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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer
k such that its set of vertices V (G) can be partitioned into k disjoint
subsets V1, . . . , Vk, in such a way that every two distinct vertices in Vi

are at distance greater than i in G for every i, 1 ≤ i ≤ k.
Recently, it was proved in [J. Balogh, A. Kostochka and X. Liu, Dis-

crete Math. 341 (2018), 474–483] that χρ is not bounded in the class
of subcubic graphs, thus answering a question previously addressed in
several papers. However, several subclasses of cubic or subcubic graphs
have bounded packing chromatic number. In this paper, we determine
the exact value of, or upper and lower bounds on, the packing chromatic
number of some classes of cubic graphs, namely circular ladders, and
so-called H-graphs and generalised H-graphs.

1 Introduction

All the graphs we consider are simple. For a graph G, we denote by V (G) its set
of vertices and by E(G) its set of edges. The distance dG(u, v) between vertices u
and v in G is the length (number of edges) of a shortest path joining u and v. The
diameter of G is the maximum distance between two vertices of G. We denote by
Pn, n ≥ 1, the path of order n and by Cn, n ≥ 3, the cycle of order n.

A packing k-colouring of G is a mapping π : V (G) → {1, . . . , k} such that, for
every two distinct vertices u and v, π(u) = π(v) = i implies dG(u, v) > i. The
packing chromatic number χρ(G) of G is then the smallest k such that G admits a
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packing k-colouring. In other words, χρ(G) is the smallest integer k such that V (G)
can be partitioned into k disjoint subsets Vi, 1 ≤ i ≤ k, in such a way that every two
vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k. A packing
colouring of G is optimal if it uses exactly χρ(G) colours.

The packing colouring of graphs was introduced by Goddard, Hedetniemi, Hedet-
niemi, Harris and Rall in [13,14], under the name broadcast colouring. In their seminal
paper [14], the question of determining the maximum packing chromatic number in
the class of cubic graphs of a given order is posed. In [18], Sloper proved that the
packing chromatic number is unbounded in the class of k-ary trees for every k ≥ 3,
from which it follows that the packing chromatic number is unbounded in the class
of graphs with maximum degree 4.

In [12], Gastineau and Togni observed that each cubic graph of order at most 20
has packing chromatic number at most 10. They also observed that the largest cubic
graph with diameter 4 (this graph has 38 vertices and is described in [1]) has packing
chromatic number 13, and asked whether there exists a cubic graph with packing
chromatic number larger than 13 or not. This question was answered positively
by Brešar, Klavžar, Rall and Wash [9] who exhibited a cubic graph on 78 vertices
with packing chromatic number at least 14. Recently, Balogh, Kostochka and Liu
finally proved in [2] that the packing chromatic number is unbounded in the class of
cubic graphs, and Brešar and Ferme gave in [5] an explicit infinite family of subcubic
graphs with unbounded packing chromatic number.

On the other hand, the packing chromatic number is known to be bounded above
in several classes of graphs with maximum degree 3, for instance in complete bi-
nary trees [18], hexagonal lattices [6, 10, 15], base-3 Sierpiński graphs [7] or partic-
ular Sierpiński-type graphs [4], subdivisions of subcubic graphs [8, 12] and of cubic
graphs [3], or several subclasses of outerplanar subcubic graphs [11].

In this paper we prove that the packing chromatic number is bounded in other
classes of cubic graphs, in particular extending partial results given in [19]. More
precisely, we determine the exact value of, or upper and lower bounds on, the packing
chromatic number of circular ladders (in Section 3), H-graphs (in Section 4) and
generalised H-graphs (in Section 5).

2 Preliminary results

In this section we give a few results that will be useful in the sequel.
Let G be a graph. A subset S of V (G) is an i-packing, for some integer i ≥ 1, if

any two vertices in S are at distance at least i+ 1 in G. Note that such a set S is a
1-packing if and only if S is an independent set. A packing colouring of G is thus a
partition of V (G) into k disjoint subsets V1, . . . , Vk, such that Vi is an i-packing for
every i, 1 ≤ i ≤ k.

For every integer i ≥ 1, we denote by ρi(G) the maximum cardinality of an i-
packing in G. Since at most ρi(G) vertices can be assigned colour i in any packing
colouring of G, we have the following result.
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Proposition 2.1 If G is a graph with χρ(G) = k, then

i=k∑
i=1

ρi(G) ≥ |V (G)|.

Let H be a subgraph of G. Since dG(u, v) ≤ dH(u, v) for any two vertices u, v ∈
V (H), the restriction to V (H) of any packing colouring of G is a packing colouring
of H . Hence, having packing chromatic number at most k is a hereditary property:

Proposition 2.2 (Goddard, Hedetniemi, Hedetniemi, Harris & Rall [14])
Let G and H be two graphs. If H is a subgraph of G, then χρ(H) ≤ χρ(G).

In particular, Proposition 2.2 gives a lower bound on the packing chromatic num-
ber of a graphG whenever G contains a subgraphH whose packing chromatic number
is known. As we will see later, all the cubic graphs we consider in this paper contain
a corona of a cycle as a subgraph. Recall that the corona G �K1 of a graph G is
the graph obtained from G by adding a degree-one neighbour to every vertex of G.
In [17], we have determined with I. Bouchemakh the packing chromatic number of
the corona of cycles.

Theorem 2.3 (Läıche, Bouchemakh, Sopena [17])
The packing chromatic number of the corona graph Cn �K1 is given by:

χρ(Cn �K1) =

{
4 if n ∈ {3, 4},
5 if n ≥ 5.

This result will thus provide a lower bound on the packing chromatic number of
each cubic graph considered in this paper.

3 Circular ladders

Recall that the Cartesian product G�H of two graphs G and H is the graph with
vertex set V (G)× V (H), two vertices (u, u′) and (v, v′) being adjacent if and only if
either u = v and u′v′ ∈ E(H) or u′ = v′ and uv ∈ E(G).

The circular ladder CLn of length n ≥ 3 is the Cartesian product CLn = Cn �K2.
Note that CLn is a bipartite graph if and only if n is even.

For every circular ladder CLn, we let

V (CLn) = {u0, . . . , un−1} ∪ {v0, . . . , vn−1},

and

E(CLn) = {uivi | 0 ≤ i ≤ n− 1} ∪ {uiui+1, vivi+1 | 0 ≤ i ≤ n− 1}
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Figure 1: The circular ladder CL7.

(subscripts are taken modulo n). Figure 1 depicts the circular ladder CL7.
Note that for every n ≥ 3, the corona graph Cn�K1 is a subgraph of the circular

ladder CLn. Therefore, by Proposition 2.2, Theorem 2.3 provides a lower bound on
the packing chromatic number of circular ladders. More precisely, χρ(CLn) ≥ 4 if
n ∈ {3, 4}, and χρ(CLn) ≥ 5 if n ≥ 5.

William and Roy [19] proved that the packing chromatic number of a circular
ladder of length n = 6q, q ≥ 1, is at most 5. In Theorem 3.4 below, we extend this
result and determine the packing chromatic number of every circular ladder.

We first need the following technical lemma, which will also be useful in Section 5.
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Figure 2: The graph X.

Lemma 3.1 Let X be the graph depicted in Figure 2, and π be a packing 5-colouring
of X. If π(ui) 	= 1 and π(vi) 	= 1 for some integer i, 3 ≤ i ≤ 5, then either ui or vi
has colour 2, and its three neighbours have colours 3, 4 and 5 (the three corresponding
edges are the vertical edges surrounded by the dashed box).

Proof. The proof is done by case analysis and is given in Appendix A. �
Observe now that for every integer n ≥ 9, the subgraph of CLn induced by the

set of vertices {ui, vi | 0 ≤ i ≤ 8} contains the graph X of Figure 2 as a subgraph.
Moreover, every packing 5-colouring π of CLn, 6 ≤ n ≤ 8, can be “unfolded” to
produce a packing 5-colouring π′ of X , by setting π′(ui) = π(ui) and π′(vi) = π(vi)
for every i, 0 ≤ i ≤ n − 1, and π′(un−1+j) = π(uj−1) and π′(vn−1+j) = π(vj−1) for
every j, 1 ≤ j ≤ 9 − n. This follows from the fact that vertices uj and un+j, as
well as vertices vj and vn+j, are at distance n ≥ 6 from each other, while the largest
colour used by π′ is 5. Therefore, thanks to the symmetries of CLn for every n ≥ 6,
Proposition 2.2 and Lemma 3.1 give the following corollary.
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Corollary 3.2 Let CLn, n ≥ 6, be a circular ladder with χρ(CLn) ≤ 5, and π be
a packing 5-colouring of CLn. For every integer i, 0 ≤ i ≤ n − 1, if π(ui) 	= 1 and
π(vi) 	= 1, then either ui or vi has colour 2, and its three neighbours have colours 3,
4 and 5.

Let CLn be a circular ladder satisfying the hypothesis of Corollary 3.2, and π be
a packing 5-colouring of CLn. From Corollary 3.2, it follows that if π(ui) 	= 1 and
π(vi) 	= 1 for some edge uivi of CLn, then the colour 2 has to be used on the edge
uivi and, since the neighbours of the 2-coloured vertex are coloured with 3, 4 and 5,
the colour 2 can be replaced by colour 1. Therefore, we get the following corollary.

Corollary 3.3 If CLn, n ≥ 6, is a circular ladder with χρ(CLn) ≤ 5, then there
exists a packing 5-colouring of CLn such that the colour 1 is used on each edge of
CLn.

Note that from Corollary 3.3, it follows that for every integer n ≥ 6, χρ(CLn) ≤ 5
implies that CLn is a bipartite graph. Hence, χρ(CLn) ≥ 6 for every odd n ≥ 6.

1 2 3

4 1 5

1 2 1 3

4 1 5 1

1 3 1 2 6

2 1 4 1 5

Figure 3: Optimal packing colouring of CL3, CL4 and CL5.

We are now able to prove the main result of this section.

Theorem 3.4 For every integer n ≥ 3,

χρ(CLn) =

⎧⎨
⎩

5 if n = 3, or n is even and n 	∈ {8, 14},
7 if n ∈ {7, 8, 9},
6 otherwise.

Proof. We first consider the case n ≤ 5. Figure 3 describes a packing 5-colouring of
CL3 and CL4, and a packing 6-colouring of CL5. We claim that these three packing
colourings are optimal. To see that, observe that ρ1(CL3) = 2, ρi(CL3) = 1 for every
i ≥ 2, ρ1(CL4) = ρ1(CL5) = 4, ρ2(CL4) = ρ2(CL5) = 2, and ρi(CL4) = ρi(CL5) = 1
for every i ≥ 3. The optimality for CL3 and CL5 then follows from Proposition 2.1.
The optimality for CL4 also follows, with the additional observation that colour 2
can be used at most once if colour 1 is used four times.

Assume now n ≥ 6. Since n ≥ 6 and every circular ladder CLn contains the
corona graph Cn � K1 as a subgraph, we get χρ(CLn) ≥ χρ(Cn � K1) ≥ 5 by
Theorem 2.3 and Proposition 2.2. Moreover, by Corollary 3.3, we have χρ(CLn) ≥ 6
if n is odd.

We now consider two general cases.



D. LAÏCHE AND É. SOPENA/AUSTRALAS. J. COMBIN. 72 (2) (2018), 376–404 381

1. n is even and n /∈ {8, 14}.
As observed above, in that case, it is enough to exhibit a packing 5-colouring
of CLn to prove χρ(CLn) = 5.

If n ≡ 0 (mod 6), a packing 5-colouring of CLn is obtained by repeating the
following circular pattern (the first row gives the colours of vertices ui, 0 ≤ i ≤
n− 1, the second row gives the colours of vertices vi, 0 ≤ i ≤ n− 1, according
to the value of (i mod 6)):

1 3 1 2 1 5
2 1 4 1 3 1

If n ≡ 2 (mod 6), which implies n ≥ 20, a packing 5-colouring of CLn is
obtained by repeating the previous circular pattern n−20

6
times and adding a

pattern of length 20, as illustrated below:

1 3 1 2 1 5 1 3 1 2 1 3 1 4 1 5 1 3 1 2 1 3 1 4 1 5
2 1 4 1 3 1 2 1 4 1 5 1 2 1 3 1 2 1 4 1 5 1 2 1 3 1

Finally, if n ≡ 4 (mod 6), which implies n ≥ 10, a packing 5-colouring of CLn

is obtained by repeating the same circular pattern n−10
6

times and adding a
pattern of length 10:

1 3 1 2 1 5 1 3 1 2 1 3 1 4 1 5
2 1 4 1 3 1 2 1 4 1 5 1 2 1 3 1

2. n is odd and n ≥ 11.
As observed above, in that case, it is enough to exhibit a packing 6-colouring
of CLn to prove χρ(CLn) = 6.

Similarly as in the previous case, if n ≡ 1, 3 or 5 (mod 6), a packing 6-colouring
of CLn is obtained by repeating the previous circular pattern n−7

6
, n−9

6
or n−5

6

times, respectively, and adding a pattern of length 7, 9 or 5, respectively, as
illustrated below:

1 3 1 2 1 5 1 3 1 4 1 2 6
2 1 4 1 3 1 6 1 2 1 3 1 5

1 3 1 2 1 5 1 4 1 2 3 1 4 1 6
2 1 4 1 3 1 2 1 6 1 5 2 1 3 1

1 3 1 2 1 5 1 3 1 2 6
2 1 4 1 3 1 2 1 4 1 5

It remains to consider four cases, namely n = 7, 8, 9, 14, which we consider sepa-
rately.
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1. n = 7.
We first claim that χρ(CL7) ≥ 7. Note that ρ1(CL7) = 6, ρ2(CL7) = 3,
ρ3(CL7) = 2, and ρi(CL7) = 1 for every i ≥ 4. However, if we use six times
colour 1, colour 2 can be used at most twice. Hence, at most 13 vertices of
CL7 can be coloured with a colour in {1, . . . , 6} and the claim follows.

A packing 7-colouring of CL7 is given by the following pattern:

1 3 1 2 1 4 5
2 1 6 1 3 1 7

2. n = 8.
We first claim that χρ(CL8) ≥ 7. Note that ρ1(CL8) = 8, ρ2(CL8) = 4,
ρ3(CL8) = ρ4(CL8) = 2, and ρi(CL8) = 1 for every i ≥ 5. However, if we use
eight times colour 1, colour 2 can be used at most twice, and then colour 4
at most once. On the other hand, if we use seven times colour 1, then, either
colour 2 is used thrice, and then colour 4 can be used at most once, or colour 2
is used at most twice, and then colour 4 can be used at most twice. Hence, at
most 15 vertices of CL8 can be coloured with a colour in {1, . . . , 6} and the
claim follows.

A packing 7-colouring of CL8 is given by the following pattern:

1 3 1 2 1 5 1 7
2 1 4 1 3 1 6 1

3. n = 9.
We first claim that χρ(CL9) ≥ 7. Note that ρ1(CL9) = 8, ρ2(CL9) = 4,
ρ3(CL9) = ρ4(CL9) = 2, and ρi(CL9) = 1 for every i ≥ 5. However, if we
use eight times colour 1, colour 2 can be used at most thrice. Hence, at most
17 vertices of CL9 can be coloured with a colour in {1, . . . , 6} and the claim
follows.

A packing 7-colouring of CL9 is given by the following pattern:

1 3 1 2 1 5 1 4 6
2 1 4 1 3 1 2 1 7

4. n = 14.
We first claim that χρ(CL14) ≥ 6. Note that ρ1(CL14) = 14, ρ2(CL14) = 6,
ρ3(CL14) = 4, ρ4(CL14) = 3 and ρ5(CL14) = 2. However, if we use 14 times
colour 1, colour 2 can be used at most four times. On the other hand, if we
use 13 times colour 1, colour 2 can be used at most five times. Hence, at most
27 vertices of CL14 can be coloured with a colour in {1, . . . , 5} and the claim
follows.

A packing 6-colouring of CL14 is given by the following pattern:
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1 3 1 2 1 5 1 2 1 4 1 3 1 6
2 1 4 1 3 1 6 1 3 1 2 1 5 1

This completes the proof of Theorem 3.4. �

4 H-graphs
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Figure 4: The H-graph H(4).

The H-graph H(r), r ≥ 2, is the 3-regular graph of order 6r, with vertex set

V (H(r)) = {ui, vi, wi : 0 ≤ i ≤ 2r − 1},
and edge set (subscripts are taken modulo 2r)

E(H(r)) = {(ui, ui+1), (wi, wi+1), (ui, vi), (vi, wi) : 0 ≤ i ≤ 2r − 1}
∪ {(v2i, v2i+1) : 0 ≤ i ≤ r − 1}.

Figure 4 depicts the H-graph H(4). These graphs have been introduced and studied
by William and Roy in [19], where it is proved that χρ(H(r)) ≤ 5 for every H-graph
H(r) with even r ≥ 4. We complete their result in Theorem 4.3 below.

We first prove a technical lemma. For every pair of integers r ≥ 2 and 0 ≤
i ≤ r − 1, we denote by Gi(r) the subgraph of H(r) induced by the set of vertices
{u2i, u2i+1, v2i, v2i+1, w2i, w2i+1}. Observe that for every r ≥ 2, all the subgraphs
Gi(r) are isomorphic to the graph depicted in Figure 5(a), and thus χρ(Gi(r)) =
χρ(P2�P3) = 4 [14].

For a given packing 5-colouring π of H(r), we denote by π(Gi(r)) the set of
colours assigned to the vertices of Gi(r). We then have the following result.

Lemma 4.1 For every integer r ≥ 3 and every packing 5-colouring π of H(r),
π(Gi(r)) ∩ π(Gi+1(r)) = {1, 2, 3} for every i, 0 ≤ i ≤ r − 1.

Proof. Since χρ(P2�P3) = 4, every packing 5-colouring of H(r) must use colour 4
or colour 5 on every Gi(r), 0 ≤ i ≤ r−1. We now prove that if colour 4 (respectively,
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colour 5) is used on Gi(r), then colour 4 (respectively, colour 5) cannot be used on
Gi+1(r). Observe first that every vertex of Gi(r) is at distance at most 5 from every
vertex of Gi+1(r). Therefore, colour 5 cannot be used on both Gi(r) and Gi+1(r).
Suppose now that colour 4 is used on both Gi(r) and Gi+1(r). Up to symmetries,
we necessarily have one of the two following cases.

1. π(u2i) = π(w2i+3) = 4 (see Figure 5(b)).
Since every vertex of Gi−1(r) is at distance at most 4 from u2i, it follows that
Gi−1(r) does not contain the colour 4. This implies that Gi−1(r) contains the
colour 5 since χρ(Gi−1(r)) > 3. By symmetry, Gi+2(r) must also contain the
colour 5. Furthermore, since two consecutive Gi(r)s cannot both use colour 5,
neither Gi(r) nor Gi+1(r) contains the colour 5.

Now, on the remaining uncoloured vertices of Gi(r), colour 1 can be used at
most thrice, colour 2 at most twice and colour 3 at most once. If colour 1
is used thrice, then we necessarily have π(u2i+1) = π(v2i) = π(w2i+1) = 1, so
that {π(v2i+1), π(w2i)} = {2, 3}, and no colour is available for w2i+2 (recall that
colour 5 is not used on Gi+1(r)). If colour 1 is used twice, then we necessarily
have, up to symmetry, π(v2i) = π(w2i+1) = 1, π(u2i+1) = π(w2i) = 2, and
π(v2i+1) = 3, and no colour is available for w2i+2.

2. π(v2i) = π(v2i+3) = 4 (see Figure 5(c)).
Similarly as before, since every vertex of Gi−1(r) is at distance at most 4 from
v2i and two consecutive Gi(r)’s cannot both use colour 5, it follows from the first
item of Lemma 4.1 that colour 5 is used neither on Gi(r), nor, by symmetry,
on Gi+1(r).

Again, on the remaining uncoloured vertices of Gi(r), colour 1 can be used at
most thrice, colour 2 at most twice and colour 3 at most once. If colour 1 is
used thrice, then we necessarily have π(u2i) = π(v2i+1) = π(w2i) = 1, so that
{π(u2i+1), π(w2i+1)} = {2, 3}. Up to symmetry, we may assume π(u2i+1) = 2
and π(w2i+1) = 3, which implies π(u2i+2) = 1, and no colour is available for
v2i+2 (recall that colour 5 is not used on Gi+1(r)). If colour 1 is used twice,
then we necessarily have, up to symmetry, π(u2i+1) = π(w2i) = 1, π(u2i) =
π(w2i+1) = 2, and π(v2i+1) = 3, and no colour is available for u2i+2.

This completes the proof. �
From Lemma 4.1, it follows that every Gi(r) must use colour 4 or 5, and that no

two consecutive Gi(r)’s can use the same colour from {4, 5}. Therefore, H(r) does
not admit any packing 5-colouring when r is odd.

Corollary 4.2 For every odd integer r, r ≥ 3, χρ(H(r)) > 5.

We are now able to prove the main result of this section.

Theorem 4.3 For every integer r ≥ 2, χρ(H(r)) = 5 if r is even, and 6 ≤
χρ(H(r)) ≤ 7 if r is odd.
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Figure 5: The subgraph Gi(r) and two configurations for the proof of Lemma 4.1.

Proof. We consider two cases, according to the parity of r.

1. r is even.
Since H(r) contains the corona graph C6 � K1 as a subgraph (consider for
instance the 6-cycle u1v1w1w2v2u2), we get χρ(H(r)) ≥ 5 by Theorem 2.3 and
Proposition 2.2. A packing 5-colouring of H(r) is then obtained by repeating
the pattern depicted in Figure 6(a), and thus χρ(H(r)) = 5.

2. r is odd.
From Corollary 4.2, we get χρ(H(r)) ≥ 6. A packing 7-colouring of H(r) is
described in Figure 6(b), where the circular pattern (surrounded by the dashed
box) is repeated r−3

2
times. This gives χρ(H(r)) ≤ 7.

This concludes the proof. �

5 Generalised H-graphs

We now consider a natural extension of H-graphs. For every integer r ≥ 2, the
generalised H-graph H�(r) with � levels, � ≥ 1, is the 3-regular graph of order 2r(�+2),
with vertex set

V (H�(r)) = {ui
j : 0 ≤ i ≤ �+ 1, 0 ≤ j ≤ 2r − 1}

and edge set (subscripts are taken modulo 2r)

E(H�(r)) = {(u0
j , u

0
j+1), (u�+1

j , u�+1
j+1) : 0 ≤ j ≤ 2r − 1}

∪ {(ui
2j, u

i
2j+1) : 1 ≤ i ≤ �, 0 ≤ j ≤ r − 1}

∪ {(ui
j, u

i+1
j ) : 0 ≤ i ≤ �, 0 ≤ j ≤ 2r − 1}.

Figure 7 depicts the generalised H-graph with three levels H3(4). Note that
generalised H-graphs with one level are precisely H-graphs.

The three following lemmas will be useful for determining the packing chromatic
number of generalised H-graphs.
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1 2 1 3

1 3 1 2

4 1 5 1

(a) A packing 5-colouring pattern for H(r), r even, r ≥ 2

1 2 1 3 1 2 1 3 2 6

2 3 1 2 1 3 1 2 7 1

5 1 4 1 5 1 4 1 1 4

(b) A packing 7-colouring pattern for H(r), r odd, r ≥ 3

Figure 6: Packing colouring patterns for H-graphs.

Lemma 5.1 For every pair of integers � ≥ 3 and r ≥ 3, let H�(r) be a generalised
H-graph with χρ(H

�(r)) ≤ 5 and let π be a packing 5-colouring of H�(r). For every
edge ui

2ju
i
2j+1, 1 ≤ i ≤ �, 0 ≤ j ≤ r− 1, with π(ui

2j) 	= 1 and π(ui
2j+1) 	= 1, either ui

2j

or ui
2j+1 has colour 2 and its three neighbours have colours 3, 4 and 5.

Proof. We first claim that every such edge ui
2ju

i
2j+1 belongs to a subgraph of H�(r)

isomorphic to the graph X depicted in Figure 2, in such a way that ui
2ju

i
2j+1 cor-

responds to one of the edges u3v3, u4v4 or u5v5 of X. Indeed, consider first the
“extremal” case of H3(3), and observe that X is a subgraph of the subgraph of
H3(3) induced by the set of vertices

{u0
0, . . . , u

0
5} ∪ {u4

0, . . . , u
4
5} ∪ {u1

2, u
1
3, u

2
2, u

2
3, u

3
2, u

3
3}.

Our claim then follows for H3(3) thanks to its symmetries.
It is now easy to see that our claim holds for every generalised H-graph H�(r)

with �, r ≥ 3. The result then follows by Lemma 3.1. �
From Lemma 5.1, it follows that if π(ui

2j) 	= 1 and π(ui
2j+1) 	= 1 for some edge

ui
2ju

i
2j+1 of H

�(r), 1 ≤ i ≤ �, 0 ≤ j ≤ r − 1, then the colour 2 has to be used on this
edge and, since the neighbours of the 2-coloured vertex are coloured with 3, 4 and 5,
the colour 2 can be replaced by colour 1. Therefore, we get the following corollary.

Corollary 5.2 For every pair of integers � ≥ 3 and r ≥ 3, if H�(r) is a generalised
H-graph with χρ(H

�(r)) ≤ 5, then there exists a packing 5-colouring of H�(r) such
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u0
0 u0

1 u0
2 u0

3 u0
4 u0

5 u0
6 u0

7

u4
0 u4

1 u4
2 u4

3 u4
4 u4

5 u4
6 u4

7

u1
0 u1

1 u
1
2 u1

3 u
1
4 u1

5 u
1
6 u1

7

u2
0 u2

1 u
2
2 u2

3 u
2
4 u2

5 u
2
6 u2

7

u3
0 u3

1 u
3
2 u3

3 u
3
4 u3

5 u
3
6 u3

7

Figure 7: The generalised H-graph H3(4).

that, for every pair of integers i and j, 1 ≤ i ≤ �, 0 ≤ j ≤ r− 1, the colour 1 is used
on the edge ui

2ju
i
2j+1 of H�(r).

Lemma 5.3 For every pair of integers � ≥ 3 and r ≥ 3, let H�(r) be a generalised
H-graph with χρ(H

�(r)) ≤ 5 and π be a packing 5-colouring of H�(r). For every j,
0 ≤ j ≤ 2r− 1, π must assign colour 1 to one vertex of each of the edges u0

ju
0
j+1 and

u�+1
j u�+1

j+1 (subscripts are taken modulo 2r).

Proof. The proof is done by case analysis and is given in Appendix B. �
Let H�(r) be a generalised H-graph with χρ(H

�(r)) ≤ 5. From Corollary 5.2 and
Lemma 5.3, it follows that one can always produce a packing 5-colouring of H�(r)
that uses colour 1 on each edge ui

2ju
i
2j+1 of H

�(r), 0 ≤ i ≤ �+1, 0 ≤ j ≤ r−1. Since
adjacent vertices cannot be assigned the same colour and H�(r) is a bipartite graph,
we get the following corollary.

Corollary 5.4 For every pair of integers � ≥ 3 and r ≥ 3, if H�(r) is a generalised
H-graph with χρ(H

�(r)) ≤ 5, then there exists a packing 5-colouring of H�(r) such
that the colour 1 is used on each edge of H�(r).

Lemma 5.5 For every pair of integers � ≥ 3 and r ≥ 3, if H�(r) is a generalised
H-graph with χρ(H

�(r)) ≤ 5, then there exists a packing 5-colouring π of H�(r) such
that π(u0

j) /∈ {4, 5} and π(u�+1
j ) /∈ {4, 5} for every j, 0 ≤ j ≤ 2r − 1.

Proof. Let π be a packing 5-colouring of H�(r) such that colour 1 is used on
each edge of H�(r) (the existence of such a colouring is ensured by Corollary 5.4).
Thanks to the symmetries of H�(r), it suffices to prove the result for any vertex u0

2j,
0 ≤ j ≤ r−1. Suppose to the contrary that π(u0

2j) ∈ {4, 5} for some j, 0 ≤ j ≤ r−1.
We have two cases to consider.
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2,3 x 5 4

2,3

2,3

y 2,3

z

Figure 8: The subgraph Y of H�(r).

1. π(u0
2j) = 4.

Let Y be the subgraph of H�(r) depicted in Figure 8, where the vertex u0
2j

is the unique vertex with colour 4, and vertices with colour 1 are drawn as
“big vertices”. Observe that the three neighbours of x, as well as the three
neighbours of y, must use colours 2, 3 and 5. Therefore, the common neighbour
of x and y must be assigned colour 5. It then follows that no colour is available
for z.

2. π(u0
2j) = 5.

The proof is similar to the proof of the previous case, by switching colours 4
and 5.

This completes the proof. �
Let H�(r) be a generalised H-graph satisfying the hypothesis of Lemma 5.5, and

π be a packing 5-colouring of H�(r). From Lemma 5.5, it follows that the restriction
of π to the 2r-cycle induced by the set of vertices {u0

j | 0 ≤ j ≤ 2r− 1} is a packing
3-colouring. It is not difficult to check (see [17]) that a 2r-cycle admits a packing
3-colouring if and only if r is even. Therefore, we get the following corollary.

Corollary 5.6 For every pair of integers � ≥ 3 and r ≥ 3, r odd, χρ(H
�(r)) ≥ 6.

We are now able to prove the main results of this section. We first consider the
case of generalised H-graphs H�(r) with � /∈ {2, 5}.

Theorem 5.7 For every pair of integers � ≥ 3, � 	= 5, and r ≥ 2,

χρ(H
�(r)) =

{
5 if r is even,
6 otherwise.

Proof. We consider two cases, according to the parity of r.
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1 2 1 3

3 1 2 1

4 1 5 1

1 3 1 2

2 1 3 1

1 5 1 4

12 13
41 51
13 12
21 31
15 14
31 21

Figure 9: A packing 5-colouring of H4(2) and its corresponding colouring pattern.

1. r is even.
Since the corona graph C2�+4 � K1 is a subgraph of H�(r) for every r ≥ 2
(consider the cycle of length 2� + 4 induced by the set of vertices {ui

1|0 ≤ i ≤
� + 1} ∪ {ui

2|0 ≤ i ≤ � + 1}), we get χρ(H
�(r)) ≥ χρ(C2�+4 � K1) = 5 by

Theorem 2.3 and Proposition 2.2.

We now prove χρ(H
�(r)) ≤ 5. Figure 9 depicts a packing 5-colouring of H4(2),

together with its corresponding colouring pattern. It can easily be checked that
this (6 × 4)-pattern is periodic, that is, can be repeated, both vertically and
horizontally, to produce a packing 5-colouring of any generalised H-graph of
the form H6i+4(2j), with i ≥ 0 and j ≥ 1.

If � 	≡ 4 (mod 6), we use the colouring patterns depicted in Figure 10, depend-
ing on the value of � modulo 6. The upper six rows of each colouring pattern,
surrounded by double lines, can be repeated as many times as required, or even
deleted when � ≡ 1, 2, 3 (mod 6). Therefore, these colouring patterns give us
a packing 5-colouring of any generalised H-graph of the form H�(2), for every
� ≥ 3, � 	= 5. It is again easy to check that each of these colouring patterns
is “horizontally periodic”, that is, can be horizontally repeated in order to get
a packing 5-colouring of any generalised H-graph of the form H�(r), for every
� ≥ 3, � 	= 5, � 	≡ 4 (mod 6), and even r.

2. r is odd.
The inequality χρ(H

�(r)) ≥ 6 directly follows from Corollary 5.6. Therefore,
we only need to prove the inequality χρ(H

�(r)) ≤ 6 (recall that � ≥ 3 and
� 	= 5).

We first consider a few particular cases. A packing 6-colouring of H3(3) is
depicted in Figure 11(a), and a packing 6-colouring of H3(r), for every odd
r ≥ 5, is depicted in Figure 11(b) (the first four columns, surrounded by a
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12 13
41 51
13 12
21 31
15 14
31 21

14 15
21 31

12 13
41 51
13 12
21 31
15 14
31 21

12 13
41 51
13 12

12 13
41 51
13 12
21 31
15 14
31 21

12 13
41 51
13 12
51 41
12 13
31 21
14 15
21 31
15 14
31 21

12 13
41 51
13 12
21 31
15 14
31 21

12 13
41 51
13 12
51 41
12 13

12 13
41 51
13 12
21 31
15 14
31 21

14 15
21 31
13 12
51 41
12 13
41 51
13 12

� ≡ 0 (mod 6) � ≡ 1 (mod 6) � ≡ 2 (mod 6) � ≡ 3 (mod 6) � ≡ 5 (mod 6)

Figure 10: Colouring patterns for H�(r), r even.

double line, are repeated r−5
2

times, and thus do not appear if r = 5). A packing
6-colouring of H4(3) is depicted in Figure 12(a), and a packing 6-colouring of
H4(r), for every odd r ≥ 5, is depicted in Figure 12(b) (the first four columns
are repeated r−5

2
times). A packing 6-colouring of H6(r), for every odd r ≥ 3,

is depicted in Figure 12(c) (the four columns surrounded by a double line are
repeated r−3

2
times, and thus do not appear if r = 3). A packing 6-colouring

of H7(3) is depicted in Figure 12(d), and a packing 6-colouring of H7(r), for
every odd r ≥ 5, is depicted in Figure 12(e) (the four columns surrounded by
a double line, are repeated r−3

2
times).

In order to produce a packing 6-colouring of H�(r), with � ≥ 8, r ≥ 3, and
r odd, we use the colouring patterns depicted in Figures 13 and 14. In both
these figures, the four columns surrounded by double lines must be repeated
r−3
2

times (and thus do not appear if r = 3) or r−5
2

times when � = 9 and r ≥ 5
(and thus do not appear if r = 5). In Figure 14, the six rows surrounded by

double lines must be repeated �−6−(� mod 6)
6

times (and thus do not appear if
� = 8).

This completes the proof. �
The last two theorems of this section deal with the cases not covered by Theo-

rem 5.7, that is, � = 2 and � = 5, respectively.
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13 12 16
21 51 41
14 23 12
31 14 31
12 61 25

12 13 12 15 12 61 23
41 51 41 31 31 14 51
13 12 13 14 14 23 12
51 41 21 21 21 51 41
12 13 15 16 13 12 13

(a) (b)

Figure 11: Colouring patterns for H3(3) and for H3(r), r ≥ 5, r odd.

Theorem 5.8 For every integer r ≥ 2,

χρ(H
2(r)) =

{
7 if r ∈ {2, 4, 7, 8, 11},
6 otherwise.

Proof. The fact that H2(r) does not admit a packing 6-colouring for every r ∈
{2, 4, 7, 8, 11} has been checked by a computer program, using brute-force search.
Packing 7-colourings for each of these graphs are depicted in Figure 15.

Assume now r /∈ {2, 4, 7, 8, 11}. We checked by a computer program, again using
brute-force search, that the subgraph of such a generalised H-graph induced by three
successive ladders, that is, by the set of vertices {uj

i | 0 ≤ i ≤ 5, 0 ≤ j ≤ 3}, does
not admit a packing 5-colouring. Packing 6-colourings of such generalised H-graphs
are depicted in Figure 16, according to the value of r, r modulo 3, or r modulo 6
(periodic patterns, made of 6 or 12 columns, are surrounded by double lines). �

Theorem 5.9 For every integer r ≥ 2, χρ(H
5(r)) = 6.

Proof. Again, we checked by a computer program, using brute-force search, that
both H5(2) and the subgraph of H5(r), r ≥ 5, induced by three successive ladders,
that is, by the set of vertices {uj

i | 0 ≤ i ≤ 5, 0 ≤ j ≤ 6}, do not admit a packing
5-colouring. Packing 6-colourings of H5(r), r ∈ {2, 3, 5}, are depicted in Figure 17,
while packing 6-colourings of H5(r), r = 4 or r ≥ 6, are depicted in Figure 18
according to the value of r modulo 4, or r modulo 6 (periodic patterns, made of
eight or twelve columns, are surrounded by double lines and are repeated at least
once when r ≡ 0 (mod 4) or r ≡ 3 (mod 6)). �

6 Discussion

In this paper, we have studied the packing chromatic number of some classes of
cubic graphs, namely circular ladders, H-graphs and generalised H-graphs. We have
determined the exact value of this parameter for every such graph, except for the
case of H-graphs H(r) with r ≥ 3, r odd (see Theorem 4.3), for which we proved
6 ≤ χρ(H(r)) ≤ 7. Using a computer program, we have checked that χρ(H(r)) = 7
for every odd r up to r = 13. We thus propose the following question.
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13 12 16
21 51 31
14 14 15
31 31 21
15 12 14
21 61 31

12 13 12 14 13 16 13
51 41 51 31 21 21 21
13 12 13 12 15 13 14
21 31 21 51 31 51 31
14 15 14 13 12 14 15
31 21 31 21 61 31 21

12 13 12 13 16
41 51 41 51 21
13 12 13 12 13
21 31 21 31 51
15 14 15 14 12
31 21 31 21 31
12 15 14 15 14
61 31 21 31 21

(a) H4(3) (b) H4(r), r ≥ 5, r odd (c) H6(r), r ≥ 3, r odd

12 13 14
31 51 21
16 12 15
21 31 31
14 14 16
31 21 21
15 13 13
21 61 51
13 12 14

12 13 15 12 16
51 41 21 31 31
13 12 13 14 12
21 31 61 21 51
14 15 14 15 13
31 21 31 31 21
12 13 12 12 14
51 41 51 41 31
13 12 13 16 12

(d) H7(3) (e) H7(r), r ≥ 5, r odd

Figure 12: Colouring patterns for H4(r), H6(r) and H7(r), r ≥ 3, r odd.

Question 1 Is it true that χρ(H(r)) = 7 for every H-graph H(r) with r ≥ 3, r odd?

In [16, 17], we have extended the notion of packing colouring to the case of di-
graphs. If D is a digraph, the (weak) directed distance between two vertices u and v
in D is defined as the length of a shortest directed path between u and v, in either
direction. Using this notion of distance in digraphs, the packing colouring readily
extends to digraphs. Recall that an orientation of an undirected graph G is any
antisymmetric digraph obtained from G by giving to each edge of G one of its two
possible orientations. It then directly follows from the definition that χρ(D) ≤ χρ(G)
for any orientation D of G. A natural question for oriented graphs, related to this
work, is then the following.

Question 2 Is it true that the packing chromatic number of any oriented graph with
maximum degree 3 is bounded by some constant?
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13 12 16
21 51 41
14 13 12
31 21 31
12 14 15
51 31 21
13 12 13
21 51 41
14 23 12
31 14 31
12 61 25

12 13 12 15 12 61 23
41 51 41 31 31 14 51
13 12 13 14 14 23 12
21 31 21 21 21 51 31
15 14 15 13 13 12 14
31 21 31 51 51 31 21
12 13 12 12 12 14 13
41 51 41 31 31 21 51
13 12 13 14 14 13 12
51 41 21 21 21 51 41
12 13 15 16 13 12 13

12 13 12 13 16
41 51 41 51 21
13 12 13 12 13
21 31 21 31 41
15 14 15 14 12
31 21 31 21 31
12 13 12 13 15
41 51 41 51 21
13 12 13 12 14
21 31 21 31 31
15 14 15 14 12
31 21 31 21 61

� = 9, r = 3 � = 9, r ≥ 5 � = 10, r ≥ 3

13 12 16
41 51 31
12 13 12
51 41 51
13 12 13
21 31 21
14 15 14
31 21 61
15 14 12
21 31 51
13 12 13
61 51 21
12 13 14

13 12 13 12 16
41 51 41 51 31
12 13 12 13 12
51 41 51 41 51
13 12 13 12 13
21 31 21 31 21
14 15 14 15 14
31 21 31 21 61
15 14 15 14 12
21 31 21 31 51
13 12 13 12 13
61 51 41 51 21
12 13 12 13 14

� = 11, r = 3 � = 11, r ≥ 5

Figure 13: Colouring patterns for H�(r), 9 ≤ � ≤ 11, r ≥ 3, r odd.

A Proof of Lemma 3.1

The configurations used in the proof correspond to partial colourings of the graph
X and are depicted in Figures 19 and 20, with the following drawing convention.
If {a, b} is the set of colours assigned to two distinct vertices, then the “colour” of
both these vertices is denoted “a, b”. If the same configuration describes two partial
colourings of X and the colours assigned to some vertex by these two colourings are
respectively a and b, then the “colour” of this vertex is denoted “a|b”. Finally, if a
vertex has no available colour, its “colour” is denoted “?”.

Suppose that for some i, 3 ≤ i ≤ 5, π(ui) 	= 1 and π(vi) 	= 1. We first prove the
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12 13 12 13 16

41 51 41 51 21
13 12 13 12 13
21 31 21 31 41
15 14 15 14 12
31 21 31 21 31
12 13 12 13 15

41 51 41 51 21
13 12 13 12 13
21 41 51 41 41
15 13 12 13 12
31 21 31 21 61
12 15 14 15 13
41 31 21 31 21

12 13 12 13 16

41 51 41 51 21
13 12 13 12 13
21 31 21 31 41
15 14 15 14 12
31 21 31 21 31
12 13 12 13 15

41 51 41 51 21
13 12 13 12 16
21 31 21 31 41
15 14 15 14 13
31 21 31 21 21
12 13 12 13 15
61 51 41 51 31
13 12 13 12 14

12 13 12 13 16

41 51 41 51 21
13 12 13 12 13
21 31 21 31 41
15 14 15 14 12
31 21 31 21 31
12 13 12 13 15

41 51 41 51 21
13 12 13 12 16
51 41 51 41 31
12 13 12 13 14
31 21 31 21 21
14 15 14 15 13
21 31 21 31 51
15 14 15 14 12
31 21 31 21 61

� ≡ 0 (mod 6) � ≡ 1 (mod 6) � ≡ 2 (mod 6)

� ≥ 12 � ≥ 13 � ≥ 8

12 13 12 13 16

41 51 41 51 21
13 12 13 12 13
21 31 21 31 41
15 14 15 14 12
31 21 31 21 31
12 13 12 13 15

41 51 41 51 61
13 12 13 12 12
51 41 51 41 41
12 13 12 13 13
31 21 31 21 21
14 15 14 15 15
21 31 21 31 31
13 12 13 12 14
51 41 51 41 21
12 13 12 13 16

12 13 12 13 16

41 51 41 51 21
13 12 13 12 15
21 31 21 31 31
15 14 15 14 12
31 21 31 21 41
12 13 12 13 13

41 51 41 51 21
13 12 13 12 15
21 31 21 31 61
15 14 15 14 12
31 21 31 21 31
12 13 12 13 14
41 51 41 51 21
13 12 13 12 15
21 31 21 31 31
15 14 15 14 12
31 21 31 21 61

13 12 13 12 16

41 51 41 51 31
12 13 12 13 12
31 21 31 21 41
15 14 15 14 13
21 31 21 31 21
13 12 13 12 15

41 51 41 51 31
12 13 12 13 12
51 41 51 41 61
13 12 13 12 14
21 31 21 31 21
14 15 14 15 13
31 21 31 21 51
15 14 15 14 12
21 31 21 31 41
13 12 13 12 13
41 51 41 51 21
12 13 12 13 16

� ≡ 3 (mod 6) � ≡ 4 (mod 6) � ≡ 5 (mod 6)

� ≥ 15 � ≥ 16 � ≥ 17

Figure 14: Colouring patterns for H�(r), � = 8 or � ≥ 12, r ≥ 3, r odd.
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13 16
21 21
14 17
31 51

r = 2

13 16 12 15
21 21 31 31
14 13 14 12
31 51 21 71

r = 4

13 16 14 12 17 14 15
21 21 21 51 31 21 31
14 13 13 13 12 13 12
31 51 71 21 41 51 61

r = 7

13 16 13 12 17 13 12 15
21 21 21 54 31 21 41 31
14 13 14 21 14 15 13 12
31 51 71 36 21 31 21 61

r = 8

13 16 13 12 14 13 16 14 12 17 15
21 21 21 51 31 21 21 21 31 31 31
14 13 14 13 12 15 13 13 15 12 12
31 51 71 21 61 31 41 71 21 41 61

r = 11

Figure 15: Packing 7-colourings of H2(r), r ∈ {2, 4, 7, 8, 11}.

following claim.

Claim 1 2 ∈ {π(ui), π(vi)}.

Proof. Assume to the contrary that this is not the case, that is, {π(ui), π(vi)} ⊆
{3, 4, 5}. Thanks to the symmetry exchanging ui and vi, we may assume π(ui) <
π(vi), without loss of generality. Recall that there is no edge ui−2vi−2 (respectively,
ui+2vi+2) in X when i = 3 (respectively, i = 5). We consider the following cases
(subscripts are taken modulo n).

1. π(ui) = 3 and π(vi) = 4.
In that case, we necessarily have π(ui+1) ∈ {1, 2, 5}.
If π(ui+1) = 1, then {π(vi+1), π(ui+2)} = {2, 5}. If π(vi+1) = 2 (and π(ui+2) =
5), then π(vi−1) = 1, so that π(ui−1) = 2 and no colour is available for vi−2

(see Figure 19(a)). If π(ui+2) = 2 (and π(vi+1) = 5), then {π(ui−1), π(vi−1)} =
{1, 2}, and no colour is available either for ui−2 or for vi−2 (see Figure 19(b)).

If π(ui+1) = 2, then π(vi+1) ∈ {1, 5}. If π(vi+1) = 5, then π(ui−1) = 1, so
that π(vi−1) = 2 and no colour is available for ui−2 (see Figure 19(c)). If
π(vi+1) = 1, then either π(ui−1) = 5, so that no colour is available for vi+2

(see Figure 19(d)), or π(ui−1) = 1, which implies {π(ui−2), π(vi−1)} = {2, 5},
so that again no colour is available for vi+2 (see Figure 19(e)).

Finally, if π(ui+1) = 5, then {π(ui−1), π(vi−1)} = {1, 2}, and no colour is
available either for ui−2 or for vi−2 (see Figure 19(f)).

2. π(ui) = 3 and π(vi) = 5.
Observe that the proof is similar to the proof of the previous case, by switch-
ing colours 4 and 5, in all cases illustrated in Figure 19(b), (c), (d) and (f).
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13 12 13 12 16
21 51 41 51 31
14 13 12 14 15
31 21 61 31 21

13 12 15
21 41 31
16 13 14
31 51 21

13 12 15 13 14 12 13 14 12 15
21 41 31 61 21 31 51 21 61 31
16 13 14 12 13 16 12 15 13 12
31 51 21 31 51 21 41 31 21 41

r = 5 r ≡ 0 (mod 3) r ≡ 1 (mod 3), r ≥ 10

13 12 14 13 16 12 13 12 13 16 12 13 12 16
21 51 31 21 21 31 41 51 41 21 31 41 51 31
14 13 12 15 13 15 12 13 15 14 15 12 23 15
31 21 61 31 41 21 31 61 21 31 21 36 14 21

r = 14

13 16 12 13 14 12 16 13 12 15 13 16 12 13 14 12 16 13 12 15
21 21 31 51 21 31 31 21 41 31 21 21 31 51 21 31 31 21 41 31
14 13 14 12 13 15 12 15 13 12 14 13 14 12 13 15 12 15 13 12
31 51 21 31 61 21 41 31 21 61 31 51 21 31 61 21 41 31 21 61

r = 20

13 12 14 13 12 41 63 12 14 13 16 12 13 12 13 16 12 13 12 14 13 12 14 13 12 14
21 51 31 21 51 32 21 51 31 21 21 31 41 51 41 21 31 41 51 31 21 51 31 61 51 31
16 13 15 16 13 15 14 13 12 15 13 15 12 13 15 14 15 12 23 15 16 13 15 12 13 15
31 41 21 31 41 21 31 21 61 31 41 21 31 61 21 31 21 36 14 21 31 41 21 31 41 21

r ≡ 2 (mod 6), r ≥ 26

13 12 14 13 16 12 13 12 14 13 12 41 63 12 13 12 16
21 51 31 21 21 31 41 51 31 21 51 32 21 51 41 51 31
14 13 12 15 13 15 12 23 15 16 13 15 14 13 12 14 15
31 21 61 31 41 21 36 14 21 31 41 21 31 21 61 31 21

r = 17

13 12 41 63 12 14 13 16 12 13 12 13 16 12 13 12 14 13 12 14 13 12 14
21 51 32 21 51 31 21 21 31 41 51 41 21 31 41 51 31 21 51 31 61 51 31
16 13 15 14 13 12 15 13 15 12 13 15 14 15 12 23 15 16 13 15 12 13 15
31 41 21 31 21 61 31 41 21 31 61 21 31 21 36 14 21 31 41 21 31 41 21

r ≡ 5 (mod 6), r ≥ 23

Figure 16: Colouring patterns for H2(r), r /∈ {2, 4, 7, 8, 11}.



D. LAÏCHE AND É. SOPENA/AUSTRALAS. J. COMBIN. 72 (2) (2018), 376–404 397

13 12
41 61
15 13
31 21
12 14
61 51
13 12

r = 2

13 16 15
21 21 21
14 13 14
31 51 31
15 12 12
21 31 51
16 14 13

r = 3

13 12 41 25 14
21 51 16 31 21
16 13 23 12 13
31 21 51 41 61
14 16 12 13 12
21 31 41 51 41
15 12 13 12 13

r = 5

Figure 17: Packing 6-colourings of H5(r), r ∈ {2, 3, 5}.

13 16 13 15
21 21 41 21
14 13 12 14
31 41 51 31
15 15 13 12
21 21 21 51
16 13 14 13

13 16 13 15 13 16 13 14 13 15
21 21 41 21 21 21 51 21 21 21
14 13 12 14 14 13 12 15 16 14
31 41 51 31 31 51 31 31 51 31
15 15 13 12 15 14 14 42 13 12
21 21 21 51 21 21 21 16 21 51
16 13 14 13 16 13 15 23 14 13

r ≡ 0 (mod 4), r ≥ 4 r ≡ 2 (mod 4), r ≥ 6

21 51 21 31 51 31 21 51 21 61 21 52 16
14 13 16 14 12 16 13 13 14 13 13 13 43
31 21 31 21 31 21 41 41 31 21 41 41 21
12 14 15 13 14 15 12 12 15 14 12 12 15
51 31 21 51 21 31 51 31 21 51 51 31 31
16 15 14 16 15 14 16 15 13 13 13 15 12
31 21 31 21 31 21 31 21 41 21 61 21 41

21 51 21 31 51 31 21 52 16
14 13 16 14 12 16 13 13 43
31 21 31 21 31 21 41 41 21
12 14 15 13 14 15 12 12 15
51 31 21 51 21 31 51 31 31
16 15 14 16 15 14 16 15 12
31 21 31 21 31 21 31 21 41

r ≡ 1 (mod 6), r ≥ 7 r ≡ 3 (mod 6), r ≥ 9

21 51 21 31 51 31 21 51 21 31 51 31 41 31 21 41 31
14 13 16 14 12 16 14 13 16 14 12 12 12 16 15 12 16
31 21 31 21 31 21 31 21 31 21 31 61 31 51 31 31 21
12 14 15 13 14 15 12 14 15 13 14 15 15 12 12 15 15
51 31 21 51 21 31 51 31 21 51 21 31 21 41 41 61 31
16 15 14 16 15 14 16 15 14 16 15 14 16 13 13 13 12
31 21 31 21 31 21 31 21 31 21 31 21 31 21 51 21 41

r ≡ 5 (mod 6), r ≥ 11

Figure 18: Colouring patterns for H5(r), r = 4 or r ≥ 6.
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2 3 1 5

? 1 4 2

(a)

? 1,2 3 1 2

? 1,2 4 5

(b)

? 1 3 2

2 4 5

(c)

5 3 2

4 1 ?

(d)

2,5 1 3 2

2,5 4 1 ?

(e)

? 1,2 3 5

? 1,2 4

(f)

? 1 2 3 1 4

4 1 5 2

(g)

1 3 2 1 ?

5 1 4

(h)

4 1 2,3

5 2,3 1 ?

(i)

? 1 2 4 1 3

3 1 5 2

(j)

? 1,2 4 1 3

1,2 3 5 2

(k)

2 4 1

? 1 5 3

(l)

3 1 4 1

? 1 2 5 3

(m)

4 2 1—1 ?—?

5 1—3 3—

(n)

2,3 1 4 2

? 1 2,3 5

(o)

?—1—1,2 3 4 2

—?1—1,2 5

(p)

4 3 1—? ?—

5 1—2 2—1

(q)

—? ?—1 1—2 4 3

—3 2—1 5

(r)

Figure 19: Configurations for the proof of Lemma 3.1 (the double edge is the edge
uivi).
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Therefore, only two cases remain to be considered, which were illustrated in
Figure 19(a) and (e), respectively.

(a) π(ui+1) = 1 and π(ui+2) = 4.
In that case, we have π(vi+1) = 2, and thus π(vi−1) = 1, which implies
π(vi−2) = 4 and thus π(ui−1) = 2, so that π(ui−2) = 1, π(vi−2) = 4, and
no colour is available for ui−3 (see Figure 19(g)).

(b) π(ui+1) = 2, π(ui−1) = 1 and π(vi+1) = 1.
In that case, we necessarily have π(vi+2) = 4, so that π(ui+2) = 1, and no
colour is available for ui+3 (see Figure 19(h)).

3. π(ui) = 4 and π(vi) = 5.
In that case, we necessarily have π(ui+1) ∈ {1, 2, 3}. We consider six subcases,
depending on the value of π(ui+1) and i.

(a) π(ui+1) = 1 and i ∈ {3, 4}.
In that case, we have {π(ui+2), π(vi+1)} = {2, 3}, which implies π(vi+2) =
1, and no colour is available for vi+3 (see Figure 19(i)).

(b) π(ui+1) = 1 and i = 5.
In that case, we have π(v6) ∈ {2, 3}. If π(v6) = 2, then we necessarily
have π(u7) = 3, and thus π(v4) ∈ {1, 3}. If π(v4) = 1, we get successively
π(u4) = 2, π(v3) = 3, π(u3) = 1, and no colour is available for u2 (see
Figure 19(j)). If π(v4) = 3, then {π(u4), π(v3)} = {1, 2} and no colour is
available for u3 (see Figure 19(k)).

If π(v6) = 3, then {π(u4), π(v4)} = {1, 2}. If π(v4) = 1 and π(u4) = 2,
then no colour is available for v3 (see Figure 19(l)). If π(u4) = 1 and
π(v4) = 2, then we necessarily have π(v3) = 1 and π(u3) = 3, and no
colour is available for v2 (see Figure 19(m)).

(c) π(ui+1) = 2 and i ∈ {3, 4}.
In that case, we necessarily have π(vi+1) ∈ {1, 3}. If π(vi+1) = 1, then
π(vi+2) = 3, which implies π(ui+2) = 1, and no colour is available for ui+3.
If π(vi+1) = 3, then π(ui+2) = 1, and no colour is available for ui+3 (see
Figure 19(n)).

(d) π(ui+1) = 2 and i = 5.
In that case, we necessarily have π(u4) ∈ {1, 3}. If π(u4) = 1, then
{π(u3), π(v4)} = {2, 3}, so that π(v3) = 1, and no colour is available for
v2 (see Figure 19(o)). If π(u4) = 3, then either π(u3) = π(v4) = 1, which
implies π(v3) = 2 and no colour is available for u2, or {π(u3), π(v4)} =
{1, 2}, and no colour is available for v3 (see Figure 19(p)).

(e) π(ui+1) = 3 and i ∈ {3, 4}.
In that case, either π(vi+1) = 1, so that π(vi+2) = 2, π(ui+2) = 1, and
no colour is available for ui+3, or π(vi+1) = 2, so that π(vi+2) = 1 and no
colour is available for ui+2 (see Figure 19(q)).
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(f) π(ui+1) = 3 and i = 5.
In that case, π(u4) ∈ {1, 2}. If π(u4) = 1, then π(v4) = 2 and no colour
is available for u3. If π(u4) = 2, then π(v4) = 1, so that π(u3) = 1 and
π(v3) = 3, and no colour is available for u2 (see Figure 19(r)).

This completes the proof of Claim 1. �

1 2 1 4,5

? 3 4,5

(a)

? 1 2 4

5 3

(b)

? 1 2 5

4 3

(c)

3— 1—? 2 1 3—5

?—1 4 5—3

(d)

? 1 2 3

5 4

(e)

? 1 2 5

3 4

(f)

Figure 20: Configurations for the proof of Lemma 3.1 (cont.).

By Claim 1, we can thus assume π(ui) = 2, without loss of generality (again,
thanks to the symmetry exchanging ui and vi), so that π(vi) ∈ {3, 4, 5}. To finish
the proof of Lemma 3.1, we need to prove that {π(ui−1), π(ui+1)} = {3, 4, 5}\{π(vi)}.
Suppose that this is not the case. We consider the following cases, according to the
value of π(vi).

1. π(vi) = 3.
In that case, we necessarily have π(ui+1) ∈ {1, 4, 5}.
If π(ui+1) = 1, then {π(ui+2), π(vi+1)} = {4, 5}, so that π(ui−1) = 1, and no
colour is available for vi−1 (see Figure 20(a)).

If π(ui+1) = 4, then either π(ui−1) = 1, so that π(vi−1) = 5, and no colour
is available for ui−2 (see Figure 20(b)), or π(ui−1) = 5, which contradicts our
assumption since it would imply {π(ui−1), π(ui+1)} = {3, 4, 5} \ {π(vi)}.
Similarly, if π(ui+1) = 5, then either π(ui−1) = 1, so that π(vi−1) = 4, and
no colour is available for ui−2 (see Figure 20(c)), or π(ui−1) = 4, which again
contradicts our assumption.

2. π(vi) = 4 (the case π(vi) = 5 is similar, by switching colours 4 and 5).
In that case, we necessarily have π(ui+1) ∈ {1, 3, 5}.
If π(ui+1) = 1, then {π(ui+2), π(vi+1)} = {3, 5}. If π(ui+2) = 3 and π(vi+1) = 5,
then π(ui−1) = 1, so that π(ui−2) = 3, and no colour is available for vi−1. If



D. LAÏCHE AND É. SOPENA/AUSTRALAS. J. COMBIN. 72 (2) (2018), 376–404 401

π(ui+2) = 5 and π(vi+1) = 3, then π(vi−1) = 1, and no colour is available for
ui−1 (see Figure 20(d)).

If π(ui+1) = 3, then either π(ui−1) = 1, so that π(vi−1) = 5, and no colour
is available for ui−2, or π(ui−1) = 5, which contradicts our assumption (see
Figure 20(e)).

Finally, if π(ui+1) = 5, then either π(ui−1) = 1, so that π(vi−1) = 3, and no
colour is available for ui−2, or π(ui−1) = 3, which contradicts our assumption
(see Figure 20(f)).

This completes the proof of Lemma 3.1.

B Proof of Lemma 5.3

We first prove the following claim.

Claim 2 For every integer j, 0 ≤ j < r, either π(u0
2j) = 1 or π(u0

2j+1) = 1.

Proof. Thanks to the symmetries of H�(r), it is enough to prove the claim for the
edge u0

2u
0
3. Suppose to the contrary that π(u0

2) 	= 1 and π(u0
3) 	= 1. Thanks to the

symmetries of H�(r), we can assume π(u0
2) < π(u0

3), without loss of generality.
We consider four cases. The corresponding configurations are depicted in Fig-

ure 21, using the same drawing convention as for the proof of Lemma 3.1 (see Ap-
pendix A).

1. π(u0
2) = 2 and π(u0

3) = 3.
In that case, π(u1

2) ∈ {1, 4, 5}. If π(u1
2) = 1, then {π(u2

2), π(u
1
3)} = {4, 5},

which implies π(u0
1) = 1, and no colour is available for u0

0 (see Figure 21(a)).
If π(u1

2) = 4, then either π(u0
1) = 1, which implies π(u0

0) = 5, and no colour
is available for u1

1, or π(u
0
1) = 5, which implies π(u0

4) = 1, π(u0
5) = 2, and no

colour is available for u1
4 (see Figure 21(b)). The case π(u1

2) = 5 is similar, by
switching colours 4 and 5.

2. π(u0
2) = 2 and π(u0

3) = 4 (the case π(u0
2) = 2 and π(u0

3) = 5 is similar, by
switching colours 4 and 5).
In that case, π(u1

2) ∈ {1, 3, 5}. If π(u1
2) = 1, then {π(u2

2), π(u
1
3)} = {3, 5},

which implies π(u0
1) = 1, π(u0

0) = 3, and no colour is available for u1
1 (see

Figure 21(c)). If π(u1
2) = 3, then either π(u0

1) = 1, which implies π(u0
0) = 5,

and no colour is available for u1
1, or π(u

0
1) = 5, which implies π(u2

2) = π(u1
3) = 1,

so that π(u2
3) = 2, and no colour is available for u3

2 (see Figure 21(d)). Finally,
if π(u1

2) = 5, then either π(u0
1) = 1, which implies π(u0

0) = 3, and no colour
is available for u1

1, or π(u
0
1) = 3, which implies π(u1

1) = 1, π(u2
1) = 2, and no

colour is available for u1
0 (see Figure 21(e)).

3. π(u0
2) = 3 and π(u0

3) = 4.
In that case, π(u1

2) ∈ {1, 2, 5}. If π(u1
2) = 1, then {π(u2

2), π(u
1
3)} = {2, 5},
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? 1 2 3

1 4,5

4,5

(a)

5— 1—5 2 3 —1 —2

4?— —?

(b)

3 1 2 4

? 1 3,5

3,5

(c)

5— 1—5 2 4

3?— —1

—1 —2

—?

(d)

3— 1—3 2 4

—? ?—1 5

—2

(e)

2—1 1—2 3 4

—? ?—1 2,5

2,5

(f)

3 4

2 —1

1—5 ?—?

5—

(g)

2— 1—2 3 4

?—1 5

—?

(h)

1 2 3 5

4 1 1 2,4

? 2,4

(i)

4 5

1 2,3

2,3 1

?

(j)

2,3— 1—3 4 5

1—
2,3—

2 —1

?— —1 —3

—?

(k)

2—1 1—2 4 5

—3 ?—1 3

—?

(l)

Figure 21: Configurations for the proof of Claim 2 (the double edge is the edge u0
2u

0
3).
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and thus either π(u0
1) = 1, so that π(u0

0) = 2, and no colour is available for
u1
1, or π(u0

1) = 2, so that π(u0
0) = 1, and no colour is available for u1

0 (see
Figure 21(f)). If π(u1

2) = 2, then either π(u2
2) = 1, which implies π(u3

2) = 5,
and no colour is available for u2

3, or π(u
2
2) = 5, which implies π(u1

3) = 1, and
no colour is available for u2

3 (see Figure 21(g)). Finally, if π(u1
2) = 5, then

either π(u0
1) = 1, which implies π(u0

0) = 2, and no colour is available for u1
1,

or π(u0
1) = 2, which implies π(u1

1) = 1, and no colour is available for u2
1 (see

Figure 21(h)).

4. π(u0
2) = 3 and π(u0

3) = 5.
This case is similar to the previous one, by switching colours 4 and 5, except
when π(u1

2) = 1 (which implies {π(u2
2), π(u

1
3)} = {2, 4}) and π(u0

1) = 2. In that
case, we necessarily have π(u0

0) = π(u1
1) = 1, which implies π(u1

0) = 4, and no
colour is available for u2

1 (see Figure 21(i)).

5. π(u0
2) = 4 and π(u0

3) = 5.
In that case, π(u1

2) ∈ {1, 2, 3}. If π(u1
2) = 1, then {π(u2

2), π(u
1
3)} = {2, 3},

which implies π(u2
3) = 1, and no colour is available for u3

3 (see Figure 21(j)).
If π(u1

2) = 2, then either π(u0
1) = 1, which implies {π(u0

0), π(u
1
1)} = {2, 3},

so that π(u1
0) = 1, and no colour is available for u2

0, or π(u0
1) = 3, which

implies π(u2
2) = π(u1

3) = 1, so that π(u2
3) = 3, and no colour is available for

u3
2 (see Figure 21(k)). Finally, if π(u1

2) = 3, then either π(u0
1) = 1, which

implies π(u0
0) = 2, and no colour is available for u1

1, or π(u
0
1) = 2, which implies

π(u0
0) = π(u1

1) = 1, so that π(u1
0) = 3, and no colour is available for u2

1 (see
Figure 21(l)).

This completes the proof of Claim 2. �
Since the cycle induced by the set of vertices {u0

0, u
0
1, . . . , u

0
2r−1} has even length,

and adjacent vertices cannot be assigned the same colour, it follows from Claim 2
that colour 1 must be used on each edge u0

ju
0
j+1, 0 ≤ j ≤ 2r − 1 (subscripts are

taken modulo 2r). By symmetry, colour 1 must also be used on each edge u�+1
j u�+1

j+1,
0 ≤ j ≤ 2r − 1. This concludes the proof of Lemma 5.3.
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D. LAÏCHE AND É. SOPENA/AUSTRALAS. J. COMBIN. 72 (2) (2018), 376–404 404

[3] J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of subdivisions of
cubic graphs, arXiv:1803.02537 [math.CO] (2018).

[4] B. Brešar and J. Ferme, Packing coloring of Sierpiński-type graphs, J. Aequat. Math.
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