A lower bound for the minimal counter-example to Frankl’s conjecture

ANKUSH HORE

West Bengal University of Technology
Kolkata, WB
India
ankushore@gmail.com

Abstract

Frankl’s conjecture, from 1979, states that any finite union-closed family, containing at least one non-empty member set, must have an element which belongs to at least half of the member-sets. In this paper we show that if the minimum cardinality of \(\bigcup A \) over all counter-examples is \(q \), then any counter-example family must contain at least \(4q + 1 \) sets. As a consequence, we show that a minimal counter-example must contain at least 53 sets.

1 Introduction

A family of sets \(A \) is said to be union-closed if the union of any two member sets is also a member of \(A \). Frankl’s conjecture (or the union-closed sets conjecture) states that if \(A \) is finite, then some element must belong to at least half of the sets in \(A \), provided at least one member set is non-empty. Although the origin of this conjecture is not explicit, it is generally attributed to Frankl (1979) following [5]. A detailed discussion and current standing of the conjecture can be found in [1].

In [3], Roberts and Simpson showed that if \(q \) is the minimum cardinality of \(\bigcup A \) over all counter-examples, then any counter-example \(A \) must satisfy the inequality \(|A| \geq 4q - 1 \). In this paper, we expand the ideas presented in [3] to find an improved lower bound \(4q + 1 \). In [4], it was proved that a minimal counter-example must contain at least 13 elements in \(\bigcup A \). Hence we show that the minimal counter-example family must contain at least 53 sets.
2 Main results

2.1 Preliminary lemmas

Throughout this paper, \(\mathcal{A} \) will denote a minimal counter-example with \(|\bigcup \mathcal{A}| = q\), the minimum number of constituent elements across all counter-examples. Here \(|\mathcal{A}|\) must be odd, because if it is even we can remove a basis set (a set that cannot be obtained by the union of any two other sets of \(\mathcal{A} \)) to generate a counter-example with \(|\mathcal{A}| - 1\). Let \(|\mathcal{A}| = 2n + 1\).

We denote the family of sets in \(\mathcal{A} \) containing an element \(x \) by \(\mathcal{A}_x \).

The universal set for \(\mathcal{A} \) is defined by \(S := \bigcup \mathcal{A} \). Thus \(|S| = q\).

We define \(\mathcal{A}_x := \{ A \in \mathcal{A} : x \not\in A \} \). Let \(C_x := \bigcup \mathcal{A}_x \). We denote the family containing all such \(C_x \) by \(\mathcal{C} \):

\[
\mathcal{C} := \{ C_x : x \in S \}.
\]

For any \(x \) we define the family \(\mathcal{D}_x \) to be

\[
\mathcal{D}_x := \mathcal{A}_x \setminus \{ S \} \setminus \mathcal{C}.
\]

We now define and note the difference between the terms abundant and abundance. We call an element \(x \) abundant in a family \(\mathcal{F} \) if \(2|\mathcal{F}_x| \geq |\mathcal{F}| \). (By definition, our counterexample \(\mathcal{A} \) cannot contain any abundant element.) On the other hand, we define abundance of \(x \) in \(\mathcal{F} \) simply as \(|\mathcal{F}_x|\).

Next, we define and distinguish the terms mutually dominant and dominant. We say that two elements \(a \) and \(b \) are mutually dominating if \(a \) and \(b \) always appear together in the member sets of \(\mathcal{A} \). We say \(a \) dominates \(b \) if \(\mathcal{A}_b \subset \mathcal{A}_a \) and \(|\mathcal{A}_a| > |\mathcal{A}_b|\). Our counter-example family \(\mathcal{A} \) cannot contain any mutually dominating pair of elements, since they can be replaced by a single element which in turn would violate the minimality of \(q \). Therefore, for any \(a, b \in S \), if \(a \neq b \), then \(C_a \neq C_b \). However, \(\mathcal{A} \) may contain elements which dominate other elements.

Definition 1. We define the sets \(I \) and \(J \) by:

\[
I := \{ a \in S : a \text{ is NOT dominated by any other element in } S \};
\]

\[
J := \{ b \in S : b \text{ is dominated by some other element in } S \}.
\]

If an element is present in \(n \) sets of \(\mathcal{A} \), then it cannot be dominated by any other element. Hence they must be present in \(I \). We know from [2] that \(\mathcal{A} \) must contain at least three elements with abundance \(n \). Thus \(|I| \geq 3\). Note that every non-empty set in \(\mathcal{A} \) must contain at least one element from \(I \).

We now prove slightly modified versions of two lemmas from [3].

Lemma 1. Let \(a \) be an element of \(S \). If \(a \notin I \) then \(I \subseteq C_a \), and if \(a \in I \) then \(I \setminus \{ a \} \subseteq C_a \).
Proof. When \(a \notin I \), let \(y \in I \). Since \(a \) cannot dominate \(y \), there must exist a set containing \(y \) but not \(a \). So \(y \in C_a \).

When \(a \in I \), let \(z \in I \) and \(z \neq a \). Since \(a \) cannot dominate \(z \), there must exist a set containing \(z \) but not \(a \). So \(z \in C_a \). But \(a \notin C_a \) because \(\bigcup A_\pi \) cannot contain \(a \).

So we conclude that if \(a \in I \), then it must be present in \(q-1 \) sets of \(C \).

Lemma 2. For any \(a \), \(C_a \) cannot be a basis set of \(A \).

Proof. Let \(C_a \) be a basis. So we can remove \(C_a \) to get a new union-closed \(A' \) with \(|A'| = |A| - 1|.

If \(a \notin I \), then \(I \subseteq C_a \) (Lemma 1). Since \(I \) must contain all elements with abundance \(n \), removing \(C_a \) would generate another counter-example \(A' \) with \(|A'| < |A|\), which is a contradiction.

If \(a \in I \), then \(I \setminus \{a\} \subseteq C_a \) (Lemma 1). Let \(B_a \) be a basis set containing \(a \). Removing \(B_a \) and \(C_a \) from \(A \) we get \(A'' \) with \(|A''| = |A| - 2 = 2n - 1|\), and no element is contained in more than \(n-1 \) sets. Hence \(A'' \) is also a counter-example, which is again a contradiction.

Definition 2. We say that elements \(a \) and \(b \) are mutually abundant if \(2|A_a \cap A_b| \geq |A_a| \) and \(2|A_a \cap A_b| \geq |A_b| \).

Definition 3. For every element \(a \), we define the sets \(H_a \) and \(L_a \) as follows:

\[
H_a := \{ b \in S : b \text{ is abundant in } A_a \};
\]

\[
L_a := \{ c \in S : c \text{ is abundant in } A_a \}.
\]

We now prove a few lemmas which will be used repeatedly in the next section.

Lemma 3. If \(a, b \in I \), \(b \in H_a \) and \(D_a \cap D_b \neq \emptyset \), then \(|A| \geq 4q + 3\).

Proof. Since \(b \in H_a \), it must be present in at least \((n+1)/2\) sets of \(A_\pi \). Also \(b \in S \) and \(b \) must be in \(q-2 \) sets of \(C \setminus \{C_a\} \). It must also be present in at least one set of \(D_a \), since \(D_a \cap D_b \neq \emptyset \). So we have

\[
\frac{(n+1)}{2} + 1 + (q-2) + 1 \leq n,
\]

which yields \(|A| \geq 4q + 3\).

Lemma 4. If \(|A_x| = |A_y| = n, x \neq y\), then \(y \in H_x \) or \(y \in L_x \), but \(y \notin H_x \cap L_x \).

Proof. Suppose \(y \notin H_x \) and \(y \notin L_x \). Let us assume that \(n \) is even (say \(n = 2k \)). Since \(y \notin L_x \), we have \(|A_x \cap A_y| \leq k - 1\). Since \(y \notin H_x \), we have \(|A_x \cap A_y| \leq k\). So \(|A_y| \leq k - 1 + k = n - 1\), a contradiction.
On the other hand, if \(n \) is odd (say \(n = 2k + 1 \)), since \(y \notin L_x \), we have \(|A_x \cap A_y| \leq k \). Since \(y \notin H_x \), we have \(|A_x \cap A_y| \leq k \). So \(|A_y| \leq k + k = n - 1 \), a contradiction again.

The case \(y \in H_x \cap L_x \) is not possible because it will render \(y \) abundant in \(A \).

Lemma 5. If \(|A_x| = |A_y| = n \) and \(y \in H_x \), then \(x \in H_y \).

Proof. Since \(y \in H_x \), we have \(y \notin L_x \) from Lemma 4. So \(x \) and \(y \) cannot be mutually abundant (because \(|A_x| = |A_y| = n \)). Hence \(x \notin L_y \). Thus, from Lemma 4, we have \(x \in H_y \).

Definition 4. For any \(x, y \in S \), we define
\[
A_{xy} := A_x \cap A_y, \quad E_{xy} := \cup A_{xy}.
\]

Note that \(A_{xy} \) is union-closed.

Lemma 6. If \(x, y \in I \), then \(E_{xy} \notin C \).

Proof. From Lemma 1, any \(C_a \in C \) must contain either \(I \) or \(I \setminus \{a\} \). But \(E_{xy} \) can contain at most \(I \setminus \{x\} \setminus \{y\} \). Hence \(E_{xy} \notin C \).

As a corollary to the above lemma, note that \(A_{xy} \) cannot contain any set from \(C \) when \(x, y \in I \). Also \(S \notin A_{xy} \), since \(S \) must contain both \(x \) and \(y \).

Now we prove our central result, \(|A| \geq 4q + 1 \). To do so, we divide the proof into the following two cases.

2.2 The case when \(C_x \neq S \setminus \{x\} \) for some \(x \)

Theorem 1. If there exists \(x \in I \) such that \(|A_x| < n \), then \(|A| \geq 4q + 1 \).

Proof. We have \(|A_x| \geq n + 2 \). There must exist \(y \in I \) abundant in \(A_x \) (for if \(y \) is dominated by some \(z \), then \(z \) would also be abundant in \(A_x \) and we would then choose \(z \) instead of \(y \)). Hence \(y \) must be in at least \((n+2)/2 \) sets of \(A_x \). Since \(y \in I \), \(y \) must be in \(q - 2 \) sets of \(C \setminus \{C_x\} \). Also \(y \in S \). So we have
\[
\frac{n + 2}{2} + (q - 2) + 1 \leq n
\]
which yields \(|A| \geq 4q + 1 \).

Theorem 2. If \(|A_x| = n \) for all \(x \in I \), then \(|A| \geq 4q + 1 \).
Proof. Let $y \in I$ and $y \in H_x$. If $\mathcal{D}_x \cap \mathcal{D}_y \neq \emptyset$, then we immediately have $|A| \geq 4q + 3$ from Lemma 3. So let $\mathcal{D}_x \cap \mathcal{D}_y = \emptyset$. Then $|A_{xy}| = q$ (since $|\{S\}| = 1$, $|C| = q$, $|\mathcal{D}_x| = |\mathcal{D}_y| = n - q$).

Since A_{xy} is union closed, there must exist some $z \in I$ abundant in A_{xy}. We choose z as the element with maximum abundance in A_{xy}. If z is present in all q sets of A_{xy}, then we have $|A_z| \geq 2q$ (since z must be in q sets of $C \cup \{S\}$). This yields $|A| \geq 4q + 1$.

So let z be present in at most $q - 1$ sets of A_{xy}. Hence there must exist $s \in I$ present in $A_{xy} \setminus A_z$. Consequently, there exists $G_s \in A_{xy}$ such that $s \in G_s$ and $z \notin G_s$. Since z is maximal in A_{xy}, s must also be present in at most $q - 1$ sets of A_{xy}. So there must exist $G_z \in A_{xy}$ such that $z \in G_z$ and $s \notin G_z$. Also, since A_{xy} is union-closed, there exists $G_{zs} \in A_{xy}$ such that $z \in G_{zs}$ and $s \in G_{zs}$. We summarize this as follows.

$$
\begin{align*}
 z & \in G_z \quad \text{and} \quad s \notin G_z; \\
 s & \in G_s \quad \text{and} \quad z \notin G_s; \\
 s & \in G_{zs} \quad \text{and} \quad z \in G_{zs};
\end{align*}
$$

where $G_z, G_s, G_{zs} \in A_{xy}$.

Our set-up is depicted in Figure 1.

By the hypothesis of this theorem, we have $|A_x| = |A_y| = |A_z| = n$. Therefore, applying Lemma 4, we have the following three sub-cases:
(a) $z \in H_x$:

We consider the family \mathcal{A}_{xy}. There exists a basis B_x, where $x \in B_x$ and $s \notin B_x$, since s cannot dominate x. Since $D_x \cap D_y = \emptyset$, $y \notin B_x$. Hence $B_x \in \mathcal{A}_{xy}$. Since $G_z \in \mathcal{A}_{xy}$, $y \notin G_z$. Also $s \notin G_z$. Therefore $G_z \in \mathcal{A}_{xy}$.

Since B_x and G_z are in \mathcal{A}_{xy}, we have $x, z \in E_{sy}$. From Lemma 6, $E_{sy} \notin \mathcal{C}$. Hence $E_{sy} \in D_x \cap D_z$. Thus, since $D_x \cap D_z \neq \emptyset$ and $z \in H_x$, we have $|A| \geq 4q + 3$ from Lemma 3.

(b) $z \in H_y$:

The proof is similar to case (a), but with the roles of x and y reversed.

(c) $z \in L_x$ and $z \in L_y$:

Here $z \in L_x$ implies $x \in L_z$, since $|A_x| = |A_z| = n$. Similarly, since $z \in L_y$, we have $y \in L_z$. Therefore, we have $x, y \notin H_z$ from Lemma 4. Since $x, y \notin H_z$, let $r \in I$ be an element of H_z.

If r is present in any set of \mathcal{A}_{xy}, then we have a set $G_r \in \mathcal{A}_{xy}$ containing both r and z, since \mathcal{A}_{xy} is union-closed. Since $G_r \notin \mathcal{C}$, we have $G_r \in D_r \cap D_z$. Therefore we have $|A| \geq 4q + 3$ from Lemma 3, since $r \in H_z$ and $D_r \cap D_z \neq \emptyset$.

Let us assume that r is not in any sets of \mathcal{A}_{xy}. So $D_r \subset D_x \cup D_y$. Since r cannot be dominated by s, there must exist a basis B_r such that $r \in B_r$ and $s \notin B_r$.

If $B_r \in D_x$, then $B_r \in \mathcal{A}_{xy}$ (because $y \notin B_r$, since $D_x \cap D_y = \emptyset$). Also, $G_z \in \mathcal{A}_{xy}$. So $z, r \in E_{sy} \notin \mathcal{C}$.

If $B_r \in D_y$, then $B_r \in \mathcal{A}_{xy}$ (because $x \notin B_r$, since $D_x \cap D_y = \emptyset$). Also, $G_z \in \mathcal{A}_{xy}$. So $z, r \in E_{sx} \notin \mathcal{C}$.

So at least one of E_{sx} and E_{sy} must be present in $D_r \cap D_z$. Therefore, we have $|A| \geq 4q + 3$ from Lemma 3, since $r \in H_z$ and $D_r \cap D_z \neq \emptyset$.

2.3 The case when $C_x = S \setminus \{x\}$ for all x

In this case, no element can be dominated by any other element. Thus all elements must be present in $q - 1$ sets of \mathcal{C}.

Theorem 3. If there exists x such that $|A_x| < n$, then $|A| \geq 4q + 1$.

Proof. The proof is similar to that of Theorem 1. We have $|A_x| \geq n + 2$. Let $y \in H_x$. So y must be in at least $(n + 2)/2$ sets of \mathcal{A}_y. It must be in $q - 2$ sets of $\mathcal{C} \setminus \{C_x\}$. Also, $y \in S$. So $(n + 2)/2 + (q - 2) + 1 \leq n$, which yields $|A| \geq 4q + 1$.

Theorem 4. If for all x, $|A_x| = n$, then $|A| \geq 4q + 1$.

Proof. Since $|A_x| = n$ for all x, no element can dominate any other element. Therefore $I = S$. Since, in the proof of Theorem 2, we did not consider any element from J, this just becomes a special case of Theorem 2.
Corollary 1. The minimal counter-example to Frankl’s conjecture must contain at least 53 sets.

Proof. Combining Theorems 1, 2, 3 and 4, we obtain $|A| \geq 4q + 1$. Since it is shown in [4] that $q \geq 13$, we have $|A| \geq 53$.

Acknowledgements

I deeply appreciate the valuable suggestions from the referees and editors.

References

(Received 21 Feb 2018; revised 18 June 2018)