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Abstract

A Latin square is said to possess the diagonal property if both its main
and back diagonals are transversals. A Latin square, L of order v with
entries and row and column indices from the set {0, 1, 2, . . . , v − 1} is
called strongly symmetic if L(v − 1 − i, v − 1 − j) = v − 1 − L(i, j) for
all i, j. In this paper we investigate existence of t pairwise orthogonal
Latin squares of order v with both the diagonal and strongly symmetric
properties (i.e. t SSPODLS(v)) for t = 3, 4, 5. It is not possible for a
strongly symmetric Latin square of order v to exist for v ≡ 2 (mod 4),
but for other v, we obtain 3 SSPODLS(v) for v ≥ 7, 4 SSPODLS(v) for
v ≥ 7, v /∈ {20, 21}, and 5 SSPODLS(v) for v ≥ 301.

1 Introduction

A Latin square of order v is a v × v array L with entries from a set S of size v such
that each element of S appears once in each row and once in each column of L. A
transversal in a Latin square of order v is a set of v cells, one from each row and
column, containing a different symbol in each cell.

Two Latin squares A = (ai,j) and B = (bi,j) of order v are said to be orthogonal
if the v2 ordered pairs (ai,j, bi,j) are all distinct. Also, t Latin squares of order v are
said to form a set of t MOLS(v), or t mutually orthogonal Latin squares of order v
if every pair of them is orthogonal.

A Latin square L of order v with entries and row and column indices from S =
{0, 1, . . . , v−1} is called strongly symmetric if, for all i, j ∈ S, it satisfies the condition
L(v−1− i, v−1− j) = v−1−L(i, j). A Latin square is said to possess the diagonal
property if its main and back diagonals are both transversals.

Not a lot is currently known about 3 or more MOLS(v) each satisfying the strongly
symmetric condition. In 2002, Cao et al. [12] proved existence of 2 MOLS(v) satis-
fying the self-orthogonal property (i.e. the squares are of the form A1 and A2 = AT

1 ),
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the strongly symmetric property and the diagonal property for all v ≡ 0, 1, 3 (mod
4), v /∈ {3, 15}. In [13], existence of two such squares for v = 15 was established.

Two strongly symmetric MOLS(3) exist, but two MOLS(3) cannot possess the
self-orthogonal property or the diagonal property. In addition, from Lemma 2.4 in
[13], a strongly symmetric Latin square of order v cannot exist for any v ≡ 2 (mod 4).
(The authors of [13] stated this result only for strongly symmetric Latin squares also
satisfying the diagonal and self-orthogonal conditions, but these last two conditons
are not used in the proof.)

More is known about existence of t MOLS(v) satisfying the diagonal property
(denoted as t PODLS(v), or t pairwise orthogonal diagonal Latin squares of order
v). Several authors have investigated existence of 2 PODLS(v). The full spectrum (2
PODLS(v) exist for all positive integers v except 2, 3, 6) was eventually obtained in
[11]. Existence of t PODLS(v) was investigated in [15, 19] for t = 3, and in [16, 17]
respectively, for t = 4, 5. For t = 3, 4, 5 further improvements were made in [10].
These results are summarised in following theorem:

Theorem 1.1 Let D3 = D4 = {2, 3, 4, 5, 6} and D5 = D4 ∪ {7}. For t = 3, 4, 5,
there do not exist t PODLS(v) for v ∈ Dt. For other orders of v and t ∈ {3, 4, 5},
there always exist t PODLS(v) except possibly when v ∈ Pt, where

P3 = {10};
P4 = P3 ∪ {18, 20, 21, 22, 26, 30, 34, 38, 42, 54};
P5 = P4 ∪ {12, 14, 15, 28, 33, 35, 39, 44, 45, 46, 50, 51, 52, 60, 66, 68, 70, 74, 82, 84, 98}.

In this paper, for t = 3, 4, 5, we look at existence of t MOLS(v), each of which
also satisfies both the strongly symmetric and diagonal conditions, that is, t strongly
symmetric pairwise orthogonal diagonal Latin squares of order v. Any t such squares
will be denoted as t SSPODLS(v). More specifically, we prove the following theorem.

Theorem 1.2 If v ≡ 2 (mod 4), then a strongly symmetric Latin square of order v
cannot exist. For v ≡ 0, 1 or 3 (mod 4), there do not exist t SSPODLS(v) if t = 2
and v = 3, if t ∈ {3, 4} and 3 ≤ v ≤ 5, or if t = 5 and 3 ≤ v ≤ 7. For larger
v ≡ 0, 1 or 3 (mod 4), and t ∈ {2, 3, 4}, t SSPODLS(v) exist, except possibly when
t = 4 and v ∈ {20, 21}. Also 5 SSPODLS(v) exist if v ≡ 0, 1 or 3 (mod 4), and
v ≥ 301.

2 Using quasi-difference matrices to obtain SSPODLS

Let G be an additive abelian group of order v. A (v, k;λ1, λ2; u)-QDM or quasi-
difference matrix over G is an array Q = (qi,j) with k rows and λ1(v − 1 + 2u) + λ2

columns such that each entry of Q either is empty or contains an element of G.
(We shall usually assume we have labelled the rows of Q as 0, 1, 2, . . . , k− 1 and the
columns as 0, 1, 2, . . . , λ1(v − 1 + 2u) + λ2 − 1). In addition:



R.J.R. ABEL /AUSTRALAS. J. COMBIN. 72 (2) (2018), 306–328 308

1. Each row of Q contains λ1u empty entries and each column of Q contains at
most one empty entry;

2. For any two distinct rows i1 and i2 of Q, the multiset of differences qi1,j − qi2,j
(j = 0, 1, . . . , λ1(v− 1 + 2u) + λ2 − 1, with qi1,j, qi2,j both non-empty) contains
each nonzero element of G exactly λ1 times, and the zero element of G exactly
λ2 times.

A (v, k;λ1, λ1; 0)-QDM is more commonly denoted as a (v, k;λ1)-DM or difference
matrix.

In [10] a construction for PODLS using quasi-difference matrices was given. In
this section, we show how this construction can produce SSPODLS when a few
extra conditions are added. First we need to define incomplete MOLS (or IMOLS),
IPODLS, and ISSPODLS.

Let A be a (v + u) × (v + u) array, let V be a set of size v + u and let U be a
subset of V of size u. The array A is said to be an incomplete Latin square over
(V, U) or an ILS(v + u, u) if

1. A has an empty u× u subarray (called a hole) and each cell of A which is not
part of the hole contains an element of V ;

2. Each row and column of A that is part of the hole contains each element of
V \ U once, and no element of U . Every other row and column of A contains
each element of V exactly once.

A holey transversal in an ILS(v + u, u) over (V, U) is a set of v cells, no two of
which lie in the same row or column, such that each element of V \ U lies in one of
the v cells, and none of the v cells lies in any row or column which is part of the
hole. Two incomplete Latin squares ILS(v + u, u) over (V1, U1) and (V2, U2) are said
to be orthogonal if their superposition produces each pair from (V1 × V2) \ (U1 ×U2)
exactly once. Any t ILS(v + u, u), each pair of which is orthogonal, are said to form
a set of t IMOLS(v+u, u). Two or more IMOLS(v+u, u) are said to be idempotent
if they possess a common holey transversal.

Suppose we have t IMOLS(v+u, u), (denoted as A� for � = 1, 2, . . . , t) over (V, U)
with row and column indices from {0, 1, 2, . . . , v+u−1}. If these IMOLS satisfy two
extra conditions: (1) Whenever row i is part of the hole, row v+u−1−i, column i and
column v+u−1−i are also, (2) the main and back diagonals of each A� contain each
element of V \U eactly once. Then these t IMOLS are said to be t IPODLS(v+u, u).
Suppose further, three extra conditions are satisfied (3) V = {0, 1, 2, . . . , v + u− 1},
(4) Whenever y ∈ U , v+u−1−y ∈ U and (5) For all � = 1, 2, . . . , t, and all i, j such
that A�(i, j) is non-blank, we have A�(v+u−1−i, v+u−1−j) = v+u−1−A�(i, j).
In this case, the squares A�, (� = 1, 2, . . . , t) are called t ISSPODLS(v + u, u).

We also need to define the concept of pairwise matching columns in a QDM. If
Q = (qi,j) (where 0 ≤ i ≤ k − 1, 0 ≤ j ≤ v + 2u− 1) is a (v, k; 1, 1; u)-QDM over an
additive abelian group G, and H is a subgroup of G of order v/2, then two columns
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(y0, y1, . . . , yk−1)
T and (z0, z1, . . . , zk−1)

T of Q are said to be pairwise matching with
respect to H if for all i = 0, 1, . . . , k − 1, the values yi and zi are either both blank,
both in H or both in G \H .

Now suppose there exist an element α of order 2 in G and a 2×2 submatrix of Q
(in rows i1, i2 and columns j1, j2) satisfying two extra conditions: (1) columns j1, j2
contain no blank entries (2) for some a ∈ G, qi2,j1−qi1,j1 = a and qi2,j2−qi1,j2 = a+α.
In this case we say the QDM satifies the ∗ condition (in rows i1, i2) and denote it by
QDM*.

We now prove the main theorem in this section:

Theorem 2.1 Let G be an additive abelian group of even order v. Let α be an order
2 element of G, and suppose a (v, k; 1, 1; u)-QDM* over G exists. Then:

1. If u ∈ {0, 1}, then k − 2 ISSPODLS(v + u, u) and k SSPODLS(v + u) exist.

2. Suppose u ≥ 2, and either u = 2m or u = 2m+1. Let H be a subgroup of G of
order v/2 such that α �∈ H. Suppose also, that for each row i in the QDM*, 2m
of the u columns with a blank entry in row i can be partitioned into m sets of
pairwise matching columns with respect to H. Then k−2 ISSPODLS(v+u, u)
exist. If also, k − 2 SSPODLS(u) exist, then k − 2 SSPODLS(v + u) exist.

Proof: Let Q1 be a (v, k; 1, 1; u)-QDM* over G with the appropriate pairwise match-
ing columns, with row indices from {0, 1, . . . , k − 1}, and column indices from
{0, 1, . . . , v + 2u − 1}. Without loss of generality, we can also assume that the
rows of Q1 in which the * condition is satisfied are i1 = 0 and i2 = 1. Replace the u
blank entries in each row by the elements of S = {∞0,∞1, . . . ,∞u−1} in such a way
that for any integer s with 0 ≤ s ≤ (u − 2)/2, and any row i with 0 ≤ i ≤ k − 1,
the two columns containing ∞s and ∞u−1−s in row i are pairwise matching. Also,
let G = {g0 = 0, g1, . . . , gv−1}, where for 0 ≤ i ≤ v − 1, gv−1−i = gi + α. Note that
this implies gv−1 = α. In addition, if u ≥ 2, the elements of G should be chosen so
that H = {g0 = 0, g1, . . . , g(v−2)/2} (possible since α /∈ H).

For convenience, we now relabel the elements of G ∪ S as x0, x1, . . . , xv+u−1,
where xi = gi for 0 ≤ i ≤ (v − 2)/2 , xv/2+i = ∞i for 0 ≤ i ≤ u − 1, and
xv+u−1−i = gv−1−i = α + gi for 0 ≤ i ≤ (v − 2)/2.

We can also assume, without loss of generality that two columns of Q1 satisfying
the ∗ condition in rows 0 and 1 are j1 = 0 and j2 = v+u−1. (Thus for some a ∈ G,
Q1(1, j1) − Q1(0, j1) = a and Q1(1, j2) − Q1(0, j2) = a + α). We shall also assume
that the columns of Q1 are ordered so that the following conditions are satisfied: (1)
Q1(1, j)−Q1(0, j) = a + xj ∈ G for 0 ≤ j ≤ v/2− 1 and v/2 + u ≤ j ≤ v + u− 1,
(2) Q1(1, v/2 + j) = xv/2+j = ∞j = Q1(0, v + u+ j) for 0 ≤ j ≤ u− 1.

Now let Q2 be the matrix obtained by subtracting a from all non-infinite elements
in row 1 of Q1. Next, normalise each column j of Q2 by adding −Q2(0, j) to column
j if Q2(0, j) is not an infinite element or by adding −Q2(1, j) to column j if Q2(0, j)
is an infinite element. Note that if j3 and j4 are any two pairwise matching columns,
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then the amounts added to columns j3, j4 here are either both in H or both in
G\H and therefore these columns remain pairwise matching even after they’ve been
normalised. Let Q = (qi,j) be the resulting normalised QDM*. Note that (1) if
0 ≤ j ≤ v + u − 1, then q0,j = 0 and q1,j = xj , and (2) if 0 ≤ j ≤ u − 1, then
q0,v+u+j = ∞j = xj+v/2 and q1,v+u+j = 0.

Now we define k−2 incomplete Latin squares ILS(v+u, u) with row and column
indices from {0, 1, . . . , v+u−1} as follows. These squares will be denoted as A� (for
� = 1, 2, . . . , k − 2), where (1) A�(0, j) = q�+1,j for 0 ≤ j ≤ v + u − 1, (2) if xi ∈ G
and xj ∈ S, then A�(i, j) = A�(0, j)+xi, (3) if xi ∈ G, xj ∈ G and xj −xi = xn, then
A�(i, j) = A�(0, n) + xi, (4) if xi ∈ S and xj ∈ G, then A�(i, j) = q�+1,v+u+i + xj , (5)
if xi ∈ S and xj ∈ S, then A�(i, j) is empty.

This is a standard construction for IMOLS from a QDM, i.e. the squares A� (for
� = 1, 2, . . . , k− 2) are k− 2 IMOLS(v+ u, u). It is also not hard to verify that each
element of G appears appears exactly once on both the main and back diagonals of
each A�, since whenever xi ∈ G, A�(i, i) = A�(0, 0)+xi, and (as xv+u−1−i −xv+u−1 =
(α + xi)− α = xi), Al(i, v + u− 1− i) = Al(0, v + u− 1) + xi.

Thus the squares A� (for � = 1, 2, . . . , k−2) are also k−2 IPODLS(v+u, u). We
now need to look at the strongly symmetric condition and convert these squares to
k − 2 ISSPODLS(v + u, u), namely B� (for � = 1, 2, . . . k − 2). This will be done by
making some adjustments to the infinite elements plus the rows and columns which
are part of the hole. We also need to rename the symbols. Initially, if symbol xt

appears in any (i, j) cell of A�, then symbol t ∈ {0, 1, 2, . . . , v+ u− 1} will be placed
in the (i, j) cell of B�. Some further adjustments to an (i, j) cell of B� are needed
however, when one of xi, xj or A�(i, j) is an infinite element.

If all of xi, xj , and A�(i, j) are elements of G, then let A�(i, j) = xm. Here,
xv+u−1−i−xi = α = xv+u−1−j−xj . Thus A�(v+u−1−i, v+u−1−j) = α+A�(i, j) =
α+xm = xv+u−1−m. So B�(i, j) = m and B�(v+u−1−i, v+u−1−j) = v+u−1−m.
Thus in this case, cells (i, j) and (v+u−1− i, v+u−1−j) of B� satisfy the strongly
symmetric condition. If u = 1, then ∞0 = x(v+u−1)/2; here, the strongly symmetric
condition for cells (i, j) and (v + u− 1− i, v + u− 1− j) in B� is also satisfied when
one of xi, xj , A�(i, j) equals ∞0.

When u ≥ 2, any infinite point ∞t = xv/2+t and its pairwise matching infinite
point ∞u−1−t = xv/2+u−1−t will both appear in v/2 cells in each of the top left and
bottom right v/2× v/2 subsquares of A� or in each of the top right and bottom left
v/2 × v/2 subsquares of A�. Here, for 0 ≤ t ≤ (u − 2)/2, we now interchange the
positions of v/2+t and v/2+u−1−t in either the bottom left v/2×v/2 subsquare of
B� (if they appear there), or else in the bottom right v/2×v/2 subsquare of B�. Note
that in any square An with n �= �, the v/2 cells occupied by each of these infinite
points in the corresponding v/2 × v/2 subsquare of An will either both contain all
elements of H once or all elements of G \ H once. This is because of the pairwise
matching condition, and the fact that H = {x0 = 0, x1, . . . , x(v−2)/2}. Thus making
these interchanges after relabelling does not affect the orthogonality condition.
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In addition, within the bottom central v/2 × u subsquare of B�, we interchange
columns v/2+t and v/2+u−1−t for 0 ≤ t ≤ (u−2)/2. Similarly, within the central
right u × v/2 subsquare of B� we interchange rows v/2 + t and v/2 + u − 1 − t for
0 ≤ t ≤ (u−2)/2. Because the two columns of Q containing xv/2+t and xv/2+u−1−t in
row i for i ∈ {0, 1} are pairwise matching, making these interchanges still leaves each
element of G once in each row and in each column of B�. Also, these interchanges
don’t affect the orthogonality condition.

After these interchanges are made, the (i, j) and (v + u− i, v + u− j) cells in B�

satisfy the strongly symmetric condition even when xi, xj or A�(i, j) is an infinite
element. For instance if xj is an infinite element, i ≤ (v − 2)/2 and A�(i, j) = xm,
then A�(v+u−1−i, j) = A�(0, j)+xv+u−1−i = A�(i, j)−xi+xv+u−1−i = A�(i, j)+α =
xm+α = xv+u−1−m. Thus B�(i, j) = m andB�(v+u−1−i, v+u−1−j) = v+u−1−m,
so here, the (i, j) and (v+u−1− i, v+u−1−j) cells in B� again satisfy the strongly
symmetric condition.

Making all these changes ensures that for any y ∈ {0, 1, . . . , v + u − 1}, if y lies
in any cell (i, j) of any B�, then v+ u− 1− y lies in the (v+ u− 1− i, v+ u+1− j)
cell. Thus the squares B� (for � = 1, 2, · · ·k − 2) are k − 2 ISSPODLS(v, u).

Finally, if k−2 SSPODLS(u) exist, we add v/2 to all entries in these SSPODLS(u)
and then use them to fill the empty u× u subsquares of the squares B�. When this
is done, the squares B� (for � = 1, 2, . . . , k − 2) are k − 2 SSPODLS(v + u). �

The next two theorems give two important special cases of Theorem 2.1 (when
u = 0 or 1):

Theorem 2.2 Suppose that v is an even integer, and there exists a (v, k; 1, 1; 1)-
QDM* over an abelian group of order v. Then k − 2 SSPODLS(v + 1) also exist.

Theorem 2.3 Suppose that v is an even integer, and there exists a (v, k; 1)-DM*
over an abelian group of order v. Then k − 2 SSPODLS(v) also exist.

We remark that if u is even and k ≥ 3, then Theorem 2.1 can give k − 2
SSPODLS(v + u) only if v ≡ u ≡ 0 (mod 4). If u ≡ 2 (mod 4), then k − 2
SSPODLS(u) can’t exist, so the theorem doesn’t give k − 2 SSPODLS(v + u). If
v ≡ 2 (mod 4), then it is sufficient to assume k = 3 (if k > 3, delete all but 3
rows of the (v, k; 1, 1; u)-QDM*, Q = (qi,j)). In this case, consider the multiset C of
differences q1,j − q0,j , q2,j − q0,j, q2,j − q1,j for j = 0, 1, . . . , v + 2u− 1 (but differences
that include a blank entry are not included).

Since Q is a QDM, C must contain exactly 3v/2 elements from H and 3v/2
elements from G \H . This is an odd number since v ≡ 2 (mod 4). However, within
the set of columns of Q containing a blank entry there is an even number of such
differences in G \H , since these columns can be partitioned into ’matching pairs’. It
is also not hard to see that any column with no blank entry (i.e. 3 non-blank entries)
contains 0 or 2 such differences in G \H , again an even number. The total number
of such differences over all columns therefore can’t equal the odd number 3v/2, a
contradiction.
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It is also worth mentioning that if G = Zv (where v ≡ 0 (mod 4) and u ≥ 2), then
Theorem 2.1 cannot give k− 2 SSPODLS(v+ u) or even k− 2 ISSPODLS(v+ u, u).
This is because the only order 2 element in G is α = v/2, and α lies inside the only
subgroup H of order v/2 in G (here, H = {0, 2, 4, . . . , v − 2}), which is not allowed
in Theorem 2.1 when u ≥ 2.

Example 2.1 The following is a normalised (10, 4; 1, 1; 3)-QDM* over Z10 (with the
blank entries replaced by x5 = x, x6 = z, and x7 = y). It also satisfies the pairwise
matching condition: for any i ∈ {0, 1, 2, 3}, the two columns containing x and y in
row i are pairwise matching. The elements of G = Z10 are xt = 2t and x12−t = 5+2t
for 0 ≤ t ≤ 4.

⎛
⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 x z y
0 2 4 6 8 x z y 3 1 9 7 5 0 0 0
0 5 1 y x 3 4 7 9 z 8 2 6 2 4 8
0 y x 8 6 1 5 3 z 7 2 4 9 1 9 5

⎞
⎟⎟⎠

This QDM* gives the following 2 IPODLS(13, 3) (A1 and A2) using Theorem 2.1.
The columns (0∗, 0∗, 0, 0)T and (0∗, 5∗, 6, 9)T satisfy the * condition. To make check-
ing easier, the elements xt corresponding to row and column t (for t = 0, 1, 2, . . . , 12)
of each square are given in the first column and row.

0 2 4 6 8 x z y 3 1 9 7 5
0 0 5 1 y x 3 4 7 9 z 8 2 6
2 x 2 7 3 y 5 6 9 z 0 4 8 1
4 y x 4 9 5 7 8 1 2 6 0 3 z
6 7 y x 6 1 9 0 3 8 2 5 z 4
8 3 9 y x 8 1 2 5 4 7 z 6 0
x 2 4 6 8 0 5 3 1 9 7
z 4 6 8 0 2 7 5 3 1 9
y 8 0 2 4 6 1 9 7 5 3
3 5 1 z 2 9 6 7 0 3 x y 4 8
1 9 z 0 7 3 4 5 8 6 1 x y 2
9 z 8 5 1 7 2 3 6 0 4 9 x y
7 6 3 9 5 z 0 1 4 y 8 2 7 x
5 1 7 3 z 4 8 9 2 x y 6 0 5

0 2 4 6 8 x z y 3 1 9 7 5
0 0 y x 8 6 1 5 3 z 7 2 4 9
2 8 2 y x 0 3 7 5 9 4 6 1 z
4 2 0 4 y x 5 9 7 6 8 3 z 1
6 x 4 2 6 y 7 1 9 0 5 z 3 8
8 y x 6 4 8 9 3 1 7 z 5 0 2
x 1 3 5 7 9 4 2 0 8 6
z 9 1 3 5 7 2 0 8 6 4
y 5 7 9 1 3 8 6 4 2 0
3 7 5 0 z 2 4 8 6 3 9 1 x y
1 3 8 z 0 5 2 6 4 y 1 7 9 x
9 6 z 8 3 1 0 4 2 x y 9 5 7
7 z 6 1 9 4 8 2 0 5 x y 7 3
5 4 9 7 2 z 6 0 8 1 3 x y 5

To convert these to 2 ISSPODLS(13, 3) we first interchange the first and third
rows in the central right 3×5 subarray, and the first and third columns in the bottom
central 5 × 3 subarray. We also interchange the values x and y in the bottom right
5 × 5 subarray. Finally, we replace the values 0, 2, 4, 6, 8 by 0, 1, 2, 3, 4, the values
5, 7, 9, 1, 3 by 12, 11, 10, 9, 8 and x, z, y by 5, 6, 7. We then obtain the following 2
ISSPODLS(13, 3), B1 and B2.
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0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 12 9 7 5 8 2 11 10 6 4 1 3
1 5 1 11 8 7 12 3 10 6 0 2 4 9
2 7 5 2 10 12 11 4 9 1 3 0 8 6
3 11 7 5 3 9 10 0 8 4 1 12 6 2
4 8 10 7 5 4 9 1 12 2 11 6 3 0
5 1 2 3 4 0 9 10 11 12 8
5 2 3 4 0 1 11 12 8 9 10
7 4 0 1 2 3 12 8 9 10 11
8 12 9 6 1 10 0 11 3 8 7 5 2 4
9 10 6 0 11 8 4 12 2 3 9 7 5 1
10 6 4 12 9 11 3 8 1 0 2 10 7 5
11 3 8 10 12 6 2 9 0 5 4 1 11 7
12 9 11 8 6 2 1 10 4 7 5 3 0 12

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 7 5 4 3 9 12 8 6 11 1 2 10
1 4 1 7 5 0 8 11 12 10 2 3 9 6
2 1 0 2 7 5 12 10 11 3 4 8 6 9
3 5 2 1 3 7 11 9 10 0 12 6 8 4
4 7 5 3 2 4 10 8 9 11 6 12 0 1
5 9 8 12 11 10 4 3 2 1 0
6 10 9 8 12 11 1 0 4 3 2
7 12 11 10 9 8 2 1 0 4 3
8 11 12 0 6 1 3 4 2 8 10 9 7 5
9 8 4 6 0 12 2 3 1 5 9 11 10 7
10 3 6 4 8 9 1 2 0 7 5 10 12 11
11 6 3 9 10 2 0 1 4 12 7 5 11 8
12 2 10 11 1 6 4 0 3 9 8 7 5 12

The next lemma gives some known difference matrices which will be useful for
obtaining some examples of SSPODLS:

Lemma 2.4 If (t, v) ∈ S = {(4, 12), (4, 28), (4, 44), (4, 52), (4, 60), (6, 24), (6, 40),
(6, 56), (7, 36), (7, 48), (4, 60), (8, 80)} then t SSPODLS(v) exist.

Proof: A (v, 6; 1)-DM* is given in [1] when v ∈ {28, 44, 52}. A (24, 8; 1)-DM* and
a (36, 9; 1)-DM* are given in [7], while a (40, 8; 1)-DM* and an (80, 10; 1)-DM* are
given in [6]. A (12, 6; 1)-DM* and a (56, 8; 1)-DM* are given in [18], a (48, 9; 1)-
DM* is given in [5], and a (60, 6; 1)-DM* is given in [2]. These DM*s are all over
additive abelian groups, therefore, by Theorem 2.3, there exist t SSPODLS(v) for
each (t, v) ∈ S. �

A transversal T in a Latin square A of order q (with entries, row indices and
column indices from {0, 1, 2, . . . , q − 1}) is said to be strongly symmetric if the (q −
1 − i, q − 1 − j) cell of A is in T whenever the (i, j) cell of A is. Two disjoint
transversals T1 and T2 in A are said to be pairwise strongly symmetric (or to form a
strongly symmetric pair) if, whenever an (i, j) cell is in T1, the (q − 1− i, q − 1− j)
cell is in T2. For q a prime power we have the following important result:

Lemma 2.5 If q is an even prime power, then there exist q − 2 SSPODLS(q) with
q common disjoint strongly symmetric transversals that include the main and back
diagonals. Also, if q is an odd prime power, then there exist q− 3 SSPODLS(q) with
q common disjoint transversals, such that one is the main diagonal, and the others
can be partitioned into (q − 1)/2 strongly symmetric pairs.

Proof: Let the elements of GF(q) be x0 = 0, x1, . . . , xq−1, where xq−1−s = 1− xs for
0 ≤ s ≤ (q − 1)/2. (Note that this implies xq−1 = 1 and, if q is odd, x(q−1)/2 = 2−1).

Now we define q − 1 Latin squares A� for � = 0, 1, . . . , q − 2. Their row and
column indices are ordered as 0, 1, 2 . . . , q−1, and their entries are A0(i, j) = xi−xj ,
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A�(i, j) = x�(xi) + (1 − x�)xj if 1 ≤ � ≤ q − 2. It is well known that if m �=
n, then Am is orthogonal to An. The q symbols in square A0 give us q common
disjoint transversals in each of the other squares; also, for any i, j ∈ {0, 1, . . . , q−1},
A0(q − 1 − i, q − 1 − j) = xq−1−i − xq−1−j = (1 − xi)− (1 − xj) = xj − xi. When q
is even, this also equals xi − xj = A0(i, j). Thus for even q, the q common disjoint
transversals in A1, A2, . . . , Aq−2 determined by the elements of A0 will be strongly
symmetric if we replace symbol xt by t for t = 0, 1, . . . , q − 1. Likewise, if q is odd,
xq−1−i − xq−1−j = xj − xi = -(xi − xj), so here, for any g ∈ GF (q), g �= 0, the
transversals in the squares A1, A2, . . . , Aq−2 determined by elements −g and g in A0

will form a strongly symmetric pair if we replace xt by t for t = 0, 1, . . . , q − 1.

For both q even and q odd, the transversal determined by element zero in A0 is
the main diagonal in the other squares, since for any i ∈ {0, 1, . . . , q−1}, xi−xi = 0.
When q is even, the transversal determined by element 1 in A0 is the back diagonal
in the other squares, since here for any i ∈ {0, 1, . . . , q − 1}, xi − xq−1−i = xi −
(1 − xi) = 1. If q is odd, then the element 2−1 in A(q−1)/2 determines a transversal
in the other squares which is the back diagonal, since the back diagonal entries in
A(q−1)/2 are 2−1xi + 2−1xq−1−i = 2−1(xi + (1− xi)) = 2−1. Thus the squares A� (for
� = 1, 2, . . . , q − 2, � �= (q − 1)/2 if q is odd) are diagonal squares.

If � > 0 and A�(i, j) = xt, then A�(q−1− i, q−1− j) = x�xq−1−i+(1−x�)xq−1−j

= x�(1− xi) + (1− x�)(1− xj) = 1− (x�xi + (1− x�)xj) = 1−A�(i, j) = xq−1−t.

Therefore if we let B� be the Latin squares obtained from A� by replacing symbol
xt by t for t = 0, 1, . . . , q−1, then the squares B� (for � = 1, 2, . . . , q−2, � �= (q−1)/2
if q is odd) form a set of q − 2 SSPODLS(q) if q is even, or q − 3 SSPODLS(q) if q
is odd. This completes the proof. �

As an example, when q = 4 and GF(4) = {x0 = 0, x1 = y, x2 = y2 = y+1, x3 =
1}, the squares A�, B� (for � = 0, 1, 2) are displayed below. Here, B1 and B2 are 2
SSPODLS(4). For the squares A�, the elements xn are given as the first element in
row n and column n for each n ∈ {0, 1, 2, 3}. For the squares B�, the value n appears
in these positions.

A0 A1 A2

0 y y2 1 0 y y2 1 0 y y2 1
0 0 y y2 1 0 1 y y2 0 y2 1 y
y y 0 1 y2 y2 y 1 0 1 y 0 y2

y2 y2 1 0 y 1 0 y2 y y 1 y2 0
1 1 y2 y 0 y y2 0 1 y2 0 y 1

B0 B1 B2

0 1 2 3 0 1 2 3 0 1 2 3
0 0 1 2 3 0 3 1 2 0 2 3 1
1 1 0 3 2 2 1 3 0 3 1 0 2
2 2 3 0 1 3 0 2 1 1 3 2 0
3 3 2 1 0 1 2 0 3 2 0 1 3
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We also give the squares A� and B� (for � = 0, 1, 3) when q = 5. The elements
of GF (5) are ordered as x0 = 0, x1 = 2, x2 = 3, x3 = 4, x4 = 1. Here, B1 and B3

are 2 SSPODLS(5). Again, for the squares A�, the elements xn are given as the first
element in row n and column n for n ∈ {0, 1, 2, 3, 4}, while for the squares B�, the
value n appears in these positions.

A0 A1 A3

0 2 3 4 1 0 2 3 4 1 0 2 3 4 1
0 0 3 2 1 4 0 3 2 1 4 0 4 1 3 2
2 2 0 4 3 1 4 2 1 0 3 3 2 4 1 0
3 3 1 0 4 2 1 4 3 2 0 2 1 3 0 4
4 4 2 1 0 3 3 1 0 4 2 1 0 2 4 3
1 1 4 3 2 0 2 0 4 3 1 4 3 0 2 1

B0 B1 B3

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 0 2 1 4 3 0 2 1 4 3 0 3 4 2 1
1 1 0 3 2 4 3 1 4 0 2 2 1 3 4 0
2 2 4 0 3 1 4 3 2 1 0 1 4 2 0 3
3 3 1 4 0 2 2 4 0 3 1 4 0 1 3 2
4 4 3 2 1 0 1 0 3 2 4 3 2 0 1 4

We finish this section with several examples of t SSPODLS (with t ∈ {3, 4, 5}).
They are all obtainable by Theorem 2.1 or one of its special cases in Theorem 2.2
or 2.3. For these SSPODLS, we give the relevant QDM*, and indicate the columns
and entries within them that guarantee the * condition.

Lemma 2.6 There exist 3 SSPODLS(v) for v ∈ {20, 21} and 4 SSPODLS(v) for
v = 100.

Proof: For v = 20, 3 SSPODLS(v) are obtainable by Theorem 2.3, since a (20, 5; 1)-
DM* over Z2 × Z10 exists. This difference matrix can be obtained by replacing
each column in the array C below by its five cyclic shifts. Take α = (1, 0); here,
the columns ((0, 0)∗, (0, 0)∗, (0, 1), (1, 1), (0, 5))T and ((0, 1)∗, (1, 1)∗, (0, 5), (0, 0),
(0, 0))T satisfy the * condition.

C :

(0, 0) (0, 0) (0, 0) (0, 0)
(0, 4) (0, 0) (0, 2) (0, 6)
(1, 2) (0, 1) (0, 0) (0, 3)
(0, 1) (1, 1) (1, 5) (0, 2)
(1, 4) (0, 5) (1, 8) (1, 9)

For v = 21, we can apply Theorem 2.2, since a (20, 5; 1, 1; 1)-QDM* over
Z20 exists. This QDM* is displayed below. The columns (0∗, 1∗, 2, 3, 4)T and
(0∗, 11∗, 3, 2, 19)T satisfy the * condition.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 10 15 5 0
1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 5 0 − 10 15 0
2 1 6 13 4 11 14 17 3 19 9 7 18 8 12 16 15 5 0 − 10 0
3 9 19 17 18 8 12 6 2 1 16 13 14 11 4 7 10 15 5 0 − 0
4 18 12 1 17 14 6 8 19 13 7 16 2 9 11 3 − 10 15 5 0 0

For v = 100, we apply Theorem 2.1, using an (84, 6; 1, 1; 16)-QDM* over G =
Z2×Z42. For the arrays A1, A2 below, each column of [A1|A2] (except the last column
of A2) generates five columns in this QDM* by cyclically permuting the entries in
its first five rows, whilst leaving the sixth entry unaltered. The last column of A2

generates no columns in the QDM* other than itself. We take α = (1, 0), and the
subgroup H of order |G|/2 = 42 as {0} × Z42. Here, the columns ((0, 15)∗, (0, 32)∗,
(0, 28), (0, 30), (1, 35), (0, 0))T and ((0, 40)∗, (1, 15)∗, (0, 9), (1, 36), (0, 6), (0, 0))T
satisfy the * condition.

We now verify that the required condition for pairwise matching columns is sat-
isfied. Consider the six columns generated by the last columns of A1 and A2. For all
these columns, the first five entries lie in H and the sixth entry is blank, thus any
two of these columns are pairwise matching. In addition for j = 1, 2, . . . , 9, the j’th
columns of A1 and A2 are pairwise matching.

A1 :
(0, 0) (1, 3) (0, 14) (1, 41) (0, 27) (0, 21) (0, 18) (1, 0) (1, 39) (0, 0) (0, 10) (0, 0)
(1, 3) (1, 38) (0, 24) (1, 18) (0, 39) (1, 11) (1, 16) (0, 7) (0, 13) (0, 5) (1, 19) (0, 33)
(1, 18) (1, 5) (0, 19) (0, 20) (1, 10) (0, 4) (1, 40) (0, 1) (0, 12) (1, 29) (0, 2) (0, 18)
(1, 29) (1, 13) (1, 30) (1, 26) (1, 31) (1, 33) (0, 36) (1, 9) (1, 32) (0, 33) (1, 12) (0, 32)
(0, 17) − − − − − − − − (0, 11) (0, 3) (0, 38)
− (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) −

A2 :
(0, 0) (1, 21) (0, 16) (1, 8) (0, 26) (0, 29) (0, 41) (1, 14) (1, 1) (0, 28) (0, 40) (0, 0)
(1, 37) (1, 22) (0, 34) (1, 34) (0, 23) (1, 28) (1, 20) (0, 37) (0, 35) (0, 30) (1, 15) (0, 0)
(1, 35) (1, 2) (0, 22) (0, 31) (1, 37) (0, 17) (1, 7) (0, 8) (0, 38) (1, 35) (0, 9) (0, 0)
(1, 9) (1, 25) (1, 6) (1, 4) (1, 23) (1, 17) (0, 25) (1, 27) (1, 24) (0, 15) (1, 36) (0, 0)
(0, 10) − − − − − − − − (0, 32) (0, 6) (0, 0)
− (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) −

�

Lemma 2.7 There exist 4 SSPODLS(v) for v ∈ {15, 33, 35, 39, 45, 51, 68}.

Proof: These SSPODLS can be obtained by Theorem 2.1. For v �= 68, a (v −
1, 6; 1, 1; 1)-QDM* over Zv−1 exists, and for v = 68, a (v − 8, 6; 1, 1; 8)-QDM* over
Z2 × Z30 exists. For v ∈ {15, 33, 35}, these QDM*s can be found in [10]. For each
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v ∈ {39, 45, 51}, take α = (v − 1)/2, and for v = 68, take α = (1, 0). Now we give
two arrays A1, A2; each column (a, b, c, d, e, f)T of A1 should be replaced by the six
columns in the array C below. (The array C is isomorphic to the multiplication table
of the dihedral group of order 6). Each column (a, b, c, d, e, f)T of A2 (that doesn’t
consist entirely of zeros) is replaced by the first three columns of C. A column
consisting entirely of zeros generates no columns other than itself. In each case the
first two columns of A2 satisfy the ∗ condition (in rows 1 and 4). For v = 68, the
subgroup H of order 30 is {0} × Z30; here for j = 1, 3, 5, 7, the j’th and (j + 1)’th
columns of A1 are pairwise matching.

C :

a b c d e f
b c a e f d
c a b f d e
d f e a c b
e d f b a c
f e d c b a

v = 39:

A1 :

0 0 0 0 0 0
29 36 11 6 1 35
23 26 15 8 28 22
12 28 24 32 36 37
32 4 23 11 5 18
16 25 31 37 18 −

A2 :

0 0
0 5
0 29
0 19
0 24
0 10

v = 45:

A1 :

0 0 0 0 0 0 0
33 5 11 6 36 18 3
23 35 31 4 6 19 18
10 7 14 42 16 8 17
38 17 7 15 18 32 39
42 24 15 3 37 23 −

A2 :

0 0
0 31
0 3
0 22
0 9
0 25

v = 51:

A1 :

0 0 0 0 0 0 0 0
1 31 5 24 42 6 11 3
27 3 13 4 12 41 5 18
10 14 45 44 34 32 13 21
31 5 43 37 23 22 47 46
48 4 29 15 27 5 49 −

A2 :

0 0
0 13
0 31
0 25
0 38
0 6
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v = 68:

A1 :
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 18) (0, 21) (0, 4) (0, 25) (1, 3) (1, 25) (0, 15) (0, 26) (1, 18) (0, 6) (0, 24)
(1, 11) (1, 25) (1, 1) (1, 15) (1, 23) (1, 14) (1, 21) (1, 6) (0, 1) (0, 20) (0, 22)
(0, 9) (0, 28) (0, 24) (0, 29) (0, 12) (0, 8) (1, 9) (1, 4) (1, 5) (0, 4) (1, 27)
(1, 1) (1, 12) (0, 3) (0, 22) (1, 20) (1, 19) (0, 11) (0, 5) (1, 7) (0, 1) (1, 14)
− − − − − − − − (0, 7) (1, 22) (0, 10)

A2 :

(0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (0, 5) (0, 1) (0, 11)
(0, 0) (0, 18) (0, 23) (0, 14)
(0, 0) (1, 0) (0, 15) (1, 15)
(0, 0) (1, 5) (0, 16) (1, 26)
(0, 0) (1, 18) (0, 8) (1, 29)

�

Lemma 2.8 There exist 5 SSPODLS(v) for v ∈ {55, 69, 75, 76, 85, 87, 93, 95}.

Proof: These SSPODLS are obtainable by Theorem 2.1. For each (v, u) ∈ {(55, 1),
(69, 9), (75, 9), (76, 8), (85, 13), (87, 11), (93, 13), (95, 11)}, a (v−u, 7; 1, 1; u)-QDM*
can be obtained from two arrays A1, A2 given below. For each pair (v, u), the required
QDM* is obtained by replacing each column of [A1| − A1|A2] by its seven cyclic
shifts. In addition, when (v, u) ∈ {(69, 9), (93, 13), (95, 11)}, add an extra column
whose entries are all (0, 0). When (v, u) ∈ {(55, 1), (75, 9)}, the value (v − u)/2 is
odd, and the given QDM* is over G = Zv−u; here, α = (v − u)/2 and H = {0, 2,
4, . . . , v − u − 2}. For the other cases (v − u)/2 is even, the given QDM* is over
G = Z2 × Z(v−u)/2 and α = (1, 0). Here, the subgroup H of order (v − u)/2 (not
containing α) is {0} × Z(v−u)/2.

In each case, each column of A1 containing a blank entry and its corresponding
column in −A1 are pairwise matching. When the first two columns of A2 contain
a blank entry, these two columns are also pairwise matching. For (v, u) = (76, 8),
the third and fourth columns of A2 also both contain a blank entry and are pairwise
matching.

(v, u) = (55, 1):

A1 :

0 0 0
28 31 30
22 6 38
31 40 28
10 37 45
26 30 46
11 18 41

A2 :

0 0
32 4
34 39
7 25
5 25
27 39
− 4
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The columns (10∗, 26∗, 11, 0, 28, 22, 31)T and (11∗, 0∗, 28, 22, 31, 10, 26)T satisfy
the * condition.

(v, u) = (75, 9):

A1 :

0 0 0 0 0
57 44 36 49 60
3 52 60 18 42
65 14 53 2 56
54 17 55 58 31
27 12 32 43 65
47 − − − −

A2 :

0 0
26 1
13 22
46 51
59 51
33 22
− 1

The columns (57∗, 3, 65, 54∗, 27, 47, 0)T and (27∗, 47, 0, 57∗, 3, 65, 54)T satisfy the
* condition.

(v, u) = (69, 9):

A1 :

(0, 0) (0, 0) (0, 0) (0, 0)
(0, 18) (0, 25) (1, 4) (0, 16)
(0, 12) (1, 8) (1, 26) (1, 14)
(0, 22) (0, 14) (1, 7) (0, 23)
(1, 2) (0, 21) (1, 10) (1, 12)
(1, 1) (1, 3) (1, 6) (1, 25)
(0, 9) − − −

A2 :

(0, 0) (0, 0) (0, 0)
(1, 1) (1, 3) (1, 14)
(0, 6) (0, 10) (1, 12)
(1, 6) (1, 25) (1, 27)
(0, 1) (0, 18) (1, 29)
(1, 0) (1, 15) (0, 15)
− − −

The columns ((0, 12)∗, (0, 22)∗, (1, 2), . . . , (0, 18))T and ((0, 22)∗, (1, 2)∗, (1, 1),
. . . , (0, 12))T satisfy the * condition.

(v, u) = (76, 8):

A1 :

(0, 0) (0, 0) (0, 0) (0, 0)
(0, 30) (0, 24) (0, 18) (0, 23)
(1, 26) (0, 18) (0, 13) (1, 31)
(1, 18) (1, 28) (1, 8) (0, 12)
(1, 20) (1, 27) (0, 14) (0, 25)
(0, 7) (1, 13) (0, 26) (0, 22)
(1, 23) (1, 22) − −

A2 :

(0, 0) (0, 0) (0, 0) (0, 0)
(1, 7) (1, 1) (0, 27) (0, 15)
(0, 32) (0, 4) (1, 29) (1, 1)
(1, 32) (1, 21) (1, 12) (1, 1)
(0, 7) (0, 18) (0, 10) (0, 15)
(1, 0) (1, 17) (0, 17) (0, 0)
− − − −

The columns ((0, 0)∗, (0, 30)∗, (1, 26), . . . , (1, 23))T and ((0, 30)∗, (1, 26)∗, (1, 18),
. . . , (0, 0))T satisfy the * condition.
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(v, u) = (85, 13):

A1 :

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 22) (0, 26) (0, 33) (0, 31) (1, 14)
(0, 29) (0, 3) (1, 12) (0, 14) (0, 20)
(1, 19) (1, 28) (1, 6) (1, 1) (0, 29)
(0, 10) (1, 4) (0, 8) (0, 9) (1, 12)
(0, 35) (1, 5) (0, 28) (0, 30) (1, 10)
− − − − −

A2 :

(0, 0) (0, 0) (0, 0) (0, 0)
(1, 3) (1, 1) (1, 5) (1, 4)
(0, 27) (0, 21) (1, 13) (0, 11)
(1, 27) (1, 3) (1, 31) (0, 15)
(0, 3) (0, 19) (1, 23) (0, 15)
(1, 0) (1, 18) (0, 18) (0, 11)
− − − (1, 4)

The columns ((0, 0)∗, (1, 4)∗, (0, 11), . . . , (1, 4))T and ((0, 11)∗, (0, 15)∗, (0, 15),
. . . , (1, 4))T satisfy the * condition.

(v, u) = (87, 11):

A1 :

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 10) (0, 21) (0, 26) (0, 22) (0, 36)
(1, 24) (0, 20) (0, 33) (0, 30) (0, 7)
(0, 4) (0, 24) (0, 36) (1, 37) (0, 25)
(1, 18) (0, 37) (1, 30) (0, 32) (1, 33)
(1, 33) (1, 11) (1, 2) (1, 28) (0, 24)
(0, 11) − − − −

A2 :

(0, 0) (0, 0) (0, 0) (0, 0)
(1, 11) (1, 1) (1, 2) (1, 13)
(0, 26) (0, 4) (1, 8) (1, 18)
(1, 26) (1, 23) (1, 27) (0, 35)
(0, 11) (0, 20) (1, 21) (0, 35)
(1, 0) (1, 19) (0, 19) (1, 18)
− − − (1, 13)

The columns ((1, 10)∗, (1, 24)∗, (0, 4) . . . , (0, 0))T and ((0, 4)∗, (1, 18)∗, (1, 33), . . . ,
(1, 24))T satisfy the * condition.

(v, u) = (93, 13):

A1 :

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 24) (0, 22) (1, 17) (1, 5) (1, 18) (1, 7)
(1, 39) (0, 19) (1, 38) (1, 30) (0, 12) (1, 37)
(1, 1) (1, 31) (0, 36) (1, 37) (1, 22) (1, 2)
(1, 10) (0, 12) (1, 28) (1, 29) (0, 26) (0, 13)
(0, 23) (0, 25) (0, 2) (1, 28) (0, 37) (1, 29)
(0, 6) − − − − −

A2 :

(0, 0) (0, 0) (0, 0)
(1, 9) (1, 1) (1, 3)
(1, 35) (1, 13) (1, 7)
(0, 35) (0, 33) (1, 27)
(0, 9) (0, 21) (1, 23)
(1, 0) (1, 20) (0, 20)
− − −

The columns ((0, 24)∗, (1, 39), (1, 1)∗, . . . , (0, 0))T and ((0, 23)∗, (0, 6), (0, 0)∗, . . . ,
(1, 10))T satisfy the * condition.

(v, u) = (95, 11):

A1 :

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 35) (0, 25) (1, 14) (0, 40) (1, 17) (0, 27)
(0, 3) (1, 3) (0, 6) (0, 28) (0, 32) (0, 8)
(1, 7) (1, 27) (1, 16) (1, 5) (1, 30) (1, 39)
(1, 36) (0, 34) (0, 32) (0, 23) (1, 10) (1, 2)
(0, 41) (0, 23) (0, 33) (1, 32) (1, 18) (0, 38)
(1, 12) (0, 14) − − − −

A2 :

(0, 0) (0, 0) (0, 0)
(1, 39) (1, 1) (0, 3)
(1, 13) (1, 37) (0, 7)
(0, 13) (0, 16) (0, 28)
(0, 39) (0, 22) (0, 24)
(1, 0) (1, 21) (0, 21)
− − −
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The columns ((0, 0)∗, (0, 35), (0, 3)∗, . . . , (1, 12))T and ((0, 0)∗, (0, 25), (1, 3)∗, . . . ,
(0, 14))T satisfy the * condition.

Lemma 2.9 There exist 5 idempotent IMOLS(v, u) for (v, u) ∈ {(31, 4), (39, 3),
(64, 6), (65, 6)}.

Proof: In each case this follows from existence of a (v − u, 7; 1, 1; u)-QDM with at
least one column that contains no blank entry. These QDMs are over Zv−u and are
obtained like those in the previous lemma. We construct two arrays A1, A2 (but no
A2 array is needed for (v, u) = (65, 6)) and then replace each column of [A1|−A1|A2]
by its seven cyclic shifts. For (v, u) = (65, 6), we also add an extra column of zeros.
The arrays A1, A2 are given below.

(v, u) = (31, 4) : (v, u) = (64, 6) :
A1 : 0 0 A2 : 0 A1 : 0 0 0 0 A2 : 0 0

10 19 7 7 40 46 52 33 8
26 14 21 56 54 36 10 35 7
20 26 3 39 32 41 14 6 7
18 25 3 16 45 3 25 4 8
15 2 21 55 19 24 28 29 0
- - 7 28 34 - - - -

(v, u) = (39, 3) : (v, u) = (65, 6) :
A1 : 0 0 A2 : 0 0 A1 : 0 0 0 0 0

21 26 29 5 22 40 38 44 54
10 35 6 24 2 36 30 15 12
32 7 24 20 28 45 41 40 2
26 27 11 20 12 44 39 53 43
23 29 18 24 39 13 25 41 19
24 - - 5 36 7 - - -

�

3 Some SSPODLS from recursive constructions

In this section, we prove our main theorems for existence of 3, 4 and 5 SSPODLS.
These SSPODLS are mostly obtainable by the recursive constructions in Lemma 3.2.
First in Lemma 3.1 we give some existence results for 5 IMOLS [14] which will be
needed later. In Lemma 3.1.4, the required idempotent IMOLS(v, x) with v = 56+x
are obtainable by a variant of Wilson’s construction which has been used in several
papers, for instance [9]. The other sets of 5 idempotent IMOLS(v, x) in Lemma 3.1.4
are obtainable from (v − x, 7; 1, 1; x)-QDMs, which come from a V(5, 6) vector for
(v, x) = (37, 6), and can otherwise be found either in [1], [3] or in Lemma 2.9.
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Lemma 3.1 1. If v ≥ 66, there exist 5 IMOLS(v, 6), except possibly for v ∈ {80,
81, 82, 115, 116, 117, 166}.

2. If v ≥ 66, there exist 5 IMOLS(v, 8).

3. If v ≥ 66, there exist 5 IMOLS(v, 10), except possibly for v ∈ {68, 69, 70, 75,
76, 77, 78, 79, 99}.

4. There exist 5 idempotent IMOLS(v, x) for each (v, x) ∈ {(19, 3), (39, 3), (31, 4),
(39, 4), (37, 6), (41, 6), (43, 7), (50, 6), (64, 6), (65, 6)} and also for v = 56 + x
with x ≤ 8.

Our main methods for recursive constructions of SSPODLS are given in
Lemma 3.2. Note that in Lemmas 3.2.4 and 3.2.5, existence of t SSPODLS(q) with
the required extra conditions follows from Lemma 2.5 when q is a prime power ≥ t+3.

Lemma 3.2 1. If t SSPODLS(m) and t SSPODLS(q) exist, then tSSPODLS(mq)
exist.

2. Suppose q is an even integer. If t SSPODLS(q) and t idempotent MOLS(m)
both exist, then t SSPODLS(mq) exist.

3. Suppose q is an odd integer, at most one of m, s1, s2, . . . , sn+2 is odd, and
s =

∑n+2
z=1 sz. Suppose also, there exist t+n SSPODLS(q), t SSPODLS(m+s),

t MOLS(m), t idempotent IMOLS(m + sz, sz) for z = 1, 2 and t IMOLS(m +
sz, sz) for 3 ≤ z ≤ n + 2. Then t SSPODLS(mq + s) exist.

4. Suppose q is an even integer, s =
∑q

z=1 sz, and at most one of s1, s2, . . . , sq
is odd. Suppose also, there exist t SSPODLS(q) with q disjoint strongly sym-
metric transversals (including the main and back diagonals), t SSPODLS(s),
t idempotent IMOLS(m + sz, sz), for z = 1, 2 and t IMOLS(m + sz, sz) for
3 ≤ z ≤ q. Then t SSPODLS(mq + s) exist.

5. Suppose q is an odd integer, s =
∑q−1

z=0 sz where s0 = 0 or 1, sz = sq−z for
1 ≤ z ≤ q − 1, and at most one of m, s0 is odd. Suppose also, there exist t
SSPODLS(q) with q disjoint transversals such that one is the main diagonal and
the others can be partitioned into (q − 1)/2 strongly symmetric pairs. If there
exist t SSPODLS(s), t SSPODLS(m+s0) and t idempotent IMOLS(m+sz, sz)
for z = 0, 1, 2, . . . , q − 1, then t SSPODLS(mq + s) exist.

Proof of Lemma 3.2.5: The resulting t SSPODLS(mq + s) will be labelled as M�

for � = 1, 2, . . . , t. They will have symbols, row indices and column indices from
N = {0, 1, 2, . . . , mq+s−1}. We partition N into q subsets Gi (for i = 0, 1, . . . , q−1)

of size m, plus q subsets Sz where |Sz| = sz for 0 ≤ z ≤ q − 1. Also let S =
q−1⋃
z=0

Sz.

First, for 0 ≤ i < (q − 1)/2, set Gi = {im, im + 1, . . . , (i+ 1)m− 1}, and Gq−1−i =
{(q − 1− i)m+ s, (q − 1− i)m+ s+ 1, . . . , (q − i)m+ s− 1}. Thus if x ∈ Gi, then
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qm+ s− 1− x ∈ Gq−1−i. The remaining elements of N can be partitioned into sets
G(q−1)/2 and Sz (for z = 0, 1, 2, . . . q − 1) in any manner such that if x ∈ G(q−1)/2,
then qm+ s− 1 − x ∈ G(q−1)/2, if x ∈ S0, then qm + s − 1 − x ∈ S0, and if x ∈ Sz

for some z ≥ 1, then qm+ s− 1− x ∈ Sq−z.

Now we start with t SSPODLS(q) which are labelled as A� for � = 1, 2, . . . , t.
These SSPODLS(q) will contain q disjoint common transversals, T0, T1, . . . , Tq−1

where T0 is the main diagonal and for 1 ≤ z ≤ (q − 1)/2, Tz and Tq−z form a
strongly symmetric pair. If (i, j) �= ((q − 1)/2, (q − 1)/2) and A�(i, j) lies in Tz,
then we construct t IMOLS(m + sz, sz) on an (m + sz) × (m + sz) subsquare of
M� for � = 1, 2 . . . , t. This subsquare will be on the rows with indices from from
Gi ∪ Sz, and the columns with indices from from Gj ∪ Sz. The holey rows and
columns will have indices from from Sz. Also, if A�(i, j) = x, then within M�, this
subsquare will have non-holey symbols from Gx and holey symbols from Sz. In addi-
tion, these subsquares should be idempotent with a common holey transversal that
is part of the main (back) diagonal if A�(i, j) lies on the main (back) diagonal of
A�. Because of the way the sets Gx, Sz have been constructed, it is not hard to
verify that y is a symbol (holey symbol) in this subsquare for A�(i, j) if and only
if qm + s − 1 − y is a symbol (holey symbol) in the corresponding subsquare for
A�(q−1− i, q−1−j). Thus these subsquares of M� can (and should) be constructed
so that M�(qm+ s− 1− i, qm+ s− 1− j) = qm+ s− 1−M�(i, j).

Next, for (i, j) = ((q − 1)/2, (q− 1)/2), A�(i, j) = (q − 1)/2 for all � = 1, 2, . . . , t,
and this (i, j) cell lies in T0. Here we construct t SSPODLS(m + s0), and replace
each pair of non-holey symbols of the form (x,m + s0 − 1 − x) by two symbols of
the form y,mq + s − 1 − y from G(q−1)/2. The value (m + s0 − 1)/2 is replaced by
(mq + s − 1)/2 if either m or s0 is odd. If s0 = 1, then S0 will consist of the value
(mq + s − 1)/2, while if m is odd, then (mq + s− 1)/2 will lie in G(q−1)/2. In both
these cases, M�((mq + s − 1)/2, (mq + s − 1)/2) will equal (mq + s − 1)/2 for all
� = 1, 2, . . . , t. Insert these squares into the (m + s0) × (m + s0) subsquares of M�

(for � = 1, 2, . . . , t) with row and column indices from G(q−1)/2 ∪ S0.

Finally construct t SSPODLS(s), but for 0 ≤ x ≤ (s − 2)/2, replace symbols x
and s− 1− x by two symbols from S of the form y,mq + s− 1 − y, and, if s0 = 1,
replace the symbol (s− 1)/2 by (mq+ s− 1)/2. Then insert these t squares into the
s× s subsquares of M� (for � = 1, 2, . . . , t) indexed by the rows and columns of S.

When this is done, M�, (� = 1, 2, . . . , t) are t SSPODLS(mq + s). �

The other cases in Lemma 3.2 are similar. In Lemma 3.2.4, the values in the sets
Sz (for z = 1, 2, . . . , q) must be chosen so that if y ∈ Sz then mq+s−1−y ∈ Sz. This
is because the corresponding transversals Tz are strongly symmetric, not pairwise
strongly symmetric. Also, here |Sz| = sz for 1 ≤ z ≤ q. In Lemma 3.2.3 we
start with t + n SSPODLS(q), but retain just t of them; these t SSPODLS will
then have n + 2 strongly symmetric transversals, any two of which intersect only
in the ((q − 1)/2, (q − 1)/2) cell. The first two of these transversals, T1 and T2

will be the main and back diagonals; the others, T3, T4, . . . , Tn+2, will consist of the
cells occupied by the value (q − 1)/2 in each of the n deleted SSPODLS. Here also,
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for z = 1, 2, . . . , n + 2, the transversals Tz are strongly symmetric; therefore the
corresponding sets Sz must be chosen so that if y ∈ Sz, then mq + s− 1− y ∈ Sz.

We now turn our attention to existence of 5 SSPODLS:

Lemma 3.3 Suppose 8 ≤ v ≤ 516, and v �≡ 2 (mod 4). If v /∈ {12, 15, 20, 21, 28,
33, 35, 39, 44, 45, 51, 52, 60, 63, 68, 77, 84, 91, 92, 100, 108, 111, 116, 119, 120,
123, 124, 132, 133, 135, 140, 141, 148, 156, 159, 164, 172, 175, 180, 183, 188, 196,
204, 205, 212, 215, 220, 228, 236, 260, 268, 276, 292, 300}, then 5 SSPODLS(v)
exist.

Proof: First we consider the case v < 147. For v a prime power, see Lemma 2.5. For
v ∈ {24, 36, 40, 48, 56, 80}, see Lemma 2.4, and for v ∈ {55, 69, 75, 76, 85, 87, 93,
95}, see Lemma 2.8. For v = 72 = 8.9, 88 = 8.11, 99 = 9.11, 104 = 8.13, 117 = 9.13,
136 = 8.17, 143 = 11.13 and 144 = 9.16, apply Lemma 3.2.1. For 57 = 7.8 + 1,
65 = 8.8 + 1, and 129 = 16.8 + 1, apply Lemma 3.2.4 with m ∈ {7, 8, 16}, q = 8
and s = s1 = 1. For 96 = 8.11 + (8 = 8.1), 105 = 8.13 + 1, 112 = 8.13 + (8 = 8.1),
115 = 8.13+(11 = 11.1) and 145 = 8.17+(9 = 9.1), apply Lemma 3.2.5 with m = 8,
q ∈ {11, 13, 17} and sz ∈ {0, 1} for 0 ≤ z ≤ q − 1.

Now we consider v ≥ 147. Here also, if v is a prime power, we can apply
Lemma 2.5, and if v can be written as a product of two prime powers ≥ 8, we
can apply Lemma 3.2.1. We shall not include details of these constructions. For
the remaining values, see Table 1. Here, if v is written as a product of two integers,
we use Lemma 3.2.2 when v = 252 or Lemma 3.2.1 otherwise. In other cases, we
write v = mq + (s =

∑
sz) in Table 1 and apply either Lemma 3.2.4 if q is even, or

Lemma 3.2.5 if q is odd. �

Lemma 3.4 If v ≥ 517 and v �≡ 2 (mod 4) then 5 SSPODLS(v) exist.

Proof: Let S = {24, 25, 27, 29, 31, 36}. For all s ∈ S, 5 SSPODLS(s) exist (by
Lemma 2.4 if s is even, or by Lemma 2.5 if s is odd). Note that S contains one
element in each residue class (mod 8) except the 2 and 6 (mod 8) residue classes.
Further, any s ∈ S can be written as s = s1 + s2 + . . . , s8 where s1 = 0 or 1, s2 = 0,
and sz ∈ {0, 6, 8} for 3 ≤ z ≤ 8. If v �≡ 2 (mod 4) and v ≥ 517 = 61 · 8 + 29, then
we can write v = 8m∗ + s where m∗ ≥ 61 and s ∈ S. From [14], when m∗ ≥ 61, and
x ∈ {0, 1}, there exist 5 idempotent MOLS(m∗ + x) and hence also 5 idempotent
IMOLS(m∗+x, x). Also, by Lemma 3.1, there exist 5 IMOLS(m∗+x, x) for m∗ ≥ 61
and x ∈ {6, 8} except possibly when x = 6 and m∗ ∈ E = {74, 75, 76, 109, 110,
111, 160}. Thus if m∗ /∈ E, 5 SSPODLS(v) can be obtained by Lemma 3.2.4 with
m = m∗, q = 8, s ∈ S, s1 = 0 or 1, s2 = 0, and sz ∈ {0, 6, 8} for 3 ≤ z ≤ 8.

If instead m∗ is one of the exceptional values in E, then from [14], there exist
5 idempotent IMOLS(m∗ + x, x) for x ∈ {0, 1}. Also, by Lemma 3.1, there exist
5 IMOLS(m∗ + x, x) for x ∈ {8, 10}. Further, any s ∈ S can be written as s =
s1 + s2 + . . . , s8 where s1 = 0 or 1, s2 = 0, and sz ∈ {0, 8, 10} for 3 ≤ z ≤ 8.
Thus in this case, we can apply Lemma 3.2.4 similarly with m = m∗, q = 8, s ∈ S,
s1 ∈ {0, 1}, s2 = 0 and sz ∈ {0, 8, 10} for 3 ≤ z ≤ 8. �
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Table 1: Constructions for 5 SSPODLS(v) in Lemma 3.3
147 = 8.17 + (11 = 11.1) 155 = 16.9 + (11 = 5.1 + 2.3) 160 = 16.9 + (16 = 4.1 + 4.3)
161 = 8.19 + (9 = 9.1) 165 = 8.19 + (13 = 13.1) 168 = 16.9 + (24 = 8.3)
177 = 16.11 + 1 185 = 16.11 + (9 = 3.1 + 2.3) 189 = 16.11 + (13 = 1.1 + 4.3)
192 = 16.11 + (16 = 4.1 + 4.3) 195 = 16.11 + (19 = 1.1 + 6.3) 201 = 16.11 + (25 = 1.1 + 8.3)
203 = 16.11 + (27 = 3.1 + 8.3) 213 = 8.25 + (13 = 13.1) 217 = 16.13 + (9 = 3.1 + 2.3)
219 = 16.13 + (11 = 5.1 + 2.3) 224 = 8.25 + (24 = 24.1) 231 = 16.13 + (23 = 5.1 + 6.3)
235 = 16.13 + (27 = 3.1 + 8.3) 237 = 16.13 + (29 = 5.1 + 8.3) 240 = 16.13 + (32 = 2.1 + 10.3)
244 = 16.13 + (36 = 12.3) 245 = 16.13 + (37 = 1.1 + 12.3) 249 = 8.31 + 1
252 = 7.36 255 = 8.29 + (23 = 23.1) 259 = 27.9 + (16 = 4.4)
264 = 8.31 + (16 = 16.1) 265 = 8.31 + (17 = 17.1) 267 = 27.9 + (24 = 6.4)
273 = 16.17 + 1 280 = 16.17 + (8 = 2.1 + 2.3) 284 = 31.8 + (36 = 6.6)
285 = 16.17 + (13 = 1.1 + 4.3) 287 = 31.9 + (8 = 8.1) 288 = 16.17 + (16 = 4.1 + 4.3)
291 = 16.17 + (19 = 1.1 + 6.3) 295 = 16.17 + (23 = 5.1 + 6.3) 301 = 16.17 + (29 = 5.1 + 8.3)
303 = 16.17 + (31 = 1.1 + 10.3) 305 = 16.19 + 1 308 = 16.17 + (36 = 12.3)
309 = 8.37 + (13 = 13.1) 312 = 16.19 + (8 = 8.1) 315 = 16.19 + (11 = 11.1)
316 = 35.8 + (36 = 6.6) 321 = 16.19 + (17 = 17.1) 324 = 9.36
327 = 16.19 + (23 = 5.1 + 6.3) 329 = 16.19 + (25 = 1.1 + 8.3) 332 = 8.37 + (36 = 36.1)
335 = 16.19 + (31 = 1.1 + 10.3) 336 = 8.41 + (8 = 8.1) 339 = 8.41 + (11 = 11.1)
340 = 16.19 + (36 = 12.3) 345 = 8.43 + 1 348 = 36.9 + (24 = 8.3)
355 = 8.41 + (27 = 27.1) 356 = 36.9 + (32 = 4.1 + 4.7) 357 = 8.43 + (13 = 13.1)
360 = 8.41 + (32 = 32.1) 363 = 8.43 + (19 = 19.1) 364 = 8.41 + (36 = 36.1)
365 = 8.41 + (37 = 37.1) 371 = 8.43 + (27 = 27.1) 372 = 36.9 + (48 = 2.3 + 6.7)
375 = 8.43 + (31 = 31.1) 380 = 8.43 + (36 = 36.1) 381 = 8.43 + (37 = 37.1)
384 = 8.43 + (40 = 40.1) 385 = 8.47 + (9 = 9.1) 388 = 44.8 + (36 = 6.6)
393 = 8.49 + 1 395 = 8.47 + (19 = 19.1) 396 = 11.36
399 = 8.47 + (23 = 23.1) 404 = 16.23 + (36 = 12.3) 405 = 8.49 + (13 = 13.1)
408 = 8.49 + (16 = 16.1) 411 = 8.49 + (19 = 19.1) 412 = 36.11 + (16 = 2.1 + 2.7)
413 = 36.11 + (17 = 3.1 + 2.7) 415 = 8.49 + (23 = 23.1) 417 = 8.49 + (25 = 25.1)
420 = 36.11 + (24 = 8.3) 427 = 16.25 + (27 = 3.1 + 8.3) 428 = 8.49 + (36 = 36.1)
429 = 8.49 + (37 = 37.1) 435 = 8.49 + (43 = 43.1) 436 = 16.25 + (36 = 12.3)
440 = 8.49 + (48 = 48.1) 444 = 36.11 + (48 = 2.3 + 6.7) 445 = 16.27 + (13 = 13.1)
447 = 16.25 + (47 = 5.1 + 14.3) 448 = 56.8 452 = 36.11 + (56 = 8.7)
453 = 16.25 + (53 = 5.1 + 16.3) 455 = 16.27 + (23 = 23.1) 456 = 16.25 + (56 = 2.1 + 18.3)
459 = 16.27 + (27 = 3.1 + 8.3) 460 = 8.53 + (36 = 36.1) 465 = 56.8 + (17 = 1.1 + 2.8)
468 = 16.27 + (36 = 12.3) 469 = 16.27 + (37 = 1.1 + 12.3) 471 = 56.8 + (23 = 1.7 + 2.8)
476 = 36.13 + (8 = 8.1) 480 = 56.8 + (32 = 4.8) 483 = 8.59 + (11 = 11.1)
484 = 56.8 + (36 = 1.4 + 4.8) 485 = 56.8 + (37 = 1.5 + 4.8) 489 = 56.8 + (41 = 1.1 + 5.8)
492 = 36.13 + (24 = 10.1 + 2.7) 495 = 56.8 + (47 = 1.7 + 5.8) 497 = 56.8 + (49 = 1.1 + 6.8)
500 = 58.8 + (36 = 6.6) 501 = 56.8 + (53 = 1.5 + 6.8) 504 = 56.8 + (56 = 7.8)
505 = 56.8 + (57 = 1.1 + 7.8) 507 = 56.8 + (59 = 1.3 + 7.8) 508 = 59.8 + (36 = 6.6)
511 = 36.13 + (43 = 1.1 + 6.7) 515 = 36.13 + (47 = 5.1 + 6.7) 516 = 36.13 + (48 = 6.1 + 6.7)

We now turn our attention to existence of 4 SSPODLS(v):

Lemma 3.5 If 7 ≤ v ≤ 300 and v �≡ 2 (mod 4) then there exist 4 SSPODLS(v),
except possibly for v ∈ {20, 21}.

Proof: Here we only need to deal with the exceptional values of v in Lemma 3.3.
First we consider the case v < 111. For v a prime power, this follows by Lemma 2.5.
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For v ∈ {12, 28, 44, 52, 60}, see Lemma 2.4. For v ∈ {15, 33, 35, 39, 45, 51, 68}, see
Lemma 2.7, and for v = 100, see Lemma 2.6. For v = 63 = 7.9, 77 = 7.11, 84 = 7.12,
91 = 7.13 and 108 = 9.12, apply Lemma 3.2.1. For v = 92, apply Lemma 3.2.3 with
m = 8, q = 11, n = 2, s1 = s2 = 0 and s3 = s4 = 2.

Constructions for v ≥ 111 are given in Table 2. When v is given as a product
of two integers, we use Lemma 3.2.1. In all other cases, we write v = mq + s, and
apply either Lemma 3.2.4 when q is even, or Lemma 3.2.5 when q is odd.

The required sets of 4 IMOLS(m + x, x) with (m, x) �= (8, 2) and x > 1 were
all obtained from (m, 6; 1, 1; x)-QDMs, and are idempotent whenever m + x > 5x.
References for existence of these QDMs are given in Table 3. When x ∈ {0, 1},
existence of 4 idempotent IMOLS(m+x, x) is equivalent to existence of 4 idempotent
MOLS(m+ x). Finally, 4 IMOLS(10, 2) can be found in [14, p194]. �

Table 2: Constructions for 4 SSPODLS(v) in Lemma 3.5

111 = 13.8 + (7 = 1.1 + 3.2) 116 = 13.8 + (12 = 6.2) 119 = 7.17
120 = 15.8 123 = 16.7 + (11 = 5.1 + 2.3) 124 = 16.7 + (12 = 4.3)
132 = 11.12 133 = 7.19 135 = 9.15
140 = 8.16 + (12 = 6.2) 141 = 8.16 + (13 = 1.1 + 6.2) 148 = 17.8 + (12 = 6.2)
156 = 12.13 159 = 16.9 + (15 = 3.1 + 4.3) 164 = 19.8 + (12 = 3.4)
172 = 20.8 + (12 = 6.2) 175 = 7.25 180 = 19.8 + (28 = 7.4)
183 = 16.11 + (7 = 1.1 + 2.3) 188 = 16.11 + (12 = 4.3) 196 = 8.23 + (12 = 12.1)
204 = 12.17 205 = 12.17 + 1 212 = 8.25 + (12 = 12.1)
215 = 8.25 + (15 = 15.1) 220 = 16.13 + (12 = 12.1) 228 = 8.27 + (12 = 12.1)
236 = 16.13 + (28 = 4.1 + 8.3) 260 = 8.29 + (28 = 28.1) 268 = 15.16 + (28 = 14.2)
276 = 8.31 + (28 = 28.1) 292 = 12.23 + (16 = 16.1) 300 = 17.16 + (28 = 14.2)

Table 3: References for existence of 4 idempotent IMOLS(m+ x, x) in Lemma 3.5

m x Reference m x Reference m x Reference
13 2 [8] 15 2 [1] 16 3 [1]
17 2 [9] 19 4 [8] 20 2 [4]

Finally there exist 3 SSPODLS(v), for the missing values of v in Lemma 3.5:

Lemma 3.6 If v ∈ {20, 21} then 3 SSPODLS(v) exist.

Proof: See Lemma 2.6. �

4 Conclusion

In this paper, by using direct construction methods based on quasi-difference matrices
together with certain recursive methods, some new existence results for existence of
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t SSPODLS have been obtained for t ∈ {3, 4, 5}. These results are summarised in
the following theorem:

Theorem 4.1 If v ≡ 2 (mod 4), then a strongly symmetric Latin square of or-
der v cannot exist. Also, there do not exist 3 or 4 SSPODLS(v) for v ≤ 5, or 5
SSPODLS(v) for v ≤ 7. For larger values of v �≡ 2 (mod 4), and t ∈ {3, 4, 5}, there
exist t SSPODLS(v) in the following cases:

t = 3 and v ≥ 7;

t = 4, v ≥ 7 and v /∈ {20, 21};
t = 5, v ≥ 8, and v �∈ {12, 15, 20, 21, 28, 33, 35, 39, 44, 45, 51, 52, 60, 63,
68, 77, 84, 91, 92, 100, 108, 111, 116, 119, 120, 123, 124, 132, 133, 135, 140,
141, 148, 156, 159, 164, 172, 175, 180, 183, 188, 196, 204, 205, 212, 215, 220,
228, 236, 260, 268, 276, 292, 300}.

For 4 SSPODLS, only two unknown cases (v = 20 and 21) remain; however,
both these values are relatively small and there is currently no obvious approach for
finding these SSPODLS. For 5 SSPODLS, it seems likely that some improvements
can be made. These may come from some new recursive methods; perhaps also
Lemma 2.1 can be improved to produce new SSPODLS (or even PODLS) from
QDMs over odd order groups when the number of infinite points is even. Also, it
seems likely that 5 SSPODLS(92) can be obtained by constructing an (84, 7; 1, 1; 8)-
QDM* over Z2×Z42 with appropriate pairwise matching columns using the method
in Lemma 2.8. However, most of the largest unknown cases for 5 SSPODLS(v) are
for v ≡ 4 (mod 8); for this residue class, it is likely that more small examples of 5
SSPODLS(v) with v ≡ 4 (mod 8) will be needed. Currently 36 is the only value of
v ≤ 60 in the 4 (mod 8) residue class for which 5 SSPODLS(v) (or even 5 idempotent
MOLS(v)) are known.
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