A lower bound for the minimal counter-example to Frankl's conjecture

Ankush Hore
West Bengal University of Technology
Kolkata, WB
India
ankushore@gmail.com

Abstract

Frankl's conjecture, from 1979, states that any finite union-closed family, containing at least one non-empty member set, must have an element which belongs to at least half of the member-sets. In this paper we show that if the minimum cardinality of $\bigcup \mathcal{A}$ over all counter-examples is q, then any counter-example family must contain at least $4 q+1$ sets. As a consequence, we show that a minimal counter-example must contain at least 53 sets.

1 Introduction

A family of sets \mathcal{A} is said to be union-closed if the union of any two member sets is also a member of \mathcal{A}. Frankl's conjecture (or the union-closed sets conjecture) states that if \mathcal{A} is finite, then some element must belong to at least half of the sets in \mathcal{A}, provided at least one member set is non-empty. Although the origin of this conjecture is not explicit, it is generally attributed to Frankl (1979) following [5]. A detailed discussion and current standing of the conjecture can be found in [1].

In [3], Roberts and Simpson showed that if q is the minimum cardinality of $\cup \mathcal{A}$ over all counter-examples, then any counter-example \mathcal{A} must satisfy the inequality $|\mathcal{A}| \geq 4 q-1$. In this paper, we expand the ideas presented in [3] to find an improved lower bound $4 q+1$. In [4], it was proved that a minimal counter-example must contain at least 13 elements in $\bigcup \mathcal{A}$. Hence we show that the minimal counter-example family must contain at least 53 sets.

2 Main results

2.1 Preliminary lemmas

Throughout this paper, \mathcal{A} will denote a minimal counter-example with $|\bigcup \mathcal{A}|=q$, the minimum number of constituent elements across all counter-examples. Here $|\mathcal{A}|$ must be odd, because if it is even we can remove a basis set (a set that cannot be obtained by the union of any two other sets of \mathcal{A}) to generate a counter-example with $|\mathcal{A}|-1$. Let $|\mathcal{A}|=2 n+1$.

We denote the family of sets in \mathcal{A} containing an element x by \mathcal{A}_{x}.
The universal set for \mathcal{A} is defined by $S:=\bigcup \mathcal{A}$. Thus $|S|=q$.
We define $\mathcal{A}_{\bar{x}}:=\{A \in \mathcal{A}: x \notin A\}$. Let $C_{x}:=\bigcup \mathcal{A}_{\bar{x}}$. We denote the family containing all such C_{x} by \mathcal{C} :

$$
\mathcal{C}:=\left\{C_{x}: x \in S\right\} .
$$

For any x we define the family \mathcal{D}_{x} to be

$$
\mathcal{D}_{x}:=\mathcal{A}_{x} \backslash\{S\} \backslash \mathcal{C} .
$$

We now define and note the difference between the terms abundant and abundance. We call an element x abundant in a family \mathcal{F} if $2\left|\mathcal{F}_{x}\right| \geq|\mathcal{F}|$. (By definition, our counterexample \mathcal{A} cannot contain any abundant element.) On the other hand, we define abundance of x in \mathcal{F} simply as $\left|\mathcal{F}_{x}\right|$.

Next, we define and distinguish the terms mutually dominant and dominant. We say that two elements a and b are mutually dominating if a and b always appear together in the member sets of \mathcal{A}. We say a dominates b if $\mathcal{A}_{b} \subset \mathcal{A}_{a}$ and $\left|\mathcal{A}_{a}\right|>$ $\left|\mathcal{A}_{b}\right|$. Our counter-example family \mathcal{A} cannot contain any mutually dominating pair of elements, since they can be replaced by a single element which in turn would violate the minimality of q. Therefore, for any $a, b \in S$, if $a \neq b$, then $C_{a} \neq C_{b}$. However, \mathcal{A} may contain elements which dominate other elements.

Definition 1. We define the sets I and J by:
$I:=\{a \in S: a$ is NOT dominated by any other element in $S\} ;$
$J:=\{b \in S: b$ is dominated by some other element in $S\}$.
If an element is present in n sets of \mathcal{A}, then it cannot be dominated by any other element. Hence they must be present in I. We know from [2] that \mathcal{A} must contain at least three elements with abundance n. Thus $|I| \geq 3$. Note that every non-empty set in \mathcal{A} must contain at least one element from I.

We now prove slightly modified versions of two lemmas from [3].
Lemma 1. Let a be an element of S. If $a \notin I$ then $I \subseteq C_{a}$, and if $a \in I$ then $I \backslash\{a\} \subseteq C_{a}$.

Proof. When $a \notin I$, let $y \in I$. Since a cannot dominate y, there must exist a set containing y but not a. So $y \in C_{a}$.

When $a \in I$, let $z \in I$ and $z \neq a$. Since a cannot dominate z, there must exist a set containing z but not a. So $z \in C_{a}$. But $a \notin C_{a}$ because $\bigcup \mathcal{A}_{\bar{a}}$ cannot contain a.

So we conclude that if $a \in I$, then it must be present in $q-1$ sets of \mathcal{C}.
Lemma 2. For any a, C_{a} cannot be a basis set of \mathcal{A}.
Proof. Let C_{a} be a basis. So we can remove C_{a} to get a new union-closed \mathcal{A}^{\prime} with $\left|\mathcal{A}^{\prime}\right|=|\mathcal{A}|-1$.

If $a \notin I$, then $I \subseteq C_{a}$ (Lemma 1). Since I must contain all elements with abundance n, removing C_{a} would generate another counter-example \mathcal{A}^{\prime} with $\left|\mathcal{A}^{\prime}\right|<$ $|\mathcal{A}|$, which is a contradiction.

If $a \in I$, then $I \backslash\{a\} \subseteq C_{a}$ (Lemma 1). Let B_{a} be a basis set containing a. Removing B_{a} and C_{a} from \mathcal{A} we get $\mathcal{A}^{\prime \prime}$ with $\left|\mathcal{A}^{\prime \prime}\right|=|\mathcal{A}|-2=2 n-1$, and no element is contained in more than $n-1$ sets. Hence $\mathcal{A}^{\prime \prime}$ is also a counter-example, which is again a contradiction.

Definition 2. We say that elements a and b are mutually abundant if $2\left|\mathcal{A}_{a} \cap \mathcal{A}_{b}\right| \geq$ $\left|\mathcal{A}_{a}\right|$ and $2\left|\mathcal{A}_{a} \cap \mathcal{A}_{b}\right| \geq\left|\mathcal{A}_{b}\right|$.

Definition 3. For every element a, we define the sets H_{a} and L_{a} as follows:

$$
\begin{aligned}
H_{a} & :=\left\{b \in S: b \text { is abundant in } \mathcal{A}_{\bar{a}}\right\} ; \\
L_{a} & :=\left\{c \in S: c \text { is abundant in } \mathcal{A}_{a}\right\} .
\end{aligned}
$$

We now prove a few lemmas which will be used repeatedly in the next section.
Lemma 3. If $a, b \in I, b \in H_{a}$ and $\mathcal{D}_{a} \cap \mathcal{D}_{b} \neq \emptyset$, then $|\mathcal{A}| \geq 4 q+3$.
Proof. Since $b \in H_{a}$, it must be present in at least $(n+1) / 2$ sets of $\mathcal{A}_{\bar{a}}$. Also $b \in S$ and b must be in $q-2$ sets of $\mathcal{C} \backslash\left\{C_{a}\right\}$. It must also be present in at least one set of \mathcal{D}_{a}, since $\mathcal{D}_{a} \cap \mathcal{D}_{b} \neq \emptyset$. So we have

$$
\frac{(n+1)}{2}+1+(q-2)+1 \leq n,
$$

which yields $|\mathcal{A}| \geq 4 q+3$.
Lemma 4. If $\left|\mathcal{A}_{x}\right|=\left|\mathcal{A}_{y}\right|=n, x \neq y$, then $y \in H_{x}$ or $y \in L_{x}$, but $y \notin H_{x} \cap L_{x}$.
Proof. Suppose $y \notin H_{x}$ and $y \notin L_{x}$. Let us assume that n is even (say $n=2 k$). Since $y \notin L_{x}$, we have $\left|\mathcal{A}_{x} \cap \mathcal{A}_{y}\right| \leq k-1$. Since $y \notin H_{x}$, we have $\left|\mathcal{A}_{\bar{x}} \cap \mathcal{A}_{y}\right| \leq k$. So $\left|\mathcal{A}_{y}\right| \leq k-1+k=n-1$, a contradiction.

On the other hand, if n is odd (say $n=2 k+1$), since $y \notin L_{x}$, we have $\left|\mathcal{A}_{x} \cap \mathcal{A}_{y}\right| \leq$ k. Since $y \notin H_{x}$, we have $\left|\mathcal{A}_{\bar{x}} \cap \mathcal{A}_{y}\right| \leq k$. So $\left|\mathcal{A}_{y}\right| \leq k+k=n-1$, a contradiction again.

The case $y \in H_{x} \cap L_{x}$ is not possible because it will render y abundant in \mathcal{A}.
Lemma 5. If $\left|\mathcal{A}_{x}\right|=\left|\mathcal{A}_{y}\right|=n$ and $y \in H_{x}$, then $x \in H_{y}$.
Proof. Since $y \in H_{x}$, we have $y \notin L_{x}$ from Lemma 4. So x and y cannot be mutually abundant (because $\left|\mathcal{A}_{x}\right|=\left|\mathcal{A}_{y}\right|=n$). Hence $x \notin L_{y}$. Thus, from Lemma 4, we have $x \in H_{y}$.

Definition 4. For any $x, y \in S$, we define

$$
\mathcal{A}_{\overline{x y}}:=\mathcal{A}_{\bar{x}} \cap \mathcal{A}_{\bar{y}} ; \quad E_{x y}:=\cup \mathcal{A}_{\overline{x y}} .
$$

Note that $\mathcal{A}_{\overline{x y}}$ is union-closed.
Lemma 6. If $x, y \in I$, then $E_{x y} \notin \mathcal{C}$.
Proof. From Lemma 1, any $C_{a} \in \mathcal{C}$ must contain either I or $I \backslash\{a\}$. But $E_{x y}$ can contain at most $I \backslash\{x\} \backslash\{y\}$. Hence $E_{x y} \notin \mathcal{C}$.

As a corollary to the above lemma, note that $\mathcal{A}_{\overline{x y}}$ cannot contain any set from \mathcal{C} when $x, y \in I$. Also $S \notin \mathcal{A}_{\overline{x y}}$, since S must contain both x and y.

Now we prove our central result, $|\mathcal{A}| \geq 4 q+1$. To do so, we divide the proof into the following two cases.

2.2 The case when $C_{x} \neq S \backslash\{x\}$ for some x

Theorem 1. If there exists $x \in I$ such that $\left|\mathcal{A}_{x}\right|<n$, then $|\mathcal{A}| \geq 4 q+1$.
Proof. We have $\left|\mathcal{A}_{\bar{x}}\right| \geq n+2$. There must exist $y \in I$ abundant in $\mathcal{A}_{\bar{x}}$ (for if y is dominated by some z, then z would also be abundant in $\mathcal{A}_{\bar{x}}$ and we would then choose z instead of y). Hence y must be in at least $(n+2) / 2$ sets of $\mathcal{A}_{\bar{x}}$. Since $y \in I$, y must be in $q-2$ sets of $\mathcal{C} \backslash\left\{C_{x}\right\}$. Also $y \in S$. So we have

$$
\frac{n+2}{2}+(q-2)+1 \leq n
$$

which yields $|\mathcal{A}| \geq 4 q+1$.

Theorem 2. If $\left|\mathcal{A}_{x}\right|=n$ for all $x \in I$, then $|\mathcal{A}| \geq 4 q+1$.

Figure 1: Representation of \mathcal{A}
Proof. Let $y \in I$ and $y \in H_{x}$. If $\mathcal{D}_{x} \cap \mathcal{D}_{y} \neq \emptyset$, then we immediately have $|\mathcal{A}| \geq 4 q+3$ from Lemma 3. So let $\mathcal{D}_{x} \cap \mathcal{D}_{y}=\emptyset$. Then $\left|\mathcal{A}_{\overline{x y}}\right|=q$ (since $|\{S\}|=1,|\mathcal{C}|=q$, $\left.\left|\mathcal{D}_{x}\right|=\left|\mathcal{D}_{y}\right|=n-q\right)$.

Since $\mathcal{A}_{\overline{x y}}$ is union closed, there must exist some $z \in I$ abundant in $\mathcal{A}_{\overline{x y}}$. We choose z as the element with maximum abundance in $\mathcal{A}_{\overline{x y}}$. If z is present in all q sets of $\mathcal{A}_{\overline{x y}}$, then we have $\left|\mathcal{A}_{z}\right| \geq 2 q$ (since z must be in q sets of $\mathcal{C} \cup\{S\}$). This yields $|\mathcal{A}| \geq 4 q+1$.

So let z be present in at most $q-1$ sets of $\mathcal{A}_{\overline{x y}}$. Hence there must exist $s \in I$ present in $\mathcal{A}_{\overline{x y}} \backslash \mathcal{A}_{z}$. Consequently, there exists $G_{s} \in \mathcal{A}_{\overline{x y}}$ such that $s \in G_{s}$ and $z \notin G_{s}$. Since z is maximal in $\mathcal{A}_{\overline{x y}}, s$ must also be present in at most $q-1$ sets of $\mathcal{A}_{\overline{x y}}$. So there must exist $G_{z} \in \mathcal{A}_{\overline{x y}}$ such that $z \in G_{z}$ and $s \notin G_{z}$. Also, since $\mathcal{A}_{\overline{x y}}$ is union-closed, there exists $G_{z s} \in \mathcal{A}_{\overline{x y}}$ such that $z \in G_{z s}$ and $s \in G_{z s}$. We summarize this as follows.

$$
\begin{array}{lll}
z \in G_{z} & \text { and } & s \notin G_{z} ; \\
s \in G_{s} & \text { and } & z \notin G_{s} ; \\
s \in G_{z s} & \text { and } & z \in G_{z s} ;
\end{array}
$$

where $G_{z}, G_{s}, G_{z s} \in \mathcal{A}_{\overline{x y}}$.
Our set-up is depicted in Figure 1.
By the hypothesis of this theorem, we have $\left|\mathcal{A}_{x}\right|=\left|\mathcal{A}_{y}\right|=\left|\mathcal{A}_{z}\right|=n$. Therefore, applying Lemma 4 , we have the following three sub-cases:
(a) $z \in H_{x}$:

We consider the family $\mathcal{A}_{\overline{s y}}$. There exists a basis B_{x}, where $x \in B_{x}$ and $s \notin B_{x}$, since s cannot dominate x. Since $\mathcal{D}_{x} \cap \mathcal{D}_{y}=\emptyset, y \notin B_{x}$. Hence $B_{x} \in \mathcal{A}_{\overline{s y}}$. Since $G_{z} \in \mathcal{A}_{\overline{x y}}, y \notin G_{z}$. Also $s \notin G_{z}$. Therefore $G_{z} \in \mathcal{A}_{\overline{s y}}$.

Since B_{x} and G_{z} are in $\mathcal{A}_{\overline{s y}}$, we have $x, z \in E_{s y}$. From Lemma $6, E_{s y} \notin \mathcal{C}$. Hence $E_{s y} \in \mathcal{D}_{x} \cap \mathcal{D}_{z}$. Thus, since $\mathcal{D}_{x} \cap \mathcal{D}_{z} \neq \emptyset$ and $z \in H_{x}$, we have $|\mathcal{A}| \geq 4 q+3$ from Lemma 3.
(b) $z \in H_{y}$:

The proof is similar to case (a), but with the roles of x and y reversed.
(c) $z \in L_{x}$ and $z \in L_{y}$:

Here $z \in L_{x}$ implies $x \in L_{z}$, since $\left|\mathcal{A}_{x}\right|=\left|\mathcal{A}_{z}\right|=n$. Similarly, since $z \in L_{y}$, we have $y \in L_{z}$. Therefore, we have $x, y \notin H_{z}$ from Lemma 4. Since $x, y \notin H_{z}$, let $r \in I$ be an element of H_{z}.

If r is present in any set of $\mathcal{A}_{\overline{x y}}$, then we have a set $G_{r z} \in \mathcal{A}_{\overline{x y}}$ containing both r and z, since $\mathcal{A}_{\overline{x y}}$ is union-closed. Since $G_{r z} \notin \mathcal{C}$, we have $G_{r z} \in \mathcal{D}_{r} \cap \mathcal{D}_{z}$. Therefore we have $|\mathcal{A}| \geq 4 q+3$ from Lemma 3 , since $r \in H_{z}$ and $\mathcal{D}_{r} \cap \mathcal{D}_{z} \neq \emptyset$.

Let us assume that r is not in any sets of $\mathcal{A}_{\overline{x y}}$. So $D_{r} \subset \mathcal{D}_{x} \cup \mathcal{D}_{y}$. Since r cannot be dominated by s, there must exist a basis B_{r} such that $r \in B_{r}$ and $s \notin B_{r}$.

If $B_{r} \in \mathcal{D}_{x}$, then $B_{r} \in \mathcal{A}_{\overline{s y}}$ (because $y \notin B_{r}$, since $\mathcal{D}_{x} \cap \mathcal{D}_{y}=\emptyset$). Also, $G_{z} \in \mathcal{A}_{\overline{s y}}$. So $z, r \in E_{s y} \notin \mathcal{C}$.

If $B_{r} \in \mathcal{D}_{y}$, then $B_{r} \in \mathcal{A}_{\overline{s x}}$ (because $x \notin B_{r}$, since $\mathcal{D}_{x} \cap \mathcal{D}_{y}=\emptyset$). Also, $G_{z} \in \mathcal{A}_{\bar{s} \bar{x}}$. So $z, r \in E_{s x} \notin \mathcal{C}$.

So at least one of $E_{s x}$ and $E_{s y}$ must be present in $\mathcal{D}_{r} \cap \mathcal{D}_{z}$. Therefore, we have $|\mathcal{A}| \geq 4 q+3$ from Lemma 3 , since $r \in H_{z}$ and $\mathcal{D}_{r} \cap \mathcal{D}_{z} \neq \emptyset$.

2.3 The case when $C_{x}=S \backslash\{x\}$ for all x

In this case, no element can be dominated by any other element. Thus all elements must be present in $q-1$ sets of \mathcal{C}.

Theorem 3. If there exists x such that $\left|\mathcal{A}_{x}\right|<n$, then $|\mathcal{A}| \geq 4 q+1$.
Proof. The proof is similar to that of Theorem 1. We have $\left|\mathcal{A}_{\bar{x}}\right| \geq n+2$. Let $y \in H_{x}$. So y must be in at least $(n+2) / 2$ sets of $\mathcal{A}_{\bar{x}}$. It must be in $q-2$ sets of $\mathcal{C} \backslash\left\{C_{x}\right\}$. Also, $y \in S$. So $(n+2) / 2+(q-2)+1 \leq n$, which yields $|\mathcal{A}| \geq 4 q+1$.

Theorem 4. If for all $x,\left|\mathcal{A}_{x}\right|=n$, then $|\mathcal{A}| \geq 4 q+1$.
Proof. Since $\left|\mathcal{A}_{x}\right|=n$ for all x, no element can dominate any other element. Therefore $I=S$. Since, in the proof of Theorem 2, we did not consider any element from J, this just becomes a special case of Theorem 2.

Corollary 1. The minimal counter-example to Frankl's conjecture must contain at least 53 sets.

Proof. Combining Theorems $1,2,3$ and 4 , we obtain $|\mathcal{A}| \geq 4 q+1$. Since it is shown in [4] that $q \geq 13$, we have $|\mathcal{A}| \geq 53$.

Acknowledgements

I deeply appreciate the valuable suggestions from the referees and editors.

References

[1] H. Bruhn and O. Schaudt, The journey of the union-closed sets conjecture, Graphs Combin. 31 (2015), 2043-2074.
[2] R. M. Norton and D. G. Sarvate, A note of the union-closed sets conjecture, J. Austral. Math. Soc. (Ser. A) 55 (1993), 411-413.
[3] I. Roberts and J. Simpson, A note on the union-closed sets conjecture, Australas. J. Combin. 47 (2010), 265-267.
[4] B. Vučković and M. Živković, The 12-element case of Frankl's conjecture, IPSI BgD Transactions on Internet Research 13 (2017), 65-71.
[5] Extremal Set Systems (Chapter 24), in: Handbook of Combinatorics (vol. 2), MIT Press, Cambridge, MA, USA, 1995, 1293-1329.

