# On the Ramsey numbers for stars versus connected graphs of order six

ROLAND LORTZ

Technische Universität Braunschweig Institut Computational Mathematics AG Algebra und Diskrete Mathematik, 38092 Braunschweig Germany r.lortz@tu-braunschweig.de

INGRID MENGERSEN

Moorhüttenweg 2d 38104 Braunschweig Germany ingrid.mengersen@t-online.de

#### Abstract

We investigate the Ramsey number  $r(S_n, G)$  where  $S_n$  denotes the star of order n and G is a connected graph of order six. The values of  $r(S_n, G)$ are determined for any  $G \neq K_{2,2,2}$  with chromatic number  $\chi(G) \geq 3$  with but a few exceptions for some G with  $\chi(G) = 3$  in case of some small n. Partial results on  $r(S_n, G)$  are obtained if  $\chi(G) = 2$ . In any case,  $r(S_n, G)$  is evaluated for  $n \leq 5$ . With our results,  $r(T_n, G)$  is completely known for every tree  $T_n$  of order n and every connected graph of order six with  $\chi(G) \geq 4$ .

# 1 Introduction

The Ramsey number  $r(T_n, G)$ , where  $T_n$  denotes a tree of order n and G is a graph of order m, has been intensively studied. Chvátal [5] proved that

$$r(T_n, K_m) = (n-1)(m-1) + 1 \tag{1}$$

for any tree  $T_n$ . Moreover, the values of  $r(T_n, G)$  are almost completely known for nearly complete graphs G. Chartrand, Gould and Polimeni [4] showed that

$$r(T_n, G) = (n-1)(m-2) + 1$$
(2)

for  $n \ge 4$  and every graph G of order  $m \ge 4$  and clique number cl(G) = m - 1. Gould and Jacobson [12] proved that

$$r(T_n, G) = (n-1)(m-3) + 1$$
(3)

for  $n \ge 4$  and all graphs G of order  $m \ge 6$  and cl(G) = m-2, where  $T_n \ne S_n$  in case of m = 6. Furthermore,  $r(T_n, G)$  has been studied for special graphs G such as books, cycles or bipartite graphs. Here we just want to mention some results important in connection with our paper, a survey can be found in [32]. Rousseau and Sheehan [34] and Erdős, Faudree, Rousseau and Schelp [8] investigated  $r(T_n, B_m)$  for the book graph  $B_m = K_{1,1,m}$  and obtained the following result:

$$r(T_n, B_m) = 2n - 1 \text{ for } n \ge 3m - 3.$$
 (4)

Faudree, Schelp and Rousseau [11] considered  $G = K_m - K_t$  and showed that, for  $n \ge 2, m \ge 2, t \ge 1$  and  $m \ge 2t - \lfloor (t-1)/(n-1) \rfloor (n-1)$ ,

$$r(T_n, K_m - K_t) = (n-1)(m-t + \lfloor (t-1)/(n-1) \rfloor) + 1,$$
(5)

except for  $(T_n, K_m - K_t) = (S_4, K_6 - K_3)$ . Some effort has been made to evaluate  $r(S_n, G)$  for bipartite graphs G, especially for trees, cycles of even length and complete bipartite graphs. These cases are not completely settled, not even the values of  $r(S_n, C_4)$  are entirely known. Parsons [31] proved that

$$r(S_n, C_4) \le n + \left\lceil \sqrt{n-1} \right\rceil \quad \text{for } n \ge 3,$$
(6)

and, for any prime power q,

$$r(S_{q^2+1}, C_4) = q^2 + q + 1$$
 and  $r(S_{q^2+2}, C_4) = q^2 + q + 2.$  (7)

Moreover, Burr, Erdős, Faudree, Rousseau and Schelp [3] showed that

$$r(S_n, C_4) > n - 1 + \left\lfloor \sqrt{n - 1} - 6(n - 1)^{11/40} \right\rfloor$$
(8)

if n is sufficiently large. Recently, some progress in evaluating  $r(S_n, C_4)$  has been made by Wu, Sun, Zhang and Radziszowski [35]. Faudree, Rousseau and Schelp [10] systematically studied  $r(T_n, G)$  for all connected graphs G of order at most five. In particular they proved that, for  $n \ge 4$  and every connected graph G on five vertices with chromatic number  $\chi(G) = 3$ ,

$$r(T_n, G) = 2n - 1 + \epsilon, \tag{9}$$

with  $\epsilon = 2$  if  $(T_n, G) = (S_n, K_5 - 2K_2)$  where *n* is even,  $\epsilon = 1$  if  $(T_n, G) = (S_n, K_5 - P_4)$ where *n* is even or if  $(T_n, G) = (S_4, K_5 - K_3)$  and  $\epsilon = 0$  otherwise. For non-tree graphs *G* with  $\chi(G) = 2$ ,  $r(T_n, G)$  has not been completely evaluated. The main reason is the lack of knowledge about  $r(S_n, C_4)$  and  $r(S_n, K_{2,3})$ .

In this paper we will begin to extend the results obtained in [10] to connected graphs of order six. The list of all 112 such graphs given in Table 1 is taken from

[15], more detailed information about these graphs can be found in [26]. A formula to compute  $r(T_n, G)$  for n = 3, the first nontrivial case, and every graph G of order m is given in [6]. Thus, we may always assume that  $n \ge 4$ . Moreover, we will make use of the well-known lower bound

$$r(F,G) \ge (n-1)(\chi(G)-1) + s(G) \tag{10}$$

for any connected graph F of order n and any graph G with chromatic surplus  $s(G) \leq n$  (see [8] or [10]). Only a few values of  $r(T_n, G)$  are missing for connected graphs G of order six with  $\chi(G) \geq 4$  because of (1), (2) and (3). We close this gap and show that  $r(T_n, G)$  attains the lower bound given in (10) with only one exception. For  $\chi(G) \leq 3$ , different methods seem to be required to evaluate  $r(T_n, G)$  depending on whether  $T_n$  is or is not a star. Here we focus on  $T_n = S_n$ , the case  $T_n \neq S_n$  is treated in [28]. With a few exceptions for small n, the values of  $r(S_n, G)$  are determined for every connected graph  $G \neq K_{2,2,2}$  of order six with  $\chi(G) = 3$ . For  $n \geq 5$  the values differ by at most 2 from the lower bound given in (10), whereas it is shown in [27] that  $r(S_n, K_{2,2,2})$  can be significantly larger. Partial results on  $r(S_n, G)$  are obtained for the connected graphs G of order six with  $\chi(G) = 2$ . As could be expected, problems arise in case of non-tree graphs. These graphs contain a cycle  $C_4$  or  $C_6$ , and for any  $G \neq K_{2,4}$  not containing a cycle  $C_6$  we obtain that  $r(S_n, G)$  matches  $r(S_n, C_4)$  or  $r(S_n, K_{2,3})$  if n is sufficiently large. A complete evaluation fails because of the missing values of  $r(S_n, C_4)$  and  $r(S_n, K_{2,3})$ .

This paper also makes a contribution to evaluate r(F, G) for small graphs F and G. If F and G both have at most five vertices, r(F, G) is almost completely known (see [6], [7], [17], also cf. [32]). Some effort has been made to determine r(F, G) for graphs F of order at most five and graphs G of order six (see [1, 9, 13, 18, 20, 21, 22, 23, 25, 26, 29, 33]). The results in this paper together with  $r(S_4, K_{2,2,2}) = 10$  (see [27]),  $r(S_5, K_{2,2,2}) = 11$  (see [13] and [27]) and the results on r(F, G) for disconnected graphs G of order six obtained in [25] yield all values of  $r(S_n, G)$  for  $n \leq 5$  and any graph G of order six.

Some specialized notation will be used. A coloring of a graph always means a 2-coloring of its edges with colors red and green. An  $(F_1, F_2)$ -coloring is a coloring containing neither a red copy of  $F_1$  nor a green copy of  $F_2$ . We use V to denote the vertex set of  $K_n$  and define  $d_r(v)$  to be the number of red edges incident to  $v \in V$  in a coloring of  $K_n$ . Moreover,  $\Delta_r = \max_{v \in V} d_r(v)$ . The set of vertices joined red to v is denoted by  $N_r(v)$ . Similarly we define  $d_g(v)$ ,  $\Delta_g$  and  $N_g(v)$ . For  $U \subseteq V(K_n)$ , the subgraph induced by U is denoted by [U]. Furthermore,  $[U]_r$  and  $[U]_g$  denote the red and the green subgraph induced by U. We write  $G' \subseteq G$  if G' is a subgraph of G, and  $G' \subseteq_{ind} G$  means that G' is an induced subgraph. For disjoint subsets  $U_1, U_2 \subseteq V(K_n), q_r(U_1, U_2)$  denotes the number of red edges between  $U_1$  and  $U_2$ , and  $q_g(U_1, U_2)$  is defined similarly. The set of all connected graphs G of order six and chromatic number  $\chi(G) = s$  is denoted by  $\mathcal{G}_s$ .

Table 1. The 112 connected graphs of order six.

# **2** The Ramsey Number $r(T_n, G)$ for $G \in \mathcal{G}_s$ , $4 \le s \le 6$

Obviously,  $K_6 = G_{112}$  is the only graph in  $\mathcal{G}_6$ , and  $\mathcal{G}_5$  consists of the four connected graphs G of order six with clique number cl(G) = 5, i.e.,  $\mathcal{G}_5 = \{G_{98}, G_{106}, G_{109}, G_{111}\}$ . If  $G \in \mathcal{G}_4$ , then either cl(G) = 4 or G is isomorphic to the wheel  $W_5 = G_{82}$ . This gives

$$\mathcal{G}_4 = \{ G_{42}, G_{55}, G_{58}, G_{64}, G_{66}, G_{72}, G_{75}, G_{80}, G_{81}, G_{82}, G_{84}, G_{85}, G_{86}, G_{88}, G_{89}, G_{91}, G_{95}, G_{96}, G_{97}, G_{99}, G_{101}, G_{103}, G_{104}, G_{105}, G_{107}, G_{110} \}.$$

From (1), (2) and (3) we already know that  $r(T_n, G)$  matches the lower bound in (10) for  $G \in \mathcal{G}_s$  with  $5 \leq s \leq 6$  and, in case of  $T_n \neq S_n$ , for  $G \in \mathcal{G}_4 \setminus \{W_5\}$ . Here we will show that the lower bound is also attained in the remaining cases with only one exception.

**Theorem 2.1.** Let  $n \ge 4$ ,  $G \in \mathcal{G}_s$ ,  $4 \le s \le 6$ , and  $(T_n, G) \ne (S_4, K_6 - K_3)$ . Then

$$r(T_n, G) = (n-1)(s-1) + 1.$$

Furthermore,  $r(S_4, K_6 - K_3) = 11$ .

**Proof.** To settle the remaining cases, i.e.,  $G \in \mathcal{G}_4$  where  $T_n = S_n$ , and  $G = W_5$  where  $T_n \neq S_n$ , we first consider  $G = G_{105} = K_6 - K_3$ . By (5),  $r(S_n, K_6 - K_3) = 3n - 2$  if  $n \geq 5$ . (The exceptional case n = 4 was overlooked in [11].) The coloring of  $K_{10}$  with  $[V]_r = 2C_5$  implies that  $r(S_4, K_6 - K_3) \geq 11$ . To establish equality, take any coloring of  $K_{11}$  where  $S_4 \not\subseteq [V]_r$  and consider some vertex  $v \in V$ . Since  $d_g(v) \geq 8$  and  $r(S_4, K_5 - K_3) = 8$  by (9),  $K_6 - K_3 \subseteq [\{v\} \cup N_g(v)]_g$ , and we are done.

Now let  $G \in \mathcal{G}_4 \setminus \{K_6 - K_3\}$ . Obviously,  $G \subseteq G_{110} = K_6 - 2K_2$ , and this implies  $r(T_n, G) \leq r(T_n, K_6 - 2K_2)$ . Moreover,  $r(T_n, G) \geq 3n - 2$  by (10). We already know that  $r(T_n, K_6 - 2K_2) = 3n - 2$  if  $T_n \neq S_n$ . Thus, to complete the proof, it suffices to establish  $r(S_n, K_6 - 2K_2) \leq 3n - 2$ . Suppose that we have an  $(S_n, K_6 - 2K_2)$ -coloring of  $K_{3n-2}$ . By (2),  $r(T_n, K_5 - e) = 3n - 2$ , and this yields  $K_5 - e \subseteq [V]_g$  since  $S_n \not\subseteq [V]_r$ . Let U be the vertex set of a green  $K_5 - e$  and  $W = V \setminus U$ .

Case 1:  $[U]_g = K_5$ . From  $S_n \not\subseteq [V]_r$ , i.e.  $\Delta_r \leq n-2$ , we obtain  $q_r(U,W) \leq 5(n-2)$ . Moreover,  $K_6 - 2K_2 \not\subseteq [V]_g$  implies  $q_r(w,U) \geq 2$  for every  $w \in W$  yielding  $q_r(U,W) \geq 2|W| = 6n - 14$ . Hence,  $6n - 14 \leq 5n - 10$ , a contradiction for  $n \geq 5$ . In case of n = 4 only  $q_r(U,W) = 5n - 10$  is left. Consequently,  $d_r(v) = 2$  for every  $v \in V$  and  $[W]_g = K_5$ . This forces  $[V]_r$  to be a bipartite graph and every component of  $[V]_r$  to be an even cycle. Thus,  $[V]_r = C_{10}$  or  $[V]_r = C_6 \cup C_4$ . In both cases,  $K_6 - 2K_2 \subseteq [V]_g$ , a contradiction.

Case 2:  $[U]_g = K_5 - e$  and  $K_5 \not\subseteq [V]_g$ . Since  $S_n \not\subseteq [V]_r$ ,  $q_r(U, W) \leq 3(n-2) + 2(n-3) = 5n-12$ . Moreover,  $K_6 - 2K_2 \not\subseteq [V]_g$  and  $K_5 \not\subseteq [V]_g$  imply  $q_r(w, U) \geq 2$  for every  $w \in W$  yielding  $q_r(U, W) \geq 2|W| = 6n - 14$ . Thus,  $6n - 14 \leq 5n - 12$ , contradicting  $n \geq 4$ .

### **3** The Ramsey Number $r(S_n, G)$ for $G \in \mathcal{G}_3$

Here we consider the graphs  $G \in \mathcal{G}_3$  except for  $G = K_{2,2,2}$ . The Ramsey number  $r(S_n, K_{2,2,2})$  is separately studied in [27]. If  $G \in \mathcal{G}_3$ , then  $G \subseteq K_{1,1,4} = G_{61}$ ,  $G \subseteq K_{1,2,3} = G_{100}$  or  $G \subseteq K_{2,2,2} = G_{108}$ . We use this property to partition  $\mathcal{G}_3 \setminus \{K_{2,2,2}\}$  into the following five subsets  $\mathcal{G}_{3,i}$ ,  $1 \leq i \leq 5$ . Put

$$\mathcal{G}_{3,1} = \{ G \in \mathcal{G}_3 \mid G \subseteq K_{1,1,4} \} = \{ G_{15}, G_{19}, G_{32}, G_{36}, G_{41}, G_{61} \},\$$

$$\begin{aligned} \mathcal{G}_{3,2} &= \{ G \in \mathcal{G}_3 \mid G \subseteq K_{2,2,2}, \ G \neq K_{2,2,2}, \ G \not\subseteq K_{1,2,3}, \text{and} \ G \not\subseteq K_{1,1,4} \} \\ &= \{ G_{37}, \ G_{43}, \ G_{45}, \ G_{52}, \ G_{67}, \ G_{68}, \ G_{69}, \ G_{71}, \ G_{77}, \ G_{87}, \ G_{90}, \ G_{93}, \ G_{102} \}, \end{aligned}$$

$$\mathcal{G}_{3,3} = \{ G \in \mathcal{G}_3 \mid K_5 - 2K_2 \subseteq G \subseteq K_{1,2,3} \} = \{ G_{63}, G_{74}, G_{83}, G_{94}, G_{100} \},\$$

$$\mathcal{G}_{3,4} = \{G_{39}, G_{40}, G_{49}, G_{56}, G_{57}, G_{62}, G_{65}, G_{73}\},$$

$$\begin{aligned} \mathcal{G}_{3,5} &= \{ G \in \mathcal{G}_3 \mid G \neq K_{2,2,2} \text{ and } G \notin \mathcal{G}_{3,1} \cup \mathcal{G}_{3,2} \cup \mathcal{G}_{3,3} \cup \mathcal{G}_{3,4} \} \\ &= \{ G_8, \, G_{10}, \, G_{13}, \, G_{14}, \, G_{17}, \, G_{18}, \, G_{21}, \dots, G_{28}, \, G_{30}, \, G_{33}, \, G_{34}, \, G_{35}, \\ & G_{38}, \, G_{44}, \, G_{46}, \, G_{47}, \, G_{48}, \, G_{50}, \, G_{51}, \, G_{54}, \, G_{60}, \, G_{70}, \, G_{78}, \, G_{79}, \, G_{92} \} \end{aligned}$$

The value of  $r(S_n, G)$  depends on which of the subsets  $\mathcal{G}_{3,i}$  the graph G belongs to. By (10),  $r(T_n, G) \geq 2n$  if  $G \in \mathcal{G}_{3,2}$  or if  $G = K_{2,2,2}$ , and  $r(T_n, G) \geq 2n - 1$ for the remaining  $G \in \mathcal{G}_3$ . The following results show that  $r(S_n, G) \leq 2n + 1$  for any  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}\}$  if  $n \geq 5$ , whereas it is proved in [27] that  $r(S_n, K_{2,2,2})$  can be significantly larger.

#### 3.1 Results

By (4),  $r(T_n, K_{1,1,4}) = 2n-1$  for any tree  $T_n$  with  $n \ge 9$ . This implies that  $r(T_n, G) = 2n-1$  for  $n \ge 9$  and every  $G \in \mathcal{G}_{3,1}$ , since  $2n-1 \le r(T_n, G) \le r(T_n, K_{1,1,4})$ . The following theorem closes the gap for  $n \le 8$  in case of  $T_n = S_n$  with two exceptions. The evaluation of  $r(S_5, G_{61})$  is due to Hua, Hongxue and Xiangyang [13].

**Theorem 3.1.** Let  $G \in \mathcal{G}_{3,1}$  and  $n \ge 4$ . If  $G \ne G_{61}$  and  $n \ge 5$  or if  $G = G_{61}$  and  $n \ge 9$ , then  $r(S_n, G) = 2n - 1$ .

Furthermore,  $r(S_4, G_{19}) = 7$ ,  $r(S_4, G) = 8$  if  $G \notin \{G_{61}, G_{19}\}$ ,  $r(S_4, G_{61}) = 10$ ,  $r(S_5, G_{61}) = 11$ ,  $11 \le r(S_6, G_{61}) \le 13$ ,  $13 \le r(S_7, G_{61}) \le 14$  and  $r(S_8, G_{61}) = 16$ .

The following three theorems show that  $r(S_n, G)$  can differ from the bound given in (10) for  $G \in \mathcal{G}_{3,i}$  with  $2 \leq i \leq 4$  if special divisibility properties for n are fulfilled. The values of  $r(S_n, G)$  are completely determined for  $G \in \mathcal{G}_{3,2}$  and  $G \in \mathcal{G}_{3,4}$ ; in case of  $G \in \mathcal{G}_{3,3}$  some gaps are left for small n. The computation of  $r(S_5, G_{100})$  is due to Hua, Hongxue and Xiangyang [13].

**Theorem 3.2.** Let  $G \in \mathcal{G}_{3,2}$  and  $n \geq 4$ .

If  $G \in \{G_{90}, G_{102} = K_6 - (P_4 \cup K_2)\}$ , then  $r(S_n, G) = \begin{cases} 2n+1 & \text{for } n \equiv 0, 2, 4 \text{ or } 5 \pmod{6}, \\ 2n & \text{otherwise.} \end{cases}$ 

If  $G \in \{G_{67}, G_{71}, G_{87} = K_6 - P_6\}$ , then

$$r(S_n, G) = \begin{cases} 2n+1 & \text{for } n \equiv 2 \pmod{3}, \\ 2n & \text{otherwise.} \end{cases}$$

If  $G = G_{77}$ , then

$$r(S_n, G) = \begin{cases} 2n+1 & \text{for } n \text{ even,} \\ 2n & \text{otherwise.} \end{cases}$$

If  $G \in \{G_{37}, G_{43}, G_{45}, G_{52}, G_{68}, G_{69}, G_{93} = K_6 - (C_4 \cup K_2)\}$ , then  $r(S_n, G) = 2n$ .

**Theorem 3.3.** Let  $G \in \mathcal{G}_{3,3}$  and  $n \geq 4$ . If n is even, then  $r(S_n, G) = 2n + 1$ .

If n is odd, where  $n \ge 13$  for  $G = G_{100}$ ,  $n \ge 9$  for  $G = G_{94}$ , and  $n \ge 5$  otherwise, then  $r(S_n, G) = 2n - 1$ .

Furthermore,  $r(S_5, G_{94}) = 10$ ,  $13 \le r(S_7, G_{94}) \le 14$ ,  $r(S_5, G_{100}) = 11$ , and  $2n - 1 \le r(S_n, G_{100}) \le 2n + 1$  for  $n \in \{7, 9, 11\}$ .

**Theorem 3.4.** Let  $G \in \mathcal{G}_{3,4}$  and  $n \geq 4$ . Then

$$r(S_n, G) = \begin{cases} 2n & \text{if } n \text{ is even,} \\ 2n-1 & \text{if } n \text{ is odd.} \end{cases}$$

The next theorem shows that  $r(S_n, G)$  attains the lower bound 2n - 1 from (10) for any  $G \in \mathcal{G}_{3,5}$ , except for some small n.

**Theorem 3.5.** Let  $G \in \mathcal{G}_{3,5}$ ,  $\mathcal{S} = \{G_{33}, G_{60}, G_{78}, G_{79}, G_{92}\} \subseteq \mathcal{G}_{3,5}$  and  $n \geq 4$ . If  $G \in \mathcal{G}_{3,5} \setminus \mathcal{S}$  and  $n \geq 4$  or if for  $G \in \mathcal{S}$  the following conditions for n are fulfilled:

- (i)  $n \ge 5$  if  $G = G_{33}$ ;
- (ii)  $n = 5 \text{ or } n \ge 7 \text{ if } G \in \{G_{60}, G_{79}\};$
- (*iii*)  $n = 5 \text{ or } n \ge 9 \text{ if } G = G_{78}$ ; and
- (iv)  $n \ge 13$  if  $G = G_{92}$ ; then

$$r(S_n, G) = 2n - 1.$$

Futhermore,  $r(S_4, G) = 8$  if  $G \in S$ ,  $r(S_5, G_{92}) = 11$ ,  $11 \le r(S_6, G) \le 13$  if  $G \in \{G_{60}, G_{79}, G_{92}\}, 2n-1 \le r(S_n, G_{78}) \le 2n$  if  $6 \le n \le 8, 2n-1 \le r(S_n, G_{92}) \le 2n+1$  if  $7 \le n \le 12$ .

Summarizing the results in the preceding theorems we see that  $r(S_n, G)$  is determined for all  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}\}$  with but a few exceptions for some G in case of some small n, namely  $G = G_{60}$  or  $G = G_{79}$  and n = 6,  $G = G_{61}$  and  $6 \le n \le 7$ ,  $G = G_{78}$  and  $6 \le n \le 8$ ,  $G = G_{92}$  and  $6 \le n \le 12$ ,  $G = G_{94}$  and n = 7,  $G = G_{100}$  and  $n \in \{7, 9, 11\}$ .

#### 3.2 Some Useful Lemmas

The following lemmas are essential for proving the preceding theorems. The first lemma considers green subgraphs of order at most five in colorings of  $K_t$ ,  $2n - 1 \le t \le 2n + 1$ , where  $S_n \not\subseteq [V]_r$ , i.e.  $\Delta_r \le n - 2$ .

**Lemma 3.1.** Let  $n \ge 4$ ,  $2n - 1 \le t \le 2n + 1$ , and let C be a coloring of  $K_t$  with  $\Delta_r \le n - 2$ .

- (i) If t = 2n + 1 or if n is odd and  $2n 1 \le t \le 2n$ , then  $K_5 2K_2 \subseteq [V]_g$ , i.e.  $K_5 \subseteq [V]_g$ ,  $K_5 e \subseteq_{ind} [V]_g$  or  $K_5 2K_2 \subseteq_{ind} [V]_g$ .
- (ii) If t = 2n + 1 and  $K_5 e \not\subseteq [V]_g$ , then  $K_4 \not\subseteq [V]_g$ .
- (iii) If t = 2n,  $K_5 e \not\subseteq [V]_g$ , and  $K_4 \subseteq [V]_g$  with vertex set U, then  $d_r(u) = n 2$ for every  $u \in U$  and  $q_r(w, U) = 2$  for every  $w \in V \setminus U$ .
- (iv) If t = 2n and  $K_5 2K_2 \not\subseteq [V]_g$ , then n has to be even and  $K_4 \subseteq [V]_g$ . Moreover,  $K_5 - P_3 \subseteq_{ind} [V]_g$ .
- (v) If t = 2n-1 and  $K_5 2K_2 \not\subseteq [V]_g$ , then n has to be even and  $K_5 P_3 \subseteq_{ind} [V]_g$ or  $K_5 - (P_3 \cup K_2) \subseteq_{ind} [V]_g$ .

**Proof.** (i) Using that  $r(S_n, K_5 - 2K_2) = 2n + 1$  if n is even and  $r(S_n, K_5 - 2K_2) = 2n - 1$  if n is odd (see (10)), we obtain the desired result.

To prove (*ii*) and (*iii*), suppose that  $t \ge 2n$ ,  $K_5 - e \not\subseteq [V]_g$  and  $K_4 \subseteq [V]_g$ . Let U be the vertex set of a  $K_4 \subseteq [V]_g$  and  $W = V \setminus U$ . Then  $\Delta_r \le n-2$  yields  $q_r(U,W) \le 4(n-2) = 4n-8$ . Moreover,  $q_r(w,U) \ge 2$  for every  $w \in W$  since  $K_5 - e \not\subseteq [V]_g$ . Consequently,  $q_r(U,W) \ge 2|W| = 2(t-4)$ . It follows that  $2(t-4) \le q_r(U,W) \le 4n-8$ . Thus, only t = 2n and  $q_r(U,W) = 4n-8$  is left. This forces  $d_r(u) = n-2$  for every  $u \in U$  and  $q_r(w,U) = 2$  for every  $w \in W$ .

(iv) Because of (i), n has to be even. By (2),  $r(S_n, K_4 - e) = 2n - 1$ . Thus, a green  $H = K_4 - e$  must occur since  $S_n \not\subseteq [V]_r$ . Let  $U = \{u_1, u_2, u_3, u_4\}$  be the vertex set of H and  $W = V \setminus U$ . If  $[U]_g = K_4$  we are done. Otherwise we may assume that the edge  $u_1u_4$  is red. From  $\Delta_r \leq n-2$  it follows that  $q_r(U, W) \leq 2(n-3) + 2(n-2) = 4n - 10$ . Consequently, |W| = 2n - 4 forces a vertex  $w \in W$  with  $q_r(w, U) \leq 1$ . Since  $K_5 - 2K_2 \not\subseteq [V]_g$ , the edges  $wu_2$  and  $wu_3$  have to be green. Moreover, at least one of the edges  $wu_1$  and  $wu_4$  must be green. This yields a green  $K_4$ . Using (*iii*) we obtain  $K_5 - P_3 \subseteq_{ind} [V]_g$ .

(v) This follows from (i) and  $r(S_n, K_5 - (P_3 \cup K_2)) = 2n - 1$  (see (10)).

In the following lemmas we consider colorings of  $K_t$ ,  $2n - 1 \le t \le 2n + 1$ , where  $S_n \not\subseteq [V]_r$ , i.e.  $\Delta_r \le n - 2$ , and special green subgraphs of order five occur.

**Lemma 3.2.** Let  $n \ge 4$ ,  $2n - 1 \le t \le 2n + 1$ , and let C be a coloring of  $K_t$  with  $\Delta_r \le n - 2$  and  $K_5 \subseteq [V]_g$ .

- (i) If t = 2n + 1, then  $G \subseteq [V]_g$  for every  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}\}$ .
- (ii) If t = 2n and n = 4 or  $n \ge 6$ , then  $G \subseteq [V]_g$  for every  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}\}$ . If n = 5, then  $G \subseteq [V]_g$  for every  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}, G_{100}\}$ .
- (iii) If t = 2n 1 and n = 4 or  $n \ge 9$ , then  $G \subseteq [V]_g$  for every  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}\}$ . If  $5 \le n \le 8$ , then  $G \subseteq [V]_g$  for every  $G \in \mathcal{G}_3$  with  $G \subseteq G_{83}$ ,  $G \subseteq G_{90}$  or  $G \subseteq G_{94}$ .

**Proof.** Let U be the vertex set of a  $K_5 \subseteq [V]_g$  and  $W = V \setminus U$ . From  $\Delta_r \leq n-2$  we obtain

$$q_r(U, W) \le 5(n-2) = 5n - 10.$$

Consider first t = 2n - 1 + a,  $0 \le a \le 2$ , where  $n \ge 4$  for a = 2, n = 4 or  $n \ge 6$  for a = 1 and n = 4 or  $n \ge 9$  for a = 0. We will prove that  $q_r(w, U) \le 2$  for some  $w \in W$ . If n = 4, this follows from  $W \ne \emptyset$  and  $\Delta_r \le n - 2$ . Assume now that n > 4 and  $q_r(w, U) \ge 3$  for every  $w \in W$ . Then  $q_r(U, W) \ge 3|W| = 3(t-5) = 6n + 3a - 18$ . Because of  $q_r(U, W) \le 5n - 10$  we obtain  $6n + 3a - 18 \le 5n - 10$ . Hence,  $n \le 8 - 3a$ , contradicting  $n \ge 5$  for a = 2,  $n \ge 6$  for a = 1 and  $n \ge 9$  for a = 0. Thus,  $K_6 - P_3 \subseteq [U \cup \{w\}]_g$  for some  $w \in W$  with  $q_r(w, U) \le 2$ . Since  $G \subseteq K_6 - P_3$  for every  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}\}$ , we are done. The remaining cases are t = 2n with n = 5 or t = 2n - 1 with  $5 \le n \le 8$ .

If t = 2n and n = 5, then |W| = 5. In case of  $q_r(w, U) \leq 2$  for some  $w \in W$  again we are done. It remains that  $q_r(w, U) \geq 3$  for every  $w \in W$ . Then  $\Delta_r \leq n - 2 = 3$ forces  $q_r(w, U) = 3$  for every  $w \in W$ ,  $[W]_g = K_5$  and  $q_r(u, W) = 3$  for every  $u \in U$ . Let H be the bipartite graph  $K_{5,5}$  with vertex classes U and W. The green subgraph  $H_g$  of H induced by the vertices of H contains only vertices of degree two, and this forces every component of  $H_g$  to be an even cycle. Hence,  $H_g = C_4 \cup C_6$  or  $H_g = C_{10}$ . In both cases,  $K_6 - K_{1,3}$ ,  $K_6 - 2P_3$  and  $G_{102} = K_6 - (P_4 \cup K_2)$  are contained in  $[V]_g$ . Consequently, any  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}, G_{100}\}$  occurs in  $[V]_g$ .

Finally let t = 2n - 1 and  $5 \le n \le 8$ . Then  $q_r(w, U) \ge 4$  for every  $w \in W$  is impossible as otherwise  $q_r(U, W) \ge 4(2n - 6)$  contradicting  $q_r(U, W) \le 5n - 10$  for  $n \ge 5$ . Thus,  $q_r(w, U) \le 3$  for some  $w \in W$  and  $K_6 - K_{1,3} \subseteq [V]_g$ . Since  $G_{83}$ ,  $G_{90}$ and  $G_{94}$  are subgraphs of  $K_6 - K_{1,3}$ , we are done.

**Lemma 3.3.** Let  $n \ge 4$ ,  $2n - 1 \le t \le 2n + 1$ , and let C be a coloring of  $K_t$  where  $\Delta_r \le n - 2$ ,  $K_5 - e \subseteq [V]_g$  and  $K_5 \not\subseteq [V]_g$ .

- (i) If t = 2n+1, then  $G_{102} = K_6 (P_4 \cup K_2) \subseteq [V]_g$  and  $G_{100} = K_6 (K_3 \cup K_2) \subseteq [V]_g$ .
- (ii) If t = 2n, then either  $G_{102} \subseteq [V]_g$  or  $n \equiv 2 \pmod{3}$  and  $[V]_g = \overline{K_{n-1}} + \frac{n+1}{3}K_3$ . In any case,  $G_{94} = K_6 - ((K_{1,3} + e) \cup K_2) \subseteq [V]_g$ ,  $G_{93} = K_6 - (C_4 \cup K_2) \subseteq [V]_g$ ,  $G_{77} \subseteq [V]_g$  and  $G_{68} \subseteq [V]_g$ .
- (iii) If t = 2n 1, then  $G_{100} \subseteq [V]_g$  for  $n \ge 13$ ,  $G_{94} \subseteq [V]_g$  for n = 4 and for  $n \ge 6$ ,  $G_{83} \subseteq [V]_g$  and  $G_{78} = K_6 ((K_4 e) \cup K_2) \subseteq [V]_g$  for  $n \ge 4$ .

**Proof.** Let  $U = \{u_1, u_2, u_3, u_4, u_5\}$  be the vertex set of a  $K_5 - e \subseteq [V]_g$  and let  $W = V \setminus U$ . We may assume that the edge  $u_1u_5$  is red. From  $\Delta_r \leq n-2$  we obtain

$$q_r(U, W) \le 2(n-3) + 3(n-2) = 5n - 12.$$

If  $q_r(w, U) \leq 1$  for some  $w \in W$ , then  $[U \cup \{w\}]_g$  contains every  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}\}$ and we are done. It remains that  $q_r(w, U) \geq 2$  for every  $w \in W$ . Let  $W_1 = \{w \in W \mid q_r(w, U) = 2\}$  and  $W_2 = W \setminus W_1 = \{w \in W \mid q_r(w, U) \geq 3\}$ . Then  $q_r(U, W) \geq 2|W_1| + 3|W_2| = 3|W| - |W_1|$ . Using  $q_r(U, W) \leq 5n - 12$  we obtain

$$|W_1| \ge 3|W| - 5n + 12.$$

(i) If t = 2n + 1, then |W| = 2n - 4 and  $|W_1| \ge 3|W| - 5n + 12 = n$ . Since  $\Delta_r \leq n-2$ , there must be a vertex  $w \in W_1$  where  $u_1w$  is green. Hence,  $G_{102} \subseteq$  $[U \cup \{w\}]_g$ . It remains to prove that  $G_{100} \subseteq [V]_g$ . If  $N_r(w) \cap U = \{u_1, u_5\}$  or  $N_r(w) \cap U \subseteq \{u_2, u_3, u_4\}$  for some  $w \in W_1$ , then  $G_{100} \subseteq [U \cup \{w\}]_g$ . Otherwise,  $|N_r(w) \cap \{u_1, u_5\}| = 1$  for every  $w \in W_1$ , and  $\Delta_r \leq n-2$  forces  $|W_1| \leq 2(n-3)$ . Since  $|W_1| \ge n$ , only  $n \ge 6$  is left. Moreover,  $|W_1| = 6$  in case of n = 6. If  $n \ge 7$ , then  $|W_1| \ge 7$  and we may assume that four vertices of  $W_1$  are joined red to  $u_1$  and green to  $u_5$ . Among these four vertices there must be two vertices  $w_1$  and  $w_2$  with the same red neighbor in  $\{u_2, u_3, u_4\}$ , say  $u_2$ . Thus,  $G_{100} \subseteq [\{u_2, u_3, u_4, u_5, w_1, w_2\}]_g$ . If n = 6, then |W| = 2n - 4 = 8, and  $|W_1| = 6$  implies  $|W_2| = 2$ . Because of  $\Delta_r \leq n-2=4$ , in [W] every vertex of  $W_1$  is incident to at most two red edges and every vertex of  $W_2$  to at most one red edge. Thus, every component of  $[W]_r$  has to be a path or a cycle, where at least one path  $P_{\ell}$  with  $\ell \geq 2$  or at least two paths  $P_1$ occur. Hence, the union of all paths in  $[W]_r$  is a subgraph of a  $P_\ell$  with  $\ell \geq 2$ , and  $[W]_r \subseteq H$  where  $H \in \{P_2 \cup C_3 \cup C_3, P_2 \cup C_6, P_3 \cup C_5, P_4 \cup C_4, P_5 \cup C_3, P_8\}$ . In any case,  $G_{100} \subseteq [W]_q$ .

(ii) If t = 2n, then |W| = 2n - 5 and  $|W_1| \ge 3|W| - 5n + 12 = n - 3$ . Obviously,  $G_{102} \subseteq [U \cup \{w\}]_g$  if  $N_r(w) \cap \{u_2, u_3, u_4\} \ne \emptyset$  for some  $w \in W_1$ . It remains that  $N_r(w) \cap U = \{u_1, u_5\}$  for every  $w \in W_1$ , and then  $\Delta_r \le n - 2$  implies  $|W_1| \le n - 3$ . Consequently,  $|W_1| = n - 3$  and  $|W_2| = n - 2$ . Moreover,  $n \ge 5$  because of  $W_2 \ne \emptyset$ ,  $d_r(w) \ge 3$  for every  $w \in W_2$  and  $\Delta_r \le n - 2$ . Since  $|W_1| = n - 3 \ge 2$  and  $K_5 \not\subseteq [V]_g$ , all edges in  $[W_1]$  have to be red. Let  $\widehat{W_1} = W_1 \cup \{u_1, u_5\}$  and  $\widehat{W_2} = W_2 \cup \{u_2, u_3, u_4\}$ . Clearly,  $[\widehat{W_1}]$  is a red  $K_{n-1}$ , and all edges between  $\widehat{W_1}$  and  $\widehat{W_2}$  have to be green because of  $\Delta_r \le n - 2$ . Consider now  $[\widehat{W_2}]$ . Since  $|\widehat{W_2}| = n + 1$  and  $\Delta_r \le n - 2$ , every vertex is incident to at least two green edges. If a green  $P_4$  with vertex set W'occurs, then  $G_{102} \subseteq [W' \cup \{u_1, u_5\}]_g$ . It remains that every component of  $[\widehat{W_2}]_g$  is a  $K_3$ . This is only possible if  $|\widehat{W_2}| = n + 1 \equiv 0 \pmod{3}$ , i.e.  $n \equiv 2 \pmod{3}$ , and leads to the desired coloring. Obviously, this coloring contains green subgraphs  $K_6 - K_3$ ,  $K_6 - (K_{1,3} \cup K_2)$  and  $G_{93}$ . Since  $G_{77}, G_{94} \subseteq K_6 - K_3, G_{68} \subseteq K_6 - (K_{1,3} \cup K_2)$ , and since  $G_{94}, G_{93}, G_{77}$  and  $G_{68}$  are also subgraphs of  $G_{102}$ , the additional statement is proved.

(*iii*) If t = 2n - 1, then |W| = 2n - 6 and  $|W_1| \ge 3|W| - 5n + 12 = n - 6$ . Hence,  $|W_1| \ge 7$  for  $n \ge 13$ , and we can prove that  $G_{100} \subseteq [V]_g$  as in (*i*) in case of  $|W_1| \ge 7$ . If  $|W_1| \ge 1$ , then  $G_{94}$ ,  $G_{83}$  and  $G_{78}$  occur in  $[U \cup \{w\}]_g$  for any  $w \in W_1$ . It remains  $W_1 = \emptyset$ , i.e.  $W = W_2$ . This forces  $n \le 6$  since  $|W_1| \ge n - 6$ . Moreover,  $n \ge 5$  because of  $W_2 \ne \emptyset$ ,  $d_r(w) \ge 3$  for every  $w \in W_2$  and  $\Delta_r \le n - 2$ . To settle the cases n = 5 and n = 6 we use  $U' = \{u_2, u_3, u_4\}$ .

If n = 5 we obtain |W| = 4. Moreover,  $q_r(w, U) = 3$  for every  $w \in W$  and  $[W]_g = K_4$  are forced by  $\Delta_r \leq n-2 = 3$ . Let  $W = \{w_1, w_2, w_3, w_4\}$ . To prove that  $G_{83} \subseteq [V]_g$ , note that  $q_r(U', W) \leq 3|U'| = 9$ . Thus, a vertex  $w \in W$  exists where  $q_r(w, U') \leq 2$ , and this yields  $G_{83} \subseteq [U \cup \{w\}]_g$ . It remains to find a green  $G_{78}$ . If  $q_r(w, U') = 3$  or  $q_r(w, U') = 1$  for some  $w \in W$ , then  $G_{78} \subseteq [U \cup \{w\}]_g$ . Otherwise,  $q_r(w, U') = 2$  and  $q_r(w, \{u_1, u_5\}) = 1$  for every  $w \in W$ . Since  $q_r(u, W) \leq \Delta_r \leq 3$  for every  $u \in U'$ , this guarantees a vertex  $u \in U'$ , say  $u = u_2$ , such that  $q_r(u, W) = 2$ . We may assume that  $u_2$  is joined green to  $w_1$  and  $w_2$  and red to  $w_3$  and  $w_4$ . Moreover, we may assume that the edges  $w_3u_1$  and  $w_3u_3$  are green. This yields  $G_{78} \subseteq [\{u_1, u_2, u_3, w_1, w_2, w_3\}]_g$ .

If n = 6 then we obtain |W| = 6. Again,  $q_r(w, U) = 3$  for every  $w \in W$ , as otherwise  $q_r(U, W) > 3|W| = 18$  contradicting  $q_r(U, W) \leq 5n - 12$ . Moreover,  $\Delta_r \leq n - 2 = 4$  implies that all red edges in [W] have to be independent, and we find  $G_{78}$  and  $G_{94}$  in  $[W]_g$ . Since  $q_r(U', W) \leq 4|U'| = 12$ , a vertex  $w \in W$  exists such that  $q_r(w, U') \leq 2$ . This yields  $G_{83} \subseteq [U \cup \{w\}]_g$ .

**Lemma 3.4.** Let  $n \ge 4$ ,  $2n - 1 \le t \le 2n + 1$ , and let C be a coloring of  $K_t$  where  $\Delta_r \le n - 2$ ,  $K_5 - 2K_2 \subseteq [V]_g$  and  $K_5 - e \not\subseteq [V]_g$ .

- (i) If  $t \ge 2n$ , then  $G_{102} = K_6 (P_4 \cup K_2) \subseteq [V]_q$ .
- (*ii*) If t = 2n + 1, then  $G_{100} = K_6 (K_3 \cup K_2) \subseteq [V]_q$ .
- (iii) If t = 2n 1, then  $G_{100} \subseteq [V]_g$  for  $n \ge 13$  and  $G_{94} = K_6 ((K_{1,3} + e) \cup K_2) \subseteq [V]_g$  for  $n \ge 9$ .
- (iv) If t = 2n 1, then  $G_{83} \subseteq [V]_g$  for  $n \ge 5$ .

**Proof.** Let  $U = \{u_1, u_2, u_3, u_4, u_5\}$  be the vertex set of a  $K_5 - 2K_2 \subseteq [V]_g$  and let  $W = V \setminus U$ . We may assume that the edges  $u_1u_5$  and  $u_2u_4$  are red. Let  $U' = \{u_1, u_2, u_4, u_5\}$ . From  $\Delta_r \leq n-2$  we obtain

$$q_r(U, W) \le 4(n-3) + (n-2) = 5n - 14$$
 and  $q_r(U', W) \le 4(n-3) = 4n - 12$ .

Let  $W_1 = N_g(u_3) \cap W$  and  $W_2 = W \setminus W_1 = N_r(u_3) \cap W$ . If  $q_r(w, U) \leq 1$  for some  $w \in W_1$ , then  $[U \cup \{w\}]_g$  contains every  $G \in \mathcal{G}_3 \setminus \{K_{2,2,2}, K_{1,1,4}\}$  and we are done. It remains  $q_r(w, U) \geq 2$  for every  $w \in W_1$ .

(i) It suffices to consider t = 2n. If  $q_r(w, U') \leq 1$  for some  $w \in W_2$ , then  $G_{102} \subseteq [U \cup \{w\}]_g$ . Otherwise,  $q_r(U', W) \geq 2|W_1| + 2|W_2| = 2|W| = 2(2n - 5) = 4n - 10$  contradicting  $q_r(U', W) \leq 4n - 12$ .

To prove (*ii*) and (*iii*) we look at  $W_1$  and  $W_2$  in more detail. Let  $W_{i,j} = \{w \in W_i \mid q_r(w, U) = j\}$ . Using  $q_r(w, U) \ge 2$  for every  $w \in W_1$ , we obtain  $q_r(U, W) \ge |W_{2,1}| + |W_{2$ 

 $2(|W_{1,2}| + |W_{2,2}|) + 3(|W| - |W_{1,2}| - |W_{2,1}| - |W_{2,2}|)) = 3|W| - |W_{1,2}| - 2|W_{2,1}| - |W_{2,2}|.$ From  $q_r(U, W) \le 5n - 14$  it follows that

$$|W_{1,2}| + 2|W_{2,1}| + |W_{2,2}| \ge 3|W| - 5n + 14.$$

(ii) If t = 2n + 1, then |W| = 2n - 4 and  $|W_{1,2}| + 2|W_{2,1}| + |W_{2,2}| \ge n + 2$ . Since  $|W_{2,1}| + |W_{2,2}| \le |W_2| \le \Delta_r \le n - 2$ , we obtain  $|W_{1,2}| + |W_{2,1}| \ge 4$ . First consider the case  $|W_{1,2}| \ge 1$ . Let  $w \in W_{1,2}$ . If  $\{u_1, u_5\} \subseteq N_r(w)$  or  $\{u_2, u_4\} \subseteq N_r(w)$ , then  $G_{100} \subseteq [U \cup \{w\}]_g$ . Otherwise w is joined green to vertices u and u' where  $u \in \{u_1, u_5\}$  and  $u' \in \{u_2, u_4\}$ . But then  $[\{w, u_3, u, u'\}]_g = K_4$  contradicting Lemma 3.1(ii). It remains  $|W_{2,1}| \ge 4$ , and we obtain  $G_{100} \subseteq [\{w_1, w_2, u_2, u_3, u_4, u_5\}]_g$  for any  $w_1, w_2 \in W_{2,1}$ .

(*iii*) If t = 2n - 1, then |W| = 2n - 6 and  $|W_{1,2}| + 2|W_{2,1}| + |W_{2,2}| \ge n - 4$ . Note that  $G_{94} \subseteq G_{100}$ . First consider the case  $|W_{1,2}| \ge 5$ . If  $\{u_1, u_5\} \subseteq N_r(w)$  or  $\{u_2, u_4\} \subseteq N_r(w)$  for some  $w \in W_{1,2}$ , then  $G_{100} \subseteq [U \cup \{w\}]_g$ . Otherwise, every  $w \in W_{1,2}$  has one green neighbor in  $\{u_1, u_5\}$  and one in  $\{u_2, u_4\}$ . Thus, for  $|W_{1,2}| \ge 5$  there are vertices  $w_1, w_2 \in W_{1,2}$  with the same green neighbors  $u \in \{u_1, u_5\}$  and  $u' \in \{u_2, u_4\}$ . But then  $K_5 - e \subseteq [\{w_1, w_2, u_3, u, u'\}]_g$ , a contradiction. It remains  $|W_{1,2}| \le 4$ . Consequently,  $2|W_{2,1}| + |W_{2,2}| \ge n - 8$ . If  $n \ge 9$ , then  $W_{2,1} \cup W_{2,2} \ne \emptyset$  and  $G_{94} \subseteq [U \cup \{w\}]_g$  for any  $w \in W_{2,1} \cup W_{2,2}$ . If  $n \ge 13$ , then  $2|W_{2,1}| + |W_{2,2}| \ge 5$ . In case of  $|W_{2,2}| \ge 5$  there must be two vertices  $w_1, w_2 \in W_{2,2}$  with the same red neighbor  $u \in U'$ , say  $u_1$ , and  $G_{100} \subseteq [\{w_1, w_2, u_2, u_3, u_4, u_5\}]_g$ . It remains  $|W_{2,1}| \ge 1$  where  $W_{2,2} \ne \emptyset$  if  $|W_{2,1}| = 1$ . Let  $w_1 \in W_{2,1}$  and  $w_2 \in W_{2,1} \cup W_{2,2}$  where  $w_1 \ne w_2$ . We may assume that  $u_2, u_4, u_5 \in N_g(w_2)$ . Then  $G_{100} \subseteq [\{w_1, w_2, u_2, u_3, u_4, u_5\}]_g$ .

(iv) Since  $|W_2| \leq \Delta_r \leq n-2$  we obtain  $|W_1| = |W| - |W_2| \geq 2n-6-(n-2) = n-4$ . Thus,  $|W_1| \geq 1$  for  $n \geq 5$ . If  $q_r(w, U') \leq 3$  for some  $w \in W_1$ , then  $G_{83} \subseteq [U \cup \{w\}]_g$ . Otherwise, all edges between  $W_1$  and U' are red, forcing  $n \geq 6$ , as  $d_r(w) \geq 4$  for every  $w \in W_1$  and  $\Delta_r \leq n-2$ . Moreover,  $d_r(u) \geq |W_1| + 1$  for every  $u \in U'$ , yielding  $|W_1| \leq n-3$ . Thus, only  $n-4 \leq |W_1| \leq n-3$  is possible. First we consider  $|W_1| = n-3$ . It implies  $|W_2| = n-3 \geq 3$  and  $q_r(w, U') = 0$  for every  $w \in W_2$ . Hence,  $G_{83} \subseteq [\{w_1, w_2, u_1, u_2, u_3, u_4\}]_g$  for any  $w_1, w_2 \in W_2$ . The remaining case is  $|W_1| = n-4$  and  $|W_2| = n-2 \geq 4$ . Due to  $\Delta_r \leq n-2$  every  $u \in U'$  has at most one red neighbor in  $W_2$ , and we obtain  $q_r(U', W_2) \leq 4$ . If  $q_r(w, U') = 0$  for some  $w \in W_2$ , then  $q_r(U', W_2) \leq 4$  guarantees a vertex  $w' \neq w$  in  $W_2$  with  $q_r(w', U') \leq 1$ . We may assume that  $\{u_1, u_2, u_4\} \subseteq N_g(w')$  and obtain  $G_{83} \subseteq [\{w, w', u_1, u_2, u_3, u_4\}]_g$ . It remains  $q_r(w, U') \geq 1$  for every  $w \in W_2$ . Because of  $q_r(U', W_2) \leq 4$  only  $|W_2| = 4$  and  $q_r(w, U') = 1$  for every  $w \in W_2$  is left. Moreover,  $q_r(u, W_2) = 1$  for every  $u \in U'$ . Hence,  $G_{83} \subseteq [\{w, w', u_1, u_2, u_3, u_4\}]_g$  for  $w, w' \in W_2$  where  $w \in N_r(u_2)$  and  $w' \in N_r(u_5)$ .

**Lemma 3.5.** Let  $n \ge 4$  be even,  $2n - 1 \le t \le 2n$ , and let C be a coloring of  $K_t$ where  $\Delta_r \le n - 2$ ,  $K_5 - P_3 \subseteq [V]_g$  and  $K_5 - 2K_2 \not\subseteq [V]_g$ .

(i) If 
$$t = 2n$$
, then  $G_{62} \subseteq [V]_g$ ,  $G_{65} \subseteq [V]_g$  and  $G_{87} = K_6 - P_6 \subseteq [V]_g$  for  $n \ge 4$ .

(*ii*) If 
$$t = 2n - 1$$
, then  $G_{70} \subseteq [V]_g$ ,  $G_{73} \subseteq [V]_g$ , and  $G_{79} \subseteq [V]_g$  for  $n \ge 4$ .

(iii) If 
$$t = 2n - 1$$
, then  $G_{78} = K_6 - ((K_4 - e) \cup K_2) \subseteq [V]_g$  for  $n \ge 8$  and  $G_{92} = K_6 - (K_3 \cup P_3) \subseteq [V]_g$  for  $n \ge 10$ .

**Proof.** Let  $U = \{u_1, u_2, u_3, u_4, u_5\}$  be the vertex set of a  $K_5 - P_3 \subseteq [V]_g$ . We may assume that the edges  $u_2u_3$  and  $u_3u_4$  are red. Let  $W = V \setminus U$ ,  $U' = \{u_1, u_2, u_4, u_5\}$  and  $U'' = \{u_2, u_3, u_4\}$ . Note that [U'] is a green  $K_4$ . From  $\Delta_r \leq n-2$  we obtain

$$q_r(U,W) \leq 2(n-2) + 2(n-3) + n - 4 = 5n - 14,$$
  
 $q_r(U'',W) \leq 2(n-3) + n - 4 = 3n - 10.$ 

(i) Consider  $W_1 = N_g(u_1) \cap W$  and  $W_2 = N_g(u_3) \cap W$ . Note that |W| = 2n - 5. From  $\Delta_r \leq n-2$  it follows that  $|W_1| \geq |W| - (n-2) = n-3$  and  $|W_2| \geq |W| - (n-4) = n-1 \geq 3$ . Since  $q_r(U'', W) \leq 3n-10$  and  $|W_1| \geq n-3$ , there is a vertex  $w \in W_1$  with  $q_r(w, U'') \leq 2$ , yielding  $G_{62}$  and  $G_{65}$  in  $[U \cup \{w\}]_g$ . To prove that  $G_{87} \subseteq [V]_g$  consider vertices  $w_1, w_2 \in W_2$ . Note that  $K_5 - e \not\subseteq [V]_g$ . Hence,  $q_r(\{w_1, w_2\}, \{u_1, u_5\}) \geq 1$ , and we may assume that  $w_1u_1$  is red. Moreover,  $q_r(w_1, U') = 2$  by Lemma 3.1(*iii*). Thus,  $G_{87} \subseteq [U \cup \{w_1\}]_g$ .

(*ii*) Now let  $W_1 = N_g(u_3) \cap W$  and  $W_2 = W \setminus W_1 = N_r(u_3) \cap W$ . From  $\Delta_r \leq n-2$ we obtain  $|W_2| \leq n-4$ . If  $q_r(w, U'') \leq 1$  for some  $w \in W_1$ , then  $G_{70}$ ,  $G_{73}$  and  $G_{79}$  occur in  $[U \cup \{w\}]_g$ . Otherwise,  $q_r(U'', W) \geq 2|W_1| + |W_2| = 2|W| - |W_2| \geq 2|W| - (n-4) = 2(2n-6) - (n-4) = 3n-8$ , contradicting  $q_r(U'', W) \leq 3n-10$ .

(*iii*) Note that  $K_5 - e \not\subseteq [V]_g$  forces  $q_r(w, U') \geq 2$  for every  $w \in W$ . Now let  $W_1 = \{w \in W \mid q_r(w, U) = 2\}$  and  $W_2 = W \setminus W_1$ . Clearly, every  $w \in W_1$  has to be joined green to  $u_3$ . Put  $W_{1,1} = \{w \in W_1 \mid wu_1 \text{ and } wu_5 \text{ are red}\}, W_{1,2} = \{w \in W_1 \mid wu_2 \text{ and } wu_4 \text{ are red}\}$  and  $W_{1,3} = W_1 \setminus (W_{1,1} \cup W_{1,2})$ . From  $q_r(U,W) \leq 5n - 14$ ,  $q_r(U,W) \geq 2|W_1| + 3|W_2| = 3|W| - |W_1|$  and |W| = 2n - 6 it follows that

$$|W_1| = |W_{1,1}| + |W_{1,2}| + |W_{1,3}| \ge n - 4.$$

First we will prove that  $G_{78} \subseteq [V]_g$  for  $n \ge 8$ . Note that  $|W_1| \ge n-4 \ge 4$  in case of  $n \ge 8$ . If  $|W_{1,1}| \ge 2$  and  $w_1, w_2 \in W_{1,1}$ , then  $G_{78} \subseteq [U' \cup \{w_1, w_2\}]_g$ . If  $|W_{1,2}| \ge 1$  and  $w \in W_{1,2}$ , then  $G_{78} \subseteq [U \cup \{w\}]_g$ . Otherwise,  $|W_{1,3}| \ge 3$ . Then  $u_2$  or  $u_4$ , say  $u_2$ , must have two red neighbors  $w_1, w_2 \in W_{1,3}$ , and we obtain  $G_{78} \subseteq [\{w_1, w_2, u_1, u_3, u_4, u_5\}]_g$ .

It remains to prove that  $G_{92} \subseteq [V]_g$  for  $n \ge 10$ . Note that  $|W_1| \ge n - 4 \ge 6$  in case of  $n \ge 10$ . If  $|W_{1,2}| \ge 2$  and  $w_1, w_2 \in W_{1,2}$ , then  $K_5 - e \subseteq [\{w_1, w_2, u_1, u_3, u_5]_g$ , a contradiction. If  $|W_{1,3}| \ge 5$ , then there are two vertices  $w_1, w_2 \in W_{1,3}$  joined red to the same vertices in U', say to  $u_1$  and  $u_2$ . But then  $K_5 - 2K_2 \subseteq [\{w_1, w_2, u_3, u_4, u_5\}]_g$ , a contradiction. The case  $|W_{1,1}| \ge 1$  remains, yielding  $G_{92} \subseteq [U \cup \{w\}]_g$  for any  $w \in W_{1,1}$ .

**Lemma 3.6.** Let  $n \ge 4$  be even and let C be a coloring of  $K_{2n-1}$  where  $\Delta_r \le n-2$ ,  $K_5 - (P_3 \cup K_2) \subseteq [V]_g$ ,  $K_5 - P_3 \not\subseteq [V]_g$  and  $K_5 - 2K_2 \not\subseteq [V]_g$ .

(i) If  $n \ge 4$ , then  $G_{46} \subseteq [V]_g$ ,  $G_{54} \subseteq [V]_g$  and  $G_{70} \subseteq [V]_g$ .

(ii) If 
$$n \ge 8$$
, then  $G_{78} = K_6 - ((K_4 - e) \cup K_2) \subseteq [V]_g$  and  $G_{92} = K_6 - (K_3 \cup P_3) \subseteq [V]_g$ .

**Proof.** Let  $U = \{u_1, u_2, u_3, u_4, u_5\}$  be the vertex set of a  $K_5 - (P_3 \cup K_2) \subseteq [V]_g$ and  $W = V \setminus U$ . We may assume that the edges  $u_1u_5$ ,  $u_2u_3$  and  $u_3u_4$  are red. From  $\Delta_r \leq n-2$  we obtain

$$q_r(U, W) \le 4(n-3) + n - 4 = 5n - 16.$$

Note that  $K_5 - P_3 \not\subseteq [V]_g$  and  $K_5 - 2K_2 \not\subseteq [V]_g$  force  $q_r(w, U) \ge 2$  for every  $w \in W$ . Let  $W_1 = \{w \in W \mid q_r(w, U) = 2\}$  and  $W_2 = W \setminus W_1$ . Every  $w \in W_1$  has to be joined green to  $u_3$  as otherwise  $K_5 - 2K_2 \subseteq [\{w, u_1, u_2, u_4, u_5\}]_g$  or  $K_5 - P_3 \subseteq [\{w, u_1, u_2, u_4, u_5\}]_g$ . Put  $W_{1,1} = \{w \in W_1 \mid wu_1 \text{ and } wu_5 \text{ are red}\}, W_{1,2} = \{w \in W_1 \mid wu_2 \text{ and } wu_4 \text{ are red}\}, \text{ and } W_{1,3} = W_1 \setminus (W_{1,1} \cup W_{1,2}).$  From  $q_r(U, W) \le 5n - 16$  and  $q_r(U, W) \ge 2|W_1| + 3|W_2| = 3|W| - |W_1| = 3(2n - 6) - |W_1|$  we derive

$$|W_1| = |W_{1,1}| + |W_{1,2}| + |W_{1,3}| \ge n - 2.$$

Note that  $|W_{1,1}| \leq n-3$  because of  $\Delta_r \leq n-2$ . Hence  $|W_1| \geq n-2$  implies  $|W_{1,2}|+|W_{1,3}| \geq 1$ . Moreover,  $|W_{1,2}| \leq 1$ , as otherwise any two vertices  $w_1, w_2 \in W_{1,2}$  together with  $u_1, u_3$  and  $u_5$  yield a green  $K_5 - 2K_2$ . If  $|W_{1,3}| \geq 5$ , then two vertices  $w_1, w_2 \in W_{1,3}$  have to be joined red to the same vertices in  $\{u_1, u_2, u_4, u_5\}$ , say to  $u_1$  and  $u_2$ . But then  $K_5 - 2K_2 \subseteq [\{w_1, w_2, u_3, u_4, u_5\}]_g$ , a contradiction. Consequently,  $|W_{1,3}| \leq 4$  and  $|W_{1,2}| + |W_{1,3}| \leq 5$ .

(i) If  $|W_{1,3}| \ge 1$ , then any  $w \in W_{1,3}$  and the vertices in U induce a green  $K_6 - P_6$ . Thus,  $G_{46}$ ,  $G_{54}$  and  $G_{70}$  occur in  $[V]_g$ . It remains that  $|W_{1,3}| = 0$ . Then  $|W_{1,2}| + |W_{1,3}| \ge 1$  and  $|W_{1,2}| \le 1$  force  $|W_{1,2}| = 1$ . Consequently,  $|W_{1,1}| \ge n - 3 \ge 1$ because of  $|W_1| \ge n - 2$ . Consider now vertices  $w_1 \in W_{1,1}$  and  $w_2 \in W_{1,2}$ . Then  $G_{70} \subseteq [U \cup \{w_1\}]_g$ , whereas  $G_{46}$  and  $G_{54}$  occur in  $[U \cup \{w_2\}]_g$ .

(*ii*) If  $n \ge 8$ , then  $|W_1| \ge n-2 \ge 6$ . Note that  $1 \le |W_{1,2}| + |W_{1,3}| \le 5$ . Hence,  $|W_{1,1}| \ge 1$ . Let  $w_1 \in W_{1,1}$  and  $w_2 \in W_{1,2} \cup W_{1,3}$ . Then  $G_{92} \subseteq [U \cup \{w_1\}]_g$  and  $G_{78} \subseteq [U \cup \{w_2\}]_g$  if  $w_2 \in W_{1,2}$ . If  $w_2 \in W_{1,3}$  we may assume that the edges  $w_2u_1$ and  $w_2u_2$  are red. This yields  $G_{78} \subseteq [\{w_1, w_2, u_1, u_3, u_4, u_5\}]_g$ .

#### 3.3 Proofs of the Theorems

**Proof of Theorem 3.1.** First we establish suitable lower bounds for  $r(S_n, G)$ . In any case,  $r(S_n, G) \ge 2n - 1$  by (10). The coloring of  $K_9$  with  $[V]_r = 3K_3$  shows that  $r(S_4, G_{61}) \ge 10$ . The coloring of  $K_7$  with  $[V]_r = C_3 \cup C_4$  implies  $(S_4, G) \ge 8$ for  $G \notin \{G_{61}, G_{19}\}$ . From [13] we use that  $r(S_5, G_{61}) \ge 11$ , and  $r(S_8, G_{61}) \ge 16$  was shown in [8]. To prove equality, i.e., to establish suitable upper bounds for  $r(S_n, G)$ , we refine the method used in [34].

Consider any coloring of  $K_t$  where  $n \ge 4$ , t = 2n - 1 + a,  $a \ge 0$  and  $S_n \not\subseteq [V]_r$ , i.e.  $\Delta_r \le n-2$ . Hence,  $d_g(v) \ge n + a$  for every  $v \in V$ . Let  $u_1 \in V$  with  $d_g(u_1) = \Delta_g$ and  $u_2 \in N_g(u_1)$ . Since  $|N_g(u_1)| \ge n$  and  $\Delta_r \le n-2$ , a vertex  $u_3 \in N_g(u_1)$  exists such that  $u_2u_3$  is green. Let  $U = \{u_1, u_2, u_3\}$  and  $W = V \setminus U$ . Put  $W_i = N_g(u_i) \cap W$ . We obtain

$$|W| \ge \sum_{i=1}^{3} |W_i| - \sum_{1 \le i < j \le 3} |W_i \cap W_j| \ge \Delta_g - 2 + 2(n+a-2) - \sum_{1 \le i < j \le 3} |W_i \cap W_j|.$$

Consequently, since |W| = 2n - 4 + a and  $\Delta_g \ge n + a$ ,

1

$$\sum_{\leq i < j \le 3} |W_i \cap W_j| \ge \Delta_g + a - 2 \ge n + 2a - 2$$

First let  $n + 2a \ge 9$ . This gives  $\sum_{1 \le i < j \le 3} |W_i \cap W_j| \ge 7$  implying  $|W_i \cap W_j| \ge 3$  for some i, j where  $1 \le i < j \le 3$ . Thus,  $G_{61} \subseteq [U \cup (W_i \cap W_j)]_g$ , and we obtain  $r(S_n, G_{61}) \le 2n - 1$  if  $n \ge 9$ ,  $r(S_n, G_{61}) \le 2n$  if  $7 \le n \le 8$ ,  $r(S_n, G_{61}) \le 2n + 1$  if  $5 \le n \le 6$  and  $r(S_4, G_{61}) \le 10$ .

Now let n = 4, a = 1 or  $n \ge 5, a = 0$ . Note that in case of n = 5, a = 0, i.e.  $K_t = K_9$ , we have  $\Delta_g \ge 6$ , as otherwise  $\Delta_r \le n - 2 = 3$  would force a 5regular green subgraph of order 9 which is impossible. From  $\sum_{1\le i < j \le 3} |W_i \cap W_j| \ge \Delta_g + a - 2 \ge n + 2a - 2$  we obtain  $\sum_{1\le i < j \le 3} |W_i \cap W_j| \ge 4$ . Hence,  $|W_i \cap W_j| \ge 2$ for some i, j with  $1 \le i < j \le 3$ . Consequently,  $G_{41} \subseteq [U \cup \{w_1, w_2, w_3\}]_g$  where  $w_1, w_2 \in W_i \cap W_j$  and  $w_3 \in W_i \setminus \{w_1, w_2\}$ . Note that  $G \subseteq G_{41}$  for every  $G \ne G_{61}$ . Thus, for  $G \ne G_{61}, r(S_n, G) \le 2n - 1$  if  $n \ge 5$  and  $r(S_4, G) \le 8$ . It remains to prove that  $r(S_4, G_{19}) \le 7$ . If a coloring of  $K_7$  does not contain a red  $S_4$ , then  $[V]_r \subseteq H$ where  $H \in \{C_7, K_1 \cup C_6, K_1 \cup C_3 \cup C_3, K_2 \cup C_5, C_3 \cup C_4\}$ . In any case,  $G_{19} \subseteq [V]_g$ and we are done.

**Proof of Theorem 3.2.** As already mentioned,  $r(S_n, G) \ge 2n$  for every  $G \in \mathcal{G}_{3,2}$ . To prove that  $r(S_n, G) \ge 2n + 1$  for n even and  $G \in \{G_{102}, G_{90}, G_{77}\}$ , consider the coloring of  $K_{2n}$  where  $[V]_g = \frac{n}{2}K_2 + \frac{n}{2}K_2$ . For  $n \equiv 2 \pmod{3}$  and  $G \in \{G_{102}, G_{90}, G_{87}, G_{71}, G_{67}\}$  the coloring of  $K_{2n}$  with  $[V]_g = \overline{K_{n-1}} + \frac{n+1}{3}K_3$  implies  $r(S_n, G) \ge 2n + 1$ .

Next we will show that  $r(S_n, G) \leq 2n + 1$  for all  $G \in \mathcal{G}_{3,2}$ . Note that  $G \subseteq G_{102}$ if  $G \in \mathcal{G}_{3,2}$ . Consider any coloring of  $K_{2n+1}$  where  $S_n \not\subseteq [V]_r$ , i.e.  $\Delta_r \leq n-2$ . By Lemma 3.1(*i*),  $K_5 - 2K_2 \subseteq [V]_g$ . Using Lemmas 3.2(*i*), 3.3(*i*), and 3.4(*i*) we obtain that  $G_{102} \subseteq [V]_g$ , and we are done. It remains to establish  $r(S_n, G) \leq 2n$  in the following special cases.

Case 1:  $G \in \{G_{77}, G_{90}, G_{102}\}, n \text{ odd, and, additionally, } n \not\equiv 2 \pmod{3}$  if  $G \in \{G_{102}, G_{90}\}$ . Consider any coloring of  $K_{2n}$  where  $S_n \not\subseteq [V]_r$ . By Lemma 3.1(*i*),  $K_5 - 2K_2 \subseteq [V]_g$ . Hence, Lemmas 3.2(*ii*), 3.3(*ii*), and 3.4(*i*) guarantee that  $G \subseteq [V]_g$ .

Case 2:  $G \in \{G_{67}, G_{71}, G_{87}\}$  and  $n \not\equiv 2 \pmod{3}$ . Note that  $G_{71}$  and  $G_{67}$  are subgraphs of  $G_{87}$ . Consider any coloring of  $K_{2n}$  where  $S_n \not\subseteq [V]_r$ . If  $K_5 - 2K_2 \subseteq [V]_g$ , then again Lemmas 3.2(ii), 3.3(ii), and 3.4(i) guarantee that  $G \subseteq [V]_g$ . If  $K_5 - 2K_2 \not\subseteq [V]_g$ , then  $K_5 - P_3 \subseteq [V]_g$  by Lemma 3.1(iv), and Lemma 3.5(i) yields  $G \subseteq [V]_g$ . Case 3:  $G \in \{G_{37}, G_{43}, G_{45}, G_{52}, G_{68}, G_{69}, G_{93}\}$ . Note that  $G \subseteq G_{93}$  for  $G \in \{G_{37}, G_{43}, G_{45}, G_{52}, G_{69}\}$ . Consider any coloring of  $K_{2n}$  where  $S_n \not\subseteq [V]_r$ . If  $K_5 - 2K_2 \subseteq [V]_g$ , then Lemmas 3.2(*ii*), 3.3(*ii*), and 3.4(*i*) imply  $G_{93} \subseteq [V]_g$  and  $G_{68} \subseteq [V]_g$ . Thus, by Lemma 3.1(*i*) and (*iv*), only the case *n* even and  $K_4 \subseteq [V]_g$  is left. Let *U* be the vertex set of a green  $K_4$  and  $W = V \setminus U$ . From Lemma 3.1(*ii*) we obtain  $d_r(u) = n - 2$  for every  $u \in U$  and  $q_g(w, U) = q_r(w, U) = 2$  for every  $w \in W$ . Now we use induction on *n*. If n = 4, then it follows from  $\Delta_r \leq n - 2 = 2$  that  $[W]_g = K_4$  and  $d_r(v) = 2$  for every vertex  $v \in V$ . Hence,  $[V]_r$  is bipartite and every component of  $[V]_r$  is an even cycle. This implies  $[V]_r = C_4 \cup C_4$  or  $[V]_r = C_8$ . In both cases,  $G_{93} \subseteq [V]_g$  and  $G_{68} \subseteq [V]_g$ . Now let  $n \geq 6$ . As induction hypothesis we use

that any coloring of  $K_{2(n-2)}$  without a red subgraph  $S_{n-2}$  contains green subgraphs  $G_{93}$  and  $G_{68}$ . Note that |W| = 2(n-2). A red  $S_{n-2}$  in [W] is impossible since otherwise  $q_r(w, U) = 2$  for every  $w \in W$  would force  $S_n \subseteq [V]_r$ . Thus,  $G_{93} \subseteq [W]_g$  and  $G_{68} \subseteq [W]_g$ , and we are done.

**Proof of Theorem 3.3.** Note that  $K_5 - 2K_2 \subseteq G \subseteq G_{100}$  for every  $G \in \mathcal{G}_{3,3}$ . Consider any coloring of  $K_t$  where  $2n - 1 \leq t \leq 2n + 1$ ,  $n \geq 4$  and  $S_n \not\subseteq [V]_r$ , i.e.  $\Delta_r \leq n-2$ . If t = 2n + 1, then  $K_5 - 2K_2 \subseteq [V]_g$  by Lemma 3.1(*i*). Hence, Lemmas 3.2(*i*), 3.3(*i*) and 3.4(*ii*) yield  $G_{100} \subseteq [V]_g$ . Consequently,  $r(S_n, G) \leq 2n + 1$  for every  $G \in \mathcal{G}_{3,3}$ . If *n* is even, then equality holds since  $r(S_n, G) \geq r(S_n, K_5 - 2K_2) = 2n + 1$ (see (10)).

Now let n be odd. Again,  $K_5 - 2K_2 \subseteq [V]_g$  by Lemma 3.1(i). If t = 2n - 1, then we obtain  $G_{100} \subseteq [V]_g$  for  $n \ge 13$ ,  $G_{94} \subseteq [V]_g$  for  $n \ge 9$  and  $G_{83} \subseteq [V]_g$  for  $n \ge 5$  using Lemmas 3.2(iii), 3.3(iii), 3.4(iii) and (iv). Note that  $G_{63} \subseteq G_{83}$  and  $G_{74} \subseteq G_{83}$ . Thus,  $r(S_n, G_{100}) \le 2n - 1$  for  $n \ge 13$ ,  $r(S_n, G_{94}) \le 2n - 1$  for  $n \ge 9$ and  $r(S_n, G) \le 2n - 1$  for  $G \in \{G_{63}, G_{74}, G_{83}\}$  if  $n \ge 5$ . Equality holds since  $r(S_n, G) \ge 2n - 1$  for every  $G \in \mathcal{G}_3$ . For t = 2n,  $n \in \{5, 7\}$ , we obtain  $G_{94} \subseteq [V]_g$ using Lemmas 3.2(ii), 3.3(ii) and 3.4(i). This implies  $r(S_n, G_{94}) \le 2n$  if  $n \in \{5, 7\}$ . Moreover, the  $(S_5, G_{94})$ -coloring of  $K_9$  in Figure 1 proves that equality holds if n = 5. To complete the proof we have to consider  $G = G_{100}$  where  $n \in \{5, 7, 9, 11\}$ . The computation of  $r(S_5, G_{100})$  can be found in [13], and the bounds for  $r(S_n, G)$  if  $n \in \{7, 9, 11\}$  are obvious.



Figure 1: The red subgraph of a  $(S_5, G_{94})$ -coloring of  $K_9$ .

**Proof of Theorem 3.4.** Note that  $G \subseteq G_{62}$ ,  $G \subseteq G_{65}$  or  $G \subseteq G_{73}$  for every  $G \in \mathcal{G}_{3,4}$ . Moreover,  $G \subseteq G_{83}$  for every  $G \in \mathcal{G}_{3,4}$  and  $G_{73} \subseteq G_{87}$ . First let *n* be odd.

Since  $r(S_n, G) \geq 2n-1$  for any  $G \in \mathcal{G}_3$  we only have to prove that  $r(S_n, G) \leq 2n-1$ . Consider any coloring of  $K_{2n-1}$  where  $S_n \not\subseteq [V]_r$ , i.e.  $\Delta_r \leq n-2$ . By Lemma 3.1(*i*),  $K_5 - 2K_2 \subseteq [V]_g$ . Using Lemmas 3.2(*iii*), 3.3(*iii*) and 3.4(*iv*) we obtain  $G \subseteq [V]_g$  for any  $G \in \mathcal{G}_{3,4}$ . Now let *n* be even. The coloring of  $K_{2n-1}$  where  $[V]_g = \frac{n}{2}K_2 + \overline{K_{n-1}}$  does not contain a red  $S_n$ . Moreover, every green subgraph of order six is contained in  $K_6 - K_4$ ,  $K_6 - (K_3 \cup P_3)$ ,  $K_6 - (C_4 \cup K_2)$  or  $K_6 - (K_5 - 2K_2)$ . This implies  $G \not\subseteq [V]_g$  for every  $G \in \mathcal{G}_{3,4}$ . Thus,  $r(S_n, G) \geq 2n$ . To prove that  $r(S_n, G) \leq 2n$  consider any coloring of  $K_{2n}$  where  $S_n \not\subseteq [V]_r$ . If  $K_5 - 2K_2 \subseteq [V]_g$ , then we take a suitable subgraph of order 2n - 1 and are done as in the case *n* odd. Otherwise, Lemma 3.1(*iv*) forces that  $K_5 - P_3 \subseteq [V]_g$ . Now Lemma 3.5(*i*) yields subgraphs  $G_{62}$ ,  $G_{65}$  and  $G_{73}$  in  $[V]_g$  and the proof is complete.

**Proof of Theorem 3.5.** First we will prove that  $r(S_n, G) = 2n - 1$  for  $G \in \mathcal{G}_{3,5} \setminus \mathcal{S}$ if  $n \geq 4$  and for  $G \in \mathcal{S}$  under the conditions given in the theorem. Since  $r(S_n, G) \geq 2n - 1$  by (10) it remains to establish  $r(S_n, G) \leq 2n - 1$ . Consider any coloring of  $K_{2n-1}$  where  $S_n \not\subseteq [V]_r$ , i.e.  $\Delta_r \leq n-2$ . We distinguish four cases depending on G and n.

Case 1:  $G \in \mathcal{G}_{3,5} \setminus \mathcal{S}$  and  $n \geq 5$  or  $G \in \mathcal{S} \setminus \{G_{33}\}$  where n = 5 or  $n \geq 7$ if  $G \in \{G_{60}, G_{79}\}, n \geq 9$  if  $G = G_{78}$  and  $n \geq 13$  if  $G = G_{92}$ . First let  $K_5 - 2K_2 \subseteq [V]_g$ . Note that  $G \subseteq G_{83}$  for every  $G \in \mathcal{G}_{3,5} \setminus \{G_{78}, G_{92}\}, G_{78} \subseteq G_{94}$ and  $G_{92} \subseteq G_{100}$ . Consequently, the desired result follows from Lemmas 3.2(*iii*), 3.3(iii), 3.4(iii) and 3.4(iv). Now let  $K_5 - 2K_2 \not\subseteq [V]_g$ . By Lemma 3.1(v), nhas to be even and  $K_5 - P_3 \subseteq_{ind} [V]_g$  or  $K_5 - (P_3 \cup K_2) \subseteq_{ind} [V]_g$ . Note that  $G \subseteq G_{70}$  for every  $G \in \mathcal{G}_{3,5} \setminus (\mathcal{S} \cup \{G_{25}, G_{35}, G_{38}, G_{46}, G_{54}\})$  and  $G \subseteq G_{73}$  for every  $G \in \{G_{25}, G_{35}, G_{38}, G_{46}, G_{54}\}$ . Moreover,  $G_{35}, G_{38} \subseteq G_{46}, G_{25} \subseteq G_{54}$  and  $G_{60} \subseteq G_{79} \subseteq G_{92}$ . Hence, the desired result follows from Lemmas 3.5(*ii*), 3.5(*iii*) and 3.6.

Case 2:  $G = G_{33}, n \ge 5$ . If  $d_g(v) \ge n+1$  for some  $v \in V$ , then  $\Delta_r \le n-2$ guarantees two independent green edges in  $[N_g(v)]$ . Hence,  $G_{33} \subseteq [N_g(v) \cup \{v\}]_g$ . It remains  $d_g(v) = n$  and  $d_r(v) = n-2$  for any  $v \in V$ . Assume that  $G_{33} \not\subseteq [V]_g$ . Then any two green edges in  $[N_g(v)]$  have to be adjacent, and  $\Delta_r \le n-2$  forces  $[N_g(v)]_g = K_{1,n-1}$  and  $[N_g(v)]_r = K_{n-1} \cup K_1$ . Let U be the vertex set of the red  $K_{n-1} \subseteq [N_g(v)]$  and  $W = V \setminus U$ . All edges between U and W have to be green because of  $\Delta_r \le n-2$ . But then  $d_g(v) = n$  for every  $v \in V$  guarantees two independent green edges in [W] contradicting  $G_{33} \not\subseteq [V]_g$ .

Case 3:  $G = G_{78}$ , n = 5. Then  $\Delta_r \leq n - 2 = 3$ . Since  $[V]_r$  cannot be 3-regular, there is a vertex  $v \in V$  with  $d_g(v) \geq 6$ . Moreover, a vertex  $w \in V$  exists such that  $|N_g(v) \cap N_g(w)| \geq 4$ . Let  $U = \{u_1, u_2, u_3, u_4\} \subseteq N_g(v) \cap N_g(w)$ . If [U] contains a green edge, then  $G_{78} \subseteq [U \cup \{v, w\}]_g$ . Otherwise,  $[U]_r = K_4$ , and  $\Delta_r \leq 3$  forces only green edges between U and  $W = V \setminus U$ . Furthermore, [W] must contain a green edge  $w_1w_2$ . Consequently, a green  $G_{78}$  occurs in the subgraph induced by  $u_1, u_2, w_1, w_2$ and two other vertices  $w_3, w_4 \in W$ .

Case 4:  $G \in \mathcal{G}_{3,5} \setminus \mathcal{S}$ , n = 4. Then  $G \subseteq G_{70}$ ,  $G \subseteq G_{54}$  or  $G \subseteq G_{46}$ . From  $\Delta_r \leq n-2=2$  we obtain that  $[V]_r \subseteq H$  where  $H \in \{K_1 \cup K_3 \cup K_3, K_1 \cup C_6, K_2 \cup C_6\}$ 

 $C_5, K_3 \cup C_4, C_7$ . In any case,  $G_{70}, G_{54}$  and  $G_{46}$  are subgraphs of  $[V]_g$  and we are done.

Now let us prove the additional results given in the theorem. We first consider  $r(S_4, G)$  for  $G \in \mathcal{S}$ . The coloring of  $K_7$  where  $[V]_r = C_7$  establishes  $r(S_4, G) \geq 8$ . For any coloring of  $K_8$  with  $S_4 \not\subseteq [V]_r$  we obtain that  $[V]_r \subseteq H$  with  $H \in \{K_1 \cup K_3 \cup C_4, K_1 \cup C_7, K_2 \cup K_3 \cup K_3, K_2 \cup C_6, K_3 \cup C_5, C_4 \cup C_4, C_8\}$ . In any case we find green subgraphs  $G_{92}, G_{78}$  and  $G_{33}$ . Since  $G_{60}, G_{79} \subseteq G_{92}$  we are done. To prove  $r(S_5, G_{92}) = 11$  we use that  $K_{3,3} \subseteq G_{92} \subseteq G_{100}$ . It is known that  $r(S_5, K_{3,3}) = 11$  (see [24]) and, by Theorem 3.3,  $r(S_5, G_{100}) = 11$ . This implies the desired result. To complete the proof note that  $G \subseteq G_{100}$  for every  $G \in \mathcal{G}_{3,5}$  and  $G_{78} \subseteq G_{93}$ . Thus,  $r(S_n, G) \leq 2n+1$  for every  $G \in \mathcal{G}_{3,5}$  by Theorem 3.3 and  $r(S_n, G_{78}) \leq 2n$  by Theorem 3.2. Since  $r(S_n, G) \geq 2n - 1$  for any  $G \in \mathcal{G}_3$ , we are done.

## 4 The Ramsey Number $r(S_n, G)$ for $G \in \mathcal{G}_2$

The set  $\mathcal{G}_2$  consists of all graphs from Table 1 which have not yet been considered, i.e. all connected spanning subgraphs of  $K_{1,5} = G_6$ ,  $K_{2,4} = G_{53}$  or  $K_{3,3} = G_{76}$ . This gives

$$\mathcal{G}_2 = \{G_1, G_2, G_3, G_4, G_5, G_6, G_7, G_9, G_{11}, G_{12}, G_{16}, G_{20}, G_{29}, G_{31}, G_{53}, G_{59}, G_{76}\}.$$

In the following theorem  $r(S_n, G)$  is evaluated for all  $G \in \mathcal{G}_2$  and  $4 \le n \le 5$ .

Theorem 4.1.

$$r(S_4, G) = \begin{cases} 6 & if G \in \{G_1, G_4, G_5, G_7, G_9, G_{11}\}, \\ 7 & if G \in \{G_2, G_3, G_{12}, G_{16}, G_{20}, G_{29}, G_{31}, G_{59}\}, \\ 8 & if G \in \{G_6, G_{53}, G_{76}\}. \end{cases}$$

$$r(S_5, G) = \begin{cases} 7 & if G \in \{G_1, G_2, G_3, G_4, G_5, G_9, G_{12}\}, \\ 8 & if G \in \{G_7, G_{11}, G_{16}, G_{20}\}, \\ 9 & if G \in \{G_6, G_{29}, G_{31}, G_{53}, G_{59}\}, \\ 11 & if G = G_{76}. \end{cases}$$

**Proof.** We first determine  $r(S_4, G)$ . Let  $G \in \{G_1, G_4, G_5, G_7, G_9, G_{11}\}$ . Clearly,  $r(S_4, G) \ge 6$ . To establish equality, consider any coloring of  $K_6$  where  $S_4 \not\subseteq [V]_r$ . Consequently,  $[V]_r \subseteq H$  with  $H \in \{C_6, C_5 \cup K_1, C_4 \cup K_2, 2K_3\}$ . In any case,  $G \subseteq [V]_g$ . Now let  $G \in \{G_2, G_3, G_{12}, G_{16}, G_{20}, G_{29}, G_{31}, G_{59}\}$ . Since  $G \subseteq G_{70}$ ,  $r(S_4, G) \le 7$  follows from Theorem 3.5. To prove that  $r(S_4, G) \ge 7$  we use three different colorings of  $K_6$ . If  $[V]_r = 2K_3$ , then we obtain an  $(S_4, G)$ -coloring for  $G \in$  $\{G_2, G_3, G_{12}, G_{16}, G_{31}\}, [V]_r = C_4 \cup K_2$  yields an  $(S_4, G_{20})$ -coloring, and  $[V]_r = C_6$ gives an  $(S_4, G)$ -coloring for  $G \in \{G_{29}, G_{59}\}$ . Finally let  $G \in \{G_6, G_{53}, G_{76}\}$ . The coloring of  $K_7$  where  $[V]_r = C_7$  proves  $r(S_4, G) \ge 8$ . Because  $G_6 \subseteq G_{62}, G_{53} \subseteq G_{93}$ and  $G_{76} \subseteq G_{92}$ , we obtain  $r(S_4, G) \le 8$  using Theorems 3.4, 3.2 and 3.5.

Consider now  $r(S_5, G)$ . First let  $G \in \{G_1, G_2, G_3, G_4, G_5, G_9, G_{12}\}$ . The coloring of  $K_6$  where  $[V]_r = K_{3,3}$  implies  $r(S_5, G) \ge 7$ . Since  $G_1, G_4 \subseteq G_9$  and  $G_2, G_3 \subseteq G_{12}$ it remains to prove that  $r(S_5, G) \leq 7$  for  $G \in \{G_5, G_9, G_{12}\}$ . Consider any coloring of  $K_7$  with  $S_5 \not\subseteq [V]_r$ , i.e.  $d_r(v) \leq 3$  for every  $v \in V$ . As  $r(S_5, C_4) = 7$  (see [7]), a green  $C_4$  must occur. Let  $U = \{u_1, u_2, u_3, u_4\}$  be the vertex set of a green  $C_4$  where the edges  $u_1u_2, u_2u_3, u_3u_4$  and  $u_1u_4$  are green. Moreover, let  $W = \{w_1, w_2, w_3\} = V \setminus U$ . Because of  $S_5 \not\subseteq [V]_r$ ,  $q_q(w, U) \ge 1$  for every  $w \in W$ , and  $q_q(w, U) = 1$  implies only green edges incident to w in [W]. Consider first that two edges in [W], say  $w_1w_2$  and  $w_1w_3$ , are red. Then  $S_5 \not\subseteq [V]_r$  implies  $q_g(w_1, U) \geq 3$  and  $q_g(w_i, U) \geq 2$  for i = 2 and i = 3. We may assume that the edges from  $w_1$  to  $u_1$ ,  $u_2$  and  $u_3$  are green. Because one of the edges from  $w_2$  to  $u_1, u_2$  and  $u_3$  has to be green,  $G_5, G_{12} \subseteq [V]_q$ . Obviously,  $G_9 \subseteq [V]_q$  if  $w_2 w_3$  is green. If  $w_2 w_3$  is red, then  $q_q(w_2, U) \ge 3$ , and this also yields  $G_9 \subseteq [V]_g$ . The remaining case is that two edges in [W], say  $w_1w_2$  and  $w_1w_3$ , are green. Since  $q_g(w_1, U) \ge 1$ ,  $G_5, G_9 \subseteq [V]_g$ , and it remains to prove that  $G_{12} \subseteq [V]_g$ . Clearly,  $G_{12} \subseteq [V]_g$  if  $q_g(u, W) \ge 2$  for some  $u \in U$ . Otherwise,  $q_g(U, W) \le 4$ , and this yields  $q_q(w_i, U) = q_q(w_i, U) = 1$  for two vertices  $w_i, w_i \in W$ . Thus, also  $w_2 w_3$ has to be green. Furthermore we may assume that the edges  $w_1u_1$ ,  $w_2u_2$  and  $w_3u_3$ are green. Then  $d_r(u_4) \leq 3$  forces one of the edges from  $u_4$  to  $\{u_2, w_1, w_2, w_3\}$  to be green and again we obtain  $G_{12} \subseteq [V]_q$ .

Now let  $G \in \{G_7, G_{11}, G_{16}, G_{20}\}$ . The coloring of  $K_7$  where  $[V]_g$  consists of two green copies of  $K_4$  with exactly one common vertex implies  $r(S_5, G) \ge 8$ . Since  $G_7, G_{11} \subseteq G_{20}$  it remains to establish  $r(S_5, G) \le 8$  for  $G \in \{G_{16}, G_{20}\}$ . Consider any coloring of  $K_8$  where  $S_5 \not\subseteq [V]_r$ . To prove that  $G_{16} \subseteq [V]_g$  we use  $r(S_5, G_{12}) = 7$ . Consequently,  $G_{12} \subseteq [V]_g$ . Let  $U = \{u_1, u_2, \ldots, u_6\}$  be the vertex set of a green  $G_{12}$  where the edges from  $u_1$  to  $u_2, u_3, u_4, u_5$  and the edges  $u_6u_2, u_6u_3$  are green. Since  $S_5 \not\subseteq [V]_r$ , one of the edges from  $u_6$  to  $\{u_4, u_5\} \cup (V \setminus U)$  has to be green and this yields  $G_{16} \subseteq [V]_g$ . To prove that  $G_{20} \subseteq [V]_g$  we use  $r(C_4, G_{20}) = 7$  (see [20]). Suppose that  $G_{20} \not\subseteq [V]_g$ . Then a red  $C_4$  must occur. Let U be the vertex set of a red  $C_4$  and  $W = V \setminus U$ . As  $S_5 \not\subseteq [V]_r$ ,  $q_g(u, W) \ge 3$  for every  $u \in U$ . Hence we find three vertices in U and three vertices in W yielding a green  $G_{20} = K_{3,3} - 2K_2$ , a contradiction.

Consider now  $G \in \{G_6, G_{29}, G_{31}, G_{53}, G_{59}\}$ . The coloring of  $K_8$  where  $[V]_r = 2K_4$ shows that  $r(S_5, G_6) \ge 9$ . For  $G \ne G_6$  we obtain  $r(S_5, G) \ge 9$  from  $K_{2,3} \subseteq G$  and  $r(S_5, K_{2,3}) = 9$  (see [17]). To prove  $r(S_5, G) \le 9$ , note that  $G_6, G_{29}, G_{59} \subseteq G_{83}$  and  $G_{31}, G_{53} \subseteq G_{78}$ . Thus, the desired result follows from  $r(S_5, G_{78}) = r(S_5, G_{83}) = 9$ , proved in Theorem 3.5 and Theorem 3.3. For the remaining case  $G = G_{76} = K_{3,3}$ the value of  $r(S_5, G)$  has been determined in [24].

For the six trees  $G \in \mathcal{G}_2$ , the values of  $r(S_n, G)$  are almost completely known from general results obtained for  $r(S_n, T_m)$ . Harary [16] proved that

$$r(S_n, S_m) = n + m - 3 + \epsilon \tag{11}$$

where  $\epsilon = 1$  if n or m is even and  $\epsilon = 0$  otherwise. Burr [2] obtained the following result:

$$r(S_n, T_m) = n + m - 2$$
 if  $n, m \ge 3$  and  $n - 2 \equiv 0 \pmod{m - 1}$ . (12)

Guo and Volkmann [14] showed that

$$r(S_n, T_m) \le n + m - 3$$
 if  $m, n \ge 3, n - 2 \not\equiv 0 \pmod{m - 1}$  and  $T_m \ne S_n$ , (13)

and that equality holds if  $n = m \ge 4$  or if in case of n > m one of the following conditions is fulfilled: n - 2 = k(m - 1) + 1 with  $k \in \mathbb{N}$  or n - 2 = k(m - 1) + rwith  $k \in \mathbb{N}$ ,  $2 \le r \le m - 2$  and  $\Delta(T_m) = m - 2$  or  $k + r + 2 - m \ge 0$ . Parsons [30] determined  $r(S_n, P_m)$  for the path  $P_m$  on m vertices by explicit formulas and a recurrence, in particular he obtained the following result:

$$r(S_{m+k}, P_m) = 2m - 1 \text{ if } 1 \le k < (m+4)/3.$$
 (14)

Here we will determine the missing values of  $r(S_n, G)$  for the trees  $G \in \mathcal{G}_2$  and summarize the results in the following theorem.

**Theorem 4.2.** Let  $n \ge 6$  and  $G \in \{G_1, G_2, G_3, G_4, G_5, G_6\}$ . Then

$$r(S_n, G) = \begin{cases} n+4 & \text{if } G = G_6 \text{ or if } n \equiv 2 \pmod{5} \text{ and } G \neq G_6, \\ n+2 & \text{if } n = 9 \text{ and } G \in \{G_1, G_4, G_5\}, \\ n+3 & \text{otherwise.} \end{cases}$$

**Proof.** The case  $G = G_6 = S_6$  is settled by (11), and for  $G \neq G_6$ ,  $n \equiv 2 \pmod{5}$  we are done by (12). Using (13) where equality holds, we obtain  $r(S_n, G)$  for  $G = G_3$ , and for  $G \in \{G_1, G_2, G_4, G_5\}$  only n = 9 is left. From (14) we derive  $r(S_9, G_1) = 11$ . By (13),  $r(S_9, G_2) \leq 12$ , and the coloring of  $K_{11}$  where  $[V]_g = K_5 \cup K_{3,3}$  yields equality. It remains to prove  $r(S_9, G) = 11$  for  $G \in \{G_4, G_5\}$ . The coloring of  $K_{10}$ with  $[V]_q = 2K_3 \cup K_4$  implies  $r(S_9, G) \ge 11$ . To establish equality, consider any coloring of  $K_{11}$  where  $S_9 \not\subseteq [V]_r$ . Since  $r(S_9, G_1) = 11$ , a green  $P_6$  must occur. Let  $U = \{u_1, u_2, \ldots, u_6\}$  be the vertex set of a green  $P_6$  where the edges  $u_i u_{i+1}$  are green for  $i = 1, \ldots, 5$ . Moreover, let  $W = V \setminus U$ . If one of the edges from  $u_2$  to  $u_4, u_5$ or  $u_6$  is green, then  $G_4 \subseteq [V]_g$ . Otherwise,  $S_9 \not\subseteq [V]_r$  implies that  $u_2 w$  is green for some  $w \in W$ . Similarly, at least one edge from w to  $(W \setminus \{w\}) \cup \{u_3, u_4, u_5, u_6\}$ has to be green, and again we find a green  $G_4$ . It remains to prove that  $G_5 \subseteq [V]_g$ . A vertex  $v \in V(K_{11})$  with  $d_r(v) \neq 7$  must exist. Consequently,  $S_9 \not\subseteq [V]_r$  forces  $d_r(v) \leq 6$ , i.e.  $d_q(v) \geq 4$ . Let  $U = \{u_1, u_2, u_3, u_4\} \subseteq N_q(v), U' = U \cup \{v\}$ , and  $W = V \setminus U' = \{w_1, \ldots, w_6\}$ . Suppose  $G_5 \not\subseteq [V]_g$ . From  $r(S_4, G_5) = 6$  we obtain  $S_4 \subseteq [W]_r$ . We may assume that the edges from  $w_1$  to  $w_2$ ,  $w_3$  and  $w_4$  are red. Because of  $S_9 \not\subseteq [V]_r$ ,  $q_g(w_1, U') \geq 1$ . If  $q_g(w_1, U) \geq 1$ , say  $w_1u_1$  is green, then  $S_9 \not\subseteq [V]_r$ forces  $q_q(u_1, (W \setminus \{w_1\}) \cup (U \setminus \{u_1\})) \ge 1$ . This gives  $G_5 \subseteq [V]_q$ , a contradiction. It remains that  $w_1 v$  is green and all edges from  $w_1$  to U are red. But then  $S_9 \not\subseteq [V]_r$ 

forces only green edges from  $w_1$  to  $w_5$  and  $w_6$ . Again  $G_5 \subseteq [V]_q$ , and we are done.

Next we consider the six non-tree graphs  $G \in \mathcal{G}_2$  where  $G \neq K_{2,4}$  and  $C_6 \not\subseteq G$ . Since  $C_4 \subseteq G$ ,  $r(S_n, G) \geq r(S_n, C_4)$  for  $G \in \{G_9, G_{11}, G_{12}, G_{16}\}$ , and  $K_{2,3} \subseteq G$ implies  $r(S_n, G) \geq r(S_n, K_{2,3})$  for  $G \in \{G_{29}, G_{31}\}$ . We will show that in both cases equality holds if n is sufficiently large. The following lemma is essential for proving this result.

**Lemma 4.1.** If  $r(S_n, C_4) \ge n + 4$  and  $G \in \{G_9, G_{11}, G_{12}, G_{16}\}$ , then  $r(S_n, G) = r(S_n, C_4)$ . If  $r(S_n, K_{2,3}) \ge n + 4$  and  $G \in \{G_{29}, G_{31}\}$ , then  $r(S_n, G) = r(S_n, K_{2,3})$ .

**Proof.** It suffices to establish the missing upper bounds for  $r(S_n, G)$ . Assume first that  $r(S_n, C_4) \ge n + 4$  and consider any coloring of  $K_t$  where  $t = r(S_n, C_4)$  and  $S_n \not\subseteq [V]_r$ . Then  $C_4 \subseteq [V]_g$  and  $d_g(v) \ge 5$  for every  $v \in V$ . Let U be the vertex set of a green  $C_4$ . Since  $|N_g(u) \setminus U| \ge 2$  for any  $u \in U$ ,  $G_i \subseteq [V]_g$  for  $i \in \{11, 12, 16\}$ . To find a green  $G_9$ , take a vertex  $v \in N_g(u) \setminus U$  for some  $u \in U$ . As  $|N_g(v) \setminus U| \ge 1$ , the desired result follows. Assume now that  $r(S_n, K_{2,3}) \ge n + 4$  and consider any coloring of  $K_t$  where  $t = r(S_n, K_{2,3})$  and  $S_n \not\subseteq [V]_r$ . Then  $K_{2,3} \subseteq [V]_g$  and  $d_g(v) \ge 5$ for every  $v \in V$ . Let U be the vertex set of a green  $K_{2,3}$ . Because  $|N_g(u) \setminus U| \ge 1$  for every  $u \in U$ ,  $G_{29} \subseteq [V]_g$  and  $G_{31} \subseteq [V]_g$ , and we are done.

By (8) and  $r(S_n, C_4) \leq r(S_n, K_{2,3})$ , the conditions on  $r(S_n, C_4)$  and  $r(S_n, K_{2,3})$  in Lemma 4.1 are satisfied if n is sufficiently large, and we obtain the following result.

**Theorem 4.3.** If *n* is sufficiently large, then  $r(S_n, G) = r(S_n, C_4)$  for  $G \in \{G_9, G_{11}, G_{12}, G_{16}\}$  and  $r(S_n, G) = r(S_n, K_{2,3})$  for  $G \in \{G_{29}, G_{31}\}$ .

It remains an open problem to determine the exact values of  $r(S_n, G)$  if  $G \in \{G_9, G_{11}, G_{12}, G_{16}, G_{29}, G_{31}\}$  and all  $n \ge 6$ . For  $G \in \{G_9, G_{11}, G_{12}, G_{16}\}$  it follows from Lemma 4.1, (6), (7) and (8), that the exact value of  $r(S_n, G)$  is known for infinitely many n and

$$n - 1 + \lfloor \sqrt{n - 1} - 6(n - 1)^{11/40} \rfloor < r(S_n, G) \le n + \lceil \sqrt{n - 1} \rceil$$

for n sufficiently large. In [3] it is shown that  $r(S_n, K_{2,3}) < n + 2\sqrt{n}$  for all sufficiently large n. Consequently, for  $G \in \{G_{29}, G_{31}\}$  and n sufficiently large,

$$n-1 + \lfloor \sqrt{n-1} - 6(n-1)^{11/40} \rfloor < r(S_n, G) < n + 2\sqrt{n}.$$

The remaining non-tree graphs in  $\mathcal{G}_2$  are  $G_{53} = K_{2,4}$  and the four subgraphs of  $K_{3,3}$  containing a subgraph isomophic to  $C_6$ , namely  $G_7 = C_6$ ,  $G_{20} = K_{3,3} - 2K_2$ ,  $G_{59} = K_{3,3} - K_2$  and  $G_{76} = K_{3,3}$ . The values of  $r(S_n, C_6)$  for  $6 \le n \le 12$  can be found in [36]:  $r(S_n, C_6) = n+4$  if  $6 \le n \le 7$  or  $10 \le n \le 12$  and  $r(S_n, C_6) = n+3$  if  $8 \le n \le 9$ . Moreover,  $r(S_6, K_{2,4}) = 11$ ,  $r(S_6, K_{3,3}) = 12$  and  $r(S_7, K_{2,4}) = r(S_7, K_{3,3}) = 13$  (see [24]). From [3] we know that, for n sufficiently large,  $r(S_n, K_{2,4}) < n + 3\sqrt{n}$  and  $r(S_n, G) < n+3n^{2/3}$  for all  $G \in \{G_7, G_{20}, G_{59}, G_{76}\}$ , but it remains an unsolved problem to determine further exact values.

# References

- [1] L. BOZA, Corrections to "The Ramsey numbers for a quadrilateral vs. all graphs on six vertices", J. Combin. Math. Combin. Comput. 89 (2014), 155–156.
- [2] S. A. BURR, Generalized Ramsey theory for graphs—a survey, in: Graphs and Combinatorics, Lec. Notes in Math. 406 (R. A. Bari and F. Harary, eds.), Springer, Berlin, 1974, 52–75.
- [3] S. A. BURR, P. ERDŐS, R. J. FAUDREE, C. C. ROUSSEAU and R. H. SCHELP, Some complete bipartite graph-tree Ramsey numbers, Ann. Discrete Math. 41 (1989), 79–89.
- [4] G. CHARTRAND, R. J. GOULD and A. D. POLIMENI, On Ramsey numbers of forests versus nearly complete graphs, J. Graph Theory 4 (1980), 233–239.
- [5] V. CHVÁTAL, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977), 93.
- [6] V. CHVÁTAL and F. HARARY, Generalized Ramsey theory for graphs III: Small off-diagonal numbers, *Pacific J. Math.* 41 (1972), 335–345.
- [7] M. CLANCY, Some small Ramsey numbers, J. Graph Theory 1 (1977), 89–91.
- [8] P. ERDŐS, R. J. FAUDREE, C. C. ROUSSEAU and R. H. SCHELP, The booktree Ramsey numbers, *Scientia, Ser. A: Mathematical Sciences* 1 (1988), 111– 117.
- [9] R. J. FAUDREE, C. C. ROUSSEAU, and R. H. SCHELP, All triangle–graph Ramsey numbers for connected graphs of order six, *J. Graph Theory* 4 (1980), 293–300.
- [10] R. J. FAUDREE, C. C. ROUSSEAU and R. H. SCHELP, Small order graph-tree Ramsey numbers, *Discrete Math.* 72 (1988), 119–127.
- [11] R. J. FAUDREE, R. H. SCHELP and C. C. ROUSSEAU, Generalizations of a Ramsey result of Chvátal, in: Proc. Fourth Int. Conf. on the Theory and Applications of Graphs, Kalamazoo, 1980, 351–361.
- [12] R. J. GOULD and M. S. JACOBSON, On the Ramsey number of trees versus graphs with large clique number, J. Graph Theory 7 (1983), 71–78.
- [13] G. HUA, S. HONGXUE and L. XIANGYANG, Ramsey numbers  $r(K_{1,4}, G)$  for all three-partite graphs G of order six, J. Southeast Univ. (English Edition) **20** (2004), 378–380.
- [14] Y. B. GUO and L. VOLKMANN, Tree-Ramsey numbers, Australas. J. Combin. 11 (1995), 169–175.

- [15] F. HARARY, *Graph Theory*, Addison-Wesley, Reading (Massachusetts), 1969.
- [16] F. HARARY, Recent results on generalized Ramsey theory for graphs, in: Graph Theory and Applications, Lec. Notes in Math. 303 (Y. Alavi et al., eds.), Springer, Berlin, 1972, 125–138.
- [17] G. R. T. HENDRY, Ramsey numbers for graphs with five vertices, J. Graph Theory 13 (1989), 245–248.
- [18] M. HOETH and I. MENGERSEN, Ramsey numbers for graphs of order four versus connected graphs of order six, Util. Math. 57 (2000), 3–19.
- [19] C. J. JAYAWARDENE and C. C. ROUSSEAU, Ramsey numbers  $r(C_6, G)$  for all graphs G of order less than six, *Congr. Numer.* **136** (1999), 147–159.
- [20] C. J. JAYAWARDENE and C. C. ROUSSEAU, The Ramsey numbers for a quadrilateral vs. all graphs on six vertices, J. Combin. Math. Combin. Comput. 35 (2000), 71–87, Erratum, J. Combin. Math. Combin. Comput. 51 (2004), 221.
- [21] C. J. JAYAWARDENE and C. C. ROUSSEAU, The Ramsey number for a cycle of length five vs. a complete graph of order six, J. Graph Theory 35 (2000), 99–108.
- [22] C. J. JAYAWARDENE and C. C. ROUSSEAU, Ramsey numbers  $r(C_5, G)$  for all graphs G of order six, Ars Combin. 57 (2000), 163–173.
- [23] M. KRONE and I. MENGERSEN, The Ramsey numbers  $r(K_5-2K_2, 2K_3)$ ,  $r(K_5-e, 2K_3)$ , and  $r(K_5, 2K_3)$ , J. Combin. Math. Combin. Comput. 81 (2012), 257–260.
- [24] R. LORTZ and I. MENGERSEN, Further Ramsey numbers for small complete bipartite graphs, Ars Combin. 79 (2006), 195–203.
- [25] R. LORTZ and I. MENGERSEN, Ramsey numbers for small graphs versus small disconnected graphs, Australas. J. Combin. 51 (2011), 89–108.
- [26] R. LORTZ and I. MENGERSEN, On the Ramsey numbers of certain graphs of order five versus all connected graphs of order six, J. Combin. Math. Combin. Comput. 90 (2014), 197–222.
- [27] R. LORTZ and I. MENGERSEN, On the Ramsey numbers  $r(S_n, K_6 3K_2)$ , J. Combin. Math. Combin. Comput. (to appear).
- [28] R. LORTZ and I. MENGERSEN, On the Ramsey numbers of non-star trees versus connected graphs of order six, (in preparation).
- [29] J. MCNAMARA,  $r(K_4 e, K_6) = 21$ , (unpublished).
- [30] T. D. PARSONS, Path-star Ramsey numbers, J. Combin. Theory (B) 17 (1974), 51–58.

- [31] T. D. PARSONS, Ramsey graphs and block designs I, Trans. Amer. Math. Soc. 209 (1975), 33–44.
- [32] S. P. RADZISZOWSKI, Small Ramsey numbers, *Electron. J. Combin.* (2014) DS 1.14.
- [33] C. C. ROUSSEAU and C. J. JAYAWARDENE, The Ramsey number for a quadrilateral vs. a complete graph on six vertices, *Congr. Numer.* **123** (1997), 97–108.
- [34] C. C. ROUSSEAU and J. SHEEHAN, A class of Ramsey problems involving trees, J. London Math. Soc.(2) 18 (1978), 392–396.
- [35] Y. WU, Y. SUN, R. ZHANG and S. P. RADZISZOWSKI, Ramsey numbers of  $C_4$  versus wheels and stars, *Graphs Combin.* **31** (2015), 2437–2446.
- [36] Y. ZHANG, H. BROERSMA and Y. CHEN, Narrowing down the gap on cycle-star Ramsey numbers, J. Comb. 7 (2016), 481–493.

(Received 22 Feb 2017; revised 20 Apr 2018, 14 Sep 2018)