On the Ramsey numbers for stars versus connected graphs of order six

Roland Lortz
Technische Universität Braunschweig
Institut Computational Mathematics
AG Algebra und Diskrete Mathematik, 38092 Braunschweig
Germany
r.lortz@tu-braunschweig.de
Ingrid Mengersen
Moorhüttenweg 2d
38104 Braunschweig
Germany
ingrid.mengersen@t-online.de

Abstract

We investigate the Ramsey number $r\left(S_{n}, G\right)$ where S_{n} denotes the star of order n and G is a connected graph of order six. The values of $r\left(S_{n}, G\right)$ are determined for any $G \neq K_{2,2,2}$ with chromatic number $\chi(G) \geq 3$ with but a few exceptions for some G with $\chi(G)=3$ in case of some small n. Partial results on $r\left(S_{n}, G\right)$ are obtained if $\chi(G)=2$. In any case, $r\left(S_{n}, G\right)$ is evaluated for $n \leq 5$. With our results, $r\left(T_{n}, G\right)$ is completely known for every tree T_{n} of order n and every connected graph of order six with $\chi(G) \geq 4$.

1 Introduction

The Ramsey number $r\left(T_{n}, G\right)$, where T_{n} denotes a tree of order n and G is a graph of order m, has been intensively studied. Chvátal [5] proved that

$$
\begin{equation*}
r\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1 \tag{1}
\end{equation*}
$$

for any tree T_{n}. Moreover, the values of $r\left(T_{n}, G\right)$ are almost completely known for nearly complete graphs G. Chartrand, Gould and Polimeni [4] showed that

$$
\begin{equation*}
r\left(T_{n}, G\right)=(n-1)(m-2)+1 \tag{2}
\end{equation*}
$$

for $n \geq 4$ and every graph G of order $m \geq 4$ and clique number $\operatorname{cl}(G)=m-1$. Gould and Jacobson [12] proved that

$$
\begin{equation*}
r\left(T_{n}, G\right)=(n-1)(m-3)+1 \tag{3}
\end{equation*}
$$

for $n \geq 4$ and all graphs G of order $m \geq 6$ and $\operatorname{cl}(G)=m-2$, where $T_{n} \neq S_{n}$ in case of $m=6$. Furthermore, $r\left(T_{n}, G\right)$ has been studied for special graphs G such as books, cycles or bipartite graphs. Here we just want to mention some results important in connection with our paper, a survey can be found in [32]. Rousseau and Sheehan [34] and Erdős, Faudree, Rousseau and Schelp [8] investigated $r\left(T_{n}, B_{m}\right)$ for the book graph $B_{m}=K_{1,1, m}$ and obtained the following result:

$$
\begin{equation*}
r\left(T_{n}, B_{m}\right)=2 n-1 \text { for } n \geq 3 m-3 \tag{4}
\end{equation*}
$$

Faudree, Schelp and Rousseau [11] considered $G=K_{m}-K_{t}$ and showed that, for $n \geq 2, m \geq 2, t \geq 1$ and $m \geq 2 t-\lfloor(t-1) /(n-1)\rfloor(n-1)$,

$$
\begin{equation*}
r\left(T_{n}, K_{m}-K_{t}\right)=(n-1)(m-t+\lfloor(t-1) /(n-1)\rfloor)+1 \tag{5}
\end{equation*}
$$

except for $\left(T_{n}, K_{m}-K_{t}\right)=\left(S_{4}, K_{6}-K_{3}\right)$. Some effort has been made to evaluate $r\left(S_{n}, G\right)$ for bipartite graphs G, especially for trees, cycles of even length and complete bipartite graphs. These cases are not completely settled, not even the values of $r\left(S_{n}, C_{4}\right)$ are entirely known. Parsons [31] proved that

$$
\begin{equation*}
r\left(S_{n}, C_{4}\right) \leq n+\lceil\sqrt{n-1}\rceil \text { for } n \geq 3 \tag{6}
\end{equation*}
$$

and, for any prime power q,

$$
\begin{equation*}
r\left(S_{q^{2}+1}, C_{4}\right)=q^{2}+q+1 \text { and } r\left(S_{q^{2}+2}, C_{4}\right)=q^{2}+q+2 . \tag{7}
\end{equation*}
$$

Moreover, Burr, Erdős, Faudree, Rousseau and Schelp [3] showed that

$$
\begin{equation*}
r\left(S_{n}, C_{4}\right)>n-1+\left\lfloor\sqrt{n-1}-6(n-1)^{11 / 40}\right\rfloor \tag{8}
\end{equation*}
$$

if n is sufficiently large. Recently, some progress in evaluating $r\left(S_{n}, C_{4}\right)$ has been made by Wu, Sun, Zhang and Radziszowski [35]. Faudree, Rousseau and Schelp [10] systematically studied $r\left(T_{n}, G\right)$ for all connected graphs G of order at most five. In particular they proved that, for $n \geq 4$ and every connected graph G on five vertices with chromatic number $\chi(G)=3$,

$$
\begin{equation*}
r\left(T_{n}, G\right)=2 n-1+\epsilon, \tag{9}
\end{equation*}
$$

with $\epsilon=2$ if $\left(T_{n}, G\right)=\left(S_{n}, K_{5}-2 K_{2}\right)$ where n is even, $\epsilon=1$ if $\left(T_{n}, G\right)=\left(S_{n}, K_{5}-P_{4}\right)$ where n is even or if $\left(T_{n}, G\right)=\left(S_{4}, K_{5}-K_{3}\right)$ and $\epsilon=0$ otherwise. For non-tree graphs G with $\chi(G)=2, r\left(T_{n}, G\right)$ has not been completely evaluated. The main reason is the lack of knowledge about $r\left(S_{n}, C_{4}\right)$ and $r\left(S_{n}, K_{2,3}\right)$.

In this paper we will begin to extend the results obtained in [10] to connected graphs of order six. The list of all 112 such graphs given in Table 1 is taken from
[15], more detailed information about these graphs can be found in [26]. A formula to compute $r\left(T_{n}, G\right)$ for $n=3$, the first nontrivial case, and every graph G of order m is given in [6]. Thus, we may always assume that $n \geq 4$. Moreover, we will make use of the well-known lower bound

$$
\begin{equation*}
r(F, G) \geq(n-1)(\chi(G)-1)+s(G) \tag{10}
\end{equation*}
$$

for any connected graph F of order n and any graph G with chromatic surplus $s(G) \leq n$ (see [8] or [10]). Only a few values of $r\left(T_{n}, G\right)$ are missing for connected graphs G of order six with $\chi(G) \geq 4$ because of (1), (2) and (3). We close this gap and show that $r\left(T_{n}, G\right)$ attains the lower bound given in (10) with only one exception. For $\chi(G) \leq 3$, different methods seem to be required to evaluate $r\left(T_{n}, G\right)$ depending on whether T_{n} is or is not a star. Here we focus on $T_{n}=S_{n}$, the case $T_{n} \neq S_{n}$ is treated in [28]. With a few exceptions for small n, the values of $r\left(S_{n}, G\right)$ are determined for every connected graph $G \neq K_{2,2,2}$ of order six with $\chi(G)=3$. For $n \geq 5$ the values differ by at most 2 from the lower bound given in (10), whereas it is shown in [27] that $r\left(S_{n}, K_{2,2,2}\right)$ can be significantly larger. Partial results on $r\left(S_{n}, G\right)$ are obtained for the connected graphs G of order six with $\chi(G)=2$. As could be expected, problems arise in case of non-tree graphs. These graphs contain a cycle C_{4} or C_{6}, and for any $G \neq K_{2,4}$ not containing a cycle C_{6} we obtain that $r\left(S_{n}, G\right)$ matches $r\left(S_{n}, C_{4}\right)$ or $r\left(S_{n}, K_{2,3}\right)$ if n is sufficiently large. A complete evaluation fails because of the missing values of $r\left(S_{n}, C_{4}\right)$ and $r\left(S_{n}, K_{2,3}\right)$.

This paper also makes a contribution to evaluate $r(F, G)$ for small graphs F and G. If F and G both have at most five vertices, $r(F, G)$ is almost completely known (see [6], [7], [17], also cf. [32]). Some effort has been made to determine $r(F, G)$ for graphs F of order at most five and graphs G of order six (see $[1,9,13,18,20,21,22$, $23,25,26,29,33]$). The results in this paper together with $r\left(S_{4}, K_{2,2,2}\right)=10$ (see [27]), $r\left(S_{5}, K_{2,2,2}\right)=11$ (see [13] and [27]) and the results on $r(F, G)$ for disconnected graphs G of order six obtained in [25] yield all values of $r\left(S_{n}, G\right)$ for $n \leq 5$ and any graph G of order six.

Some specialized notation will be used. A coloring of a graph always means a 2 -coloring of its edges with colors red and green. An (F_{1}, F_{2})-coloring is a coloring containing neither a red copy of F_{1} nor a green copy of F_{2}. We use V to denote the vertex set of K_{n} and define $d_{r}(v)$ to be the number of red edges incident to $v \in V$ in a coloring of K_{n}. Moreover, $\Delta_{r}=\max _{v \in V} d_{r}(v)$. The set of vertices joined red to v is denoted by $N_{r}(v)$. Similarly we define $d_{g}(v), \Delta_{g}$ and $N_{g}(v)$. For $U \subseteq V\left(K_{n}\right)$, the subgraph induced by U is denoted by $[U]$. Furthermore, $[U]_{r}$ and $[U]_{g}$ denote the red and the green subgraph induced by U. We write $G^{\prime} \subseteq G$ if G^{\prime} is a subgraph of G, and $G^{\prime} \subseteq_{\text {ind }} G$ means that G^{\prime} is an induced subgraph. For disjoint subsets $U_{1}, U_{2} \subseteq V\left(K_{n}\right), q_{r}\left(U_{1}, U_{2}\right)$ denotes the number of red edges between U_{1} and U_{2}, and $q_{g}\left(U_{1}, U_{2}\right)$ is defined similarly. The set of all connected graphs G of order six and chromatic number $\chi(G)=s$ is denoted by \mathcal{G}_{s}.

Table 1. The 112 connected graphs of order six.

2 The Ramsey Number $r\left(T_{n}, G\right)$ for $G \in \mathcal{G}_{s}, 4 \leq s \leq 6$

Obviously, $K_{6}=G_{112}$ is the only graph in \mathcal{G}_{6}, and \mathcal{G}_{5} consists of the four connected graphs G of order six with clique number $\operatorname{cl}(G)=5$, i.e., $\mathcal{G}_{5}=\left\{G_{98}, G_{106}, G_{109}, G_{111}\right\}$. If $G \in \mathcal{G}_{4}$, then either $\operatorname{cl}(G)=4$ or G is isomorphic to the wheel $W_{5}=G_{82}$. This gives

$$
\begin{aligned}
\mathcal{G}_{4}= & \left\{G_{42}, G_{55}, G_{58}, G_{64}, G_{66}, G_{72}, G_{75}, G_{80}, G_{81}, G_{82}, G_{84}, G_{85}, G_{86}, G_{88},\right. \\
& \left.G_{89}, G_{91}, G_{95}, G_{96}, G_{97}, G_{99}, G_{101}, G_{103}, G_{104}, G_{105}, G_{107}, G_{110}\right\} .
\end{aligned}
$$

From (1), (2) and (3) we already know that $r\left(T_{n}, G\right)$ matches the lower bound in (10) for $G \in \mathcal{G}_{s}$ with $5 \leq s \leq 6$ and, in case of $T_{n} \neq S_{n}$, for $G \in \mathcal{G}_{4} \backslash\left\{W_{5}\right\}$. Here we will show that the lower bound is also attained in the remaining cases with only one exception.

Theorem 2.1. Let $n \geq 4, G \in \mathcal{G}_{s}, 4 \leq s \leq 6$, and $\left(T_{n}, G\right) \neq\left(S_{4}, K_{6}-K_{3}\right)$. Then

$$
r\left(T_{n}, G\right)=(n-1)(s-1)+1 .
$$

Furthermore, $r\left(S_{4}, K_{6}-K_{3}\right)=11$.
Proof. To settle the remaining cases, i.e., $G \in \mathcal{G}_{4}$ where $T_{n}=S_{n}$, and $G=W_{5}$ where $T_{n} \neq S_{n}$, we first consider $G=G_{105}=K_{6}-K_{3}$. By (5), $r\left(S_{n}, K_{6}-K_{3}\right)=3 n-2$ if $n \geq 5$. (The exceptional case $n=4$ was overlooked in [11].) The coloring of K_{10} with $[V]_{r}=2 C_{5}$ implies that $r\left(S_{4}, K_{6}-K_{3}\right) \geq 11$. To establish equality, take any coloring of K_{11} where $S_{4} \nsubseteq[V]_{r}$ and consider some vertex $v \in V$. Since $d_{g}(v) \geq 8$ and $r\left(S_{4}, K_{5}-K_{3}\right)=8$ by (9), $K_{6}-K_{3} \subseteq\left[\{v\} \cup N_{g}(v)\right]_{g}$, and we are done.

Now let $G \in \mathcal{G}_{4} \backslash\left\{K_{6}-K_{3}\right\}$. Obviously, $G \subseteq G_{110}=K_{6}-2 K_{2}$, and this implies $r\left(T_{n}, G\right) \leq r\left(T_{n}, K_{6}-2 K_{2}\right)$. Moreover, $r\left(T_{n}, G\right) \geq 3 n-2$ by (10). We already know that $r\left(T_{n}, K_{6}-2 K_{2}\right)=3 n-2$ if $T_{n} \neq S_{n}$. Thus, to complete the proof, it suffices to establish $r\left(S_{n}, K_{6}-2 K_{2}\right) \leq 3 n-2$. Suppose that we have an $\left(S_{n}, K_{6}-2 K_{2}\right)$ coloring of $K_{3 n-2}$. By (2), $r\left(T_{n}, K_{5}-e\right)=3 n-2$, and this yields $K_{5}-e \subseteq[V]_{g}$ since $S_{n} \nsubseteq[V]_{r}$. Let U be the vertex set of a green $K_{5}-e$ and $W=V \backslash U$.

Case 1: $[U]_{g}=K_{5}$. From $S_{n} \nsubseteq[V]_{r}$, i.e. $\Delta_{r} \leq n-2$, we obtain $q_{r}(U, W) \leq$ $5(n-2)$. Moreover, $K_{6}-2 K_{2} \nsubseteq[V]_{g}$ implies $q_{r}(w, U) \geq 2$ for every $w \in W$ yielding $q_{r}(U, W) \geq 2|W|=6 n-14$. Hence, $6 n-14 \leq 5 n-10$, a contradiction for $n \geq 5$. In case of $n=4$ only $q_{r}(U, W)=5 n-10$ is left. Consequently, $d_{r}(v)=2$ for every $v \in V$ and $[W]_{g}=K_{5}$. This forces $[V]_{r}$ to be a bipartite graph and every component of $[V]_{r}$ to be an even cycle. Thus, $[V]_{r}=C_{10}$ or $[V]_{r}=C_{6} \cup C_{4}$. In both cases, $K_{6}-2 K_{2} \subseteq[V]_{g}$, a contradiction.

Case 2: $[U]_{g}=K_{5}-e$ and $K_{5} \nsubseteq[V]_{g}$. Since $S_{n} \nsubseteq[V]_{r}, q_{r}(U, W) \leq 3(n-2)+$ $2(n-3)=5 n-12$. Moreover, $K_{6}-2 K_{2} \nsubseteq[V]_{g}$ and $K_{5} \nsubseteq[V]_{g}$ imply $q_{r}(w, U) \geq 2$ for every $w \in W$ yielding $q_{r}(U, W) \geq 2|W|=6 n-14$. Thus, $6 n-14 \leq 5 n-12$, contradicting $n \geq 4$.

3 The Ramsey Number $r\left(S_{n}, G\right)$ for $G \in \mathcal{G}_{3}$

Here we consider the graphs $G \in \mathcal{G}_{3}$ except for $G=K_{2,2,2}$. The Ramsey number $r\left(S_{n}, K_{2,2,2}\right)$ is separately studied in [27]. If $G \in \mathcal{G}_{3}$, then $G \subseteq K_{1,1,4}=G_{61}, G \subseteq$ $K_{1,2,3}=G_{100}$ or $G \subseteq K_{2,2,2}=G_{108}$. We use this property to partition $\mathcal{G}_{3} \backslash\left\{K_{2,2,2}\right\}$ into the following five subsets $\mathcal{G}_{3, i}, 1 \leq i \leq 5$. Put

$$
\begin{aligned}
\mathcal{G}_{3,1}= & \left\{G \in \mathcal{G}_{3} \mid G \subseteq K_{1,1,4}\right\}=\left\{G_{15}, G_{19}, G_{32}, G_{36}, G_{41}, G_{61}\right\}, \\
\mathcal{G}_{3,2}= & \left\{G \in \mathcal{G}_{3} \mid G \subseteq K_{2,2,2}, G \neq K_{2,2,2}, G \nsubseteq K_{1,2,3}, \text { and } G \nsubseteq K_{1,1,4}\right\} \\
= & \left\{G_{37}, G_{43}, G_{45}, G_{52}, G_{67}, G_{68}, G_{69}, G_{71}, G_{77}, G_{87}, G_{90}, G_{93}, G_{102}\right\}, \\
\mathcal{G}_{3,3}= & \left\{G \in \mathcal{G}_{3} \mid K_{5}-2 K_{2} \subseteq G \subseteq K_{1,2,3}\right\}=\left\{G_{63}, G_{74}, G_{83}, G_{94}, G_{100}\right\}, \\
\mathcal{G}_{3,4}= & \left\{G_{39}, G_{40}, G_{49}, G_{56}, G_{57}, G_{62}, G_{65}, G_{73}\right\}, \\
\mathcal{G}_{3,5}= & \left\{G \in \mathcal{G}_{3} \mid G \neq K_{2,2,2} \text { and } G \notin \mathcal{G}_{3,1} \cup \mathcal{G}_{3,2} \cup \mathcal{G}_{3,3} \cup \mathcal{G}_{3,4}\right\} \\
= & \left\{G_{8}, G_{10}, G_{13}, G_{14}, G_{17}, G_{18}, G_{21}, \ldots, G_{28}, G_{30}, G_{33}, G_{34}, G_{35},\right. \\
& \left.G_{38}, G_{44}, G_{46}, G_{47}, G_{48}, G_{50}, G_{51}, G_{54}, G_{60}, G_{70}, G_{78}, G_{79}, G_{92}\right\} .
\end{aligned}
$$

The value of $r\left(S_{n}, G\right)$ depends on which of the subsets $\mathcal{G}_{3, i}$ the graph G belongs to. By (10), $r\left(T_{n}, G\right) \geq 2 n$ if $G \in \mathcal{G}_{3,2}$ or if $G=K_{2,2,2}$, and $r\left(T_{n}, G\right) \geq 2 n-1$ for the remaining $G \in \mathcal{G}_{3}$. The following results show that $r\left(S_{n}, G\right) \leq 2 n+1$ for any $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}\right\}$ if $n \geq 5$, whereas it is proved in [27] that $r\left(S_{n}, K_{2,2,2}\right)$ can be significantly larger.

3.1 Results

By (4), $r\left(T_{n}, K_{1,1,4}\right)=2 n-1$ for any tree T_{n} with $n \geq 9$. This implies that $r\left(T_{n}, G\right)=$ $2 n-1$ for $n \geq 9$ and every $G \in \mathcal{G}_{3,1}$, since $2 n-1 \leq r\left(T_{n}, G\right) \leq r\left(T_{n}, K_{1,1,4}\right)$. The following theorem closes the gap for $n \leq 8$ in case of $T_{n}=S_{n}$ with two exceptions. The evaluation of $r\left(S_{5}, G_{61}\right)$ is due to Hua, Hongxue and Xiangyang [13].

Theorem 3.1. Let $G \in \mathcal{G}_{3,1}$ and $n \geq 4$. If $G \neq G_{61}$ and $n \geq 5$ or if $G=G_{61}$ and $n \geq 9$, then $r\left(S_{n}, G\right)=2 n-1$.

Furthermore, $r\left(S_{4}, G_{19}\right)=7, r\left(S_{4}, G\right)=8$ if $G \notin\left\{G_{61}, G_{19}\right\}, r\left(S_{4}, G_{61}\right)=10$, $r\left(S_{5}, G_{61}\right)=11,11 \leq r\left(S_{6}, G_{61}\right) \leq 13,13 \leq r\left(S_{7}, G_{61}\right) \leq 14$ and $r\left(S_{8}, G_{61}\right)=16$.

The following three theorems show that $r\left(S_{n}, G\right)$ can differ from the bound given in (10) for $G \in \mathcal{G}_{3, i}$ with $2 \leq i \leq 4$ if special divisibility properties for n are fulfilled. The values of $r\left(S_{n}, G\right)$ are completely determined for $G \in \mathcal{G}_{3,2}$ and $G \in \mathcal{G}_{3,4}$; in case of $G \in \mathcal{G}_{3,3}$ some gaps are left for small n. The computation of $r\left(S_{5}, G_{100}\right)$ is due to Hua, Hongxue and Xiangyang [13].

Theorem 3.2. Let $G \in \mathcal{G}_{3,2}$ and $n \geq 4$.

If $G \in\left\{G_{90}, G_{102}=K_{6}-\left(P_{4} \cup K_{2}\right)\right\}$, then

$$
r\left(S_{n}, G\right)= \begin{cases}2 n+1 & \text { for } n \equiv 0,2,4 \text { or } 5(\bmod 6) \\ 2 n & \text { otherwise }\end{cases}
$$

If $G \in\left\{G_{67}, G_{71}, G_{87}=K_{6}-P_{6}\right\}$, then

$$
r\left(S_{n}, G\right)= \begin{cases}2 n+1 & \text { for } n \equiv 2(\bmod 3) \\ 2 n & \text { otherwise }\end{cases}
$$

If $G=G_{77}$, then

$$
r\left(S_{n}, G\right)= \begin{cases}2 n+1 & \text { for } n \text { even } \\ 2 n & \text { otherwise } .\end{cases}
$$

If $G \in\left\{G_{37}, G_{43}, G_{45}, G_{52}, G_{68}, G_{69}, G_{93}=K_{6}-\left(C_{4} \cup K_{2}\right)\right\}$, then $r\left(S_{n}, G\right)=2 n$.
Theorem 3.3. Let $G \in \mathcal{G}_{3,3}$ and $n \geq 4$. If n is even, then $r\left(S_{n}, G\right)=2 n+1$.
If n is odd, where $n \geq 13$ for $G=G_{100}, n \geq 9$ for $G=G_{94}$, and $n \geq 5$ otherwise, then $r\left(S_{n}, G\right)=2 n-1$.

Furthermore, $r\left(S_{5}, G_{94}\right)=10,13 \leq r\left(S_{7}, G_{94}\right) \leq 14, r\left(S_{5}, G_{100}\right)=11$, and $2 n-1 \leq r\left(S_{n}, G_{100}\right) \leq 2 n+1$ for $n \in\{7,9,11\}$.

Theorem 3.4. Let $G \in \mathcal{G}_{3,4}$ and $n \geq 4$. Then

$$
r\left(S_{n}, G\right)= \begin{cases}2 n & \text { if } n \text { is even }, \\ 2 n-1 & \text { if } n \text { is odd } .\end{cases}
$$

The next theorem shows that $r\left(S_{n}, G\right)$ attains the lower bound $2 n-1$ from (10) for any $G \in \mathcal{G}_{3,5}$, except for some small n.
Theorem 3.5. Let $G \in \mathcal{G}_{3,5}, \mathcal{S}=\left\{G_{33}, G_{60}, G_{78}, G_{79}, G_{92}\right\} \subseteq \mathcal{G}_{3,5}$ and $n \geq 4$. If $G \in \mathcal{G}_{3,5} \backslash \mathcal{S}$ and $n \geq 4$ or if for $G \in \mathcal{S}$ the following conditions for n are fulfilled:
(i) $n \geq 5$ if $G=G_{33}$;
(ii) $n=5$ or $n \geq 7$ if $G \in\left\{G_{60}, G_{79}\right\}$;
(iii) $n=5$ or $n \geq 9$ if $G=G_{78}$; and
(iv) $n \geq 13$ if $G=G_{92}$; then

$$
r\left(S_{n}, G\right)=2 n-1
$$

Futhermore, $r\left(S_{4}, G\right)=8$ if $G \in \mathcal{S}, r\left(S_{5}, G_{92}\right)=11,11 \leq r\left(S_{6}, G\right) \leq 13$ if $G \in$ $\left\{G_{60}, G_{79}, G_{92}\right\}, 2 n-1 \leq r\left(S_{n}, G_{78}\right) \leq 2 n$ if $6 \leq n \leq 8,2 n-1 \leq r\left(S_{n}, G_{92}\right) \leq 2 n+1$ if $7 \leq n \leq 12$.

Summarizing the results in the preceding theorems we see that $r\left(S_{n}, G\right)$ is determined for all $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}\right\}$ with but a few exceptions for some G in case of some small n, namely $G=G_{60}$ or $G=G_{79}$ and $n=6, G=G_{61}$ and $6 \leq n \leq 7$, $G=G_{78}$ and $6 \leq n \leq 8, G=G_{92}$ and $6 \leq n \leq 12, G=G_{94}$ and $n=7, G=G_{100}$ and $n \in\{7,9,11\}$.

3.2 Some Useful Lemmas

The following lemmas are essential for proving the preceding theorems. The first lemma considers green subgraphs of order at most five in colorings of $K_{t}, 2 n-1 \leq$ $t \leq 2 n+1$, where $S_{n} \nsubseteq[V]_{r}$, i.e. $\Delta_{r} \leq n-2$.

Lemma 3.1. Let $n \geq 4,2 n-1 \leq t \leq 2 n+1$, and let C be a coloring of K_{t} with $\Delta_{r} \leq n-2$.
(i) If $t=2 n+1$ or if n is odd and $2 n-1 \leq t \leq 2 n$, then $K_{5}-2 K_{2} \subseteq[V]_{g}$, i.e. $K_{5} \subseteq[V]_{g}, K_{5}-e \subseteq_{i n d}[V]_{g}$ or $K_{5}-2 K_{2} \subseteq_{i n d}[V]_{g}$.
(ii) If $t=2 n+1$ and $K_{5}-e \nsubseteq[V]_{g}$, then $K_{4} \nsubseteq[V]_{g}$.
(iii) If $t=2 n, K_{5}-e \nsubseteq[V]_{g}$, and $K_{4} \subseteq[V]_{g}$ with vertex set U, then $d_{r}(u)=n-2$ for every $u \in U$ and $q_{r}(w, U)=2$ for every $w \in V \backslash U$.
(iv) If $t=2 n$ and $K_{5}-2 K_{2} \nsubseteq[V]_{g}$, then n has to be even and $K_{4} \subseteq[V]_{g}$. Moreover, $K_{5}-P_{3} \subseteq_{\text {ind }}[V]_{g}$.
(v) If $t=2 n-1$ and $K_{5}-2 K_{2} \nsubseteq[V]_{g}$, then n has to be even and $K_{5}-P_{3} \subseteq_{\text {ind }}[V]_{g}$ or $K_{5}-\left(P_{3} \cup K_{2}\right) \subseteq_{i n d}[V]_{g}$.

Proof. (i) Using that $r\left(S_{n}, K_{5}-2 K_{2}\right)=2 n+1$ if n is even and $r\left(S_{n}, K_{5}-2 K_{2}\right)=$ $2 n-1$ if n is odd (see (10)), we obtain the desired result.

To prove (ii) and (iii), suppose that $t \geq 2 n, K_{5}-e \nsubseteq[V]_{g}$ and $K_{4} \subseteq[V]_{g}$. Let U be the vertex set of a $K_{4} \subseteq[V]_{g}$ and $W=V \backslash U$. Then $\Delta_{r} \leq n-2$ yields $q_{r}(U, W) \leq 4(n-2)=4 n-8$. Moreover, $q_{r}(w, U) \geq 2$ for every $w \in W$ since $K_{5}-e \nsubseteq[V]_{g}$. Consequently, $q_{r}(U, W) \geq 2|W|=2(t-4)$. It follows that $2(t-4) \leq$ $q_{r}(U, W) \leq 4 n-8$. Thus, only $t=2 n$ and $q_{r}(U, W)=4 n-8$ is left. This forces $d_{r}(u)=n-2$ for every $u \in U$ and $q_{r}(w, U)=2$ for every $w \in W$.
(iv) Because of (i), n has to be even. By (2), $r\left(S_{n}, K_{4}-e\right)=2 n-1$. Thus, a green $H=K_{4}-e$ must occur since $S_{n} \nsubseteq[V]_{r}$. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be the vertex set of H and $W=V \backslash U$. If $[U]_{g}=K_{4}$ we are done. Otherwise we may assume that the edge $u_{1} u_{4}$ is red. From $\Delta_{r} \leq n-2$ it follows that $q_{r}(U, W) \leq 2(n-3)+2(n-2)=4 n-10$. Consequently, $|W|=2 n-4$ forces a vertex $w \in W$ with $q_{r}(w, U) \leq 1$. Since $K_{5}-2 K_{2} \nsubseteq[V]_{g}$, the edges $w u_{2}$ and $w u_{3}$ have to be green. Moreover, at least one of the edges $w u_{1}$ and $w u_{4}$ must be green. This yields a green K_{4}. Using (iii) we obtain $K_{5}-P_{3} \subseteq_{i n d}[V]_{g}$.
(v) This follows from (i) and $r\left(S_{n}, K_{5}-\left(P_{3} \cup K_{2}\right)\right)=2 n-1$ (see (10)).
In the following lemmas we consider colorings of $K_{t}, 2 n-1 \leq t \leq 2 n+1$, where $S_{n} \nsubseteq[V]_{r}$, i.e. $\Delta_{r} \leq n-2$, and special green subgraphs of order five occur.

Lemma 3.2. Let $n \geq 4,2 n-1 \leq t \leq 2 n+1$, and let C be a coloring of K_{t} with $\Delta_{r} \leq n-2$ and $K_{5} \subseteq[V]_{g}$.
(i) If $t=2 n+1$, then $G \subseteq[V]_{g}$ for every $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}\right\}$.
(ii) If $t=2 n$ and $n=4$ or $n \geq 6$, then $G \subseteq[V]_{g}$ for every $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}\right\}$. If $n=5$, then $G \subseteq[V]_{g}$ for every $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}, G_{100}\right\}$.
(iii) If $t=2 n-1$ and $n=4$ or $n \geq 9$, then $G \subseteq[V]_{g}$ for every $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}\right\}$. If $5 \leq n \leq 8$, then $G \subseteq[V]_{g}$ for every $G \in \mathcal{G}_{3}$ with $G \subseteq G_{83}, G \subseteq G_{90}$ or $G \subseteq G_{94}$.

Proof. Let U be the vertex set of a $K_{5} \subseteq[V]_{g}$ and $W=V \backslash U$. From $\Delta_{r} \leq n-2$ we obtain

$$
q_{r}(U, W) \leq 5(n-2)=5 n-10
$$

Consider first $t=2 n-1+a, 0 \leq a \leq 2$, where $n \geq 4$ for $a=2$, $n=4$ or $n \geq 6$ for $a=1$ and $n=4$ or $n \geq 9$ for $a=0$. We will prove that $q_{r}(w, U) \leq 2$ for some $w \in W$. If $n=4$, this follows from $W \neq \emptyset$ and $\Delta_{r} \leq n-2$. Assume now that $n>4$ and $q_{r}(w, U) \geq 3$ for every $w \in W$. Then $q_{r}(U, W) \geq 3|W|=3(t-5)=6 n+3 a-18$. Because of $q_{r}(U, W) \leq 5 n-10$ we obtain $6 n+3 a-18 \leq 5 n-10$. Hence, $n \leq 8-3 a$, contradicting $n \geq 5$ for $a=2, n \geq 6$ for $a=1$ and $n \geq 9$ for $a=0$. Thus, $K_{6}-P_{3} \subseteq[U \cup\{w\}]_{g}$ for some $w \in W$ with $q_{r}(w, U) \leq 2$. Since $G \subseteq K_{6}-P_{3}$ for every $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}\right\}$, we are done. The remaining cases are $t=2 n$ with $n=5$ or $t=2 n-1$ with $5 \leq n \leq 8$.

If $t=2 n$ and $n=5$, then $|W|=5$. In case of $q_{r}(w, U) \leq 2$ for some $w \in W$ again we are done. It remains that $q_{r}(w, U) \geq 3$ for every $w \in W$. Then $\Delta_{r} \leq n-2=3$ forces $q_{r}(w, U)=3$ for every $w \in W,[W]_{g}=K_{5}$ and $q_{r}(u, W)=3$ for every $u \in U$. Let H be the bipartite graph $K_{5,5}$ with vertex classes U and W. The green subgraph H_{g} of H induced by the vertices of H contains only vertices of degree two, and this forces every component of H_{g} to be an even cycle. Hence, $H_{g}=C_{4} \cup C_{6}$ or $H_{g}=C_{10}$. In both cases, $K_{6}-K_{1,3}, K_{6}-2 P_{3}$ and $G_{102}=K_{6}-\left(P_{4} \cup K_{2}\right)$ are contained in $[V]_{g}$. Consequently, any $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}, G_{100}\right\}$ occurs in $[V]_{g}$.

Finally let $t=2 n-1$ and $5 \leq n \leq 8$. Then $q_{r}(w, U) \geq 4$ for every $w \in W$ is impossible as otherwise $q_{r}(U, W) \geq 4(2 n-6)$ contradicting $q_{r}(U, W) \leq 5 n-10$ for $n \geq 5$. Thus, $q_{r}(w, U) \leq 3$ for some $w \in W$ and $K_{6}-K_{1,3} \subseteq[V]_{g}$. Since G_{83}, G_{90} and G_{94} are subgraphs of $K_{6}-K_{1,3}$, we are done.

Lemma 3.3. Let $n \geq 4,2 n-1 \leq t \leq 2 n+1$, and let C be a coloring of K_{t} where $\Delta_{r} \leq n-2, K_{5}-e \subseteq[V]_{g}$ and $K_{5} \nsubseteq[V]_{g}$.
(i) If $t=2 n+1$, then $G_{102}=K_{6}-\left(P_{4} \cup K_{2}\right) \subseteq[V]_{g}$ and $G_{100}=K_{6}-\left(K_{3} \cup K_{2}\right) \subseteq$ $[V]_{g}$.
(ii) If $t=2 n$, then either $G_{102} \subseteq[V]_{g}$ or $n \equiv 2(\bmod 3)$ and $[V]_{g}=\overline{K_{n-1}}+\frac{n+1}{3} K_{3}$. In any case, $G_{94}=K_{6}-\left(\left(K_{1,3}+e\right) \cup K_{2}\right) \subseteq[V]_{g}, G_{93}=K_{6}-\left(C_{4} \cup K_{2}\right) \subseteq[V]_{g}$, $G_{77} \subseteq[V]_{g}$ and $G_{68} \subseteq[V]_{g}$.
(iii) If $t=2 n-1$, then $G_{100} \subseteq[V]_{g}$ for $n \geq 13, G_{94} \subseteq[V]_{g}$ for $n=4$ and for $n \geq 6, G_{83} \subseteq[V]_{g}$ and $G_{78}=K_{6}-\left(\left(K_{4}-e\right) \cup K_{2}\right) \subseteq[V]_{g}$ for $n \geq 4$.

Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be the vertex set of a $K_{5}-e \subseteq[V]_{g}$ and let $W=V \backslash U$. We may assume that the edge $u_{1} u_{5}$ is red. From $\Delta_{r} \leq n-2$ we obtain

$$
q_{r}(U, W) \leq 2(n-3)+3(n-2)=5 n-12 .
$$

If $q_{r}(w, U) \leq 1$ for some $w \in W$, then $[U \cup\{w\}]_{g}$ contains every $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}\right\}$ and we are done. It remains that $q_{r}(w, U) \geq 2$ for every $w \in W$. Let $W_{1}=\{w \in$ $\left.W \mid q_{r}(w, U)=2\right\}$ and $W_{2}=W \backslash W_{1}=\left\{w \in W \mid q_{r}(w, U) \geq 3\right\}$. Then $q_{r}(U, W) \geq$ $2\left|W_{1}\right|+3\left|W_{2}\right|=3|W|-\left|W_{1}\right|$. Using $q_{r}(U, W) \leq 5 n-12$ we obtain

$$
\left|W_{1}\right| \geq 3|W|-5 n+12
$$

(i) If $t=2 n+1$, then $|W|=2 n-4$ and $\left|W_{1}\right| \geq 3|W|-5 n+12=n$. Since $\Delta_{r} \leq n-2$, there must be a vertex $w \in W_{1}$ where $u_{1} w$ is green. Hence, $G_{102} \subseteq$ $[U \cup\{w\}]_{g}$. It remains to prove that $G_{100} \subseteq[V]_{g}$. If $N_{r}(w) \cap U=\left\{u_{1}, u_{5}\right\}$ or $N_{r}(w) \cap U \subseteq\left\{u_{2}, u_{3}, u_{4}\right\}$ for some $w \in W_{1}$, then $G_{100} \subseteq[U \cup\{w\}]_{g}$. Otherwise, $\left|N_{r}(w) \cap\left\{u_{1}, u_{5}\right\}\right|=1$ for every $w \in W_{1}$, and $\Delta_{r} \leq n-2$ forces $\left|W_{1}\right| \leq 2(n-3)$. Since $\left|W_{1}\right| \geq n$, only $n \geq 6$ is left. Moreover, $\left|W_{1}\right|=6$ in case of $n=6$. If $n \geq 7$, then $\left|W_{1}\right| \geq 7$ and we may assume that four vertices of W_{1} are joined red to u_{1} and green to u_{5}. Among these four vertices there must be two vertices w_{1} and w_{2} with the same red neighbor in $\left\{u_{2}, u_{3}, u_{4}\right\}$, say u_{2}. Thus, $G_{100} \subseteq\left[\left\{u_{2}, u_{3}, u_{4}, u_{5}, w_{1}, w_{2}\right\}\right]_{g}$. If $n=6$, then $|W|=2 n-4=8$, and $\left|W_{1}\right|=6$ implies $\left|W_{2}\right|=2$. Because of $\Delta_{r} \leq n-2=4$, in [W] every vertex of W_{1} is incident to at most two red edges and every vertex of W_{2} to at most one red edge. Thus, every component of $[W]_{r}$ has to be a path or a cycle, where at least one path P_{ℓ} with $\ell \geq 2$ or at least two paths P_{1} occur. Hence, the union of all paths in $[W]_{r}$ is a subgraph of a P_{ℓ} with $\ell \geq 2$, and $[W]_{r} \subseteq H$ where $H \in\left\{P_{2} \cup C_{3} \cup C_{3}, P_{2} \cup C_{6}, P_{3} \cup C_{5}, P_{4} \cup C_{4}, P_{5} \cup C_{3}, P_{8}\right\}$. In any case, $G_{100} \subseteq[W]_{g}$.
(ii) If $t=2 n$, then $|W|=2 n-5$ and $\left|W_{1}\right| \geq 3|W|-5 n+12=n-3$. Obviously, $G_{102} \subseteq[U \cup\{w\}]_{g}$ if $N_{r}(w) \cap\left\{u_{2}, u_{3}, u_{4}\right\} \neq \emptyset$ for some $w \in W_{1}$. It remains that $N_{r}(w) \cap U=\left\{u_{1}, u_{5}\right\}$ for every $w \in W_{1}$, and then $\Delta_{r} \leq n-2$ implies $\left|W_{1}\right| \leq n-3$. Consequently, $\left|W_{1}\right|=n-3$ and $\left|W_{2}\right|=n-2$. Moreover, $n \geq 5$ because of $W_{2} \neq \emptyset$, $d_{r}(w) \geq 3$ for every $w \in W_{2}$ and $\Delta_{r} \leq n-2$. Since $\left|W_{1}\right|=n-3 \geq 2$ and $K_{5} \nsubseteq[V]_{g}$, all edges in $\left[W_{1}\right]$ have to be red. Let $\widehat{W_{1}}=W_{1} \cup\left\{u_{1}, u_{5}\right\}$ and $\widehat{W_{2}}=W_{2} \cup\left\{u_{2}, u_{3}, u_{4}\right\}$. Clearly, $\left[\widehat{W_{1}}\right]$ is a red K_{n-1}, and all edges between $\widehat{W_{1}}$ and \widehat{W}_{2} have to be green because of $\Delta_{r} \leq n-2$. Consider now $\left[\widehat{W_{2}}\right]$. Since $\left|\widehat{W}_{2}\right|=n+1$ and $\Delta_{r} \leq n-2$, every vertex is incident to at least two green edges. If a green P_{4} with vertex set W^{\prime} occurs, then $G_{102} \subseteq\left[W^{\prime} \cup\left\{u_{1}, u_{5}\right\}\right]_{g}$. It remains that every component of $\left[\widehat{W}_{2}\right]_{g}$ is a K_{3}. This is only possible if $\left|\widehat{W}_{2}\right|=n+1 \equiv 0(\bmod 3)$, i.e. $n \equiv 2(\bmod 3)$, and leads to the desired coloring. Obviously, this coloring contains green subgraphs $K_{6}-K_{3}$, $K_{6}-\left(K_{1,3} \cup K_{2}\right)$ and G_{93}. Since $G_{77}, G_{94} \subseteq K_{6}-K_{3}, G_{68} \subseteq K_{6}-\left(K_{1,3} \cup K_{2}\right)$, and since G_{94}, G_{93}, G_{77} and G_{68} are also subgraphs of G_{102}, the additional statement is proved.
(iii) If $t=2 n-1$, then $|W|=2 n-6$ and $\left|W_{1}\right| \geq 3|W|-5 n+12=n-6$. Hence, $\left|W_{1}\right| \geq 7$ for $n \geq 13$, and we can prove that $G_{100} \subseteq[V]_{g}$ as in (i) in case of
$\left|W_{1}\right| \geq 7$. If $\left|W_{1}\right| \geq 1$, then G_{94}, G_{83} and G_{78} occur in $[U \cup\{w\}]_{g}$ for any $w \in W_{1}$. It remains $W_{1}=\emptyset$, i.e. $W=W_{2}$. This forces $n \leq 6$ since $\left|W_{1}\right| \geq n-6$. Moreover, $n \geq 5$ because of $W_{2} \neq \emptyset, d_{r}(w) \geq 3$ for every $w \in W_{2}$ and $\Delta_{r} \leq n-2$. To settle the cases $n=5$ and $n=6$ we use $U^{\prime}=\left\{u_{2}, u_{3}, u_{4}\right\}$.

If $n=5$ we obtain $|W|=4$. Moreover, $q_{r}(w, U)=3$ for every $w \in W$ and $[W]_{g}=K_{4}$ are forced by $\Delta_{r} \leq n-2=3$. Let $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. To prove that $G_{83} \subseteq[V]_{g}$, note that $q_{r}\left(U^{\prime}, W\right) \leq 3\left|U^{\prime}\right|=9$. Thus, a vertex $w \in W$ exists where $q_{r}\left(w, U^{\prime}\right) \leq 2$, and this yields $G_{83} \subseteq[U \cup\{w\}]_{g}$. It remains to find a green G_{78}. If $q_{r}\left(w, U^{\prime}\right)=3$ or $q_{r}\left(w, U^{\prime}\right)=1$ for some $w \in W$, then $G_{78} \subseteq[U \cup\{w\}]_{g}$. Otherwise, $q_{r}\left(w, U^{\prime}\right)=2$ and $q_{r}\left(w,\left\{u_{1}, u_{5}\right\}\right)=1$ for every $w \in W$. Since $q_{r}(u, W) \leq$ $\Delta_{r} \leq 3$ for every $u \in U^{\prime}$, this guarantees a vertex $u \in U^{\prime}$, say $u=u_{2}$, such that $q_{r}(u, W)=2$. We may assume that u_{2} is joined green to w_{1} and w_{2} and red to w_{3} and w_{4}. Moreover, we may assume that the edges $w_{3} u_{1}$ and $w_{3} u_{3}$ are green. This yields $G_{78} \subseteq\left[\left\{u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}\right\}\right]_{g}$.

If $n=6$ then we obtain $|W|=6$. Again, $q_{r}(w, U)=3$ for every $w \in W$, as otherwise $q_{r}(U, W)>3|W|=18$ contradicting $q_{r}(U, W) \leq 5 n-12$. Moreover, $\Delta_{r} \leq n-2=4$ implies that all red edges in [W] have to be independent, and we find G_{78} and G_{94} in $[W]_{g}$. Since $q_{r}\left(U^{\prime}, W\right) \leq 4\left|U^{\prime}\right|=12$, a vertex $w \in W$ exists such that $q_{r}\left(w, U^{\prime}\right) \leq 2$. This yields $G_{83} \subseteq[U \cup\{w\}]_{g}$.

Lemma 3.4. Let $n \geq 4,2 n-1 \leq t \leq 2 n+1$, and let C be a coloring of K_{t} where $\Delta_{r} \leq n-2, K_{5}-2 K_{2} \subseteq[V]_{g}$ and $K_{5}-e \nsubseteq[V]_{g}$.
(i) If $t \geq 2 n$, then $G_{102}=K_{6}-\left(P_{4} \cup K_{2}\right) \subseteq[V]_{g}$.
(ii) If $t=2 n+1$, then $G_{100}=K_{6}-\left(K_{3} \cup K_{2}\right) \subseteq[V]_{g}$.
(iii) If $t=2 n-1$, then $G_{100} \subseteq[V]_{g}$ for $n \geq 13$ and $G_{94}=K_{6}-\left(\left(K_{1,3}+e\right) \cup K_{2}\right) \subseteq$ $[V]_{g}$ for $n \geq 9$.
(iv) If $t=2 n-1$, then $G_{83} \subseteq[V]_{g}$ for $n \geq 5$.

Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be the vertex set of a $K_{5}-2 K_{2} \subseteq[V]_{g}$ and let $W=V \backslash U$. We may assume that the edges $u_{1} u_{5}$ and $u_{2} u_{4}$ are red. Let $U^{\prime}=$ $\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}$. From $\Delta_{r} \leq n-2$ we obtain

$$
q_{r}(U, W) \leq 4(n-3)+(n-2)=5 n-14 \text { and } q_{r}\left(U^{\prime}, W\right) \leq 4(n-3)=4 n-12
$$

Let $W_{1}=N_{g}\left(u_{3}\right) \cap W$ and $W_{2}=W \backslash W_{1}=N_{r}\left(u_{3}\right) \cap W$. If $q_{r}(w, U) \leq 1$ for some $w \in W_{1}$, then $[U \cup\{w\}]_{g}$ contains every $G \in \mathcal{G}_{3} \backslash\left\{K_{2,2,2}, K_{1,1,4}\right\}$ and we are done. It remains $q_{r}(w, U) \geq 2$ for every $w \in W_{1}$.
(i) It suffices to consider $t=2 n$. If $q_{r}\left(w, U^{\prime}\right) \leq 1$ for some $w \in W_{2}$, then $G_{102} \subseteq$ $[U \cup\{w\}]_{g}$. Otherwise, $q_{r}\left(U^{\prime}, W\right) \geq 2\left|W_{1}\right|+2\left|W_{2}\right|=2|W|=2(2 n-5)=4 n-10$ contradicting $q_{r}\left(U^{\prime}, W\right) \leq 4 n-12$.

To prove (ii) and (iii) we look at W_{1} and W_{2} in more detail. Let $W_{i, j}=\left\{w \in W_{i} \mid\right.$ $\left.q_{r}(w, U)=j\right\}$. Using $q_{r}(w, U) \geq 2$ for every $w \in W_{1}$, we obtain $q_{r}(U, W) \geq\left|W_{2,1}\right|+$
$\left.2\left(\left|W_{1,2}\right|+\left|W_{2,2}\right|\right)+3\left(|W|-\left|W_{1,2}\right|-\left|W_{2,1}\right|-\left|W_{2,2}\right|\right)\right)=3|W|-\left|W_{1,2}\right|-2\left|W_{2,1}\right|-\left|W_{2,2}\right|$. From $q_{r}(U, W) \leq 5 n-14$ it follows that

$$
\left|W_{1,2}\right|+2\left|W_{2,1}\right|+\left|W_{2,2}\right| \geq 3|W|-5 n+14 .
$$

(ii) If $t=2 n+1$, then $|W|=2 n-4$ and $\left|W_{1,2}\right|+2\left|W_{2,1}\right|+\left|W_{2,2}\right| \geq n+2$. Since $\left|W_{2,1}\right|+\left|W_{2,2}\right| \leq\left|W_{2}\right| \leq \Delta_{r} \leq n-2$, we obtain $\left|W_{1,2}\right|+\left|W_{2,1}\right| \geq 4$. First consider the case $\left|W_{1,2}\right| \geq 1$. Let $w \in W_{1,2}$. If $\left\{u_{1}, u_{5}\right\} \subseteq N_{r}(w)$ or $\left\{u_{2}, u_{4}\right\} \subseteq N_{r}(w)$, then $G_{100} \subseteq[U \cup\{w\}]_{g}$. Otherwise w is joined green to vertices u and u^{\prime} where $u \in\left\{u_{1}, u_{5}\right\}$ and $u^{\prime} \in\left\{u_{2}, u_{4}\right\}$. But then $\left[\left\{w, u_{3}, u, u^{\prime}\right\}\right]_{g}=K_{4}$ contradicting Lemma 3.1 (ii). It remains $\left|W_{2,1}\right| \geq 4$, and we obtain $G_{100} \subseteq\left[\left\{w_{1}, w_{2}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right]_{g}$ for any $w_{1}, w_{2} \in W_{2,1}$.
(iii) If $t=2 n-1$, then $|W|=2 n-6$ and $\left|W_{1,2}\right|+2\left|W_{2,1}\right|+\left|W_{2,2}\right| \geq n-4$. Note that $G_{94} \subseteq G_{100}$. First consider the case $\left|W_{1,2}\right| \geq 5$. If $\left\{u_{1}, u_{5}\right\} \subseteq N_{r}(w)$ or $\left\{u_{2}, u_{4}\right\} \subseteq N_{r}(w)$ for some $w \in W_{1,2}$, then $G_{100} \subseteq[U \cup\{w\}]_{g}$. Otherwise, every $w \in W_{1,2}$ has one green neighbor in $\left\{u_{1}, u_{5}\right\}$ and one in $\left\{u_{2}, u_{4}\right\}$. Thus, for $\left|W_{1,2}\right| \geq 5$ there are vertices $w_{1}, w_{2} \in W_{1,2}$ with the same green neighbors $u \in\left\{u_{1}, u_{5}\right\}$ and $u^{\prime} \in\left\{u_{2}, u_{4}\right\}$. But then $K_{5}-e \subseteq\left[\left\{w_{1}, w_{2}, u_{3}, u, u^{\prime}\right\}\right]_{g}$, a contradiction. It remains $\left|W_{1,2}\right| \leq 4$. Consequently, $2\left|W_{2,1}\right|+\left|W_{2,2}\right| \geq n-8$. If $n \geq 9$, then $W_{2,1} \cup W_{2,2} \neq \emptyset$ and $G_{94} \subseteq[U \cup\{w\}]_{g}$ for any $w \in W_{2,1} \cup W_{2,2}$. If $n \geq 13$, then $2\left|W_{2,1}\right|+\left|W_{2,2}\right| \geq 5$. In case of $\left|W_{2,2}\right| \geq 5$ there must be two vertices $w_{1}, w_{2} \in W_{2,2}$ with the same red neighbor $u \in U^{\prime}$, say u_{1}, and $G_{100} \subseteq\left[\left\{w_{1}, w_{2}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right]_{g}$. It remains $\left|W_{2,1}\right| \geq 1$ where $W_{2,2} \neq \emptyset$ if $\left|W_{2,1}\right|=1$. Let $w_{1} \in W_{2,1}$ and $w_{2} \in W_{2,1} \cup W_{2,2}$ where $w_{1} \neq w_{2}$. We may assume that $u_{2}, u_{4}, u_{5} \in N_{g}\left(w_{2}\right)$. Then $G_{100} \subseteq\left[\left\{w_{1}, w_{2}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right]_{g}$.
(iv) Since $\left|W_{2}\right| \leq \Delta_{r} \leq n-2$ we obtain $\left|W_{1}\right|=|W|-\left|W_{2}\right| \geq 2 n-6-(n-2)=n-4$. Thus, $\left|W_{1}\right| \geq 1$ for $n \geq 5$. If $q_{r}\left(w, U^{\prime}\right) \leq 3$ for some $w \in W_{1}$, then $G_{83} \subseteq[U \cup\{w\}]_{g}$. Otherwise, all edges between W_{1} and U^{\prime} are red, forcing $n \geq 6$, as $d_{r}(w) \geq 4$ for every $w \in W_{1}$ and $\Delta_{r} \leq n-2$. Moreover, $d_{r}(u) \geq\left|W_{1}\right|+1$ for every $u \in U^{\prime}$, yielding $\left|W_{1}\right| \leq n-3$. Thus, only $n-4 \leq\left|W_{1}\right| \leq n-3$ is possible. First we consider $\left|W_{1}\right|=n-3$. It implies $\left|W_{2}\right|=n-3 \geq 3$ and $q_{r}\left(w, U^{\prime}\right)=0$ for every $w \in W_{2}$. Hence, $G_{83} \subseteq\left[\left\{w_{1}, w_{2}, u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]_{g}$ for any $w_{1}, w_{2} \in W_{2}$. The remaining case is $\left|W_{1}\right|=n-4$ and $\left|W_{2}\right|=n-2 \geq 4$. Due to $\Delta_{r} \leq n-2$ every $u \in U^{\prime}$ has at most one red neighbor in W_{2}, and we obtain $q_{r}\left(U^{\prime}, W_{2}\right) \leq 4$. If $q_{r}\left(w, U^{\prime}\right)=0$ for some $w \in W_{2}$, then $q_{r}\left(U^{\prime}, W_{2}\right) \leq 4$ guarantees a vertex $w^{\prime} \neq w$ in W_{2} with $q_{r}\left(w^{\prime}, U^{\prime}\right) \leq 1$. We may assume that $\left\{u_{1}, u_{2}, u_{4}\right\} \subseteq N_{g}\left(w^{\prime}\right)$ and obtain $G_{83} \subseteq\left[\left\{w, w^{\prime}, u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]_{g}$. It remains $q_{r}\left(w, U^{\prime}\right) \geq 1$ for every $w \in W_{2}$. Because of $q_{r}\left(U^{\prime}, W_{2}\right) \leq 4$ only $\left|W_{2}\right|=4$ and $q_{r}\left(w, U^{\prime}\right)=1$ for every $w \in W_{2}$ is left. Moreover, $q_{r}\left(u, W_{2}\right)=1$ for every $u \in U^{\prime}$. Hence, $G_{83} \subseteq\left[\left\{w, w^{\prime}, u_{1}, u_{2}, u_{3}, u_{4}\right\}\right]_{g}$ for $w, w^{\prime} \in W_{2}$ where $w \in N_{r}\left(u_{2}\right)$ and $w^{\prime} \in N_{r}\left(u_{5}\right)$.

Lemma 3.5. Let $n \geq 4$ be even, $2 n-1 \leq t \leq 2 n$, and let C be a coloring of K_{t} where $\Delta_{r} \leq n-2, K_{5}-P_{3} \subseteq[V]_{g}$ and $K_{5}-2 K_{2} \nsubseteq[V]_{g}$.
(i) If $t=2 n$, then $G_{62} \subseteq[V]_{g}, G_{65} \subseteq[V]_{g}$ and $G_{87}=K_{6}-P_{6} \subseteq[V]_{g}$ for $n \geq 4$.
(ii) If $t=2 n-1$, then $G_{70} \subseteq[V]_{g}, G_{73} \subseteq[V]_{g}$, and $G_{79} \subseteq[V]_{g}$ for $n \geq 4$.
(iii) If $t=2 n-1$, then $G_{78}=K_{6}-\left(\left(K_{4}-e\right) \cup K_{2}\right) \subseteq[V]_{g}$ for $n \geq 8$ and $G_{92}=K_{6}-\left(K_{3} \cup P_{3}\right) \subseteq[V]_{g}$ for $n \geq 10$.

Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be the vertex set of a $K_{5}-P_{3} \subseteq[V]_{g}$. We may assume that the edges $u_{2} u_{3}$ and $u_{3} u_{4}$ are red. Let $W=V \backslash U, U^{\prime}=\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}$ and $U^{\prime \prime}=\left\{u_{2}, u_{3}, u_{4}\right\}$. Note that $\left[U^{\prime}\right]$ is a green K_{4}. From $\Delta_{r} \leq n-2$ we obtain

$$
\begin{aligned}
q_{r}(U, W) & \leq 2(n-2)+2(n-3)+n-4=5 n-14, \\
q_{r}\left(U^{\prime \prime}, W\right) & \leq 2(n-3)+n-4=3 n-10 .
\end{aligned}
$$

(i) Consider $W_{1}=N_{g}\left(u_{1}\right) \cap W$ and $W_{2}=N_{g}\left(u_{3}\right) \cap W$. Note that $|W|=2 n-5$. From $\Delta_{r} \leq n-2$ it follows that $\left|W_{1}\right| \geq|W|-(n-2)=n-3$ and $\left|W_{2}\right| \geq|W|-(n-4)=$ $n-1 \geq 3$. Since $q_{r}\left(U^{\prime \prime}, W\right) \leq 3 n-10$ and $\left|W_{1}\right| \geq n-3$, there is a vertex $w \in W_{1}$ with $q_{r}\left(w, U^{\prime \prime}\right) \leq 2$, yielding G_{62} and G_{65} in $[U \cup\{w\}]_{g}$. To prove that $G_{87} \subseteq[V]_{g}$ consider vertices $w_{1}, w_{2} \in W_{2}$. Note that $K_{5}-e \nsubseteq[V]_{g}$. Hence, $q_{r}\left(\left\{w_{1}, w_{2}\right\},\left\{u_{1}, u_{5}\right\}\right) \geq 1$, and we may assume that $w_{1} u_{1}$ is red. Moreover, $q_{r}\left(w_{1}, U^{\prime}\right)=2$ by Lemma 3.1(iii). Thus, $G_{87} \subseteq\left[U \cup\left\{w_{1}\right\}\right]_{g}$.
(ii) Now let $W_{1}=N_{g}\left(u_{3}\right) \cap W$ and $W_{2}=W \backslash W_{1}=N_{r}\left(u_{3}\right) \cap W$. From $\Delta_{r} \leq n-2$ we obtain $\left|W_{2}\right| \leq n-4$. If $q_{r}\left(w, U^{\prime \prime}\right) \leq 1$ for some $w \in W_{1}$, then G_{70}, G_{73} and G_{79} occur in $[U \cup\{w\}]_{g}$. Otherwise, $q_{r}\left(U^{\prime \prime}, W\right) \geq 2\left|W_{1}\right|+\left|W_{2}\right|=2|W|-\left|W_{2}\right| \geq$ $2|W|-(n-4)=2(2 n-6)-(n-4)=3 n-8$, contradicting $q_{r}\left(U^{\prime \prime}, W\right) \leq 3 n-10$.
(iii) Note that $K_{5}-e \nsubseteq[V]_{g}$ forces $q_{r}\left(w, U^{\prime}\right) \geq 2$ for every $w \in W$. Now let $W_{1}=\left\{w \in W \mid q_{r}(w, U)=2\right\}$ and $W_{2}=W \backslash W_{1}$. Clearly, every $w \in W_{1}$ has to be joined green to u_{3}. Put $W_{1,1}=\left\{w \in W_{1} \mid w u_{1}\right.$ and $w u_{5}$ are red $\}, W_{1,2}=\left\{w \in W_{1} \mid\right.$ $w u_{2}$ and $w u_{4}$ are red $\}$ and $W_{1,3}=W_{1} \backslash\left(W_{1,1} \cup W_{1,2}\right)$. From $q_{r}(U, W) \leq 5 n-14$, $q_{r}(U, W) \geq 2\left|W_{1}\right|+3\left|W_{2}\right|=3|W|-\left|W_{1}\right|$ and $|W|=2 n-6$ it follows that

$$
\left|W_{1}\right|=\left|W_{1,1}\right|+\left|W_{1,2}\right|+\left|W_{1,3}\right| \geq n-4
$$

First we will prove that $G_{78} \subseteq[V]_{g}$ for $n \geq 8$. Note that $\left|W_{1}\right| \geq n-4 \geq 4$ in case of $n \geq 8$. If $\left|W_{1,1}\right| \geq 2$ and $w_{1}, w_{2} \in W_{1,1}$, then $G_{78} \subseteq\left[U^{\prime} \cup\left\{w_{1}, w_{2}\right\}\right]_{g}$. If $\left|W_{1,2}\right| \geq 1$ and $w \in W_{1,2}$, then $G_{78} \subseteq[U \cup\{w\}]_{g}$. Otherwise, $\left|W_{1,3}\right| \geq 3$. Then u_{2} or u_{4}, say u_{2}, must have two red neighbors $w_{1}, w_{2} \in W_{1,3}$, and we obtain $G_{78} \subseteq\left[\left\{w_{1}, w_{2}, u_{1}, u_{3}, u_{4}, u_{5}\right\}\right]_{g}$.

It remains to prove that $G_{92} \subseteq[V]_{g}$ for $n \geq 10$. Note that $\left|W_{1}\right| \geq n-4 \geq 6$ in case of $n \geq 10$. If $\left|W_{1,2}\right| \geq 2$ and $w_{1}, w_{2} \in W_{1,2}$, then $K_{5}-e \subseteq\left[\left\{w_{1}, w_{2}, u_{1}, u_{3}, u_{5}\right]_{g}\right.$, a contradiction. If $\left|W_{1,3}\right| \geq 5$, then there are two vertices $w_{1}, w_{2} \in W_{1,3}$ joined red to the same vertices in U^{\prime}, say to u_{1} and u_{2}. But then $K_{5}-2 K_{2} \subseteq\left[\left\{w_{1}, w_{2}, u_{3}, u_{4}, u_{5}\right\}\right]_{g}$, a contradiction. The case $\left|W_{1,1}\right| \geq 1$ remains, yielding $G_{92} \subseteq[U \cup\{w\}]_{g}$ for any $w \in W_{1,1}$.

Lemma 3.6. Let $n \geq 4$ be even and let C be a coloring of $K_{2 n-1}$ where $\Delta_{r} \leq n-2$, $K_{5}-\left(P_{3} \cup K_{2}\right) \subseteq[V]_{g}, K_{5}-P_{3} \nsubseteq[V]_{g}$ and $K_{5}-2 K_{2} \nsubseteq[V]_{g}$.
(i) If $n \geq 4$, then $G_{46} \subseteq[V]_{g}, G_{54} \subseteq[V]_{g}$ and $G_{70} \subseteq[V]_{g}$.
(ii) If $n \geq 8$, then $G_{78}=K_{6}-\left(\left(K_{4}-e\right) \cup K_{2}\right) \subseteq[V]_{g}$ and $G_{92}=K_{6}-\left(K_{3} \cup P_{3}\right) \subseteq$ $[V]_{g}$.

Proof. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be the vertex set of a $K_{5}-\left(P_{3} \cup K_{2}\right) \subseteq[V]_{g}$ and $W=V \backslash U$. We may assume that the edges $u_{1} u_{5}, u_{2} u_{3}$ and $u_{3} u_{4}$ are red. From $\Delta_{r} \leq n-2$ we obtain

$$
q_{r}(U, W) \leq 4(n-3)+n-4=5 n-16 .
$$

Note that $K_{5}-P_{3} \nsubseteq[V]_{g}$ and $K_{5}-2 K_{2} \nsubseteq[V]_{g}$ force $q_{r}(w, U) \geq 2$ for every $w \in W$. Let $W_{1}=\left\{w \in W \mid q_{r}(w, U)=2\right\}$ and $W_{2}=W \backslash W_{1}$. Every $w \in$ W_{1} has to be joined green to u_{3} as otherwise $K_{5}-2 K_{2} \subseteq\left[\left\{w, u_{1}, u_{2}, u_{4}, u_{5}\right\}\right]_{g}$ or $K_{5}-P_{3} \subseteq\left[\left\{w, u_{1}, u_{2}, u_{4}, u_{5}\right\}\right]_{g}$. Put $W_{1,1}=\left\{w \in W_{1} \mid w u_{1}\right.$ and $w u_{5}$ are red $\}$, $W_{1,2}=\left\{w \in W_{1} \mid w u_{2}\right.$ and $w u_{4}$ are red $\}$, and $W_{1,3}=W_{1} \backslash\left(W_{1,1} \cup W_{1,2}\right)$. From $q_{r}(U, W) \leq 5 n-16$ and $q_{r}(U, W) \geq 2\left|W_{1}\right|+3\left|W_{2}\right|=3|W|-\left|W_{1}\right|=3(2 n-6)-\left|W_{1}\right|$ we derive

$$
\left|W_{1}\right|=\left|W_{1,1}\right|+\left|W_{1,2}\right|+\left|W_{1,3}\right| \geq n-2 .
$$

Note that $\left|W_{1,1}\right| \leq n-3$ because of $\Delta_{r} \leq n-2$. Hence $\left|W_{1}\right| \geq n-2$ implies $\left|W_{1,2}\right|+\left|W_{1,3}\right| \geq 1$. Moreover, $\left|W_{1,2}\right| \leq 1$, as otherwise any two vertices $w_{1}, w_{2} \in W_{1,2}$ together with u_{1}, u_{3} and u_{5} yield a green $K_{5}-2 K_{2}$. If $\left|W_{1,3}\right| \geq 5$, then two vertices $w_{1}, w_{2} \in W_{1,3}$ have to be joined red to the same vertices in $\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}$, say to u_{1} and u_{2}. But then $K_{5}-2 K_{2} \subseteq\left[\left\{w_{1}, w_{2}, u_{3}, u_{4}, u_{5}\right\}\right]_{g}$, a contradiction. Consequently, $\left|W_{1,3}\right| \leq 4$ and $\left|W_{1,2}\right|+\left|W_{1,3}\right| \leq 5$.
(i) If $\left|W_{1,3}\right| \geq 1$, then any $w \in W_{1,3}$ and the vertices in U induce a green $K_{6}-P_{6}$. Thus, G_{46}, G_{54} and G_{70} occur in $[V]_{g}$. It remains that $\left|W_{1,3}\right|=0$. Then $\left|W_{1,2}\right|+$ $\left|W_{1,3}\right| \geq 1$ and $\left|W_{1,2}\right| \leq 1$ force $\left|W_{1,2}\right|=1$. Consequently, $\left|W_{1,1}\right| \geq n-3 \geq 1$ because of $\left|W_{1}\right| \geq n-2$. Consider now vertices $w_{1} \in W_{1,1}$ and $w_{2} \in W_{1,2}$. Then $G_{70} \subseteq\left[U \cup\left\{w_{1}\right\}\right]_{g}$, whereas G_{46} and G_{54} occur in $\left[U \cup\left\{w_{2}\right\}\right]_{g}$.
(ii) If $n \geq 8$, then $\left|W_{1}\right| \geq n-2 \geq 6$. Note that $1 \leq\left|W_{1,2}\right|+\left|W_{1,3}\right| \leq 5$. Hence, $\left|W_{1,1}\right| \geq 1$. Let $w_{1} \in W_{1,1}$ and $w_{2} \in W_{1,2} \cup W_{1,3}$. Then $G_{92} \subseteq\left[U \cup\left\{w_{1}\right\}\right]_{g}$ and $G_{78} \subseteq\left[U \cup\left\{w_{2}\right\}\right]_{g}$ if $w_{2} \in W_{1,2}$. If $w_{2} \in W_{1,3}$ we may assume that the edges $w_{2} u_{1}$ and $w_{2} u_{2}$ are red. This yields $G_{78} \subseteq\left[\left\{w_{1}, w_{2}, u_{1}, u_{3}, u_{4}, u_{5}\right\}\right]_{g}$.

3.3 Proofs of the Theorems

Proof of Theorem 3.1. First we establish suitable lower bounds for $r\left(S_{n}, G\right)$. In any case, $r\left(S_{n}, G\right) \geq 2 n-1$ by (10). The coloring of K_{9} with $[V]_{r}=3 K_{3}$ shows that $r\left(S_{4}, G_{61}\right) \geq 10$. The coloring of K_{7} with $[V]_{r}=C_{3} \cup C_{4}$ implies $\left(S_{4}, G\right) \geq 8$ for $G \notin\left\{G_{61}, G_{19}\right\}$. From [13] we use that $r\left(S_{5}, G_{61}\right) \geq 11$, and $r\left(S_{8}, G_{61}\right) \geq 16$ was shown in [8]. To prove equality, i.e., to establish suitable upper bounds for $r\left(S_{n}, G\right)$, we refine the method used in [34].

Consider any coloring of K_{t} where $n \geq 4, t=2 n-1+a, a \geq 0$ and $S_{n} \nsubseteq[V]_{r}$, i.e. $\Delta_{r} \leq n-2$. Hence, $d_{g}(v) \geq n+a$ for every $v \in V$. Let $u_{1} \in V$ with $d_{g}\left(u_{1}\right)=\Delta_{g}$ and $u_{2} \in N_{g}\left(u_{1}\right)$. Since $\left|N_{g}\left(u_{1}\right)\right| \geq n$ and $\Delta_{r} \leq n-2$, a vertex $u_{3} \in N_{g}\left(u_{1}\right)$ exists
such that $u_{2} u_{3}$ is green. Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $W=V \backslash U$. Put $W_{i}=N_{g}\left(u_{i}\right) \cap W$. We obtain

$$
|W| \geq \sum_{i=1}^{3}\left|W_{i}\right|-\sum_{1 \leq i<j \leq 3}\left|W_{i} \cap W_{j}\right| \geq \Delta_{g}-2+2(n+a-2)-\sum_{1 \leq i<j \leq 3}\left|W_{i} \cap W_{j}\right| .
$$

Consequently, since $|W|=2 n-4+a$ and $\Delta_{g} \geq n+a$,

$$
\sum_{1 \leq i<j \leq 3}\left|W_{i} \cap W_{j}\right| \geq \Delta_{g}+a-2 \geq n+2 a-2 .
$$

First let $n+2 a \geq 9$. This gives $\sum_{1 \leq i<j \leq 3}\left|W_{i} \cap W_{j}\right| \geq 7$ implying $\left|W_{i} \cap W_{j}\right| \geq 3$ for some i, j where $1 \leq i<j \leq 3$. Thus, $G_{61} \subseteq\left[U \cup\left(W_{i} \cap W_{j}\right)\right]_{g}$, and we obtain $r\left(S_{n}, G_{61}\right) \leq 2 n-1$ if $n \geq 9, r\left(S_{n}, G_{61}\right) \leq 2 n$ if $7 \leq n \leq 8, r\left(S_{n}, G_{61}\right) \leq 2 n+1$ if $5 \leq n \leq 6$ and $r\left(S_{4}, G_{61}\right) \leq 10$.

Now let $n=4, a=1$ or $n \geq 5, a=0$. Note that in case of $n=5, a=0$, i.e. $K_{t}=K_{9}$, we have $\Delta_{g} \geq 6$, as otherwise $\Delta_{r} \leq n-2=3$ would force a 5 regular green subgraph of order 9 which is impossible. From $\sum_{1 \leq i<j \leq 3}\left|W_{i} \cap W_{j}\right| \geq$ $\Delta_{g}+a-2 \geq n+2 a-2$ we obtain $\sum_{1 \leq i<j \leq 3}\left|W_{i} \cap W_{j}\right| \geq 4$. Hence, $\left|W_{i} \cap W_{j}\right| \geq 2$ for some i, j with $1 \leq i<j \leq 3$. Consequently, $G_{41} \subseteq\left[U \cup\left\{w_{1}, w_{2}, w_{3}\right\}\right]_{g}$ where $w_{1}, w_{2} \in W_{i} \cap W_{j}$ and $w_{3} \in W_{i} \backslash\left\{w_{1}, w_{2}\right\}$. Note that $G \subseteq G_{41}$ for every $G \neq G_{61}$. Thus, for $G \neq G_{61}, r\left(S_{n}, G\right) \leq 2 n-1$ if $n \geq 5$ and $r\left(S_{4}, G\right) \leq 8$. It remains to prove that $r\left(S_{4}, G_{19}\right) \leq 7$. If a coloring of K_{7} does not contain a red S_{4}, then $[V]_{r} \subseteq H$ where $H \in\left\{C_{7}, K_{1} \cup C_{6}, K_{1} \cup C_{3} \cup C_{3}, K_{2} \cup C_{5}, C_{3} \cup C_{4}\right\}$. In any case, $G_{19} \subseteq[V]_{g}$ and we are done.

Proof of Theorem 3.2. As already mentioned, $r\left(S_{n}, G\right) \geq 2 n$ for every $G \in$ $\mathcal{G}_{3,2}$. To prove that $r\left(S_{n}, G\right) \geq 2 n+1$ for n even and $G \in\left\{G_{102}, G_{90}, G_{77}\right\}$, consider the coloring of $K_{2 n}$ where $[V]_{g}=\frac{n}{2} K_{2}+\frac{n}{2} K_{2}$. For $n \equiv 2(\bmod 3)$ and $G \in\left\{G_{102}, G_{90}, G_{87}, G_{71}, G_{67}\right\}$ the coloring of $K_{2 n}$ with $[V]_{g}=\overline{K_{n-1}}+\frac{n+1}{3} K_{3}$ implies $r\left(S_{n}, G\right) \geq 2 n+1$.

Next we will show that $r\left(S_{n}, G\right) \leq 2 n+1$ for all $G \in \mathcal{G}_{3,2}$. Note that $G \subseteq G_{102}$ if $G \in \mathcal{G}_{3,2}$. Consider any coloring of $K_{2 n+1}$ where $S_{n} \nsubseteq[V]_{r}$, i.e. $\Delta_{r} \leq n-2$. By Lemma 3.1(i), $K_{5}-2 K_{2} \subseteq[V]_{g}$. Using Lemmas 3.2(i), 3.3(i), and 3.4(i) we obtain that $G_{102} \subseteq[V]_{g}$, and we are done. It remains to establish $r\left(S_{n}, G\right) \leq 2 n$ in the following special cases.

Case 1: $G \in\left\{G_{77}, G_{90}, G_{102}\right\}, n$ odd, and, additionally, $n \not \equiv 2(\bmod 3)$ if $G \in$ $\left\{G_{102}, G_{90}\right\}$. Consider any coloring of $K_{2 n}$ where $S_{n} \nsubseteq[V]_{r}$. By Lemma 3.1(i), $K_{5}-2 K_{2} \subseteq[V]_{g}$. Hence, Lemmas 3.2(ii), 3.3(ii), and 3.4(i) guarantee that $G \subseteq[V]_{g}$.

Case 2: $G \in\left\{G_{67}, G_{71}, G_{87}\right\}$ and $n \not \equiv 2(\bmod 3)$. Note that G_{71} and G_{67} are subgraphs of G_{87}. Consider any coloring of $K_{2 n}$ where $S_{n} \nsubseteq[V]_{r}$. If $K_{5}-2 K_{2} \subseteq$ $[\mathrm{V}]_{g}$, then again Lemmas 3.2(ii), 3.3(ii), and 3.4(i) guarantee that $G \subseteq[V]_{g}$. If $K_{5}-2 K_{2} \nsubseteq[V]_{g}$, then $K_{5}-P_{3} \subseteq[V]_{g}$ by Lemma 3.1(iv), and Lemma 3.5(i) yields $G \subseteq[V]_{g}$.

Case 3: $G \in\left\{G_{37}, G_{43}, G_{45}, G_{52}, G_{68}, G_{69}, G_{93}\right\}$. Note that $G \subseteq G_{93}$ for $G \in\left\{G_{37}, G_{43}, G_{45}, G_{52}, G_{69}\right\}$. Consider any coloring of $K_{2 n}$ where $S_{n} \nsubseteq[V]_{r}$. If $K_{5}-2 K_{2} \subseteq[V]_{g}$, then Lemmas 3.2(ii), 3.3(ii), and 3.4(i) imply $G_{93} \subseteq[V]_{g}$ and $G_{68} \subseteq[V]_{g}$. Thus, by Lemma 3.1(i) and (iv), only the case n even and $K_{4} \subseteq[V]_{g}$ is left. Let U be the vertex set of a green K_{4} and $W=V \backslash U$. From Lemma 3.1(iii) we obtain $d_{r}(u)=n-2$ for every $u \in U$ and $q_{g}(w, U)=q_{r}(w, U)=2$ for every $w \in W$. Now we use induction on n. If $n=4$, then it follows from $\Delta_{r} \leq n-2=2$ that $[W]_{g}=K_{4}$ and $d_{r}(v)=2$ for every vertex $v \in V$. Hence, $[V]_{r}$ is bipartite and every component of $[V]_{r}$ is an even cycle. This implies $[V]_{r}=C_{4} \cup C_{4}$ or $[V]_{r}=C_{8}$. In both cases, $G_{93} \subseteq[V]_{g}$ and $G_{68} \subseteq[V]_{g}$. Now let $n \geq 6$. As induction hypothesis we use that any coloring of $K_{2(n-2)}$ without a red subgraph S_{n-2} contains green subgraphs G_{93} and G_{68}. Note that $|W|=2(n-2)$. A red S_{n-2} in $[W]$ is impossible since otherwise $q_{r}(w, U)=2$ for every $w \in W$ would force $S_{n} \subseteq[V]_{r}$. Thus, $G_{93} \subseteq[W]_{g}$ and $G_{68} \subseteq[W]_{g}$, and we are done.

Proof of Theorem 3.3. Note that $K_{5}-2 K_{2} \subseteq G \subseteq G_{100}$ for every $G \in \mathcal{G}_{3,3}$. Consider any coloring of K_{t} where $2 n-1 \leq t \leq 2 n+1, n \geq 4$ and $S_{n} \nsubseteq[V]_{r}$, i.e. $\Delta_{r} \leq n-2$. If $t=2 n+1$, then $K_{5}-2 K_{2} \subseteq[V]_{g}$ by Lemma 3.1(i). Hence, Lemmas $3.2(i), 3.3(i)$ and $3.4(i i)$ yield $G_{100} \subseteq[V]_{g}$. Consequently, $r\left(S_{n}, G\right) \leq 2 n+1$ for every $G \in \mathcal{G}_{3,3}$. If n is even, then equality holds since $r\left(S_{n}, G\right) \geq r\left(S_{n}, K_{5}-2 K_{2}\right)=2 n+1$ (see (10)).

Now let n be odd. Again, $K_{5}-2 K_{2} \subseteq[V]_{g}$ by Lemma 3.1(i). If $t=2 n-1$, then we obtain $G_{100} \subseteq[V]_{g}$ for $n \geq 13, G_{94} \subseteq[V]_{g}$ for $n \geq 9$ and $G_{83} \subseteq[V]_{g}$ for $n \geq 5$ using Lemmas 3.2(iii), 3.3(iii), 3.4(iii) and (iv). Note that $G_{63} \subseteq G_{83}$ and $G_{74} \subseteq G_{83}$. Thus, $r\left(S_{n}, G_{100}\right) \leq 2 n-1$ for $n \geq 13, r\left(S_{n}, G_{94}\right) \leq 2 n-1$ for $n \geq 9$ and $r\left(S_{n}, G\right) \leq 2 n-1$ for $G \in\left\{G_{63}, G_{74}, G_{83}\right\}$ if $n \geq 5$. Equality holds since $r\left(S_{n}, G\right) \geq 2 n-1$ for every $G \in \mathcal{G}_{3}$. For $t=2 n, n \in\{5,7\}$, we obtain $G_{94} \subseteq[V]_{g}$ using Lemmas 3.2(ii), 3.3(ii) and 3.4(i). This implies $r\left(S_{n}, G_{94}\right) \leq 2 n$ if $n \in\{5,7\}$. Moreover, the (S_{5}, G_{94})-coloring of K_{9} in Figure 1 proves that equality holds if $n=5$. To complete the proof we have to consider $G=G_{100}$ where $n \in\{5,7,9,11\}$. The computation of $r\left(S_{5}, G_{100}\right)$ can be found in [13], and the bounds for $r\left(S_{n}, G\right)$ if $n \in\{7,9,11\}$ are obvious.

Figure 1: The red subgraph of a (S_{5}, G_{94})-coloring of K_{9}.

Proof of Theorem 3.4. Note that $G \subseteq G_{62}, G \subseteq G_{65}$ or $G \subseteq G_{73}$ for every $G \in \mathcal{G}_{3,4}$. Moreover, $G \subseteq G_{83}$ for every $G \in \mathcal{G}_{3,4}$ and $G_{73} \subseteq G_{87}$. First let n be odd.

Since $r\left(S_{n}, G\right) \geq 2 n-1$ for any $G \in \mathcal{G}_{3}$ we only have to prove that $r\left(S_{n}, G\right) \leq 2 n-1$. Consider any coloring of $K_{2 n-1}$ where $S_{n} \nsubseteq[V]_{r}$, i.e. $\Delta_{r} \leq n-2$. By Lemma 3.1(i), $K_{5}-2 K_{2} \subseteq[V]_{g}$. Using Lemmas 3.2(iii), 3.3(iii) and 3.4(iv) we obtain $G \subseteq[V]_{g}$ for any $G \in \mathcal{G}_{3,4}$. Now let n be even. The coloring of $K_{2 n-1}$ where $[V]_{g}=\frac{n}{2} K_{2}+\overline{K_{n-1}}$ does not contain a red S_{n}. Moreover, every green subgraph of order six is contained in $K_{6}-K_{4}, K_{6}-\left(K_{3} \cup P_{3}\right), K_{6}-\left(C_{4} \cup K_{2}\right)$ or $K_{6}-\left(K_{5}-2 K_{2}\right)$. This implies $G \nsubseteq[V]_{g}$ for every $G \in \mathcal{G}_{3,4}$. Thus, $r\left(S_{n}, G\right) \geq 2 n$. To prove that $r\left(S_{n}, G\right) \leq 2 n$ consider any coloring of $K_{2 n}$ where $S_{n} \nsubseteq[V]_{r}$. If $K_{5}-2 K_{2} \subseteq[V]_{g}$, then we take a suitable subgraph of order $2 n-1$ and are done as in the case n odd. Otherwise, Lemma 3.1(iv) forces that $K_{5}-P_{3} \subseteq[V]_{g}$. Now Lemma 3.5(i) yields subgraphs G_{62}, G_{65} and G_{73} in $[V]_{g}$ and the proof is complete.

Proof of Theorem 3.5. First we will prove that $r\left(S_{n}, G\right)=2 n-1$ for $G \in \mathcal{G}_{3,5} \backslash \mathcal{S}$ if $n \geq 4$ and for $G \in \mathcal{S}$ under the conditions given in the theorem. Since $r\left(S_{n}, G\right) \geq$ $2 n-1$ by (10) it remains to establish $r\left(S_{n}, G\right) \leq 2 n-1$. Consider any coloring of $K_{2 n-1}$ where $S_{n} \nsubseteq[V]_{r}$, i.e. $\Delta_{r} \leq n-2$. We distinguish four cases depending on G and n.

Case 1: $G \in \mathcal{G}_{3,5} \backslash \mathcal{S}$ and $n \geq 5$ or $G \in \mathcal{S} \backslash\left\{G_{33}\right\}$ where $n=5$ or $n \geq 7$ if $G \in\left\{G_{60}, G_{79}\right\}, n \geq 9$ if $G=G_{78}$ and $n \geq 13$ if $G=G_{92}$. First let $K_{5}-$ $2 K_{2} \subseteq[V]_{g}$. Note that $G \subseteq G_{83}$ for every $G \in \mathcal{G}_{3,5} \backslash\left\{G_{78}, G_{92}\right\}, G_{78} \subseteq G_{94}$ and $G_{92} \subseteq G_{100}$. Consequently, the desired result follows from Lemmas 3.2(iii), $3.3(i i i), 3.4(i i i)$ and $3.4(i v)$. Now let $K_{5}-2 K_{2} \nsubseteq[V]_{g}$. By Lemma 3.1(v), n has to be even and $K_{5}-P_{3} \subseteq_{\text {ind }}[V]_{g}$ or $K_{5}-\left(P_{3} \cup K_{2}\right) \subseteq_{i n d}[V]_{g}$. Note that $G \subseteq G_{70}$ for every $G \in \mathcal{G}_{3,5} \backslash\left(\mathcal{S} \cup\left\{G_{25}, G_{35}, G_{38}, G_{46}, G_{54}\right\}\right)$ and $G \subseteq G_{73}$ for every $G \in\left\{G_{25}, G_{35}, G_{38}, G_{46}, G_{54}\right\}$. Moreover, $G_{35}, G_{38} \subseteq G_{46}, G_{25} \subseteq G_{54}$ and $G_{60} \subseteq G_{79} \subseteq G_{92}$. Hence, the desired result follows from Lemmas 3.5(ii), 3.5(iii) and 3.6.

Case 2: $G=G_{33}, n \geq 5$. If $d_{g}(v) \geq n+1$ for some $v \in V$, then $\Delta_{r} \leq n-2$ guarantees two independent green edges in $\left[N_{g}(v)\right]$. Hence, $G_{33} \subseteq\left[N_{g}(v) \cup\{v\}\right]_{g}$. It remains $d_{g}(v)=n$ and $d_{r}(v)=n-2$ for any $v \in V$. Assume that $G_{33} \nsubseteq[V]_{g}$. Then any two green edges in $\left[N_{g}(v)\right]$ have to be adjacent, and $\Delta_{r} \leq n-2$ forces $\left[N_{g}(v)\right]_{g}=K_{1, n-1}$ and $\left[N_{g}(v)\right]_{r}=K_{n-1} \cup K_{1}$. Let U be the vertex set of the red $K_{n-1} \subseteq\left[N_{g}(v)\right]$ and $W=V \backslash U$. All edges between U and W have to be green because of $\Delta_{r} \leq n-2$. But then $d_{g}(v)=n$ for every $v \in V$ guarantees two independent green edges in $[W]$ c.ontradicting $G_{33} \nsubseteq[V]_{g}$.

Case 3: $G=G_{78}, n=5$. Then $\Delta_{r} \leq n-2=3$. Since $[V]_{r}$ cannot be 3-regular, there is a vertex $v \in V$ with $d_{g}(v) \geq 6$. Moreover, a vertex $w \in V$ exists such that $\left|N_{g}(v) \cap N_{g}(w)\right| \geq 4$. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subseteq N_{g}(v) \cap N_{g}(w)$. If $[U]$ contains a green edge, then $G_{78} \subseteq[U \cup\{v, w\}]_{g}$. Otherwise, $[U]_{r}=K_{4}$, and $\Delta_{r} \leq 3$ forces only green edges between U and $W=V \backslash U$. Furthermore, [W] must contain a green edge $w_{1} w_{2}$. Consequently, a green G_{78} occurs in the subgraph induced by $u_{1}, u_{2}, w_{1}, w_{2}$ and two other vertices $w_{3}, w_{4} \in W$.

Case 4: $G \in \mathcal{G}_{3,5} \backslash \mathcal{S}, n=4$. Then $G \subseteq G_{70}, G \subseteq G_{54}$ or $G \subseteq G_{46}$. From $\Delta_{r} \leq n-2=2$ we obtain that $[V]_{r} \subseteq H$ where $H \in\left\{K_{1} \cup K_{3} \cup K_{3}, K_{1} \cup C_{6}, K_{2} \cup\right.$
$\left.C_{5}, K_{3} \cup C_{4}, C_{7}\right\}$. In any case, G_{70}, G_{54} and G_{46} are subgraphs of $[V]_{g}$ and we are done.

Now let us prove the additional results given in the theorem. We first consider $r\left(S_{4}, G\right)$ for $G \in \mathcal{S}$. The coloring of K_{7} where $[V]_{r}=C_{7}$ establishes $r\left(S_{4}, G\right) \geq 8$. For any coloring of K_{8} with $S_{4} \nsubseteq[V]_{r}$ we obtain that $[V]_{r} \subseteq H$ with $H \in\left\{K_{1} \cup\right.$ $\left.K_{3} \cup C_{4}, K_{1} \cup C_{7}, K_{2} \cup K_{3} \cup K_{3}, K_{2} \cup C_{6}, K_{3} \cup C_{5}, C_{4} \cup C_{4}, C_{8}\right\}$. In any case we find green subgraphs G_{92}, G_{78} and G_{33}. Since $G_{60}, G_{79} \subseteq G_{92}$ we are done. To prove $r\left(S_{5}, G_{92}\right)=11$ we use that $K_{3,3} \subseteq G_{92} \subseteq G_{100}$. It is known that $r\left(S_{5}, K_{3,3}\right)=11$ (see [24]) and, by Theorem 3.3, $r\left(S_{5}, G_{100}\right)=11$. This implies the desired result. To complete the proof note that $G \subseteq G_{100}$ for every $G \in \mathcal{G}_{3,5}$ and $G_{78} \subseteq G_{93}$. Thus, $r\left(S_{n}, G\right) \leq 2 n+1$ for every $G \in \mathcal{G}_{3,5}$ by Theorem 3.3 and $r\left(S_{n}, G_{78}\right) \leq 2 n$ by Theorem 3.2. Since $r\left(S_{n}, G\right) \geq 2 n-1$ for any $G \in \mathcal{G}_{3}$, we are done.

4 The Ramsey Number $r\left(S_{n}, G\right)$ for $G \in \mathcal{G}_{2}$

The set \mathcal{G}_{2} consists of all graphs from Table 1 which have not yet been considered, i.e. all connected spanning subgraphs of $K_{1,5}=G_{6}, K_{2,4}=G_{53}$ or $K_{3,3}=G_{76}$. This gives

$$
\mathcal{G}_{2}=\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}, G_{7}, G_{9}, G_{11}, G_{12}, G_{16}, G_{20}, G_{29}, G_{31}, G_{53}, G_{59}, G_{76}\right\}
$$

In the following theorem $r\left(S_{n}, G\right)$ is evaluated for all $G \in \mathcal{G}_{2}$ and $4 \leq n \leq 5$.

Theorem 4.1.

$$
\begin{aligned}
& r\left(S_{4}, G\right)= \begin{cases}6 & \text { if } G \in\left\{G_{1}, G_{4}, G_{5}, G_{7}, G_{9}, G_{11}\right\}, \\
7 & \text { if } G \in\left\{G_{2}, G_{3}, G_{12}, G_{16}, G_{20}, G_{29}, G_{31}, G_{59}\right\}, \\
8 & \text { if } G \in\left\{G_{6}, G_{53}, G_{76}\right\} .\end{cases} \\
& r\left(S_{5}, G\right)= \begin{cases}7 & \text { if } G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{9}, G_{12}\right\}, \\
8 & \text { if } G \in\left\{G_{7}, G_{11}, G_{16}, G_{20}\right\}, \\
9 & \text { if } G \in\left\{G_{6}, G_{29}, G_{31}, G_{53}, G_{59}\right\}, \\
11 & \text { if } G=G_{76} .\end{cases}
\end{aligned}
$$

Proof. We first determine $r\left(S_{4}, G\right)$. Let $G \in\left\{G_{1}, G_{4}, G_{5}, G_{7}, G_{9}, G_{11}\right\}$. Clearly, $r\left(S_{4}, G\right) \geq 6$. To establish equality, consider any coloring of K_{6} where $S_{4} \nsubseteq[V]_{r}$. Consequently, $[V]_{r} \subseteq H$ with $H \in\left\{C_{6}, C_{5} \cup K_{1}, C_{4} \cup K_{2}, 2 K_{3}\right\}$. In any case, $G \subseteq[V]_{g}$. Now let $G \in\left\{G_{2}, G_{3}, G_{12}, G_{16}, G_{20}, G_{29}, G_{31}, G_{59}\right\}$. Since $G \subseteq G_{70}$, $r\left(S_{4}, G\right) \leq 7$ follows from Theorem 3.5. To prove that $r\left(S_{4}, G\right) \geq 7$ we use three different colorings of K_{6}. If $[V]_{r}=2 K_{3}$, then we obtain an $\left(S_{4}, G\right)$-coloring for $G \in$ $\left\{G_{2}, G_{3}, G_{12}, G_{16}, G_{31}\right\},[V]_{r}=C_{4} \cup K_{2}$ yields an $\left(S_{4}, G_{20}\right)$-coloring, and $[V]_{r}=C_{6}$ gives an $\left(S_{4}, G\right)$-coloring for $G \in\left\{G_{29}, G_{59}\right\}$. Finally let $G \in\left\{G_{6}, G_{53}, G_{76}\right\}$. The
coloring of K_{7} where $[V]_{r}=C_{7}$ proves $r\left(S_{4}, G\right) \geq 8$. Because $G_{6} \subseteq G_{62}, G_{53} \subseteq G_{93}$ and $G_{76} \subseteq G_{92}$, we obtain $r\left(S_{4}, G\right) \leq 8$ using Theorems 3.4, 3.2 and 3.5.

Consider now $r\left(S_{5}, G\right)$. First let $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{9}, G_{12}\right\}$. The coloring of K_{6} where $[V]_{r}=K_{3,3}$ implies $r\left(S_{5}, G\right) \geq 7$. Since $G_{1}, G_{4} \subseteq G_{9}$ and $G_{2}, G_{3} \subseteq G_{12}$ it remains to prove that $r\left(S_{5}, G\right) \leq 7$ for $G \in\left\{G_{5}, G_{9}, G_{12}\right\}$. Consider any coloring of K_{7} with $S_{5} \nsubseteq[V]_{r}$, i.e. $d_{r}(v) \leq 3$ for every $v \in V$. As $r\left(S_{5}, C_{4}\right)=7$ (see [7]), a green C_{4} must occur. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be the vertex set of a green C_{4} where the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}$ and $u_{1} u_{4}$ are green. Moreover, let $W=\left\{w_{1}, w_{2}, w_{3}\right\}=V \backslash U$. Because of $S_{5} \nsubseteq[V]_{r}, q_{g}(w, U) \geq 1$ for every $w \in W$, and $q_{g}(w, U)=1$ implies only green edges incident to w in $[W]$. Consider first that two edges in $[W]$, say $w_{1} w_{2}$ and $w_{1} w_{3}$, are red. Then $S_{5} \nsubseteq[V]_{r}$ implies $q_{g}\left(w_{1}, U\right) \geq 3$ and $q_{g}\left(w_{i}, U\right) \geq 2$ for $i=2$ and $i=3$. We may assume that the edges from w_{1} to u_{1}, u_{2} and u_{3} are green. Because one of the edges from w_{2} to u_{1}, u_{2} and u_{3} has to be green, $G_{5}, G_{12} \subseteq[V]_{g}$. Obviously, $G_{9} \subseteq[V]_{g}$ if $w_{2} w_{3}$ is green. If $w_{2} w_{3}$ is red, then $q_{g}\left(w_{2}, U\right) \geq 3$, and this also yields $G_{9} \subseteq[V]_{g}$. The remaining case is that two edges in [W], say $w_{1} w_{2}$ and $w_{1} w_{3}$, are green. Since $q_{g}\left(w_{1}, U\right) \geq 1, G_{5}, G_{9} \subseteq[V]_{g}$, and it remains to prove that $G_{12} \subseteq[V]_{g}$. Clearly, $G_{12} \subseteq[V]_{g}$ if $q_{g}(u, W) \geq 2$ for some $u \in U$. Otherwise, $q_{g}(U, W) \leq 4$, and this yields $q_{g}\left(w_{i}, U\right)=q_{g}\left(w_{j}, U\right)=1$ for two vertices $w_{i}, w_{j} \in W$. Thus, also $w_{2} w_{3}$ has to be green. Furthermore we may assume that the edges $w_{1} u_{1}, w_{2} u_{2}$ and $w_{3} u_{3}$ are green. Then $d_{r}\left(u_{4}\right) \leq 3$ forces one of the edges from u_{4} to $\left\{u_{2}, w_{1}, w_{2}, w_{3}\right\}$ to be green and again we obtain $G_{12} \subseteq[V]_{g}$.

Now let $G \in\left\{G_{7}, G_{11}, G_{16}, G_{20}\right\}$. The coloring of K_{7} where $[V]_{g}$ consists of two green copies of K_{4} with exactly one common vertex implies $r\left(S_{5}, G\right) \geq 8$. Since $G_{7}, G_{11} \subseteq G_{20}$ it remains to establish $r\left(S_{5}, G\right) \leq 8$ for $G \in\left\{G_{16}, G_{20}\right\}$. Consider any coloring of K_{8} where $S_{5} \nsubseteq[V]_{r}$. To prove that $G_{16} \subseteq[V]_{g}$ we use $r\left(S_{5}, G_{12}\right)=7$. Consequently, $G_{12} \subseteq[V]_{g}$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$ be the vertex set of a green G_{12} where the edges from u_{1} to $u_{2}, u_{3}, u_{4}, u_{5}$ and the edges $u_{6} u_{2}, u_{6} u_{3}$ are green. Since $S_{5} \nsubseteq[V]_{r}$, one of the edges from u_{6} to $\left\{u_{4}, u_{5}\right\} \cup(V \backslash U)$ has to be green and this yields $G_{16} \subseteq[V]_{g}$. To prove that $G_{20} \subseteq[V]_{g}$ we use $r\left(C_{4}, G_{20}\right)=7$ (see [20]). Suppose that $G_{20} \nsubseteq[V]_{g}$. Then a red C_{4} must occur. Let U be the vertex set of a red C_{4} and $W=V \backslash U$. As $S_{5} \nsubseteq[V]_{r}, q_{g}(u, W) \geq 3$ for every $u \in U$. Hence we find three vertices in U and three vertices in W yielding a green $G_{20}=K_{3,3}-2 K_{2}$, a contradiction.

Consider now $G \in\left\{G_{6}, G_{29}, G_{31}, G_{53}, G_{59}\right\}$. The coloring of K_{8} where $[V]_{r}=2 K_{4}$ shows that $r\left(S_{5}, G_{6}\right) \geq 9$. For $G \neq G_{6}$ we obtain $r\left(S_{5}, G\right) \geq 9$ from $K_{2,3} \subseteq G$ and $r\left(S_{5}, K_{2,3}\right)=9$ (see [17]). To prove $r\left(S_{5}, G\right) \leq 9$, note that $G_{6}, G_{29}, G_{59} \subseteq G_{83}$ and $G_{31}, G_{53} \subseteq G_{78}$. Thus, the desired result follows from $r\left(S_{5}, G_{78}\right)=r\left(S_{5}, G_{83}\right)=9$, proved in Theorem 3.5 and Theorem 3.3. For the remaining case $G=G_{76}=K_{3,3}$ the value of $r\left(S_{5}, G\right)$ has been determined in [24].

For the six trees $G \in \mathcal{G}_{2}$, the values of $r\left(S_{n}, G\right)$ are almost completely known from general results obtained for $r\left(S_{n}, T_{m}\right)$. Harary [16] proved that

$$
\begin{equation*}
r\left(S_{n}, S_{m}\right)=n+m-3+\epsilon \tag{11}
\end{equation*}
$$

where $\epsilon=1$ if n or m is even and $\epsilon=0$ otherwise. Burr [2] obtained the following result:

$$
\begin{equation*}
r\left(S_{n}, T_{m}\right)=n+m-2 \text { if } n, m \geq 3 \text { and } n-2 \equiv 0(\bmod m-1) . \tag{12}
\end{equation*}
$$

Guo and Volkmann [14] showed that

$$
\begin{equation*}
r\left(S_{n}, T_{m}\right) \leq n+m-3 \text { if } m, n \geq 3, n-2 \not \equiv 0(\bmod m-1) \text { and } T_{m} \neq S_{n} \tag{13}
\end{equation*}
$$

and that equality holds if $n=m \geq 4$ or if in case of $n>m$ one of the following conditions is fulfilled: $n-2=k(m-1)+1$ with $k \in \mathbb{N}$ or $n-2=k(m-1)+r$ with $k \in \mathbb{N}, 2 \leq r \leq m-2$ and $\Delta\left(T_{m}\right)=m-2$ or $k+r+2-m \geq 0$. Parsons [30] determined $r\left(S_{n}, P_{m}\right)$ for the path P_{m} on m vertices by explicit formulas and a recurrence, in particular he obtained the following result:

$$
\begin{equation*}
r\left(S_{m+k}, P_{m}\right)=2 m-1 \text { if } 1 \leq k<(m+4) / 3 \tag{14}
\end{equation*}
$$

Here we will determine the missing values of $r\left(S_{n}, G\right)$ for the trees $G \in \mathcal{G}_{2}$ and summarize the results in the following theorem.

Theorem 4.2. Let $n \geq 6$ and $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}\right\}$. Then

$$
r\left(S_{n}, G\right)= \begin{cases}n+4 & \text { if } G=G_{6} \text { or if } n \equiv 2(\bmod 5) \text { and } G \neq G_{6} \\ n+2 & \text { if } n=9 \text { and } G \in\left\{G_{1}, G_{4}, G_{5}\right\} \\ n+3 & \text { otherwise. }\end{cases}
$$

Proof. The case $G=G_{6}=S_{6}$ is settled by (11), and for $G \neq G_{6}, n \equiv 2(\bmod 5)$ we are done by (12). Using (13) where equality holds, we obtain $r\left(S_{n}, G\right)$ for $G=G_{3}$, and for $G \in\left\{G_{1}, G_{2}, G_{4}, G_{5}\right\}$ only $n=9$ is left. From (14) we derive $r\left(S_{9}, G_{1}\right)=11$. By (13), $r\left(S_{9}, G_{2}\right) \leq 12$, and the coloring of K_{11} where $[V]_{g}=K_{5} \cup K_{3,3}$ yields equality. It remains to prove $r\left(S_{9}, G\right)=11$ for $G \in\left\{G_{4}, G_{5}\right\}$. The coloring of K_{10} with $[V]_{g}=2 K_{3} \cup K_{4}$ implies $r\left(S_{9}, G\right) \geq 11$. To establish equality, consider any coloring of K_{11} where $S_{9} \nsubseteq[V]_{r}$. Since $r\left(S_{9}, G_{1}\right)=11$, a green P_{6} must occur. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$ be the vertex set of a green P_{6} where the edges $u_{i} u_{i+1}$ are green for $i=1, \ldots, 5$. Moreover, let $W=V \backslash U$. If one of the edges from u_{2} to u_{4}, u_{5} or u_{6} is green, then $G_{4} \subseteq[V]_{g}$. Otherwise, $S_{9} \nsubseteq[V]_{r}$ implies that $u_{2} w$ is green for some $w \in W$. Similarly, at least one edge from w to $(W \backslash\{w\}) \cup\left\{u_{3}, u_{4}, u_{5}, u_{6}\right\}$ has to be green, and again we find a green G_{4}. It remains to prove that $G_{5} \subseteq[V]_{g}$. A vertex $v \in V\left(K_{11}\right)$ with $d_{r}(v) \neq 7$ must exist. Consequently, $S_{9} \nsubseteq[V]_{r}$ forces $d_{r}(v) \leq 6$, i.e. $d_{g}(v) \geq 4$. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subseteq N_{g}(v), U^{\prime}=U \cup\{v\}$, and $W=V \backslash U^{\prime}=\left\{w_{1}, \ldots, w_{6}\right\}$. Suppose $G_{5} \nsubseteq[V]_{g}$. From $r\left(S_{4}, G_{5}\right)=6$ we obtain $S_{4} \subseteq[W]_{r}$. We may assume that the edges from w_{1} to w_{2}, w_{3} and w_{4} are red. Because of $S_{9} \nsubseteq[V]_{r}, q_{g}\left(w_{1}, U^{\prime}\right) \geq 1$. If $q_{g}\left(w_{1}, U\right) \geq 1$, say $w_{1} u_{1}$ is green, then $S_{9} \nsubseteq[V]_{r}$ forces $q_{g}\left(u_{1},\left(W \backslash\left\{w_{1}\right\}\right) \cup\left(U \backslash\left\{u_{1}\right\}\right)\right) \geq 1$. This gives $G_{5} \subseteq[V]_{g}$, a contradiction. It remains that $w_{1} v$ is green and all edges from w_{1} to U are red. But then $S_{9} \nsubseteq[V]_{r}$
forces only green edges from w_{1} to w_{5} and w_{6}. Again $G_{5} \subseteq[V]_{g}$, and we are done.

Next we consider the six non-tree graphs $G \in \mathcal{G}_{2}$ where $G \neq K_{2,4}$ and $C_{6} \nsubseteq G$. Since $C_{4} \subseteq G, r\left(S_{n}, G\right) \geq r\left(S_{n}, C_{4}\right)$ for $G \in\left\{G_{9}, G_{11}, G_{12}, G_{16}\right\}$, and $K_{2,3} \subseteq G$ implies $r\left(S_{n}, G\right) \geq r\left(S_{n}, K_{2,3}\right)$ for $G \in\left\{G_{29}, G_{31}\right\}$. We will show that in both cases equality holds if n is sufficiently large. The following lemma is essential for proving this result.

Lemma 4.1. If $r\left(S_{n}, C_{4}\right) \geq n+4$ and $G \in\left\{G_{9}, G_{11}, G_{12}, G_{16}\right\}$, then $r\left(S_{n}, G\right)=$ $r\left(S_{n}, C_{4}\right)$. If $r\left(S_{n}, K_{2,3}\right) \geq n+4$ and $G \in\left\{G_{29}, G_{31}\right\}$, then $r\left(S_{n}, G\right)=r\left(S_{n}, K_{2,3}\right)$.

Proof. It suffices to establish the missing upper bounds for $r\left(S_{n}, G\right)$. Assume first that $r\left(S_{n}, C_{4}\right) \geq n+4$ and consider any coloring of K_{t} where $t=r\left(S_{n}, C_{4}\right)$ and $S_{n} \nsubseteq[V]_{r}$. Then $C_{4} \subseteq[V]_{g}$ and $d_{g}(v) \geq 5$ for every $v \in V$. Let U be the vertex set of a green C_{4}. Since $\left|N_{g}(u) \backslash U\right| \geq 2$ for any $u \in U, G_{i} \subseteq[V]_{g}$ for $i \in\{11,12,16\}$. To find a green G_{9}, take a vertex $v \in N_{g}(u) \backslash U$ for some $u \in U$. As $\left|N_{g}(v) \backslash U\right| \geq 1$, the desired result follows. Assume now that $r\left(S_{n}, K_{2,3}\right) \geq n+4$ and consider any coloring of K_{t} where $t=r\left(S_{n}, K_{2,3}\right)$ and $S_{n} \nsubseteq[V]_{r}$. Then $K_{2,3} \subseteq[V]_{g}$ and $d_{g}(v) \geq 5$ for every $v \in V$. Let U be the vertex set of a green $K_{2,3}$. Because $\left|N_{g}(u) \backslash U\right| \geq 1$ for every $u \in U, G_{29} \subseteq[V]_{g}$ and $G_{31} \subseteq[V]_{g}$, and we are done.

By (8) and $r\left(S_{n}, C_{4}\right) \leq r\left(S_{n}, K_{2,3}\right)$, the conditions on $r\left(S_{n}, C_{4}\right)$ and $r\left(S_{n}, K_{2,3}\right)$ in Lemma 4.1 are satisfied if n is sufficiently large, and we obtain the following result.

Theorem 4.3. If n is sufficiently large, then $r\left(S_{n}, G\right)=r\left(S_{n}, C_{4}\right)$ for $G \in\left\{G_{9}, G_{11}\right.$, $\left.G_{12}, G_{16}\right\}$ and $r\left(S_{n}, G\right)=r\left(S_{n}, K_{2,3}\right)$ for $G \in\left\{G_{29}, G_{31}\right\}$.

It remains an open problem to determine the exact values of $r\left(S_{n}, G\right)$ if $G \in$ $\left\{G_{9}, G_{11}, G_{12}, G_{16}, G_{29}, G_{31}\right\}$ and all $n \geq 6$. For $G \in\left\{G_{9}, G_{11}, G_{12}, G_{16}\right\}$ it follows from Lemma 4.1, (6), (7) and (8), that the exact value of $r\left(S_{n}, G\right)$ is known for infinitely many n and

$$
n-1+\left\lfloor\sqrt{n-1}-6(n-1)^{11 / 40}\right\rfloor<r\left(S_{n}, G\right) \leq n+\lceil\sqrt{n-1}\rceil
$$

for n sufficiently large. In [3] it is shown that $r\left(S_{n}, K_{2,3}\right)<n+2 \sqrt{n}$ for all sufficiently large n. Consequently, for $G \in\left\{G_{29}, G_{31}\right\}$ and n sufficiently large,

$$
n-1+\left\lfloor\sqrt{n-1}-6(n-1)^{11 / 40}\right\rfloor<r\left(S_{n}, G\right)<n+2 \sqrt{n} .
$$

The remaining non-tree graphs in \mathcal{G}_{2} are $G_{53}=K_{2,4}$ and the four subgraphs of $K_{3,3}$ containing a subgraph isomophic to C_{6}, namely $G_{7}=C_{6}, G_{20}=K_{3,3}-2 K_{2}$, $G_{59}=K_{3,3}-K_{2}$ and $G_{76}=K_{3,3}$. The values of $r\left(S_{n}, C_{6}\right)$ for $6 \leq n \leq 12$ can be found in [36]: $r\left(S_{n}, C_{6}\right)=n+4$ if $6 \leq n \leq 7$ or $10 \leq n \leq 12$ and $r\left(S_{n}, C_{6}\right)=n+3$ if $8 \leq n \leq$ 9. Moreover, $r\left(S_{6}, K_{2,4}\right)=11, r\left(S_{6}, K_{3,3}\right)=12$ and $r\left(S_{7}, K_{2,4}\right)=r\left(S_{7}, K_{3,3}\right)=13$ (see [24]). From [3] we know that, for n sufficiently large, $r\left(S_{n}, K_{2,4}\right)<n+3 \sqrt{n}$ and $r\left(S_{n}, G\right)<n+3 n^{2 / 3}$ for all $G \in\left\{G_{7}, G_{20}, G_{59}, G_{76}\right\}$, but it remains an unsolved problem to determine further exact values.

References

[1] L. Boza, Corrections to "The Ramsey numbers for a quadrilateral vs. all graphs on six vertices", J. Combin. Math. Combin. Comput. 89 (2014), 155-156.
[2] S. A. Burr, Generalized Ramsey theory for graphs-a survey, in: Graphs and Combinatorics, Lec. Notes in Math. 406 (R. A. Bari and F. Harary, eds.), Springer, Berlin, 1974, 52-75.
[3] S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, Some complete bipartite graph-tree Ramsey numbers, Ann. Discrete Math. 41 (1989), 79-89.
[4] G. Chartrand, R. J. Gould and A. D. Polimeni, On Ramsey numbers of forests versus nearly complete graphs, J. Graph Theory 4 (1980), 233-239.
[5] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory $\mathbf{1}$ (1977), 93.
[6] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs III: Small off-diagonal numbers, Pacific J. Math. 41 (1972), 335-345.
[7] M. Clancy, Some small Ramsey numbers, J. Graph Theory 1 (1977), 89-91.
[8] P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, The booktree Ramsey numbers, Scientia, Ser. A: Mathematical Sciences 1 (1988), 111117.
[9] R. J. Faudree, C. C. Rousseau, and R. H. Schelp, All triangle graph Ramsey numbers for connected graphs of order six, J. Graph Theory 4 (1980), 293-300.
[10] R. J. Faudree, C. C. Rousseau and R. H. Schelp, Small order graph-tree Ramsey numbers, Discrete Math. 72 (1988), 119-127.
[11] R. J. Faudree, R. H. Schelp and C. C. Rousseau, Generalizations of a Ramsey result of Chvátal, in: Proc. Fourth Int. Conf. on the Theory and Applications of Graphs, Kalamazoo, 1980, 351-361.
[12] R. J. Gould and M. S. Jacobson, On the Ramsey number of trees versus graphs with large clique number, J. Graph Theory 7 (1983), 71-78.
[13] G. Hua, S. Hongxue and L. Xiangyang, Ramsey numbers $r\left(K_{1,4}, G\right)$ for all three-partite graphs G of order six, J. Southeast Univ. (English Edition) 20 (2004), 378-380.
[14] Y. B. Guo and L. Volkmann, Tree-Ramsey numbers, Australas. J. Combin. 11 (1995), 169-175.
[15] F. Harary, Graph Theory, Addison-Wesley, Reading (Massachusetts), 1969.
[16] F. Harary, Recent results on generalized Ramsey theory for graphs, in: Graph Theory and Applications, Lec. Notes in Math. 303 (Y. Alavi et al., eds.), Springer, Berlin, 1972, 125-138.
[17] G. R. T. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory 13 (1989), 245-248.
[18] M. Hoeth and I. Mengersen, Ramsey numbers for graphs of order four versus connected graphs of order six, Util. Math. 57 (2000), 3-19.
[19] C. J. Jayawardene and C. C. Rousseau, Ramsey numbers $r\left(C_{6}, G\right)$ for all graphs G of order less than six, Congr. Numer. 136 (1999), 147-159.
[20] C. J. Jayawardene and C. C. Rousseau, The Ramsey numbers for a quadrilateral vs. all graphs on six vertices, J. Combin. Math. Combin. Comput. 35 (2000), 71-87, Erratum, J. Combin. Math. Combin. Comput. 51 (2004), 221.
[21] C. J. Jayawardene and C. C. Rousseau, The Ramsey number for a cycle of length five vs. a complete graph of order six, J. Graph Theory 35 (2000), 99-108.
[22] C. J. Jayawardene and C. C. Rousseau, Ramsey numbers $r\left(C_{5}, G\right)$ for all graphs G of order six, Ars Combin. 57 (2000), 163-173.
[23] M. Krone and I. Mengersen, The Ramsey numbers $r\left(K_{5}-2 K_{2}, 2 K_{3}\right), r\left(K_{5}-\right.$ $\left.e, 2 K_{3}\right)$, and $r\left(K_{5}, 2 K_{3}\right)$, J. Combin. Math. Combin. Comput. 81 (2012), 257260.
[24] R. Lortz and I. Mengersen, Further Ramsey numbers for small complete bipartite graphs, Ars Combin. 79 (2006), 195-203.
[25] R. LortZ and I. Mengersen, Ramsey numbers for small graphs versus small disconnected graphs, Australas. J. Combin. 51 (2011), 89-108.
[26] R. Lortz and I. Mengersen, On the Ramsey numbers of certain graphs of order five versus all connected graphs of order six, J. Combin. Math. Combin. Comput. 90 (2014), 197-222.
[27] R. Lortz and I. Mengersen, On the Ramsey numbers $r\left(S_{n}, K_{6}-3 K_{2}\right)$, J. Combin. Math. Combin. Comput. (to appear).
[28] R. Lortz and I. Mengersen, On the Ramsey numbers of non-star trees versus connected graphs of order six, (in preparation).
[29] J. McNamara, $r\left(K_{4}-e, K_{6}\right)=21$, (unpublished).
[30] T. D. Parsons, Path-star Ramsey numbers, J. Combin. Theory (B) 17 (1974), 51-58.
[31] T. D. Parsons, Ramsey graphs and block designs I, Trans. Amer. Math. Soc. 209 (1975), 33-44.
[32] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2014) DS 1.14.
[33] C. C. Rousseau and C. J. Jayawardene, The Ramsey number for a quadrilateral vs. a complete graph on six vertices, Congr. Numer. 123 (1997), 97-108.
[34] C. C. Rousseau and J. Sheehan, A class of Ramsey problems involving trees, J. London Math. Soc.(2) 18 (1978), 392-396.
[35] Y. Wu, Y. Sun, R. Zhang and S. P. Radziszowski, Ramsey numbers of C_{4} versus wheels and stars, Graphs Combin. 31 (2015), 2437-2446.
[36] Y. Zhang, H. Broersma and Y. Chen, Narrowing down the gap on cycle-star Ramsey numbers, J. Comb. 7 (2016), 481-493.
(Received 22 Feb 2017; revised 20 Apr 2018, 14 Sep 2018)

