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Abstract

In this paper, we introduce the notion of strength of a graph, and es-
tablish formulas for the strength of certain classes of graphs. We also
present sharp bounds for the strength of a graph and other parameters
defined on graphs. Moreover, we exhibit a connection between the super
magic strength and a particular type of strength, which leads us to sharp
bounds for the super magic strength of super edge-magic graphs. The
work conducted in this paper suggests some open problems and a new
conjecture.

1 Introduction

In this paper, only finite graphs without loops or multiple edges will be considered.
Terms and notation not defined below follow those used in [3] or [4]. The vertex set
of a graph G is denoted by V (G), while the edge set of G is denoted by E (G). As
usual, the path of order n, the cycle of order n and the complete graph of order n are
denoted by Pn, Cn and Kn, respectively. The complete bipartite graph with partite
sets U and V , where |U | = m and |V | = n, is denoted by Km,n. The graph with n
vertices and no edges is referred to as the empty graph.

The cartesian product G ∼= G1 × G2 has V (G) = V (G1) × V (G2), and two
vertices (u1, u2) and (v1, v2) of G are adjacent if and only if either

u1 = v1 and u2v2 ∈ E (G2)

or
u2 = v2 and u1v1 ∈ E (G1) .
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Some important classes of graphs can be defined in terms of cartesian products. The
ladder Ln can be defined as the graph Pn×K2. The prism Dn can be defined as the
graph Cn ×K2. The book Bn can be defined as the graph K1,n ×K2. The hypercube
Qn can be defined inductively as Q1

∼= K2 and Qn
∼= Qn−1 × K2 for any integer

n ≥ 2.
For the sake of notational convenience, we denote the interval of integers k such

that i ≤ k ≤ j by the symbol [i, j]. On the other hand, if i > j, then we treat [i, j]
as the empty set. If such situation occurs in particular formulas for a given vertex
labeling, then we ignore the corresponding portions of the formulas.

For a graph G of order p and size q, a bijective function f : V (G) ∪ E(G) →
[1, p+ q] is called an edge-magic labeling if f(u) + f(v) + f(uv) is a constant c (f)
(called the magic constant or valence) for each uv ∈ E(G). If such a labeling exists,
then G is called an edge-magic graph.

The notion of edge-magic labelings was first introduced in 1970 by Kotzig and
Rosa [8]. These labelings were originally called “magic valuations” by them. These
were rediscovered in 1996 by Ringel and Lladó [9] who coined one of the now popular
terms for them: edge-magic labelings. Afterwards, Enomoto et al. [5] defined a
slightly restricted version of an edge-magic labeling f of a graph G by requiring that
f (V (G)) = [1, |V (G)|]. Such a labeling was called by them super edge-magic. Thus,
a super edge-magic graph is a graph that admits a super edge-magic labeling. It is
worth to mention that Acharya and Hegde [1] had already discovered such graphs in
1991 under the name of “strongly indexable graphs”. However, they arrived at this
concept from a different point view.

The concept of super magic strength was introduced by Avadayappan et al. [2].
The super magic strength, sm (G), of a graphG is defined as the minimum of all magic
constants c (f), where the minimum is taken over all super edge-magic labelings f
of G, that is,

sm (G) = min {c (f) |f is a super edge-magic labeling of G} .
It is an immediate consequence of the definition that if G is not a super edge-magic
graph or an empty graph, then sm (G) is undefined (or we could define sm (G) =
+∞). It is also true that G is a super edge-magic graph if and only if sm (G) < +∞.

As the concept of super magic strength is effectively defined only for super edge-
magic graphs, we generalize this concept in this paper for any nonempty graph as
follows. A numbering f of a graph G of order p is a labeling that assigns distinct
elements of the set [1, p] to the vertices of G, where each edge uv of G is labeled
f (u) + f (v). The strength, strf (G), of a numbering f : V (G) → [1, p] of G is
defined by

strf (G) = max {f (u) + f (v) |uv ∈ E (G)} ,
that is, strf (G) is the maximum edge label of G, and the strength, str(G), of a graph
G itself is

str (G) = min {strf (G) |f is a numbering of G} .
A numbering f of a graph G for which strf (G) = str (G) is called a strength labeling
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of G. If G is an empty graph, then str (G) is undefined (or we could define str (G) =
+∞).

The following lemma is an immediate consequence of the definition for the strength
of a graph.

Lemma 1.1 If G and H are nonempty graphs such that H is a subgraph of G, then
str (G) ≥ str (H).

There are other related parameters that have been studied in the area of graph
labeling. Excellent sources for more information in this topic are found in the survey
by Gallian [7].

2 Bounds for the strength

In this section, several bounds for the strength of a graph are presented in terms of
other parameters defined on graphs.

We start with the next lower bound for the strength of a graph in terms of its
order and minimum degree, which will prove to be very useful later in this paper.

Lemma 2.1 For every graph G of order p with δ (G) ≥ 1,

str (G) ≥ p+ δ (G) .

Proof: Let G be a graph of order p with δ (G) ≥ 1. If a strength labeling f of G is
given, then there is a vertex v labeled p. Since deg v ≥ δ (G) ≥ 1, there are at least
δ (G) vertices adjacent to v. Since f minimizes the greatest edge label, it follows
that the vertex v must be adjacent to a vertex labeled at least δ (G). Thus, f has
the property that

strf (G) = max {f (u) + f (v) |uv ∈ E (G)} ≥ p+ δ (G) .

Consequently, str (G) ≥ p+ δ (G). �

A graphG has no isolated vertices if and only if δ (G) ≥ 1. On the other hand, the
bound given in the preceding result does not hold for graphs with isolated vertices.
To see this, it suffices to consider the graph K2 ∪ 2K1. By assigning 1 and 2 to the
vertices of K2, and 3 and 4 to the vertices of 2K1, we have a strength labeling of
K2 ∪ 2K1 with str (K2 ∪ 2K1) = 3.

A vertex-cut in a graphG is a set S of vertices ofG such thatG−S is disconnected.
The connectivity, κ (G), of a graph G is the minimum cardinality of a vertex-cut of G
if G is not complete, and κ (G) = n−1 if G ∼= Kn for some positive integer n. Hence,
κ (G) is the minimum number of vertices whose removal results in a disconnected
graph or a trivial graph.

Connectivity has an edge analogue. An edge-cut in a graph G is a set X of edges
of G such that G −X is disconnected. The edge-connectivity, κ1 (G), of a graph G
is the minimum cardinality of an edge-cut of G if G is nontrivial, and κ1 (K1) = 0.

The following result, due to Whitney [10], establishes a connection between con-
nectivity, edge-connectivity, and minimum degree of a graph.
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Theorem 2.1 For every graph G,

κ (G) ≤ κ1 (G) ≤ δ (G) .

The next two lower bounds for the strength of a graph follow from the preceding
result and Lemma 2.1.

Corollary 2.1 For every graph G of order p with δ (G) ≥ 1,

(1) str (G) ≥ p+ κ1 (G),
(2) str (G) ≥ p+ κ (G).

An assignment of colors (objects of a set) to the vertices of a graph G so that
adjacent vertices are assigned different colors is called a coloring of G. A coloring in
which n colors are used is an n-coloring. A graph G is n-colorable if there exists an
m-coloring of G for some m ≤ n. The minimum n for which a graph G is n-colorable
is called the chromatic number of G and is denoted by χ (G). For an integer n ≥ 2,
we say that a graph G is n-critical if χ (G) = n and χ (H) < n for every proper
subgraph H of G.

The following lemma taken from [3, p. 117] will prove to be useful in our study
of the strength of graphs.

Lemma 2.2 If G is an n-critical graph, then δ (G) ≥ n− 1.

The next result provides a lower bound for the strength of a graph in terms of
the chromatic number of n-critical graphs.

Corollary 2.2 For every n-critical graph G of order p,

str (G) ≥ p+ n− 1.

Proof: Let G be an n-critical graph of order p. Since G is n-critical, it follows that
δ (G) ≥ 1, due to the fact that isolated vertices do not affect the chromatic number.
By Lemma 2.1, we have str (G) ≥ p + δ (G). However, we have δ (G) ≥ n − 1 by
Lemma 2.2. Therefore, we conclude that

str (G) ≥ p+ δ (G) ≥ p + n− 1,

which shows the desired result. �

The preceding result is the best possible in the sense that G must be n-critical.
In order to see this, it suffices to consider the graph G with V (G) = {xi |i ∈ [1, 4]}
and E (G) = {xixi+1 |i ∈ [1, 2]} ∪ {x1xi |i ∈ [3, 4]}. Then χ (G) = χ (G− x4) = 3,
that is, G is not 3-critical. Since G has order 4 and δ (G) = 1, it follows from Lemma
2.1 that str (G) ≥ 5. On the other hand, the labeling f : V (G) → [1, 4] such that
f (xi) = i (i ∈ [1, 4]) has the property that strf (G) = 5. Thus, str (G) = 5.

If S is a nonempty subset of the vertex set V (G) of a graph G, then the subgraph
〈S〉 of G induced by S is the graph having vertex set S and whose edge set consists
of those edges of G incident with two elements of S. A subgraph H of G is called
induced if H ∼= 〈S〉 for some subset S of V (G).

There is a connection between the strength of a graph of order p and its induced
subgraphs.
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Theorem 2.2 If G is a graph of order p ≥ 3 containing a path of order k as an
induced subgraph, then

str (G) ≤ 2p− (k − 1) ,

where k ∈ [2, p− 1].

Proof: Let G be a graph of order p ≥ 3 with V (G) = {xi |i ∈ [1, p]}. Furthermore,
let S = {xi |i ∈ [1, k]}, and assume, without loss of generality, that 〈S〉 ∼= Pk, where
E (Pk) = {xixi+1 |i ∈ [1, k − 1]}. Now, consider the labeling f : V (G) → [1, p] such
that

f (w) =

⎧⎨
⎩

p+ 1− i if w = x2i−1 and i ∈ [1, �k/2�],
p− (k − i) if w = x2i and i ∈ [1, k/2�],
i if w = xk+i and i ∈ [1, p− k].

Then f has the property that

strf (G) = max {f (u) + f (v) |uv ∈ E (G)}
= f (x1) + f (x2) = 2p− (k − 1) .

Thus, str (G) ≤ 2p− (k − 1). �

For a connected graph G and a pair u, v ∈ V (G), the distance dG (u, v) between
u and v is the length of a shortest u − v path in G. The diameter, diamG, of a
connected graph G is defined as diamG = max {dG (u, v) |u, v ∈ V (G)}.

With the aid of Theorem 2.2, it is now possible to present an upper bound for
the strength of a connected graph in terms of its order and diameter.

Corollary 2.3 For every connected graph G of order p,

str (G) ≤ 2p− diamG.

Proof: Let G be a connected graph of order p and diamG = k. Then there is a subset
S = {xi |i ∈ [1, k + 1]} of V (G) such that 〈S〉 ∼= Pk+1. Therefore, the result follows
from Theorem 2.2. �

It is clear from Corollary 2.3 that every connected graph has finite strength.
In the following result, lower and upper bounds for the strength of a graph can

be given in terms of the maximum degree and the order of the graph, respectively.
For the purpose of proving this result, it is convenient to introduce some additional
concepts and notation. The neighborhood, N (v), of a vertex v of a graph G is the
set of all vertices of G that are adjacent to v, and the closed neighborhood N [v] =
N (v) ∪ {v}.

Theorem 2.3 For every nonempty graph G of order p,

Δ(G) + 2 ≤ str (G) ≤ 2p− 1.
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Proof: We begin with the lower bound. Let a strength labeling of a nonempty graph
G be given and let v be a vertex of G for which deg v = Δ(G) = k. Furthermore, let
H ∼= 〈S〉, where S = N [v]. Then H is a subgraph of G as well as K1,k is a subgraph
of H . By Lemma 1.1,

str (G) ≥ str (H) ≥ str (K1,k) .

However, K1,k has order k + 1 and δ (K1,k) = 1. It follows from Lemma 2.1 that
str (K1,k) ≥ k + 2. Hence, str (G) ≥ Δ(G) + 2.

Next, we show the upper bound. Since every nonempty graph G of order p is a
subgraph of Kp (p ≥ 2), it follows from Lemma 1.1 that str (G) ≤ str (Kp) (see
Theorem 3.4 for the strength of Kp). This together with Corollary 2.3 implies that
str (G) ≤ 2p− 1. �

It is immediate from Theorem 2.3 that every nonempty graph has finite strength.
The join G ∼= G1 +G2 has V (G) = V (G1) ∪ V (G2) and

E (G) = E (G1) ∪ E (G2) ∪ {uv |u ∈ V (G1) and v ∈ V (G2)} .
With this definition in hand, it is now possible to present the next lower and upper
bounds.

Theorem 2.4 If G is a graph of order p, then

p+m+min {p, δ (G) +m} ≤ str (G +mK1) ≤ str (G) + 2m

for every positive integer m.

Proof: It suffices to prove the theorem for nonempty graphs. Since the join G+mK1

is connected, it follows that δ (G+mK1) ≥ 1. However, G +mK1 has order p +m
and δ (G+mK1) = min {p, δ (G) +m}. Thus, the lower bound follows from Lemma
2.1.

To verify the upper bound, let V (G+mK1) = {xi |i ∈ [1, p]} ∪ {yi |i ∈ [1, m]} and
E (G+mK1) = E (G)∪{xyi |x ∈ V (G) and i ∈ [1, m]}. Furthermore, let str (G) =
k for some positive integer k. Then there exists a strength labeling f for which

strf (G) = max {f (u) + f (v) |uv ∈ E (G)} = k.

To complete the proof, we show that there exists a numbering g of G+mK1 for which
strg (G +mK1) = k+2m. Consider the labeling g : V (G+mK1) → [1, p+m] such
that

g (xi) = f (xi) +m (i ∈ [1, p] ) and g (yi) = i (i ∈ [1, m] ).

Then f has the property that

strg (G+mK1) = max {g (u) + g (v) |uv ∈ E (G+mK1)}
= max {f (u) + f (v) |uv ∈ E (G)}+ 2m

= k + 2m.

Thus, str (G+mK1) ≤ str (G) + 2m. �
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3 The strength of some classes of graphs

As is often the case, when no general formula exists for the value of a parameter for
an arbitrary graph, formulas (or partial formulas) are established for certain classes
of graphs. Ordinarily, the first classes to be considered are paths, cycles, complete
graphs and complete bipartite graphs. Such is the case with the strength. Therefore,
in this section, we present formulas for the strength of these classes of graphs. We
also provide a formula for the strength of 1-regular graphs. Moreover, we examine
the strength of graphs that are cartesian products and related graphs.

We begin with a formula for the strength of the path Pn.

Theorem 3.1 For every integer n ≥ 2,

str (Pn) = n+ 1.

Proof: Let n be an integer with n ≥ 2. Then the path Pn has order n and δ (Pn) = 1,
and the inequality str (Pn) ≥ n + 1 follows from Lemma 2.1. It remains to show
that str (Pn) ≤ n + 1. This can be easily completed by finding a numbering f of
Pn for which strf (Pn) = n + 1. If we let V (Pn) = {xi |i ∈ [1, n]} and E (Pn) =
{xixi+1 |i ∈ [1, n− 1]}, then the labeling f : V (Pn) → [1, n] such that

f (x2i−1) = n+ 1− i (i ∈ [1, �n/2�] ) and f (x2i) = i (i ∈ [1, n/2�] )
has the property that

strf (Pn) = max {f (u) + f (v) |uv ∈ E (Pn)}
= f (x1) + f (x2) = n+ 1.

Thus, str (Pn) = n+ 1. �

We next present a formula for the strength of the 1-regular graph nP2.

Theorem 3.2 For every positive integer n,

str (nP2) = 2n+ 1.

Proof: The inequality str (nP2) ≥ 2n+ 1 follows directly from Lemma 2.1, since the
1-regular graph nP2 has order 2n and δ (nP2) = 1.

For the reverse inequality, it suffices to show the existence of a numbering f of nP2

for which strf (nP2) = 2n + 1. Let V (nP2) = {xi |i ∈ [1, n]} ∪ {yi |i ∈ [1, n]} and
E (nP2) = {xiyi |i ∈ [1, n]}, and consider the labeling f : V (nP2) → [1, 2n] such that

f (xi) = i (i ∈ [1, n] ) and f (yi) = 2n+ 1− i (i ∈ [1, n] ).

Then f has the property that

strf (nPn) = max {f (u) + f (v) |uv ∈ E (nP2)}
= f (x1) + f (y1) = 2n+ 1.

Thus, str (nPn) = 2n+ 1. �
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The strength of the cycle Cn can be determined as shown below.

Theorem 3.3 For every integer n ≥ 3,

str (Cn) = n + 2.

Proof: Since the cycle Cn has order n and δ (Cn) = 2, it follows from Lemma 2.1
that str (Cn) ≥ n + 2.

To establish that str (Cn) ≤ n+2, it suffices to show the existence of a numbering f
of Cn for which strf (Cn) = n + 2. Let V (Cn) = {xi |i ∈ [1, n]} and

E (Cn) = {xixi+1 |i ∈ [1, n− 1]} ∪ {x1xn} .
Then the labeling f : V (Cn) → [1, n] such that

f (x2i−1) = i (i ∈ [1, �n/2�] ) and f (x2i) = n + 1− i (i ∈ [1, n/2�] )
has the property that

strf (Cn) = max {f (u) + f (v) |uv ∈ E (Cn)}
= f (x2) + f (x3) = n+ 2.

Thus, str (Cn) = n + 2. �

The strength of the complete graph Kn is quite easy to determine.

Theorem 3.4 For every integer n ≥ 2,

str (Kn) = 2n− 1.

Proof: There is only one numbering f of Kn and the label of the edge joining the
vertices labeled n− 1 and n is 2n− 1. Thus, strf (Kn) = str (Kn) = 2n− 1. �

The strength of Km,n can be determined as follows.

Theorem 3.5 For every two positive integers m and n with n ≥ m,

str (Km,n) = 2m+ n.

Proof: Let X = {xi |i ∈ [1, m]} and Y = {yi |i ∈ [1, n]} be the partite sets of Km,n,
where |X| = m ≤ n = |Y |. Then Km,n has order m+n and δ (Km,n) = m. It follows
from Lemma 2.1 that str (Km,n) ≥ 2m+ n.

For the reverse inequality, consider the labeling f : V (Km,n) → [1, m+ n] such that

f (xi) = i (i ∈ [1, m] ) and f (yi) = m+ i (i ∈ [1, n] ).

Then f has the property that

strf (Km,n) = max {f (u) + f (v) |uv ∈ E (Km,n)}
= f (xm) + f (yn) = 2m+ n.

Thus, str (Km,n) ≤ 2m+ n. �
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For the rest of this section, we concern with graphs that are cartesian products
and related graphs. We first compute the strength of the ladder Ln.

Theorem 3.6 For every integer n ≥ 2,

str (Ln) = 2n+ 2.

Proof: Let n be an integer with n ≥ 2. Then the ladder Ln has order 2n and
δ (Ln) = 2. Thus, the inequality str (Ln) ≥ 2n + 2 is an immediate consequence of
Lemma 2.1.

For the reverse inequality, it suffices to show the existence of a numbering f of Ln

for which strf (Ln) = 2n+ 2. Let V (Ln) = {xi|i ∈ [1, n]} ∪ {yi|i ∈ [1, n]} and

E (Ln) = {xixi+1|i ∈ [1, n− 1]} ∪ {yiyi+1|i ∈ [1, n− 1]}
∪ {xiyi|i ∈ [1, n]} ,

and consider the labeling f : V (Ln) → [1, 2n] such that

f (w) =

⎧⎪⎪⎨
⎪⎪⎩

2i− 1 if w = x2i−1 and i ∈ [1, �n/2�],
2n+ 1− 2i if w = x2i and i ∈ [1, n/2�],
2n+ 2− 2i if w = y2i−1 and i ∈ [1, �n/2�],
2i if w = y2i and i ∈ [1, n/2�].

Then f has the property that

strf (Ln) = max {f (u) + f (v) |uv ∈ E (Ln)}
= f (y1) + f (y2) = 2n+ 2.

Thus, str (Ln) = 2n+ 2. �

We next present a formula for the strength of the prism Dn.

Theorem 3.7 For every integer n ≥ 3,

str (Dn) = 2n+ 3.

Proof: In light of Lemma 2.1, it suffices to show that str (Dn) ≤ 2n+ 3, since Dn is
a 3-regular graph of order 2n. Define the ladder Ln as in the proof of Theorem 3.6,
and let V (Dn) = V (Ln) and E (Dn) = E (Ln) ∪ {x1xn, y1yn}. Then the labeling
f : V (Dn) → [1, 2n] such that

f (w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if w = x1,
2i if w = x2i−1 and i ∈ [2, �n/2�],
2n+ 1− 2i if w = x2i and i ∈ [1, n/2�],
2n+ 2− 2i if w = y2i−1 and i ∈ [1, �(n− 1) /2�],
2 if w = y2,
1 + 2i if w = y2i and i ∈ [2, (n− 1) /2�],
3 if w = yn
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has the property that

strf (Dn) = max {f (u) + f (v) |uv ∈ E (Dn)}
= f (y1) + f (yn) = 2n+ 3.

Thus, str (Dn) ≤ 2n+ 3. �

The Möbius ladder Mn is the graph obtained from the ladder Ln by joining the
opposite end-vertices of the two copies of Pn. We have a formula for the strength of
Mn as shown below.

Theorem 3.8 For every integer n ≥ 3,

str (Mn) = 2n+ 3.

Proof: In light of Lemma 2.1, it suffices to show that str (Mn) ≤ 2n+ 3, since Mn is
a 3-regular graph of order 2n. Define the ladder Ln as in the proof of Theorem 3.6,
and let V (Mn) = V (Ln) and E (Mn) = E (Ln) ∪ {x1yn, xny1}. Then the labeling
f : V (Mn) → [1, 2n] such that

f (w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2i− 1 if w = x2i−1 and i ∈ [1, �n/2�],
2n+ 2− 2i if w = x2i and i ∈ [1, n/2�],
n+ 1 if w = y1,
2n+ 3− 2i if w = y2i−1 and i ∈ [2, �n/2�],
2i if w = y2i and i ∈ [1, n/2�]

has the property that

strf (Mn) = max {f (u) + f (v) |uv ∈ E (Mn)}
= f (x2) + f (x3) = 2n+ 3.

Thus, str (Mn) ≤ 2n+ 3. �

The next result provides a formula for the strength of the graph Km,n ×K2.

Theorem 3.9 For every two positive integers m and n with n ≥ m,

str (Km,n ×K2) = 3m+ 2n+ 1.

Proof: Let U1 = {ui |i ∈ [1, m]} and U2 = {ui |i ∈ [m+ 1, m+ n]} be the partite
sets of Km,n such that deg ui = n for each i ∈ [1, m] and deg uj = m for each
j ∈ [m+ 1, m+ n], where n ≥ m. Further, let G ∼= Km,n ×K2 and define the graph
G with

V (G) = {vi |i ∈ [1, m+ n]} ∪ {wi |i ∈ [1, m+ n]}
and

E (G) = {viwj |uiuj ∈ E (Km,n)} ∪ {wivj |uiuj ∈ E (Km,n)}
∪ {viwm+1−i |i ∈ [1, m]} ∪ {viw2m+n+1−i |i ∈ [m+ 1, m+ n]} .
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It follows from Lemma 2.1 that str (G) ≥ 3m+ 2n+ 1, since G has order 2 (m+ n)
and δ (G) = m+ 1.

To see that str (G) ≤ 3m + 2n + 1, it suffices to show the existence of a numbering
f of G for which strf (G) = 3m + 2n + 1. Now, consider the labeling f : V (G) →
[1, 2 (m+ n)] such that

f (x) =

{
i if x = vi and i ∈ [1, m+ n],
m+ n + i if x = wi and i ∈ [1, m+ n].

Then f has the property that

strf (G) = max {f (u) + f (v) |uv ∈ E (G)}
= f (vm+1) + f (wm+n) = 3m+ 2n + 1.

Thus, str (G) = 3m+ 2n+ 1. �

From this theorem, we obtain a formula for the strength of the book Bn.

Corollary 3.1 For every positive integer n,

str (Bn) = 2n+ 4.

At this point, we make a remark for the classes of graphs examined in this section.
For any graph G of order p and any integer m such that p ≥ δ (G) + m, it follows
from Theorem 2.4 that str (G+mK1) ≥ p + δ (G) + 2m. However, the equality
str (G) = p + δ (G) holds for all the classes of graphs G considered in this section.
For these classes of graphs G, the lower and upper bounds given in Theorem 2.4
coincide. Consequently, str (G+mK1) = p + δ (G) + 2m = str (G) + 2m, which
produces the following result.

Corollary 3.2 If G is a graph of order p ≥ δ (G)+m with str (G) = p+ δ (G), then

str (G+mK1) = p + δ (G) + 2m = str (G) + 2m

for every positive integer m.

The hypercube Qn serves as useful models for a broad range of applications
such as circuit design, communication network addressing, parallel computation and
computer architecture. For this reason, we next consider the strength of Qn. It is
clear that str (Q1) = 3. It also follows from Theorem 3.3 that str (Q2) = 6. For an
integer n ≥ 3, we have the following lower and upper bounds for the strength of Qn.

Theorem 3.10 For every integer n ≥ 3,

2n + n ≤ str (Qn) ≤ 2n + 2n−2 + 1.
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Proof: The lower bound for str (Qn) follows immediately from Lemma 2.1, since Qn

is an n-regular graph of order 2n.

In order to verify the upper bound, we employ induction on n. Let Q2 be the graph
with V (Q2) = {x1, x2, x3, x4} and E (Q2) = {x1x3, x1x4, x2x3, x2x4}. For an integer
n ≥ 2, construct the graph Qn+1 by using the decomposition

Qn+1
∼= An+1 ⊕ Bn+1 ⊕ Cn+1

with

V (An+1) =
{
xi|i ∈

[
1, 2n−1

]} ∪ {
xi|i ∈

[
2n + 1, 2n + 2n−1

]}
,

V (Bn+1) =
{
xi|i ∈

[
1, 2n+1

]}
,

V (Cn+1) =
{
xi|i ∈

[
2n−1 + 1, 2n

]} ∪ {
xi|i ∈

[
2n + 2n−1 + 1, 2n+1

]}
,

E (An+1) =
{
xix2n+j|xix2n−1+j ∈ E (Qn) and i, j ∈ [

1, 2n−1
]}

,

E (Bn+1) = {xix2n+1+1−i|i ∈ [1, 2n]} ,
E (Cn+1) =

{
x2n−1+ix2n+2n−1+j |xix2n−1+j ∈ E (Qn) and i, j ∈ [

1, 2n−1
]}

.

Notice then that in this construction, An+1 and Cn+1 are isomorphic to Qn, and also
that Qn+1 is represented as a bipartite graph with two partite sets {xi|i ∈ [1, 2n]}
and {xi|i ∈ [2n + 1, 2n+1]} of the same cardinality 2n.

With the aid of the preceding construction, we will prove that there exists a num-
bering fn of Qn for which strfn (Qn) = 2n + 2n−2 + 1. For n = 3, the labeling f3 of
Q3 such that (f3 (xi))

8
i=1 = (1, 2, 3, 4, 7, 8, 5, 6) has the property that strfn (Qn) = 11.

For an integer n ≥ 3, assume that there exists a numbering fn of Qn for which

strfn (Qn) = max {fn (u) + fn (v) |uv ∈ E (Qn)}
= fn (x2n−2+1) + fn (x2n−1+2n−2) = 2n + 2n−2 + 1,

and consider the labeling fn+1 : V (Qn+1) → [1, 2n+1] such that

fn+1 (xi) = i,
fn+1 (x2n−1+i) = 2n−1 + i,
fn+1 (x2n+i) = 2n + 2n−1 + i,

fn+1 (x2n+2n−1+i) = 2n + i,

where i ∈ [1, 2n−1]. Applying the inductive hypothesis to fn+1, we obtain

strfn+1 (Qn+1) = max {fn+1 (u) + fn+1 (v) |uv ∈ E (Qn+1)}
= fn+1 (x2n−1+1) + fn+1 (x2n+2n−1)

=
(
2n−1 + 1

)
+
(
2n + 2n−1 + 2n−1

)
= 2n+1 + 2n−1 + 1.

�
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4 Bounds for the super magic strength

In this section, we focus on bounds for the super magic strength of super edge-magic
graphs. We first state the following lemma found in [6].

Lemma 4.1 A graph G of order p and size q is super edge-magic if and only if there
exists a bijective function f : V (G) → [1, p] such that the set

S = {f (u) + f (v) |uv ∈ E (G)}
consists of q consecutive integers. In such a case, f extends to a super edge-magic
labeling of G with magic constant k = p+ q + s, where s = min (S) and

S = [k − (p+ q) , k − (p+ 1)] .

The preceding lemma suggests to us the next concept, which is a restriction of
the concept for the strength of a graph. A consecutive numbering f of a graph G
of order p is a labeling that assigns distinct elements of the set [1, p] to the vertices
of G, where each edge uv of G is labeled f (u) + f (v) and the resulting set of edge
labels is [c, c+ q − 1] for some positive integer c. The consecutive strength, cstrf (G),
of a numbering f : V (G) → [1, p] of G is defined by

cstrf (G) = max {f (u) + f (v) |uv ∈ E (G)} ,
that is, cstrf (G) is the maximum edge label of G, and the consecutive strength,
cstr(G), of a graph G itself is

cstr (G) = min {cstrf (G) |f is a consecutive numbering of G} .
A consecutive numbering f of a graph G for which cstrf (G) = cstr (G) is called a
consecutive strength labeling of G. It is clear that if G is not a super edge-magic graph
or an empty graph, then cstr (G) is undefined (or we could define cstr (G) = +∞).
It is also true that G is a super edge-magic graph if and only if cstr (G) < +∞.

For super edge-magic graphs, the notions of super edge-magic labeling and con-
secutive strength labeling are equivalent. From this observation, we arrive at the
next connection between the super magic strength and consecutive strength of a
super edge-magic graph.

Lemma 4.2 For every super edge-magic graph G of order p,

sm (G) = cstr (G) + p+ 1.

Proof: Let G be a super edge-magic graph of order p and size q, and assume that
q ≥ 1; otherwise, G is an empty graph, that is, sm (G) and cstr (G) are undefined.
To see that sm (G) ≥ cstr (G) + p + 1, let sm (G) = k for some positive integer k.
Then there exists a super edge-magic labeling f of G with magic constant k. By
Lemma 4.1, f is a consecutive strength labeling of G such that

{f (u) + f (v) |uv ∈ E (G)} = [k − (p+ q) , k − (p+ 1)] ,
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that is, cstrf (G) = k−(p + 1). Thus, cstr (G) ≤ k−(p+ 1), implying that sm (G) ≥
cstr (G) + p+ 1.

To show that sm (G) ≤ cstr (G)+p+1, let cstrf (G) = cstr (G) = k for some positive
integer k. Then there exists a consecutive strength labeling f of G with consecutive
strength k. By Lemma 4.1, f is a super edge-magic labeling of G with magic constant
k + p+ 1 such that

{f (u) + f (v) |uv ∈ E (G)} = [k − (q − 1) , k] .

Thus, sm (G) ≤ k + p + 1, implying that sm (G) ≤ cstr (G) + p+ 1. �

From the proof of Lemma 4.2, it follows that cstr (G) ≥ q+2 and thus sm (G) ≥
p + q + 3 for every super edge-magic graph G of order p and size q, since

min {f (u) + f (v) |uv ∈ E (G)} ≥ 3.

Furthermore, applying Lemma 4.2 to the formulas for the super magic strength of
super edge-magic graphs found by Avadayappan et al. [2], we obtain formulas for
the consecutive strength of the same classes of graphs.

It follows immediately from the definitions that cstr (G) ≥ str (G) for any super
edge-magic graph G. This together with Lemma 4.2 gives us the next lower bound
for the super magic strength of a super edge-magic graph in terms of its order and
strength.

Corollary 4.1 For every super edge-magic graph G of order p,

sm (G) ≥ str (G) + p+ 1.

We have used the fact that cstr (G) ≥ str (G) for any super edge-magic graph G
to obtain the preceding result. On the other hand, it is not difficult to construct a
super edge-magic graph G such that cstr (G)− str (G) = +∞. Indeed, more is true
as given a positive integer n, it is always possible to construct a super edge-magic
graph G such that cstr (G) − str (G) = n − 1. For example, Avadayappan et al.
[2] showed that sm (P2n) = 5n + 1 for any positive integer n. Applying Lemma 4.2
with G ∼= P2n, we have cstr (P2n) = 3n; however, we know from Theorem 3.1 that
str (P2n) = 2n+ 1.

As consequences of Corollary 4.1, the super magic strength analogues to the
strength results are now presented below.

Corollary 4.2 For every super edge-magic graph G of order p with δ (G) ≥ 1,

(1) sm (G) ≥ 2p+ δ (G) + 1,
(2) sm (G) ≥ 2p+ κ1 (G) + 1,
(3) sm (G) ≥ 2p+ κ (G) + 1.

Corollary 4.3 For every super edge-magic graph G of order p that is n-critical,

sm (G) ≥ 2p+ n.
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Corollary 4.4 For every super edge-magic graph G of order p,

sm (G) ≥ Δ(G) + p+ 3.

We conclude this section with the remark that the sharpness of all the bounds
stated in the corollaries above follow from Theorem 3.5 and the result established by
Avadayappan et al. [2] that sm (K1,n) = 2n+ 4 for any positive integer n.

5 Conclusions

In this paper, we have extended the notion of super magic strength by introducing
the concept of strength. This naturally arises from the observation that the super
magic strength can be defined only for super edge-magic graphs. In the following,
we summarize the work conducted in this paper, and propose new lines of research
by introducing some open problems and a new conjecture.

In Section 2, we have established several bounds for the strength of a graph in
terms of other parameters studied in graph theory. All of these bounds are sharp in
the sense that there are infinitely many graphs that attain the bounds (consult the
results contained in Section 3). However, some of these bounds are not particularly
good for certain classes of graphs. For example, the bound provided by Corollary
2.3 for the complete bipartite graph Km,n of order m+ n, where n ≥ m ≥ 3, differs
from its strength by n − 2 (consult with Theorem 3.5). Also, the bound presented
in Theorem 2.3 may be strict as illustrated by the complete bipartite graph. This
motivates us to propose the next problem.

Problem 1 Find good bounds for the strength of a graph.

In Section 3, we have established formulas for the strength of certain classes of
graphs, and lower and upper bounds for the strength of the hypercube. All these
classes of graphs except possibly for the hypercube attain the bound given in Lemma
2.1. However, since 2n + n = 2n + 2n−2 + 1 for n ∈ [2, 3], it follows that the lower
and upper bounds provided in Theorem 3.10 coincide for n ∈ [2, 3]. These lead us
to propose the next two problems.

Problem 2 For every integer n ≥ 4, determine the exact value of str (Qn).

Problem 3 Find sufficient conditions for a graph G of order p with δ (G) ≥ 1 to
ensure that str (G) = p+ δ (G).

In Section 4, we have introduced the concept of consecutive strength as a pos-
sible restriction of the concept for the strength of a graph. We then have shown a
connection between the super magic strength of a super edge-magic graph and its
consecutive strength. From this connection, it follows that the problems of determin-
ing the super magic strength and consecutive strength are equivalent. As corollaries
of the bounds obtained in Section 2, we supply several lower bounds for the super
magic strength and show that all of them are sharp by considering the star K1,n of
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order n + 1. Consulting the results found by Avadayappan et al. [2] and contained
in this paper, one can verify that these lower bounds are not particularly good in
general. Therefore, we propose the next problem.

Problem 4 Find good lower bounds for the super magic strength of a super edge-
magic graph.

Unfortunately, an upper bound is not known for the super magic strength thus
far; hence, the most natural question is whether one can find at least upper bounds
for certain classes of super edge-magic graphs as stated in the next problem.

Problem 5 Find good upper bounds for the super magic strength of some classes of
super edge-magic graphs.

It was mentioned earlier that G is a super edge-magic graph if and only if
sm (G) < +∞. It has been conjectured by Enomoto et al. [5] that every nontrivial
tree is super edge-magic. Analogously, we state the next conjecture.

Conjecture 1 For every nontrivial tree T , sm (T ) < +∞.

We have constructed a super edge-magic graph G such that cstr (G)−str (G) = n
for a given nonnegative integer n. This implies that cstr (G) ≥ str (G) for a super
edge-magic graph G in general. Therefore, we propose the next problem.

Problem 6 Find sufficient conditions for a super edge-magic graph G to ensure that
cstr (G) = str (G).
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