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Abstract

We investigate the Ramsey number r(Sn, G) where Sn denotes the star of
order n and G is a connected graph of order six. The values of r(Sn, G)
are determined for any G �= K2,2,2 with chromatic number χ(G) ≥ 3 with
but a few exceptions for some G with χ(G) = 3 in case of some small
n. Partial results on r(Sn, G) are obtained if χ(G) = 2. In any case,
r(Sn, G) is evaluated for n ≤ 5. With our results, r(Tn, G) is completely
known for every tree Tn of order n and every connected graph of order
six with χ(G) ≥ 4.

1 Introduction

The Ramsey number r(Tn, G), where Tn denotes a tree of order n and G is a graph
of order m, has been intensively studied. Chvátal [5] proved that

r(Tn, Km) = (n− 1)(m− 1) + 1 (1)

for any tree Tn. Moreover, the values of r(Tn, G) are almost completely known for
nearly complete graphs G. Chartrand, Gould and Polimeni [4] showed that

r(Tn, G) = (n− 1)(m− 2) + 1 (2)
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for n ≥ 4 and every graph G of order m ≥ 4 and clique number cl(G) = m − 1.
Gould and Jacobson [12] proved that

r(Tn, G) = (n− 1)(m− 3) + 1 (3)

for n ≥ 4 and all graphs G of order m ≥ 6 and cl(G) = m−2, where Tn �= Sn in case
ofm = 6. Furthermore, r(Tn, G) has been studied for special graphs G such as books,
cycles or bipartite graphs. Here we just want to mention some results important in
connection with our paper, a survey can be found in [32]. Rousseau and Sheehan
[34] and Erdős, Faudree, Rousseau and Schelp [8] investigated r(Tn, Bm) for the book
graph Bm = K1,1,m and obtained the following result:

r(Tn, Bm) = 2n− 1 for n ≥ 3m− 3. (4)

Faudree, Schelp and Rousseau [11] considered G = Km − Kt and showed that, for
n ≥ 2, m ≥ 2, t ≥ 1 and m ≥ 2t− �(t− 1)/(n− 1)�(n− 1),

r(Tn, Km −Kt) = (n− 1)(m− t+ �(t− 1)/(n− 1)�) + 1, (5)

except for (Tn, Km −Kt) = (S4, K6 − K3). Some effort has been made to evaluate
r(Sn, G) for bipartite graphs G, especially for trees, cycles of even length and com-
plete bipartite graphs. These cases are not completely settled, not even the values
of r(Sn, C4) are entirely known. Parsons [31] proved that

r(Sn, C4) ≤ n +
⌈√

n− 1
⌉

for n ≥ 3, (6)

and, for any prime power q,

r(Sq2+1, C4) = q2 + q + 1 and r(Sq2+2, C4) = q2 + q + 2. (7)

Moreover, Burr, Erdős, Faudree, Rousseau and Schelp [3] showed that

r(Sn, C4) > n− 1 +
⌊√

n− 1− 6(n− 1)11/40
⌋

(8)

if n is sufficiently large. Recently, some progress in evaluating r(Sn, C4) has been
made by Wu, Sun, Zhang and Radziszowski [35]. Faudree, Rousseau and Schelp [10]
systematically studied r(Tn, G) for all connected graphs G of order at most five. In
particular they proved that, for n ≥ 4 and every connected graph G on five vertices
with chromatic number χ(G) = 3,

r(Tn, G) = 2n− 1 + ε, (9)

with ε = 2 if (Tn, G) = (Sn, K5−2K2) where n is even, ε = 1 if (Tn, G) = (Sn, K5−P4)
where n is even or if (Tn, G) = (S4, K5−K3) and ε = 0 otherwise. For non-tree graphs
G with χ(G) = 2, r(Tn, G) has not been completely evaluated. The main reason is
the lack of knowledge about r(Sn, C4) and r(Sn, K2,3).

In this paper we will begin to extend the results obtained in [10] to connected
graphs of order six. The list of all 112 such graphs given in Table 1 is taken from
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[15], more detailed information about these graphs can be found in [26]. A formula
to compute r(Tn, G) for n = 3, the first nontrivial case, and every graph G of order
m is given in [6]. Thus, we may always assume that n ≥ 4. Moreover, we will make
use of the well-known lower bound

r(F,G) ≥ (n− 1)(χ(G)− 1) + s(G) (10)

for any connected graph F of order n and any graph G with chromatic surplus
s(G) ≤ n (see [8] or [10]). Only a few values of r(Tn, G) are missing for connected
graphs G of order six with χ(G) ≥ 4 because of (1), (2) and (3). We close this
gap and show that r(Tn, G) attains the lower bound given in (10) with only one
exception. For χ(G) ≤ 3, different methods seem to be required to evaluate r(Tn, G)
depending on whether Tn is or is not a star. Here we focus on Tn = Sn, the case
Tn �= Sn is treated in [28]. With a few exceptions for small n, the values of r(Sn, G)
are determined for every connected graph G �= K2,2,2 of order six with χ(G) = 3. For
n ≥ 5 the values differ by at most 2 from the lower bound given in (10), whereas it is
shown in [27] that r(Sn, K2,2,2) can be significantly larger. Partial results on r(Sn, G)
are obtained for the connected graphs G of order six with χ(G) = 2. As could be
expected, problems arise in case of non-tree graphs. These graphs contain a cycle
C4 or C6, and for any G �= K2,4 not containing a cycle C6 we obtain that r(Sn, G)
matches r(Sn, C4) or r(Sn, K2,3) if n is sufficiently large. A complete evaluation fails
because of the missing values of r(Sn, C4) and r(Sn, K2,3).

This paper also makes a contribution to evaluate r(F,G) for small graphs F and
G. If F and G both have at most five vertices, r(F,G) is almost completely known
(see [6], [7], [17], also cf. [32]). Some effort has been made to determine r(F,G) for
graphs F of order at most five and graphs G of order six (see [1, 9, 13, 18, 20, 21, 22,
23, 25, 26, 29, 33]). The results in this paper together with r(S4, K2,2,2) = 10 (see
[27]), r(S5, K2,2,2) = 11 (see [13] and [27]) and the results on r(F,G) for disconnected
graphs G of order six obtained in [25] yield all values of r(Sn, G) for n ≤ 5 and any
graph G of order six.

Some specialized notation will be used. A coloring of a graph always means a
2-coloring of its edges with colors red and green. An (F1, F2)-coloring is a coloring
containing neither a red copy of F1 nor a green copy of F2. We use V to denote the
vertex set of Kn and define dr(v) to be the number of red edges incident to v ∈ V
in a coloring of Kn. Moreover, Δr = maxv∈V dr(v). The set of vertices joined red to
v is denoted by Nr(v). Similarly we define dg(v), Δg and Ng(v). For U ⊆ V (Kn),
the subgraph induced by U is denoted by [U ]. Furthermore, [U ]r and [U ]g denote
the red and the green subgraph induced by U . We write G′ ⊆ G if G′ is a subgraph
of G, and G′ ⊆ind G means that G′ is an induced subgraph. For disjoint subsets
U1, U2 ⊆ V (Kn), qr(U1, U2) denotes the number of red edges between U1 and U2, and
qg(U1, U2) is defined similarly. The set of all connected graphs G of order six and
chromatic number χ(G) = s is denoted by Gs.
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G1 G2 G3 G4 G5 G6 G7 G8

G9 G10 G11 G12 G13 G14 G15 G16

G17 G18 G19 G20 G21 G22 G23 G24

G25 G26 G27 G28 G29 G30 G31 G32

G33 G34 G35 G36 G37 G38 G39 G40

G41 G42 G43 G44 G45 G46 G47 G48

G49 G50 G51 G52 G53 G54 G55 G56

G57 G58 G59 G60 G61 G62 G63 G64

G65 G66 G67 G68 G69 G70 G71 G72

G73 G74 G75 G76 G77 G78 G79 G80

G81 G82 G83 G84 G85 G86 G87 G88

G89 G90 G91 G92 G93 G94 G95 G96

G97 G98 G99 G100 G101 G102 G103 G104

G105 G106 G107 G108 G109 G110 G111 G112

Table 1. The 112 connected graphs of order six.
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2 The Ramsey Number r(Tn, G) for G ∈ Gs, 4 ≤ s ≤ 6

Obviously, K6 = G112 is the only graph in G6, and G5 consists of the four connected
graphs G of order six with clique number cl(G) = 5, i.e., G5={G98, G106, G109, G111}.
If G ∈ G4, then either cl(G) = 4 or G is isomorphic to the wheel W5 = G82. This
gives

G4 = {G42, G55, G58, G64, G66, G72, G75, G80, G81, G82, G84, G85, G86, G88,

G89, G91, G95, G96, G97, G99, G101, G103, G104, G105, G107, G110}.

From (1), (2) and (3) we already know that r(Tn, G) matches the lower bound in
(10) for G ∈ Gs with 5 ≤ s ≤ 6 and, in case of Tn �= Sn, for G ∈ G4 \ {W5}. Here we
will show that the lower bound is also attained in the remaining cases with only one
exception.

Theorem 2.1. Let n ≥ 4, G ∈ Gs, 4 ≤ s ≤ 6, and (Tn, G) �= (S4, K6 −K3). Then

r(Tn, G) = (n− 1)(s− 1) + 1.

Furthermore, r(S4, K6 −K3) = 11.

Proof. To settle the remaining cases, i.e., G ∈ G4 where Tn = Sn, and G = W5 where
Tn �= Sn, we first consider G = G105 = K6 −K3. By (5), r(Sn, K6 −K3) = 3n − 2
if n ≥ 5. (The exceptional case n = 4 was overlooked in [11].) The coloring of K10

with [V ]r = 2C5 implies that r(S4, K6 − K3) ≥ 11. To establish equality, take any
coloring of K11 where S4 �⊆ [V ]r and consider some vertex v ∈ V. Since dg(v) ≥ 8
and r(S4, K5 −K3) = 8 by (9), K6 −K3 ⊆ [{v} ∪Ng(v)]g, and we are done.

Now let G ∈ G4 \ {K6 −K3}. Obviously, G ⊆ G110 = K6 − 2K2, and this implies
r(Tn, G) ≤ r(Tn, K6 − 2K2). Moreover, r(Tn, G) ≥ 3n− 2 by (10). We already know
that r(Tn, K6 − 2K2) = 3n − 2 if Tn �= Sn. Thus, to complete the proof, it suffices
to establish r(Sn, K6 − 2K2) ≤ 3n − 2. Suppose that we have an (Sn, K6 − 2K2)-
coloring of K3n−2. By (2), r(Tn, K5− e) = 3n−2, and this yields K5− e ⊆ [V ]g since
Sn �⊆ [V ]r. Let U be the vertex set of a green K5 − e and W = V \ U.

Case 1: [U ]g = K5. From Sn �⊆ [V ]r, i.e. Δr ≤ n − 2, we obtain qr(U,W ) ≤
5(n− 2). Moreover, K6 − 2K2 �⊆ [V ]g implies qr(w,U) ≥ 2 for every w ∈ W yielding
qr(U,W ) ≥ 2|W | = 6n − 14. Hence, 6n − 14 ≤ 5n − 10, a contradiction for n ≥ 5.
In case of n = 4 only qr(U,W ) = 5n− 10 is left. Consequently, dr(v) = 2 for every
v ∈ V and [W ]g = K5. This forces [V ]r to be a bipartite graph and every component
of [V ]r to be an even cycle. Thus, [V ]r = C10 or [V ]r = C6 ∪ C4. In both cases,
K6 − 2K2 ⊆ [V ]g, a contradiction.

Case 2: [U ]g = K5 − e and K5 �⊆ [V ]g. Since Sn �⊆ [V ]r, qr(U,W ) ≤ 3(n − 2) +
2(n− 3) = 5n− 12. Moreover, K6 − 2K2 �⊆ [V ]g and K5 �⊆ [V ]g imply qr(w,U) ≥ 2
for every w ∈ W yielding qr(U,W ) ≥ 2|W | = 6n − 14. Thus, 6n − 14 ≤ 5n − 12,
contradicting n ≥ 4.
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3 The Ramsey Number r(Sn, G) for G ∈ G3

Here we consider the graphs G ∈ G3 except for G = K2,2,2. The Ramsey number
r(Sn, K2,2,2) is separately studied in [27]. If G ∈ G3, then G ⊆ K1,1,4 = G61, G ⊆
K1,2,3 = G100 or G ⊆ K2,2,2 = G108. We use this property to partition G3 \ {K2,2,2}
into the following five subsets G3,i, 1 ≤ i ≤ 5. Put

G3,1 = {G ∈ G3 | G ⊆ K1,1,4} = {G15, G19, G32, G36, G41, G61},
G3,2 = {G ∈ G3 | G ⊆ K2,2,2, G �= K2,2,2, G �⊆ K1,2,3, and G �⊆ K1,1,4}

= {G37, G43, G45, G52, G67, G68, G69, G71, G77, G87, G90, G93, G102},
G3,3 = {G ∈ G3 | K5 − 2K2 ⊆ G ⊆ K1,2,3} = {G63, G74, G83, G94, G100},
G3,4 = {G39, G40, G49, G56, G57, G62, G65, G73},
G3,5 = {G ∈ G3 | G �= K2,2,2 and G �∈ G3,1 ∪ G3,2 ∪ G3,3 ∪ G3,4}

= {G8, G10, G13, G14, G17, G18, G21, . . . , G28, G30, G33, G34, G35,

G38, G44, G46, G47, G48, G50, G51, G54, G60, G70, G78, G79, G92}.

The value of r(Sn, G) depends on which of the subsets G3,i the graph G belongs
to. By (10), r(Tn, G) ≥ 2n if G ∈ G3,2 or if G = K2,2,2, and r(Tn, G) ≥ 2n − 1
for the remaining G ∈ G3. The following results show that r(Sn, G) ≤ 2n + 1 for
any G ∈ G3 \ {K2,2,2} if n ≥ 5, whereas it is proved in [27] that r(Sn, K2,2,2) can be
significantly larger.

3.1 Results

By (4), r(Tn, K1,1,4) = 2n−1 for any tree Tn with n ≥ 9. This implies that r(Tn, G) =
2n − 1 for n ≥ 9 and every G ∈ G3,1, since 2n − 1 ≤ r(Tn, G) ≤ r(Tn, K1,1,4). The
following theorem closes the gap for n ≤ 8 in case of Tn = Sn with two exceptions.
The evaluation of r(S5, G61) is due to Hua, Hongxue and Xiangyang [13].

Theorem 3.1. Let G ∈ G3,1 and n ≥ 4. If G �= G61 and n ≥ 5 or if G = G61 and
n ≥ 9, then r(Sn, G) = 2n− 1.

Furthermore, r(S4, G19) = 7, r(S4, G) = 8 if G �∈ {G61, G19}, r(S4, G61) = 10,
r(S5, G61) = 11, 11 ≤ r(S6, G61) ≤ 13, 13 ≤ r(S7, G61) ≤ 14 and r(S8, G61) = 16.

The following three theorems show that r(Sn, G) can differ from the bound given
in (10) for G ∈ G3,i with 2 ≤ i ≤ 4 if special divisibility properties for n are fulfilled.
The values of r(Sn, G) are completely determined for G ∈ G3,2 and G ∈ G3,4; in case
of G ∈ G3,3 some gaps are left for small n. The computation of r(S5, G100) is due to
Hua, Hongxue and Xiangyang [13].

Theorem 3.2. Let G ∈ G3,2 and n ≥ 4.
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If G ∈ {G90, G102 = K6 − (P4 ∪K2)}, then

r(Sn, G) =

{
2n+ 1 for n ≡ 0, 2, 4 or 5 (mod 6),
2n otherwise.

If G ∈ {G67, G71, G87 = K6 − P6}, then

r(Sn, G) =

{
2n + 1 for n ≡ 2 (mod 3),
2n otherwise.

If G = G77, then

r(Sn, G) =

{
2n+ 1 for n even,
2n otherwise.

If G ∈ {G37, G43, G45, G52, G68, G69, G93 = K6 − (C4 ∪K2)}, then r(Sn, G) = 2n.

Theorem 3.3. Let G ∈ G3,3 and n ≥ 4. If n is even, then r(Sn, G) = 2n+ 1.

If n is odd, where n ≥ 13 for G = G100, n ≥ 9 for G = G94, and n ≥ 5
otherwise, then r(Sn, G) = 2n− 1.

Furthermore, r(S5, G94) = 10, 13 ≤ r(S7, G94) ≤ 14, r(S5, G100) = 11, and
2n− 1 ≤ r(Sn, G100) ≤ 2n+ 1 for n ∈ {7, 9, 11}.
Theorem 3.4. Let G ∈ G3,4 and n ≥ 4. Then

r(Sn, G) =

{
2n if n is even,
2n− 1 if n is odd.

The next theorem shows that r(Sn, G) attains the lower bound 2n− 1 from (10)
for any G ∈ G3,5, except for some small n.

Theorem 3.5. Let G ∈ G3,5, S = {G33, G60, G78, G79, G92} ⊆ G3,5 and n ≥ 4.
If G ∈ G3,5 \S and n ≥ 4 or if for G ∈ S the following conditions for n are fulfilled:

(i) n ≥ 5 if G = G33;

(ii) n = 5 or n ≥ 7 if G ∈ {G60, G79};
(iii) n = 5 or n ≥ 9 if G = G78; and

(iv) n ≥ 13 if G = G92; then

r(Sn, G) = 2n− 1.

Futhermore, r(S4, G) = 8 if G ∈ S, r(S5, G92) = 11, 11 ≤ r(S6, G) ≤ 13 if G ∈
{G60, G79, G92}, 2n−1 ≤ r(Sn, G78) ≤ 2n if 6 ≤ n ≤ 8, 2n−1 ≤ r(Sn, G92) ≤ 2n+1
if 7 ≤ n ≤ 12.

Summarizing the results in the preceding theorems we see that r(Sn, G) is de-
termined for all G ∈ G3 \ {K2,2,2} with but a few exceptions for some G in case of
some small n, namely G = G60 or G = G79 and n = 6, G = G61 and 6 ≤ n ≤ 7,
G = G78 and 6 ≤ n ≤ 8, G = G92 and 6 ≤ n ≤ 12, G = G94 and n = 7, G = G100

and n ∈ {7, 9, 11}.
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3.2 Some Useful Lemmas

The following lemmas are essential for proving the preceding theorems. The first
lemma considers green subgraphs of order at most five in colorings of Kt, 2n− 1 ≤
t ≤ 2n+ 1, where Sn �⊆ [V ]r, i.e. Δr ≤ n− 2.

Lemma 3.1. Let n ≥ 4, 2n − 1 ≤ t ≤ 2n + 1, and let C be a coloring of Kt with
Δr ≤ n− 2.

(i) If t = 2n+ 1 or if n is odd and 2n− 1 ≤ t ≤ 2n, then K5 − 2K2 ⊆ [V ]g, i.e.
K5 ⊆ [V ]g, K5 − e ⊆ind [V ]g or K5 − 2K2 ⊆ind [V ]g.

(ii) If t = 2n+ 1 and K5 − e �⊆ [V ]g, then K4 �⊆ [V ]g.

(iii) If t = 2n, K5− e �⊆ [V ]g, and K4 ⊆ [V ]g with vertex set U , then dr(u) = n−2
for every u ∈ U and qr(w,U) = 2 for every w ∈ V \ U.

(iv) If t = 2n and K5 − 2K2 �⊆ [V ]g, then n has to be even and K4 ⊆ [V ]g.
Moreover, K5 − P3 ⊆ind [V ]g.

(v) If t = 2n−1 and K5−2K2 �⊆ [V ]g, then n has to be even and K5−P3 ⊆ind [V ]g
or K5 − (P3 ∪K2) ⊆ind [V ]g.

Proof. (i) Using that r(Sn, K5 − 2K2) = 2n+ 1 if n is even and r(Sn, K5 − 2K2) =
2n− 1 if n is odd (see (10)), we obtain the desired result.

To prove (ii) and (iii), suppose that t ≥ 2n, K5 − e �⊆ [V ]g and K4 ⊆ [V ]g.
Let U be the vertex set of a K4 ⊆ [V ]g and W = V \ U. Then Δr ≤ n − 2 yields
qr(U,W ) ≤ 4(n − 2) = 4n − 8. Moreover, qr(w,U) ≥ 2 for every w ∈ W since
K5 − e �⊆ [V ]g. Consequently, qr(U,W ) ≥ 2|W | = 2(t− 4). It follows that 2(t− 4) ≤
qr(U,W ) ≤ 4n − 8. Thus, only t = 2n and qr(U,W ) = 4n − 8 is left. This forces
dr(u) = n− 2 for every u ∈ U and qr(w,U) = 2 for every w ∈ W.

(iv) Because of (i), n has to be even. By (2), r(Sn, K4−e) = 2n−1. Thus, a green
H = K4− e must occur since Sn �⊆ [V ]r. Let U = {u1, u2, u3, u4} be the vertex set of
H andW = V \U. If [U ]g = K4 we are done. Otherwise we may assume that the edge
u1u4 is red. From Δr ≤ n−2 it follows that qr(U,W ) ≤ 2(n−3)+2(n−2) = 4n−10.
Consequently, |W | = 2n − 4 forces a vertex w ∈ W with qr(w,U) ≤ 1. Since
K5−2K2 �⊆ [V ]g, the edges wu2 and wu3 have to be green. Moreover, at least one of
the edges wu1 and wu4 must be green. This yields a green K4. Using (iii) we obtain
K5 − P3 ⊆ind [V ]g.

(v) This follows from (i) and r(Sn, K5 − (P3 ∪K2)) = 2n− 1 (see (10)).

In the following lemmas we consider colorings of Kt, 2n− 1 ≤ t ≤ 2n+ 1, where
Sn �⊆ [V ]r, i.e. Δr ≤ n− 2, and special green subgraphs of order five occur.

Lemma 3.2. Let n ≥ 4, 2n − 1 ≤ t ≤ 2n + 1, and let C be a coloring of Kt with
Δr ≤ n− 2 and K5 ⊆ [V ]g.
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(i) If t = 2n+ 1, then G ⊆ [V ]g for every G ∈ G3 \ {K2,2,2}.
(ii) If t = 2n and n = 4 or n ≥ 6, then G ⊆ [V ]g for every G ∈ G3 \ {K2,2,2}. If

n = 5, then G ⊆ [V ]g for every G ∈ G3 \ {K2,2,2, G100}.
(iii) If t = 2n− 1 and n = 4 or n ≥ 9, then G ⊆ [V ]g for every G ∈ G3 \ {K2,2,2}.

If 5 ≤ n ≤ 8, then G ⊆ [V ]g for every G ∈ G3 with G ⊆ G83, G ⊆ G90 or
G ⊆ G94.

Proof. Let U be the vertex set of a K5 ⊆ [V ]g and W = V \ U. From Δr ≤ n − 2
we obtain

qr(U,W ) ≤ 5(n− 2) = 5n− 10.

Consider first t = 2n − 1 + a, 0 ≤ a ≤ 2, where n ≥ 4 for a = 2, n = 4 or n ≥ 6
for a = 1 and n = 4 or n ≥ 9 for a = 0. We will prove that qr(w,U) ≤ 2 for some
w ∈ W. If n = 4, this follows from W �= ∅ and Δr ≤ n− 2. Assume now that n > 4
and qr(w,U) ≥ 3 for every w ∈ W. Then qr(U,W ) ≥ 3|W | = 3(t−5) = 6n+3a−18.
Because of qr(U,W ) ≤ 5n−10 we obtain 6n+3a−18 ≤ 5n−10. Hence, n ≤ 8−3a,
contradicting n ≥ 5 for a = 2, n ≥ 6 for a = 1 and n ≥ 9 for a = 0. Thus,
K6 − P3 ⊆ [U ∪ {w}]g for some w ∈ W with qr(w,U) ≤ 2. Since G ⊆ K6 − P3 for
every G ∈ G3 \ {K2,2,2}, we are done. The remaining cases are t = 2n with n = 5 or
t = 2n− 1 with 5 ≤ n ≤ 8.

If t = 2n and n = 5, then |W | = 5. In case of qr(w,U) ≤ 2 for some w ∈ W again
we are done. It remains that qr(w,U) ≥ 3 for every w ∈ W. Then Δr ≤ n − 2 = 3
forces qr(w,U) = 3 for every w ∈ W , [W ]g = K5 and qr(u,W ) = 3 for every u ∈ U.
Let H be the bipartite graph K5,5 with vertex classes U and W. The green subgraph
Hg of H induced by the vertices of H contains only vertices of degree two, and this
forces every component of Hg to be an even cycle. Hence, Hg = C4∪C6 or Hg = C10.
In both cases, K6−K1,3, K6− 2P3 and G102 = K6− (P4 ∪K2) are contained in [V ]g.
Consequently, any G ∈ G3 \ {K2,2,2, G100} occurs in [V ]g.

Finally let t = 2n − 1 and 5 ≤ n ≤ 8. Then qr(w,U) ≥ 4 for every w ∈ W is
impossible as otherwise qr(U,W ) ≥ 4(2n− 6) contradicting qr(U,W ) ≤ 5n− 10 for
n ≥ 5. Thus, qr(w,U) ≤ 3 for some w ∈ W and K6 −K1,3 ⊆ [V ]g. Since G83, G90

and G94 are subgraphs of K6 −K1,3, we are done.

Lemma 3.3. Let n ≥ 4, 2n− 1 ≤ t ≤ 2n+ 1, and let C be a coloring of Kt where
Δr ≤ n− 2, K5 − e ⊆ [V ]g and K5 �⊆ [V ]g.

(i) If t = 2n+1, then G102 = K6−(P4∪K2) ⊆ [V ]g and G100 = K6−(K3∪K2) ⊆
[V ]g.

(ii) If t = 2n, then either G102 ⊆ [V ]g or n ≡ 2(mod 3) and [V ]g = Kn−1+
n+1
3
K3.

In any case, G94 = K6−((K1,3+e)∪K2) ⊆ [V ]g, G93 = K6−(C4∪K2) ⊆ [V ]g,
G77 ⊆ [V ]g and G68 ⊆ [V ]g.

(iii) If t = 2n − 1, then G100 ⊆ [V ]g for n ≥ 13, G94 ⊆ [V ]g for n = 4 and for
n ≥ 6, G83 ⊆ [V ]g and G78 = K6 − ((K4 − e) ∪K2) ⊆ [V ]g for n ≥ 4.
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Proof. Let U = {u1, u2, u3, u4, u5} be the vertex set of a K5 − e ⊆ [V ]g and let
W = V \ U. We may assume that the edge u1u5 is red. From Δr ≤ n− 2 we obtain

qr(U,W ) ≤ 2(n− 3) + 3(n− 2) = 5n− 12.

If qr(w,U) ≤ 1 for some w ∈ W , then [U ∪ {w}]g contains every G ∈ G3 \ {K2,2,2}
and we are done. It remains that qr(w,U) ≥ 2 for every w ∈ W. Let W1 = {w ∈
W | qr(w,U) = 2} and W2 = W \W1 = {w ∈ W | qr(w,U) ≥ 3}. Then qr(U,W ) ≥
2|W1|+ 3|W2| = 3|W | − |W1|. Using qr(U,W ) ≤ 5n− 12 we obtain

|W1| ≥ 3|W | − 5n+ 12.

(i) If t = 2n + 1, then |W | = 2n − 4 and |W1| ≥ 3|W | − 5n + 12 = n. Since
Δr ≤ n − 2, there must be a vertex w ∈ W1 where u1w is green. Hence, G102 ⊆
[U ∪ {w}]g. It remains to prove that G100 ⊆ [V ]g. If Nr(w) ∩ U = {u1, u5} or
Nr(w) ∩ U ⊆ {u2, u3, u4} for some w ∈ W1, then G100 ⊆ [U ∪ {w}]g. Otherwise,
|Nr(w) ∩ {u1, u5}| = 1 for every w ∈ W1, and Δr ≤ n − 2 forces |W1| ≤ 2(n − 3).
Since |W1| ≥ n, only n ≥ 6 is left. Moreover, |W1| = 6 in case of n = 6. If n ≥ 7,
then |W1| ≥ 7 and we may assume that four vertices of W1 are joined red to u1 and
green to u5. Among these four vertices there must be two vertices w1 and w2 with
the same red neighbor in {u2, u3, u4}, say u2. Thus, G100 ⊆ [{u2, u3, u4, u5, w1, w2}]g.
If n = 6, then |W | = 2n − 4 = 8, and |W1| = 6 implies |W2| = 2. Because of
Δr ≤ n− 2 = 4, in [W ] every vertex of W1 is incident to at most two red edges and
every vertex of W2 to at most one red edge. Thus, every component of [W ]r has to
be a path or a cycle, where at least one path P� with � ≥ 2 or at least two paths P1

occur. Hence, the union of all paths in [W ]r is a subgraph of a P� with � ≥ 2, and
[W ]r ⊆ H where H ∈ {P2 ∪C3 ∪C3, P2 ∪C6, P3 ∪C5, P4 ∪C4, P5 ∪C3, P8}. In any
case, G100 ⊆ [W ]g.

(ii) If t = 2n, then |W | = 2n− 5 and |W1| ≥ 3|W | − 5n+12 = n− 3. Obviously,
G102 ⊆ [U ∪ {w}]g if Nr(w) ∩ {u2, u3, u4} �= ∅ for some w ∈ W1. It remains that
Nr(w) ∩ U = {u1, u5} for every w ∈ W1, and then Δr ≤ n− 2 implies |W1| ≤ n− 3.
Consequently, |W1| = n− 3 and |W2| = n− 2. Moreover, n ≥ 5 because of W2 �= ∅,
dr(w) ≥ 3 for every w ∈ W2 and Δr ≤ n− 2. Since |W1| = n− 3 ≥ 2 and K5 �⊆ [V ]g,

all edges in [W1] have to be red. Let Ŵ1 = W1∪{u1, u5} and Ŵ2 = W2∪{u2, u3, u4}.
Clearly, [Ŵ1] is a red Kn−1, and all edges between Ŵ1 and Ŵ2 have to be green

because of Δr ≤ n − 2. Consider now [Ŵ2]. Since |Ŵ2| = n + 1 and Δr ≤ n − 2,
every vertex is incident to at least two green edges. If a green P4 with vertex set W ′

occurs, then G102 ⊆ [W ′ ∪ {u1, u5}]g. It remains that every component of [Ŵ2]g is a

K3. This is only possible if |Ŵ2| = n + 1 ≡ 0(mod 3), i.e. n ≡ 2(mod 3), and leads
to the desired coloring. Obviously, this coloring contains green subgraphs K6 −K3,
K6 − (K1,3 ∪K2) and G93. Since G77, G94 ⊆ K6 −K3, G68 ⊆ K6 − (K1,3 ∪K2), and
since G94, G93, G77 and G68 are also subgraphs of G102, the additional statement is
proved.

(iii) If t = 2n − 1, then |W | = 2n − 6 and |W1| ≥ 3|W | − 5n + 12 = n − 6.
Hence, |W1| ≥ 7 for n ≥ 13, and we can prove that G100 ⊆ [V ]g as in (i) in case of
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|W1| ≥ 7. If |W1| ≥ 1, then G94, G83 and G78 occur in [U ∪ {w}]g for any w ∈ W1.
It remains W1 = ∅, i.e. W = W2. This forces n ≤ 6 since |W1| ≥ n − 6. Moreover,
n ≥ 5 because of W2 �= ∅, dr(w) ≥ 3 for every w ∈ W2 and Δr ≤ n − 2. To settle
the cases n = 5 and n = 6 we use U ′ = {u2, u3, u4}.

If n = 5 we obtain |W | = 4. Moreover, qr(w,U) = 3 for every w ∈ W and
[W ]g = K4 are forced by Δr ≤ n − 2 = 3. Let W = {w1, w2, w3, w4}. To prove
that G83 ⊆ [V ]g, note that qr(U

′,W ) ≤ 3|U ′| = 9. Thus, a vertex w ∈ W exists
where qr(w,U

′) ≤ 2, and this yields G83 ⊆ [U ∪ {w}]g. It remains to find a green
G78. If qr(w,U

′) = 3 or qr(w,U
′) = 1 for some w ∈ W, then G78 ⊆ [U ∪ {w}]g.

Otherwise, qr(w,U
′) = 2 and qr(w, {u1, u5}) = 1 for every w ∈ W. Since qr(u,W ) ≤

Δr ≤ 3 for every u ∈ U ′, this guarantees a vertex u ∈ U ′, say u = u2, such that
qr(u,W ) = 2. We may assume that u2 is joined green to w1 and w2 and red to w3

and w4. Moreover, we may assume that the edges w3u1 and w3u3 are green. This
yields G78 ⊆ [{u1, u2, u3, w1, w2, w3}]g.

If n = 6 then we obtain |W | = 6. Again, qr(w,U) = 3 for every w ∈ W , as
otherwise qr(U,W ) > 3|W | = 18 contradicting qr(U,W ) ≤ 5n − 12. Moreover,
Δr ≤ n − 2 = 4 implies that all red edges in [W ] have to be independent, and we
find G78 and G94 in [W ]g. Since qr(U

′,W ) ≤ 4|U ′| = 12, a vertex w ∈ W exists such
that qr(w,U

′) ≤ 2. This yields G83 ⊆ [U ∪ {w}]g.

Lemma 3.4. Let n ≥ 4, 2n− 1 ≤ t ≤ 2n+ 1, and let C be a coloring of Kt where
Δr ≤ n− 2, K5 − 2K2 ⊆ [V ]g and K5 − e �⊆ [V ]g.

(i) If t ≥ 2n, then G102 = K6 − (P4 ∪K2) ⊆ [V ]g.

(ii) If t = 2n+ 1, then G100 = K6 − (K3 ∪K2) ⊆ [V ]g.

(iii) If t = 2n−1, then G100 ⊆ [V ]g for n ≥ 13 and G94 = K6− ((K1,3+e)∪K2) ⊆
[V ]g for n ≥ 9.

(iv) If t = 2n− 1, then G83 ⊆ [V ]g for n ≥ 5.

Proof. Let U = {u1, u2, u3, u4, u5} be the vertex set of a K5 − 2K2 ⊆ [V ]g and
let W = V \ U. We may assume that the edges u1u5 and u2u4 are red. Let U ′ =
{u1, u2, u4, u5}. From Δr ≤ n− 2 we obtain

qr(U,W ) ≤ 4(n− 3) + (n− 2) = 5n− 14 and qr(U
′,W ) ≤ 4(n− 3) = 4n− 12.

Let W1 = Ng(u3) ∩ W and W2 = W \ W1 = Nr(u3) ∩ W. If qr(w,U) ≤ 1 for some
w ∈ W1, then [U ∪ {w}]g contains every G ∈ G3 \ {K2,2,2, K1,1,4} and we are done. It
remains qr(w,U) ≥ 2 for every w ∈ W1.

(i) It suffices to consider t = 2n. If qr(w,U
′) ≤ 1 for some w ∈ W2, then G102 ⊆

[U ∪ {w}]g. Otherwise, qr(U
′,W ) ≥ 2|W1| + 2|W2| = 2|W | = 2(2n − 5) = 4n − 10

contradicting qr(U
′,W ) ≤ 4n− 12.

To prove (ii) and (iii) we look at W1 andW2 in more detail. Let Wi,j = {w ∈ Wi |
qr(w,U) = j}. Using qr(w,U) ≥ 2 for every w ∈ W1, we obtain qr(U,W ) ≥ |W2,1|+



R. LORTZ AND I. MENGERSEN/AUSTRALAS. J. COMBIN. 73 (1) (2019),1–24 12

2(|W1,2|+ |W2,2|)+3(|W |−|W1,2|−|W2,1|−|W2,2|)) = 3|W |−|W1,2|−2|W2,1|−|W2,2|.
From qr(U,W ) ≤ 5n− 14 it follows that

|W1,2|+ 2|W2,1|+ |W2,2| ≥ 3|W | − 5n+ 14.

(ii) If t = 2n + 1, then |W | = 2n − 4 and |W1,2| + 2|W2,1| + |W2,2| ≥ n + 2. Since
|W2,1| + |W2,2| ≤ |W2| ≤ Δr ≤ n − 2, we obtain |W1,2| + |W2,1| ≥ 4. First consider
the case |W1,2| ≥ 1. Let w ∈ W1,2. If {u1, u5} ⊆ Nr(w) or {u2, u4} ⊆ Nr(w),
then G100 ⊆ [U ∪ {w}]g. Otherwise w is joined green to vertices u and u′ where
u ∈ {u1, u5} and u′ ∈ {u2, u4}. But then [{w, u3, u, u

′}]g = K4 contradicting Lemma
3.1(ii). It remains |W2,1| ≥ 4, and we obtain G100 ⊆ [{w1, w2, u2, u3, u4, u5}]g for any
w1, w2 ∈ W2,1.

(iii) If t = 2n − 1, then |W | = 2n − 6 and |W1,2| + 2|W2,1| + |W2,2| ≥ n − 4.
Note that G94 ⊆ G100. First consider the case |W1,2| ≥ 5. If {u1, u5} ⊆ Nr(w)
or {u2, u4} ⊆ Nr(w) for some w ∈ W1,2, then G100 ⊆ [U ∪ {w}]g. Otherwise, every
w ∈ W1,2 has one green neighbor in {u1, u5} and one in {u2, u4}. Thus, for |W1,2| ≥ 5
there are vertices w1, w2 ∈ W1,2 with the same green neighbors u ∈ {u1, u5} and
u′ ∈ {u2, u4}. But then K5 − e ⊆ [{w1, w2, u3, u, u

′}]g, a contradiction. It remains
|W1,2| ≤ 4. Consequently, 2|W2,1| + |W2,2| ≥ n − 8. If n ≥ 9, then W2,1 ∪W2,2 �= ∅
and G94 ⊆ [U ∪ {w}]g for any w ∈ W2,1 ∪W2,2. If n ≥ 13, then 2|W2,1|+ |W2,2| ≥ 5.
In case of |W2,2| ≥ 5 there must be two vertices w1, w2 ∈ W2,2 with the same red
neighbor u ∈ U ′, say u1, and G100 ⊆ [{w1, w2, u2, u3, u4, u5}]g. It remains |W2,1| ≥ 1
where W2,2 �= ∅ if |W2,1| = 1. Let w1 ∈ W2,1 and w2 ∈ W2,1 ∪W2,2 where w1 �= w2.
We may assume that u2, u4, u5 ∈ Ng(w2). Then G100 ⊆ [{w1, w2, u2, u3, u4, u5}]g.

(iv) Since |W2| ≤ Δr ≤ n−2 we obtain |W1| = |W |−|W2| ≥ 2n−6−(n−2) = n−4.
Thus, |W1| ≥ 1 for n ≥ 5. If qr(w,U

′) ≤ 3 for some w ∈ W1, then G83 ⊆ [U ∪ {w}]g.
Otherwise, all edges between W1 and U ′ are red, forcing n ≥ 6, as dr(w) ≥ 4 for
every w ∈ W1 and Δr ≤ n−2. Moreover, dr(u) ≥ |W1|+1 for every u ∈ U ′, yielding
|W1| ≤ n − 3. Thus, only n − 4 ≤ |W1| ≤ n − 3 is possible. First we consider
|W1| = n − 3. It implies |W2| = n − 3 ≥ 3 and qr(w,U

′) = 0 for every w ∈ W2.
Hence, G83 ⊆ [{w1, w2, u1, u2, u3, u4}]g for any w1, w2 ∈ W2. The remaining case is
|W1| = n−4 and |W2| = n−2 ≥ 4. Due to Δr ≤ n−2 every u ∈ U ′ has at most one
red neighbor in W2, and we obtain qr(U

′,W2) ≤ 4. If qr(w,U
′) = 0 for some w ∈ W2,

then qr(U
′,W2) ≤ 4 guarantees a vertex w′ �= w in W2 with qr(w

′, U ′) ≤ 1. We
may assume that {u1, u2, u4} ⊆ Ng(w

′) and obtain G83 ⊆ [{w,w′, u1, u2, u3, u4}]g. It
remains qr(w,U

′) ≥ 1 for every w ∈ W2. Because of qr(U
′,W2) ≤ 4 only |W2| = 4

and qr(w,U
′) = 1 for every w ∈ W2 is left. Moreover, qr(u,W2) = 1 for every

u ∈ U ′. Hence, G83 ⊆ [{w,w′, u1, u2, u3, u4}]g for w,w′ ∈ W2 where w ∈ Nr(u2) and
w′ ∈ Nr(u5).

Lemma 3.5. Let n ≥ 4 be even, 2n − 1 ≤ t ≤ 2n, and let C be a coloring of Kt

where Δr ≤ n− 2, K5 − P3 ⊆ [V ]g and K5 − 2K2 �⊆ [V ]g.

(i) If t = 2n, then G62 ⊆ [V ]g, G65 ⊆ [V ]g and G87 = K6 − P6 ⊆ [V ]g for n ≥ 4.
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(ii) If t = 2n− 1, then G70 ⊆ [V ]g, G73 ⊆ [V ]g, and G79 ⊆ [V ]g for n ≥ 4.

(iii) If t = 2n − 1, then G78 = K6 − ((K4 − e) ∪ K2) ⊆ [V ]g for n ≥ 8 and
G92 = K6 − (K3 ∪ P3) ⊆ [V ]g for n ≥ 10.

Proof. Let U = {u1, u2, u3, u4, u5} be the vertex set of a K5 − P3 ⊆ [V ]g. We may
assume that the edges u2u3 and u3u4 are red. Let W = V \ U , U ′ = {u1, u2, u4, u5}
and U ′′ = {u2, u3, u4}. Note that [U ′] is a green K4. From Δr ≤ n− 2 we obtain

qr(U,W ) ≤ 2(n− 2) + 2(n− 3) + n− 4 = 5n− 14,

qr(U
′′,W ) ≤ 2(n− 3) + n− 4 = 3n− 10.

(i) Consider W1 = Ng(u1)∩W and W2 = Ng(u3)∩W. Note that |W | = 2n−5. From
Δr ≤ n− 2 it follows that |W1| ≥ |W | − (n− 2) = n− 3 and |W2| ≥ |W | − (n− 4) =
n−1 ≥ 3. Since qr(U

′′,W ) ≤ 3n−10 and |W1| ≥ n−3, there is a vertex w ∈ W1 with
qr(w,U

′′) ≤ 2, yielding G62 and G65 in [U ∪{w}]g. To prove that G87 ⊆ [V ]g consider
vertices w1, w2 ∈ W2. Note that K5 − e �⊆ [V ]g. Hence, qr({w1, w2}, {u1, u5}) ≥ 1,
and we may assume that w1u1 is red. Moreover, qr(w1, U

′) = 2 by Lemma 3.1(iii).
Thus, G87 ⊆ [U ∪ {w1}]g.

(ii) Now let W1 = Ng(u3)∩W and W2 = W \W1 = Nr(u3)∩W. From Δr ≤ n−2
we obtain |W2| ≤ n − 4. If qr(w,U

′′) ≤ 1 for some w ∈ W1, then G70, G73 and
G79 occur in [U ∪ {w}]g. Otherwise, qr(U

′′,W ) ≥ 2|W1| + |W2| = 2|W | − |W2| ≥
2|W | − (n− 4) = 2(2n− 6)− (n− 4) = 3n− 8, contradicting qr(U

′′,W ) ≤ 3n− 10.

(iii) Note that K5 − e �⊆ [V ]g forces qr(w,U
′) ≥ 2 for every w ∈ W. Now let

W1 = {w ∈ W | qr(w,U) = 2} and W2 = W \W1. Clearly, every w ∈ W1 has to be
joined green to u3. Put W1,1 = {w ∈ W1 | wu1 and wu5 are red}, W1,2 = {w ∈ W1 |
wu2 and wu4 are red} and W1,3 = W1 \ (W1,1 ∪ W1,2). From qr(U,W ) ≤ 5n − 14,
qr(U,W ) ≥ 2|W1|+ 3|W2| = 3|W | − |W1| and |W | = 2n− 6 it follows that

|W1| = |W1,1|+ |W1,2|+ |W1,3| ≥ n− 4.

First we will prove that G78 ⊆ [V ]g for n ≥ 8. Note that |W1| ≥ n− 4 ≥ 4 in case of
n ≥ 8. If |W1,1| ≥ 2 and w1, w2 ∈ W1,1, then G78 ⊆ [U ′∪{w1, w2}]g. If |W1,2| ≥ 1 and
w ∈ W1,2, then G78 ⊆ [U ∪{w}]g. Otherwise, |W1,3| ≥ 3. Then u2 or u4, say u2, must
have two red neighbors w1, w2 ∈ W1,3, and we obtain G78 ⊆ [{w1, w2, u1, u3, u4, u5}]g.

It remains to prove that G92 ⊆ [V ]g for n ≥ 10. Note that |W1| ≥ n − 4 ≥ 6 in
case of n ≥ 10. If |W1,2| ≥ 2 and w1, w2 ∈ W1,2, then K5 − e ⊆ [{w1, w2, u1, u3, u5]g,
a contradiction. If |W1,3| ≥ 5, then there are two vertices w1, w2 ∈ W1,3 joined red to
the same vertices in U ′, say to u1 and u2. But then K5−2K2 ⊆ [{w1, w2, u3, u4, u5}]g,
a contradiction. The case |W1,1| ≥ 1 remains, yielding G92 ⊆ [U ∪ {w}]g for any
w ∈ W1,1.

Lemma 3.6. Let n ≥ 4 be even and let C be a coloring of K2n−1 where Δr ≤ n−2,
K5 − (P3 ∪K2) ⊆ [V ]g, K5 − P3 �⊆ [V ]g and K5 − 2K2 �⊆ [V ]g.

(i) If n ≥ 4, then G46 ⊆ [V ]g, G54 ⊆ [V ]g and G70 ⊆ [V ]g.
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(ii) If n ≥ 8, then G78 = K6− ((K4−e) ∪K2) ⊆ [V ]g and G92 = K6− (K3∪P3) ⊆
[V ]g.

Proof. Let U = {u1, u2, u3, u4, u5} be the vertex set of a K5 − (P3 ∪ K2) ⊆ [V ]g
and W = V \ U. We may assume that the edges u1u5, u2u3 and u3u4 are red. From
Δr ≤ n− 2 we obtain

qr(U,W ) ≤ 4(n− 3) + n− 4 = 5n− 16.

Note that K5 − P3 �⊆ [V ]g and K5 − 2K2 �⊆ [V ]g force qr(w,U) ≥ 2 for every
w ∈ W. Let W1 = {w ∈ W | qr(w,U) = 2} and W2 = W \ W1. Every w ∈
W1 has to be joined green to u3 as otherwise K5 − 2K2 ⊆ [{w, u1, u2, u4, u5}]g or
K5 − P3 ⊆ [{w, u1, u2, u4, u5}]g. Put W1,1 = {w ∈ W1 | wu1 and wu5 are red},
W1,2 = {w ∈ W1 | wu2 and wu4 are red}, and W1,3 = W1 \ (W1,1 ∪ W1,2). From
qr(U,W ) ≤ 5n− 16 and qr(U,W ) ≥ 2|W1|+3|W2| = 3|W | − |W1| = 3(2n− 6)−|W1|
we derive

|W1| = |W1,1|+ |W1,2|+ |W1,3| ≥ n− 2.

Note that |W1,1| ≤ n − 3 because of Δr ≤ n − 2. Hence |W1| ≥ n − 2 implies
|W1,2|+ |W1,3| ≥ 1. Moreover, |W1,2| ≤ 1, as otherwise any two vertices w1, w2 ∈ W1,2

together with u1, u3 and u5 yield a green K5 − 2K2. If |W1,3| ≥ 5, then two vertices
w1, w2 ∈ W1,3 have to be joined red to the same vertices in {u1, u2, u4, u5}, say to u1

and u2. But then K5 − 2K2 ⊆ [{w1, w2, u3, u4, u5}]g, a contradiction. Consequently,
|W1,3| ≤ 4 and |W1,2|+ |W1,3| ≤ 5.

(i) If |W1,3| ≥ 1, then any w ∈ W1,3 and the vertices in U induce a green K6−P6.
Thus, G46, G54 and G70 occur in [V ]g. It remains that |W1,3| = 0. Then |W1,2| +
|W1,3| ≥ 1 and |W1,2| ≤ 1 force |W1,2| = 1. Consequently, |W1,1| ≥ n − 3 ≥ 1
because of |W1| ≥ n − 2. Consider now vertices w1 ∈ W1,1 and w2 ∈ W1,2. Then
G70 ⊆ [U ∪ {w1}]g, whereas G46 and G54 occur in [U ∪ {w2}]g.

(ii) If n ≥ 8, then |W1| ≥ n − 2 ≥ 6. Note that 1 ≤ |W1,2| + |W1,3| ≤ 5. Hence,
|W1,1| ≥ 1. Let w1 ∈ W1,1 and w2 ∈ W1,2 ∪ W1,3. Then G92 ⊆ [U ∪ {w1}]g and
G78 ⊆ [U ∪ {w2}]g if w2 ∈ W1,2. If w2 ∈ W1,3 we may assume that the edges w2u1

and w2u2 are red. This yields G78 ⊆ [{w1, w2, u1, u3, u4, u5}]g.

3.3 Proofs of the Theorems

Proof of Theorem 3.1. First we establish suitable lower bounds for r(Sn, G). In
any case, r(Sn, G) ≥ 2n − 1 by (10). The coloring of K9 with [V ]r = 3K3 shows
that r(S4, G61) ≥ 10. The coloring of K7 with [V ]r = C3 ∪ C4 implies (S4, G) ≥ 8
for G �∈ {G61, G19}. From [13] we use that r(S5, G61) ≥ 11, and r(S8, G61) ≥ 16 was
shown in [8]. To prove equality, i.e., to establish suitable upper bounds for r(Sn, G),
we refine the method used in [34].

Consider any coloring of Kt where n ≥ 4, t = 2n − 1 + a, a ≥ 0 and Sn �⊆ [V ]r,
i.e. Δr ≤ n− 2. Hence, dg(v) ≥ n+ a for every v ∈ V. Let u1 ∈ V with dg(u1) = Δg

and u2 ∈ Ng(u1). Since |Ng(u1)| ≥ n and Δr ≤ n − 2, a vertex u3 ∈ Ng(u1) exists
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such that u2u3 is green. Let U = {u1, u2, u3} and W = V \U. Put Wi = Ng(ui)∩W.
We obtain

|W | ≥
3∑

i=1

|Wi| −
∑

1≤i<j≤3

|Wi ∩Wj| ≥ Δg − 2 + 2(n+ a− 2)−
∑

1≤i<j≤3

|Wi ∩Wj |.

Consequently, since |W | = 2n− 4 + a and Δg ≥ n+ a,∑
1≤i<j≤3

|Wi ∩Wj | ≥ Δg + a− 2 ≥ n+ 2a− 2.

First let n + 2a ≥ 9. This gives
∑

1≤i<j≤3 |Wi ∩ Wj | ≥ 7 implying |Wi ∩ Wj | ≥ 3
for some i, j where 1 ≤ i < j ≤ 3. Thus, G61 ⊆ [U ∪ (Wi ∩ Wj)]g, and we obtain
r(Sn, G61) ≤ 2n − 1 if n ≥ 9, r(Sn, G61) ≤ 2n if 7 ≤ n ≤ 8, r(Sn, G61) ≤ 2n + 1 if
5 ≤ n ≤ 6 and r(S4, G61) ≤ 10.

Now let n = 4, a = 1 or n ≥ 5, a = 0. Note that in case of n = 5, a = 0,
i.e. Kt = K9, we have Δg ≥ 6, as otherwise Δr ≤ n − 2 = 3 would force a 5-
regular green subgraph of order 9 which is impossible. From

∑
1≤i<j≤3 |Wi ∩Wj | ≥

Δg + a− 2 ≥ n + 2a− 2 we obtain
∑

1≤i<j≤3 |Wi ∩Wj| ≥ 4. Hence, |Wi ∩Wj | ≥ 2
for some i, j with 1 ≤ i < j ≤ 3. Consequently, G41 ⊆ [U ∪ {w1, w2, w3}]g where
w1, w2 ∈ Wi ∩Wj and w3 ∈ Wi \ {w1, w2}. Note that G ⊆ G41 for every G �= G61.
Thus, for G �= G61, r(Sn, G) ≤ 2n− 1 if n ≥ 5 and r(S4, G) ≤ 8. It remains to prove
that r(S4, G19) ≤ 7. If a coloring of K7 does not contain a red S4, then [V ]r ⊆ H
where H ∈ {C7, K1 ∪C6, K1 ∪C3 ∪C3, K2 ∪C5, C3 ∪C4}. In any case, G19 ⊆ [V ]g
and we are done.

Proof of Theorem 3.2. As already mentioned, r(Sn, G) ≥ 2n for every G ∈
G3,2. To prove that r(Sn, G) ≥ 2n + 1 for n even and G ∈ {G102, G90, G77},
consider the coloring of K2n where [V ]g = n

2
K2 + n

2
K2. For n ≡ 2(mod 3) and

G ∈ {G102, G90, G87, G71, G67} the coloring of K2n with [V ]g = Kn−1 +
n+1
3
K3 im-

plies r(Sn, G) ≥ 2n+ 1.

Next we will show that r(Sn, G) ≤ 2n + 1 for all G ∈ G3,2. Note that G ⊆ G102

if G ∈ G3,2. Consider any coloring of K2n+1 where Sn �⊆ [V ]r, i.e. Δr ≤ n − 2. By
Lemma 3.1(i), K5 − 2K2 ⊆ [V ]g. Using Lemmas 3.2(i), 3.3(i), and 3.4(i) we obtain
that G102 ⊆ [V ]g, and we are done. It remains to establish r(Sn, G) ≤ 2n in the
following special cases.

Case 1: G ∈ {G77, G90, G102}, n odd, and, additionally, n �≡ 2(mod 3) if G ∈
{G102, G90}. Consider any coloring of K2n where Sn �⊆ [V ]r. By Lemma 3.1(i),
K5−2K2 ⊆ [V ]g. Hence, Lemmas 3.2(ii), 3.3(ii), and 3.4(i) guarantee that G ⊆ [V ]g.

Case 2: G ∈ {G67, G71, G87} and n �≡ 2(mod 3). Note that G71 and G67 are
subgraphs of G87. Consider any coloring of K2n where Sn �⊆ [V ]r. If K5 − 2K2 ⊆
[V ]g, then again Lemmas 3.2(ii), 3.3(ii), and 3.4(i) guarantee that G ⊆ [V ]g. If
K5 − 2K2 �⊆ [V ]g, then K5 − P3 ⊆ [V ]g by Lemma 3.1(iv), and Lemma 3.5(i) yields
G ⊆ [V ]g.
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Case 3: G ∈ {G37, G43, G45, G52, G68, G69, G93}. Note that G ⊆ G93 for
G ∈ {G37, G43, G45, G52, G69}. Consider any coloring of K2n where Sn �⊆ [V ]r. If
K5 − 2K2 ⊆ [V ]g, then Lemmas 3.2(ii), 3.3(ii), and 3.4(i) imply G93 ⊆ [V ]g and
G68 ⊆ [V ]g. Thus, by Lemma 3.1(i) and (iv), only the case n even and K4 ⊆ [V ]g is
left. Let U be the vertex set of a green K4 and W = V \U. From Lemma 3.1(iii) we
obtain dr(u) = n− 2 for every u ∈ U and qg(w,U) = qr(w,U) = 2 for every w ∈ W.
Now we use induction on n. If n = 4, then it follows from Δr ≤ n − 2 = 2 that
[W ]g = K4 and dr(v) = 2 for every vertex v ∈ V. Hence, [V ]r is bipartite and every
component of [V ]r is an even cycle. This implies [V ]r = C4∪C4 or [V ]r = C8. In both
cases, G93 ⊆ [V ]g and G68 ⊆ [V ]g. Now let n ≥ 6. As induction hypothesis we use
that any coloring of K2(n−2) without a red subgraph Sn−2 contains green subgraphs
G93 and G68. Note that |W | = 2(n − 2). A red Sn−2 in [W ] is impossible since
otherwise qr(w,U) = 2 for every w ∈ W would force Sn ⊆ [V ]r. Thus, G93 ⊆ [W ]g
and G68 ⊆ [W ]g, and we are done.

Proof of Theorem 3.3. Note that K5 − 2K2 ⊆ G ⊆ G100 for every G ∈ G3,3.
Consider any coloring of Kt where 2n − 1 ≤ t ≤ 2n + 1, n ≥ 4 and Sn �⊆ [V ]r, i.e.
Δr ≤ n− 2. If t = 2n+ 1, then K5 − 2K2 ⊆ [V ]g by Lemma 3.1(i). Hence, Lemmas
3.2(i), 3.3(i) and 3.4(ii) yield G100 ⊆ [V ]g. Consequently, r(Sn, G) ≤ 2n+1 for every
G ∈ G3,3. If n is even, then equality holds since r(Sn, G) ≥ r(Sn, K5−2K2) = 2n+1
(see (10)).

Now let n be odd. Again, K5 − 2K2 ⊆ [V ]g by Lemma 3.1(i). If t = 2n − 1,
then we obtain G100 ⊆ [V ]g for n ≥ 13, G94 ⊆ [V ]g for n ≥ 9 and G83 ⊆ [V ]g for
n ≥ 5 using Lemmas 3.2(iii), 3.3(iii), 3.4(iii) and (iv). Note that G63 ⊆ G83 and
G74 ⊆ G83. Thus, r(Sn, G100) ≤ 2n − 1 for n ≥ 13, r(Sn, G94) ≤ 2n − 1 for n ≥ 9
and r(Sn, G) ≤ 2n − 1 for G ∈ {G63, G74, G83} if n ≥ 5. Equality holds since
r(Sn, G) ≥ 2n − 1 for every G ∈ G3. For t = 2n, n ∈ {5, 7}, we obtain G94 ⊆ [V ]g
using Lemmas 3.2(ii), 3.3(ii) and 3.4(i). This implies r(Sn, G94) ≤ 2n if n ∈ {5, 7}.
Moreover, the (S5, G94)-coloring of K9 in Figure 1 proves that equality holds if n = 5.
To complete the proof we have to consider G = G100 where n ∈ {5, 7, 9, 11}. The
computation of r(S5, G100) can be found in [13], and the bounds for r(Sn, G) if
n ∈ {7, 9, 11} are obvious.

Figure 1: The red subgraph of a (S5, G94)-coloring of K9.

Proof of Theorem 3.4. Note that G ⊆ G62, G ⊆ G65 or G ⊆ G73 for every
G ∈ G3,4. Moreover, G ⊆ G83 for every G ∈ G3,4 and G73 ⊆ G87. First let n be odd.
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Since r(Sn, G) ≥ 2n−1 for any G ∈ G3 we only have to prove that r(Sn, G) ≤ 2n−1.
Consider any coloring of K2n−1 where Sn �⊆ [V ]r, i.e. Δr ≤ n− 2. By Lemma 3.1(i),
K5−2K2 ⊆ [V ]g. Using Lemmas 3.2(iii), 3.3(iii) and 3.4(iv) we obtain G ⊆ [V ]g for
any G ∈ G3,4. Now let n be even. The coloring of K2n−1 where [V ]g = n

2
K2 +Kn−1

does not contain a red Sn. Moreover, every green subgraph of order six is contained
in K6 − K4, K6 − (K3 ∪ P3), K6 − (C4 ∪ K2) or K6 − (K5 − 2K2). This implies
G �⊆ [V ]g for every G ∈ G3,4. Thus, r(Sn, G) ≥ 2n. To prove that r(Sn, G) ≤ 2n
consider any coloring of K2n where Sn �⊆ [V ]r. If K5 − 2K2 ⊆ [V ]g, then we take
a suitable subgraph of order 2n − 1 and are done as in the case n odd. Otherwise,
Lemma 3.1(iv) forces that K5−P3 ⊆ [V ]g. Now Lemma 3.5(i) yields subgraphs G62,
G65 and G73 in [V ]g and the proof is complete.

Proof of Theorem 3.5. First we will prove that r(Sn, G) = 2n− 1 for G ∈ G3,5 \S
if n ≥ 4 and for G ∈ S under the conditions given in the theorem. Since r(Sn, G) ≥
2n − 1 by (10) it remains to establish r(Sn, G) ≤ 2n − 1. Consider any coloring of
K2n−1 where Sn �⊆ [V ]r, i.e. Δr ≤ n− 2. We distinguish four cases depending on G
and n.

Case 1: G ∈ G3,5 \ S and n ≥ 5 or G ∈ S \ {G33} where n = 5 or n ≥ 7
if G ∈ {G60, G79}, n ≥ 9 if G = G78 and n ≥ 13 if G = G92. First let K5 −
2K2 ⊆ [V ]g. Note that G ⊆ G83 for every G ∈ G3,5 \ {G78, G92}, G78 ⊆ G94

and G92 ⊆ G100. Consequently, the desired result follows from Lemmas 3.2(iii),
3.3(iii), 3.4(iii) and 3.4(iv). Now let K5 − 2K2 �⊆ [V ]g. By Lemma 3.1(v), n
has to be even and K5 − P3 ⊆ind [V ]g or K5 − (P3 ∪ K2) ⊆ind [V ]g. Note that
G ⊆ G70 for every G ∈ G3,5 \ (S ∪ {G25, G35, G38, G46, G54}) and G ⊆ G73 for
every G ∈ {G25, G35, G38, G46, G54}. Moreover, G35, G38 ⊆ G46, G25 ⊆ G54 and
G60 ⊆ G79 ⊆ G92. Hence, the desired result follows from Lemmas 3.5(ii), 3.5(iii)
and 3.6.

Case 2: G = G33, n ≥ 5. If dg(v) ≥ n + 1 for some v ∈ V , then Δr ≤ n − 2
guarantees two independent green edges in [Ng(v)]. Hence, G33 ⊆ [Ng(v) ∪ {v}]g.
It remains dg(v) = n and dr(v) = n − 2 for any v ∈ V. Assume that G33 �⊆ [V ]g.
Then any two green edges in [Ng(v)] have to be adjacent, and Δr ≤ n − 2 forces
[Ng(v)]g = K1,n−1 and [Ng(v)]r = Kn−1 ∪ K1. Let U be the vertex set of the red
Kn−1 ⊆ [Ng(v)] andW = V \U. All edges between U andW have to be green because
of Δr ≤ n − 2. But then dg(v) = n for every v ∈ V guarantees two independent
green edges in [W ] c.ontradicting G33 �⊆ [V ]g.

Case 3: G = G78, n = 5. Then Δr ≤ n− 2 = 3. Since [V ]r cannot be 3-regular,
there is a vertex v ∈ V with dg(v) ≥ 6. Moreover, a vertex w ∈ V exists such that
|Ng(v) ∩ Ng(w)| ≥ 4. Let U = {u1, u2, u3, u4} ⊆ Ng(v) ∩ Ng(w). If [U ] contains a
green edge, then G78 ⊆ [U ∪ {v, w}]g. Otherwise, [U ]r = K4, and Δr ≤ 3 forces only
green edges between U and W = V \U. Furthermore, [W ] must contain a green edge
w1w2. Consequently, a green G78 occurs in the subgraph induced by u1, u2, w1, w2

and two other vertices w3, w4 ∈ W.

Case 4: G ∈ G3,5 \ S, n = 4. Then G ⊆ G70, G ⊆ G54 or G ⊆ G46. From
Δr ≤ n− 2 = 2 we obtain that [V ]r ⊆ H where H ∈ {K1 ∪K3 ∪K3, K1 ∪C6, K2 ∪
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C5, K3 ∪ C4, C7}. In any case, G70, G54 and G46 are subgraphs of [V ]g and we are
done.

Now let us prove the additional results given in the theorem. We first consider
r(S4, G) for G ∈ S. The coloring of K7 where [V ]r = C7 establishes r(S4, G) ≥ 8.
For any coloring of K8 with S4 �⊆ [V ]r we obtain that [V ]r ⊆ H with H ∈ {K1 ∪
K3 ∪ C4, K1 ∪ C7, K2 ∪K3 ∪K3, K2 ∪ C6, K3 ∪ C5, C4 ∪ C4, C8}. In any case we
find green subgraphs G92, G78 and G33. Since G60, G79 ⊆ G92 we are done. To prove
r(S5, G92) = 11 we use that K3,3 ⊆ G92 ⊆ G100. It is known that r(S5, K3,3) = 11
(see [24]) and, by Theorem 3.3, r(S5, G100) = 11. This implies the desired result. To
complete the proof note that G ⊆ G100 for every G ∈ G3,5 and G78 ⊆ G93. Thus,
r(Sn, G) ≤ 2n+1 for every G ∈ G3,5 by Theorem 3.3 and r(Sn, G78) ≤ 2n by Theorem
3.2. Since r(Sn, G) ≥ 2n− 1 for any G ∈ G3, we are done.

4 The Ramsey Number r(Sn, G) for G ∈ G2

The set G2 consists of all graphs from Table 1 which have not yet been considered,
i.e. all connected spanning subgraphs of K1,5 = G6, K2,4 = G53 or K3,3 = G76. This
gives

G2 = {G1, G2, G3, G4, G5, G6, G7, G9, G11, G12, G16, G20, G29, G31, G53, G59, G76}.

In the following theorem r(Sn, G) is evaluated for all G ∈ G2 and 4 ≤ n ≤ 5.

Theorem 4.1.

r(S4, G) =

⎧⎪⎨
⎪⎩

6 if G ∈ {G1, G4, G5, G7, G9, G11},
7 if G ∈ {G2, G3, G12, G16, G20, G29, G31, G59},
8 if G ∈ {G6, G53, G76}.

r(S5, G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

7 if G ∈ {G1, G2, G3, G4, G5, G9, G12},
8 if G ∈ {G7, G11, G16, G20},
9 if G ∈ {G6, G29, G31, G53, G59},
11 if G = G76.

Proof. We first determine r(S4, G). Let G ∈ {G1, G4, G5, G7, G9, G11}. Clearly,
r(S4, G) ≥ 6. To establish equality, consider any coloring of K6 where S4 �⊆ [V ]r.
Consequently, [V ]r ⊆ H with H ∈ {C6, C5 ∪ K1, C4 ∪ K2, 2K3}. In any case,
G ⊆ [V ]g. Now let G ∈ {G2, G3, G12, G16, G20, G29, G31, G59}. Since G ⊆ G70,
r(S4, G) ≤ 7 follows from Theorem 3.5. To prove that r(S4, G) ≥ 7 we use three
different colorings of K6. If [V ]r = 2K3, then we obtain an (S4, G)-coloring for G ∈
{G2, G3, G12, G16, G31}, [V ]r = C4 ∪K2 yields an (S4, G20)-coloring, and [V ]r = C6

gives an (S4, G)-coloring for G ∈ {G29, G59}. Finally let G ∈ {G6, G53, G76}. The
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coloring of K7 where [V ]r = C7 proves r(S4, G) ≥ 8. Because G6 ⊆ G62, G53 ⊆ G93

and G76 ⊆ G92, we obtain r(S4, G) ≤ 8 using Theorems 3.4, 3.2 and 3.5.

Consider now r(S5, G). First let G ∈ {G1, G2, G3, G4, G5, G9, G12}. The coloring
of K6 where [V ]r = K3,3 implies r(S5, G) ≥ 7. Since G1, G4 ⊆ G9 and G2, G3 ⊆ G12

it remains to prove that r(S5, G) ≤ 7 for G ∈ {G5, G9, G12}. Consider any coloring of
K7 with S5 �⊆ [V ]r, i.e. dr(v) ≤ 3 for every v ∈ V. As r(S5, C4) = 7 (see [7]), a green
C4 must occur. Let U = {u1, u2, u3, u4} be the vertex set of a green C4 where the
edges u1u2, u2u3, u3u4 and u1u4 are green. Moreover, let W = {w1, w2, w3} = V \U.
Because of S5 �⊆ [V ]r, qg(w,U) ≥ 1 for every w ∈ W, and qg(w,U) = 1 implies only
green edges incident to w in [W ]. Consider first that two edges in [W ], say w1w2 and
w1w3, are red. Then S5 �⊆ [V ]r implies qg(w1, U) ≥ 3 and qg(wi, U) ≥ 2 for i = 2 and
i = 3. We may assume that the edges from w1 to u1, u2 and u3 are green. Because
one of the edges from w2 to u1, u2 and u3 has to be green, G5, G12 ⊆ [V ]g. Obviously,
G9 ⊆ [V ]g if w2w3 is green. If w2w3 is red, then qg(w2, U) ≥ 3, and this also yields
G9 ⊆ [V ]g. The remaining case is that two edges in [W ], say w1w2 and w1w3, are
green. Since qg(w1, U) ≥ 1, G5, G9 ⊆ [V ]g, and it remains to prove that G12 ⊆ [V ]g.
Clearly, G12 ⊆ [V ]g if qg(u,W ) ≥ 2 for some u ∈ U . Otherwise, qg(U,W ) ≤ 4, and
this yields qg(wi, U) = qg(wj, U) = 1 for two vertices wi, wj ∈ W. Thus, also w2w3

has to be green. Furthermore we may assume that the edges w1u1, w2u2 and w3u3

are green. Then dr(u4) ≤ 3 forces one of the edges from u4 to {u2, w1, w2, w3} to be
green and again we obtain G12 ⊆ [V ]g.

Now let G ∈ {G7, G11, G16, G20}. The coloring of K7 where [V ]g consists of
two green copies of K4 with exactly one common vertex implies r(S5, G) ≥ 8. Since
G7, G11 ⊆ G20 it remains to establish r(S5, G) ≤ 8 for G ∈ {G16, G20}. Consider any
coloring of K8 where S5 �⊆ [V ]r. To prove that G16 ⊆ [V ]g we use r(S5, G12) = 7.
Consequently, G12 ⊆ [V ]g. Let U = {u1, u2, . . . , u6} be the vertex set of a green
G12 where the edges from u1 to u2, u3, u4, u5 and the edges u6u2, u6u3 are green.
Since S5 �⊆ [V ]r, one of the edges from u6 to {u4, u5} ∪ (V \ U) has to be green and
this yields G16 ⊆ [V ]g. To prove that G20 ⊆ [V ]g we use r(C4, G20) = 7 (see [20]).
Suppose that G20 �⊆ [V ]g. Then a red C4 must occur. Let U be the vertex set of a
red C4 and W = V \ U. As S5 �⊆ [V ]r, qg(u,W ) ≥ 3 for every u ∈ U. Hence we find
three vertices in U and three vertices in W yielding a green G20 = K3,3 − 2K2, a
contradiction.

Consider now G ∈ {G6, G29, G31, G53, G59}. The coloring ofK8 where [V ]r = 2K4

shows that r(S5, G6) ≥ 9. For G �= G6 we obtain r(S5, G) ≥ 9 from K2,3 ⊆ G and
r(S5, K2,3) = 9 (see [17]). To prove r(S5, G) ≤ 9, note that G6, G29, G59 ⊆ G83 and
G31, G53 ⊆ G78. Thus, the desired result follows from r(S5, G78) = r(S5, G83) = 9,
proved in Theorem 3.5 and Theorem 3.3. For the remaining case G = G76 = K3,3

the value of r(S5, G) has been determined in [24].

For the six trees G ∈ G2, the values of r(Sn, G) are almost completely known
from general results obtained for r(Sn, Tm). Harary [16] proved that

r(Sn, Sm) = n+m− 3 + ε (11)
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where ε = 1 if n or m is even and ε = 0 otherwise. Burr [2] obtained the following
result:

r(Sn, Tm) = n+m− 2 if n,m ≥ 3 and n− 2 ≡ 0 (mod m− 1). (12)

Guo and Volkmann [14] showed that

r(Sn, Tm) ≤ n +m− 3 if m,n ≥ 3, n− 2 �≡ 0 (mod m− 1) and Tm �= Sn, (13)

and that equality holds if n = m ≥ 4 or if in case of n > m one of the following
conditions is fulfilled: n − 2 = k(m − 1) + 1 with k ∈ N or n − 2 = k(m − 1) + r
with k ∈ N, 2 ≤ r ≤ m − 2 and Δ(Tm) = m − 2 or k + r + 2 − m ≥ 0. Parsons
[30] determined r(Sn, Pm) for the path Pm on m vertices by explicit formulas and a
recurrence, in particular he obtained the following result:

r(Sm+k, Pm) = 2m− 1 if 1 ≤ k < (m+ 4)/3. (14)

Here we will determine the missing values of r(Sn, G) for the trees G ∈ G2 and
summarize the results in the following theorem.

Theorem 4.2. Let n ≥ 6 and G ∈ {G1, G2, G3, G4, G5, G6}. Then

r(Sn, G) =

⎧⎪⎨
⎪⎩

n+ 4 if G = G6 or if n ≡ 2 (mod 5) and G �= G6,

n+ 2 if n = 9 and G ∈ {G1, G4, G5},
n+ 3 otherwise.

Proof. The case G = G6 = S6 is settled by (11), and for G �= G6, n ≡ 2 (mod 5) we
are done by (12). Using (13) where equality holds, we obtain r(Sn, G) for G = G3,
and for G ∈ {G1, G2, G4, G5} only n = 9 is left. From (14) we derive r(S9, G1) = 11.
By (13), r(S9, G2) ≤ 12, and the coloring of K11 where [V ]g = K5 ∪ K3,3 yields
equality. It remains to prove r(S9, G) = 11 for G ∈ {G4, G5}. The coloring of K10

with [V ]g = 2K3 ∪ K4 implies r(S9, G) ≥ 11. To establish equality, consider any
coloring of K11 where S9 �⊆ [V ]r. Since r(S9, G1) = 11, a green P6 must occur. Let
U = {u1, u2, . . . , u6} be the vertex set of a green P6 where the edges uiui+1 are green
for i = 1, . . . , 5. Moreover, let W = V \ U . If one of the edges from u2 to u4, u5

or u6 is green, then G4 ⊆ [V ]g. Otherwise, S9 �⊆ [V ]r implies that u2w is green for
some w ∈ W . Similarly, at least one edge from w to (W \ {w}) ∪ {u3, u4, u5, u6}
has to be green, and again we find a green G4. It remains to prove that G5 ⊆ [V ]g.
A vertex v ∈ V (K11) with dr(v) �= 7 must exist. Consequently, S9 �⊆ [V ]r forces
dr(v) ≤ 6, i.e. dg(v) ≥ 4. Let U = {u1, u2, u3, u4} ⊆ Ng(v), U

′ = U ∪ {v}, and
W = V \ U ′ = {w1, . . . , w6}. Suppose G5 �⊆ [V ]g. From r(S4, G5) = 6 we obtain
S4 ⊆ [W ]r. We may assume that the edges from w1 to w2, w3 and w4 are red. Because
of S9 �⊆ [V ]r, qg(w1, U

′) ≥ 1. If qg(w1, U) ≥ 1, say w1u1 is green, then S9 �⊆ [V ]r
forces qg(u1, (W \ {w1})∪ (U \ {u1})) ≥ 1. This gives G5 ⊆ [V ]g, a contradiction. It
remains that w1v is green and all edges from w1 to U are red. But then S9 �⊆ [V ]r
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forces only green edges from w1 to w5 and w6. Again G5 ⊆ [V ]g, and we are done.

Next we consider the six non-tree graphs G ∈ G2 where G �= K2,4 and C6 �⊆ G.
Since C4 ⊆ G, r(Sn, G) ≥ r(Sn, C4) for G ∈ {G9, G11, G12, G16}, and K2,3 ⊆ G
implies r(Sn, G) ≥ r(Sn, K2,3) for G ∈ {G29, G31}. We will show that in both cases
equality holds if n is sufficiently large. The following lemma is essential for proving
this result.

Lemma 4.1. If r(Sn, C4) ≥ n + 4 and G ∈ {G9, G11, G12, G16}, then r(Sn, G) =
r(Sn, C4). If r(Sn, K2,3) ≥ n + 4 and G ∈ {G29, G31}, then r(Sn, G) = r(Sn, K2,3).

Proof. It suffices to establish the missing upper bounds for r(Sn, G). Assume first
that r(Sn, C4) ≥ n + 4 and consider any coloring of Kt where t = r(Sn, C4) and
Sn �⊆ [V ]r. Then C4 ⊆ [V ]g and dg(v) ≥ 5 for every v ∈ V. Let U be the vertex set
of a green C4. Since |Ng(u) \ U | ≥ 2 for any u ∈ U , Gi ⊆ [V ]g for i ∈ {11, 12, 16}.
To find a green G9, take a vertex v ∈ Ng(u) \ U for some u ∈ U. As |Ng(v) \ U | ≥ 1,
the desired result follows. Assume now that r(Sn, K2,3) ≥ n + 4 and consider any
coloring of Kt where t = r(Sn, K2,3) and Sn �⊆ [V ]r. Then K2,3 ⊆ [V ]g and dg(v) ≥ 5
for every v ∈ V. Let U be the vertex set of a green K2,3. Because |Ng(u) \U | ≥ 1 for
every u ∈ U , G29 ⊆ [V ]g and G31 ⊆ [V ]g, and we are done.

By (8) and r(Sn, C4) ≤ r(Sn, K2,3), the conditions on r(Sn, C4) and r(Sn, K2,3) in
Lemma 4.1 are satisfied if n is sufficiently large, and we obtain the following result.

Theorem 4.3. If n is sufficiently large, then r(Sn, G) = r(Sn, C4) for G ∈ {G9, G11,
G12, G16} and r(Sn, G) = r(Sn, K2,3) for G ∈ {G29, G31}.

It remains an open problem to determine the exact values of r(Sn, G) if G ∈
{G9, G11, G12, G16, G29, G31} and all n ≥ 6. For G ∈ {G9, G11, G12, G16} it
follows from Lemma 4.1, (6), (7) and (8), that the exact value of r(Sn, G) is known
for infinitely many n and

n− 1 +
⌊√

n− 1− 6(n− 1)11/40
⌋
< r(Sn, G) ≤ n +

⌈√
n− 1

⌉
for n sufficiently large. In [3] it is shown that r(Sn, K2,3) < n+2

√
n for all sufficiently

large n. Consequently, for G ∈ {G29, G31} and n sufficiently large,

n− 1 +
⌊√

n− 1− 6(n− 1)11/40
⌋
< r(Sn, G) < n + 2

√
n.

The remaining non-tree graphs in G2 are G53 = K2,4 and the four subgraphs of
K3,3 containing a subgraph isomophic to C6, namely G7 = C6, G20 = K3,3 − 2K2,
G59 = K3,3−K2 and G76 = K3,3. The values of r(Sn, C6) for 6 ≤ n ≤ 12 can be found
in [36]: r(Sn, C6) = n+4 if 6 ≤ n ≤ 7 or 10 ≤ n ≤ 12 and r(Sn, C6) = n+3 if 8 ≤ n ≤
9. Moreover, r(S6, K2,4) = 11, r(S6, K3,3) = 12 and r(S7, K2,4) = r(S7, K3,3) = 13
(see [24]). From [3] we know that, for n sufficiently large, r(Sn, K2,4) < n + 3

√
n

and r(Sn, G) < n+3n2/3 for all G ∈ {G7, G20, G59, G76}, but it remains an unsolved
problem to determine further exact values.
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