AND G. CALVILLO /AUSTRALAS. J. COMBIN. 73 (1) (2019), 25–41 38

4. e /∈ K1 and e ∈ K2.

The first three cases are not possible because K1, K2 are members of a clutter.
So, it must be that e ∈ K2 − K1. Let L2 = E − K2 ∈ L then e ∈ L1 − L2.
Because e /∈ K1 we have K2 − e � K1 − e = K1, and taking complements in E,
we have L2 ∪ {e} � L1, and then, because e /∈ L2, L̂ = L1 − e � L2 = L2 − e,
but this contradicts the maximality of L̂ = L1 − e, therefore K1 − e is minimal
in {K − e : K ∈ K, K − e 	= ∅} and we have proved that the first diagram is
commutative.

For the second part, we have to prove that L//e = c(K\e). We have these
equivalences:

The collection L̂ ∈ L//e = (E − e, {L − e � E − e : e ∈ L ∈ L}) if and only if
L̂ = L − e and e ∈ L ∈ L; this is, if and only if L̂ = (E − K) − e and e /∈ K ∈
K (taking L = E −K), but this happens if and only if L̂ = (E − e) − K and e /∈
K ∈ K; this is, if and only if L̂ = (E− e)−K and K ∈ K\e or, equivalently c(E−
e, {K : e /∈ K ∈ K}) = c(K\e) � L

Therefore L//e = c(K\e) and the second diagram commutes. This ends the
proof. �

5.2 Characterizations of hyperplanes and its blocker clutter

The following theorem was proved by Cordovil et al. in [2]. Here we use it to prove
Theorem 5.7.

Theorem 5.6. Let (E,K) be a clutter. Then (E,K) is not the sets of circuits of a
matroid if and only if the following conditions hold:

i) (E,K) is the clutter (E, {∅})

ii) Using the operations \, / ; (E,K) has a minor isomorphic to ({1, 2, 3}, {{1, 2},
{1, 3}}). �

Theorem 5.7. Let (E,L) be a clutter. Then (E,L) is the set of hyperplanes of a
matroid if and only if the following conditions hold:

i) (E,L) is not the clutter (E, {E})

ii) Using the operations \\, // ; (E,L) does not have a minor isomorphic to
({1, 2, 3}, {{2}, {3}}).

Proof: The clutter (E, {E}) cannot be the set of hyperplanes of a matroid because
the hyperplanes of a matroid must be proper subsets of the total set where the
matroid is defined.

Also, the clutter ({1, 2, 3}, {{2}, {3}}) cannot be a minor of (E,L), because if
we apply the operations \\, // on a clutter that is the set of hyperplanes of a
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matroid, the minors are the sets of hyperplanes of the minors of the matroid; and
({1, 2, 3}, {{2}, {3}}) is not a set of hyperplanes because 1 ∈ {1, 2, 3} − {{2} ∪ {3}}
but there is not a set L3 ∈ {{2}, {3}} such that L3 ⊃ ({{2}∩{3}})∪{1} = {1} (i.e.
the clutter ({1, 2, 3}, {{2}, {3}}) does not satisfy the hyperplanes axioms).

To prove that if i) and ii) do not happen, then L is the set of hyperplanes of a
matroid we consider the contrapositve proposition, that is, we will prove that if L is
not the set of hyperplanes of a matroid, then either (E,L) = (E, {E}) or (E,L) has
a minor isomorphic to the clutter ({1, 2, 3}, {{2}, {3}}).

If L = (E, {E}) there is nothing to prove.

So, let (E,L) be a clutter that is not the set of hyperplanes of a matroid and
such that (E,L) 	= (E, {E}).

Suppose to the contrary (E,L) has no minor isomorphic to ({1, 2, 3}, {{2}, {3}}).
Then c(E,L) = (E,K) (the clutter complementary of (E,L)) does not have a minor
isomorphic to ({1, 2, 3}, {{1, 2}, {1, 3}}) because otherwise the succession of opera-
tions \, / performed to the clutter (E,K) to obtain ({1, 2, 3}, {{1, 2}, {1, 3}}) can
be applied to the clutter (E,L) replacing \ with //, and / with \\ and then, by the
commutative diagrams of previous section, (E,L) must have a minor isomorphic to
({1, 2, 3}, {{2}, {3}}) contradicting our assumption.

Now, by Theorem 5.6, we have that (E,K) is the set of circuits of a matroid, and
then c((E,K)) is the set of hyperplanes of a matroid; this contradicts our hypothesis.
So if (E,L) is not the set of hyperplanes of a matroid on a set E and is not (E, {E}),
(E,L) must have a minor isomorphic to ({1, 2, 3}, {{2}, {3}}).

By the two implications, the theorem is true. �
The next theorem appears in the Section 5 of [2]. This theorem was first proved

by Vaderlind [8]; here we use it to prove Theorem 5.9.

Theorem 5.8. A clutter (E,K) is the set of circuits of a matroid if and only if K is
a fixed point of the map b◦c◦b◦∗ where b is the blocker map, c is the complementary
map, and ∗ is the map ∗((E,K)) = (E,min{X : X ⊆ E,X 	= ∅ and |X ∩ K| 	=
1, for all K ∈ K}). �

Theorem 5.9. Let (E,L) be a clutter, c the complementary map, ∗ the map defined
above, and ∗̂ the map ∗̂((E,L)) = (E,max{X : X ⊆ E,X 	= E and |E− (X ∪ L̂)| 	=
1, for all L̂ ∈ L}. Then ∗̂((E,L)) = c ◦ ∗ ◦ c((E,L)).

Proof: Let L be a clutter on a set E. We have L ∈ c ◦ ∗ ◦ c(L) if and only if
E − L ∈ ∗(c(L)). That is, if and only if:

E − L ∈ min{X : X ⊆ E,X 	= ∅ and |X ∩K| 	= 1, ∀K ∈ c(L)}

or, equivalently, (∅ 	= E − L ⊆ E), (|(E − L) ∩ K| 	= 1, for all K ∈ c(L)) and, if
(∅ 	= E −L′ ⊆ E), (|(E −L′)∩K| 	= 1, for all K ∈ c(L)) and E −L′ ⊆ E −L, then
E − L′ = E − L. But this happens if and only if:

(E 	= L ⊆ E), (|(E − L) ∩ (E − L̂| 	= 1, for all E − L̂ ∈ c(L)) and,
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if (E 	= L′ ⊆ E), (|(E − L′) ∩ (E − L̂)| 	= 1, for all L̂ ∈ L) and L′ ⊇ L, then
L′ = L. In other words, we have that:

L ∈ max{X : X ⊆ E,X 	= E and |E − (X ∪ L̂)| 	= 1, for all L̂ ∈ L}
or, equivalently, L ∈ ∗̂(L). �

We now are able to prove the following theorem.

Theorem 5.10. A clutter L on a set E is the set of hyperplanes of a matroid if and
only if L is a fixed point of the map c ◦ b ◦ c ◦ b ◦ c ◦ ∗̂.
Proof: The collection L is the set of hyperplanes of a matroid if and only if c(L) is
the set of circuits of a matroid, this is, if and only if b ◦ c ◦ b ◦ ∗(c(L)) = c(L) (by
Theorem 5.8), but this happens if and only if ∗(c(L)) = b ◦ c ◦ b(c(L)).

This is c ◦ ∗ ◦ c(L) = ∗̂(L) = c ◦ b ◦ c ◦ b ◦ c(L) (by Theorem 5.9) or, equivalently
c ◦ b ◦ c ◦ b ◦ c ◦ ∗̂(L) = (L). �

Using similar ideas we can extend these results to the blocker of the hyperplanes
of a matroid and to the complementary clutter of the blocker of the hyperplanes of
a matroid.

Corollary 5.11. Let b be the blocker map, \\, // the operations of Definition 1. We
define \d := b ◦ \\ ◦ b, and /d := b ◦ // ◦ b. A clutter (E,D∗) is the blocker clutter of
the hyperplanes of a matroid if and only if the following conditions hold:

i) (E,D∗) is not the clutter (E, {{e} : e ∈ E})
ii) using the operations \d, /d; (E,D∗) has no minor isomorphic to ({1, 2, 3},
{{2, 3}}). �

Corollary 5.12. Let c be the complementary map, b the blocker map, \\, // the
operations of Definition 1. We define \δ := c ◦ b ◦ \\ ◦ b ◦ c, and /δ := c ◦ b ◦ // ◦ b ◦ c.
A clutter (E,Δ) is the complementary clutter of the blocker clutter of the hyperplanes
of a matroid if and only if the following conditions hold:

i) (E,Δ) is not the clutter (E, {A : A ⊆ E, |A| = n− 1})
ii) using the operations \δ, /δ; (E,Δ) has no minor isomorphic to ({1, 2, 3},
{{1}}). �
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