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Abstract

A k-valuation is a special type of edge k-colouring of a medial graph. Var-
ious graph polynomials, such as the Tutte, Penrose, Bollobás–Riordan,
and transition polynomials, admit combinatorial interpretations and eval-
uations as weighted counts of k-valuations. In this paper we consider a
multivariate generating function of k-valuations. We show that this func-
tion is a polynomial in k and hence defines a graph polynomial. We then
show that the resulting polynomial has several desirable properties, in-
cluding a recursive deletion-contraction-type definition, and specialises
to the graph polynomials mentioned above. It also offers an alternative
extension of the Penrose polynomial from plane graphs to graphs in other
surfaces.
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1 Introduction

Graph polynomials, including the many recent topological graph polynomials, encode
combinatorial information. The challenge lies in extracting this information. We
present a new topological graph polynomial, and show how it counts edge colourings.
We carry over this combinatorial interpretation to some other well-known topological
graph polynomials. This new graph polynomial was motivated by work of Penrose,
as follows.

Penrose’s highly influential paper [17] gives a graphical calculus for computing
the number of proper edge 3-colourings of plane graphs. The work [12] built upon
Penrose’s by extending this graphical calculus to give a method for counting edge
3-colourings of any (not necessarily planar) cubic graph. This calculus is applied to
an immersion of the graph in the plane, but it does not depend upon the particular
immersion chosen.

On the other hand, Penrose’s graphical calculus led to the introduction of the
Penrose polynomial, P (G;λ), of plane graphs [1]. This was extended to graphs in
any surface in [7]. For cubic plane graphs, the Penrose polynomial evaluated at λ = 3
gives the number of proper edge 3-colourings. This result, however, does not hold
for graphs embedded in surfaces of higher genus.

Thus Penrose’s calculus for counting edge 3-colourings of cubic planar graphs has
two different topological extensions: one polynomial invariant of embedded graphs
that counts edge 3-colourings only in the plane case, the other a generalised Penrose
graphical calculus for immersed graphs that counts edge 3-colourings for any cubic
plane graph via an immersion of it in the plane [12]. Together, these extensions
hint at the existence of a polynomial invariant of graphs in surfaces that counts edge
3-colourings of all cubic graphs, not just plane ones.

In this paper we find such a polynomial. We approach this via a generating
function of k-valuations, which are special kinds of edge colourings. We show that
this generating function is a polynomial in k. We relate the resulting topological
graph polynomial Ω to the Penrose polynomial, as well as to other topological graph
polynomials, and use it to find combinatorial information in topological graph poly-
nomials.

The k-valuations central to this investigation are edge colourings of medial graphs.
The construction of the medial graph Gm of an embedded graph G is well-known
in graph theory. However, there are different ways in the literature for constructing
Gm when G has isolated vertices. Here we allow medial graphs to have ‘free-loops’,
which arise from isolated vertices. (See Remark 1.3 for a discussion of the case where
free-loops are not considered, and it is seen that the results presented here are easily
adapted to this situation.) A free-loop is a circular edge in a graph that has no
incident vertex. The definition of a medial graph we use here is as follows. Let G
be a graph embedded in a surface Σ. The medial graph, Gm, of G is the 4-regular
graph (with free-loops) embedded in Σ obtained by placing a vertex on each edge
of G then adding edges as curves on the surface that follow the face boundaries
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between vertices. If G has isolated vertices, then, for each isolated vertex, add a
free-loop as a curve that follows its boundary (or technically, the boundary of a
regular neighbourhood of the vertex). The graph G does not form part of the medial
graph. Although medial graphs are most commonly studied in the setting of plane
graphs, they are defined for graphs embedded in any surface, including those with
boundary, or with non-cellular embeddings.

Each vertex of G ⊂ Σ corresponds to a unique face of Gm ⊂ Σ. (Here by a face
we mean a component of Σ \ Gm.) This correspondence gives rise to a natural face
2-colouring of Gm which is obtained by colouring the faces of Gm that correspond
to vertices of G black, and the remaining faces white. This is called the canonical
checkerboard colouring of Gm.

Let k be a natural number. A k-valuation of Gm is an edge k-colouring of Gm such
that each vertex is incident to an even number (possibly zero) of edges of each colour.
Here we denote k-valuations by φ and consider them as mappings to [k] = {1, . . . , k}.

Since several important graph polynomials have been shown to count k-valuations,
they play an important role in the theory of topological graph polynomials. To de-
scribe these interpretations we need a little more terminology.

A k-valuation of a canonically checkerboard coloured medial graph Gm yields
four possible configurations of colours at each vertex, which we term white, black,
crossing, or total, as in Figure 1.

i

j j
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i j
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white black crossing total

Figure 1: Classifying k-valuations at a vertex, where i 6= j

We let wh(φ), bl(φ), cr(φ) and tot(φ) denote the numbers of white vertices, black
vertices, crossing vertices and total vertices, respectively, in a k-valuation φ.

As noted above, several graph polynomials have combinatorial interpretations as
counts of k-valuations. The following theorem summarises what is known. In the
theorem, T (G;x, y) denotes the Tutte polynomial [18], R(G;x, y, z) the Bollobás–
Riordan polynomial [2, 3], P (G;λ) the (topological) Penrose polynomial [1, 7, 17],
and Q(G; (α, β, γ), t) the topological transition polynomial [5, 11]. We do not recall
the definitions of these polynomials here since we do not need their details.
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Theorem 1.1 ([1, 4, 7, 11, 13]). The following identities hold.

T (G; k/b+ 1, kb+ 1) =
∑

(b+ 1)tot(φ)bwh(φ), (1)

kκ(G)R(G; k + 1, k, 1/k, 1) =
∑

2tot(φ), (2)

kκ(G)br(G)R
(
G; (k + b)/b, bk, 1/k

)
=
∑

(b+ 1)tot(φ)bwh(φ), (3)

P (G; k) = #Admissible k-valuations of Gm, (4)

P (G; k) =
∑

(−1)cr(φ), (5)

P (G;−k) = (−1)f(G)
∑

2tot(φ), (6)

Q(G; (α, β, γ), k) =
∑

(α + β + γ)tot(φ)αwh(φ)βbl(φ)γcr(φ). (7)

Here the sums in (1)–(3) are over all k-valuations φ of Gm that contain no crossing
configurations. An admissible k-valuation is one that contains no black configura-
tions, and the sums in (5) and (6) are over all admissible k-valuations of Gm. The
sum in (7) is over all k-valuations φ of Gm. Furthermore, in (1) and (4) G must be
plane, and in (6) the Petrie dual (defined in Section 2) of the geometric dual of G
must be orientable for the identity to hold.

Equation (2) is due to Korn and Pak [13]. Equation (7) Is due to Jaeger [11] and
Aigner [1]. The remaining interpretations are due to Ellis-Monaghan and Moffatt.
Equation (5) and a special case of (6) is from [7]. The remaining identities are from
[4]. Equation (3) generalises (1) and (2), and (5) generalises (4). Equations (1)–(6)
can all be obtained from (7), as described in [4].

Equations (1)–(7) address the problem of finding combinatorial interpretations
of topological graph polynomials. In this paper we invert the problem and take
k-valuations as our starting point.

Definition 1.2. For an embedded graph G and natural number k, let

Ωk(G;w, x, y, z) :=
∑

φ a k-valuation of Gm

wtot(φ)xwh(φ)ybl(φ)zcr(φ)

where wh(φ), bl(φ), cr(φ) and tot(φ) denote the numbers of white vertices, black
vertices, crossing vertices and total vertices, respectively, in a k-valuation φ.

Our approach to understanding Ωk is skein theoretic. We provide a recursive
definition for Ωk (similar to the skein relations defining the transition polynomial,
and akin to the deletion-contraction relations for the Tutte polynomial). Doing
this, however, requires us to consider k-valuations of a generalisation of embedded
graphs that we name ‘edge-point ribbon graphs’. These are essentially ribbon graphs
whose vertices can intersect in points. In the setting of edge-point ribbon graphs,
we define, recursively, a polynomial invariant Ω(G) ∈ Z[w, x, y, z, t], give a state-
sum formulation of it, and prove that Ωk(G) gives a combinatorial interpretation of
it. It follows from this that Ωk is a polynomial in k, and can be considered as a
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graph polynomial. We show Ω(G) specialises to the Tutte polynomial, the Bollobás–
Riordan polynomial, the (topological) Penrose polynomial, and the (topological)
transition polynomial. Finally, we give some combinatorial evaluations of Ω and Ωk

in terms of graph colourings.

Remark 1.3. Here we have allowed medial graphs to have free-loops, which arise
from isolated vertices. Medial graphs can also be constructed without reference to
free-loops: just construct Gm by placing a vertex on each edge of G then adding
edges as curves on the surface that follow the face boundaries between vertices. This
construction ignores any isolated vertices, so, for example, the medial graph of any
edgeless graph would be the empty graph. It is straightforward to adapt the results
in this paper for this construction of medial graphs. If we use G̃m to denote the
medial graph of G constructed in this way without free-loops, and Ω̃k(G) to denote

the generating function of Definition 1.2, but summing over k-valuations of G̃m.
Then k` Ω̃k(G) = Ωk(G) when G has ` isolated vertices.

2 Ribbon graphs

As is often the case when working with topological graph polynomials, it is convenient
to describe embedded graphs as ribbon graphs. We recall some basic definitions
about ribbon graphs here, and refer the reader to, for example, [6] for additional
background on them.

A ribbon graph G = (V (G), E(G)) is a surface with boundary, represented as the
union of two sets of discs — a set V (G) of vertices and a set E(G) of edges — such
that: (1) the vertices and edges intersect in disjoint line segments; (2) each such line
segment lies on the boundary of precisely one vertex and precisely one edge; and (3)
every edge contains exactly two such line segments.

Two ribbon graphs G and G′ are equivalent is there is a homeomorphism from G
to G′ (orientation preserving when G is orientable) mapping V (G) to V (G′), E(G)
to E(G′). In particular the cyclic order of half-edges at each vertex is preserved.

Let G be a ribbon graph and e ∈ E(G). Then G \ e denotes the ribbon graph
obtained from G by deleting the edge e. If u and v are the (not necessarily distinct)
vertices incident with e, then G/e denotes the ribbon graph obtained as follows:
consider the boundary component(s) of e∪{u, v} as curves on G. For each resulting
curve, attach a disc (which will form a vertex of G/e) by identifying its boundary
component with the curve. Delete e, u and v from the resulting complex, to get the
ribbon graph G/e. We say G/e is obtained from G by contracting e. See Figure 1
for the local effect of contracting an edge of a ribbon graph.

The partial petrial of G formed with respect to e, introduced in [5], is the ribbon
graph Gτ(e) obtained from G by detaching an end of e from its incident vertex v
creating arcs [a, b] on v, and [a′, b′] on e (so that G is recovered by identifying [a, b]
with [a′, b′]), then reattaching the end by identifying the arcs antipodally (so that
[a, b] is identified with [b′, a′]). The result of this process is indicated in Figure 2. The
Petrie dual is the ribbon graph obtained by forming the partial petrial with respect
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non-loop non-orientable loop orientable loop

G

G/e

Gi e

Table 1: Contracting and Penrose-contracting an edge of a ribbon graph

G −→ Gτ(e)

Gτ(e) ←− G

Figure 2: Forming a partial Petrial at an edge of a ribbon graph

to every edge (in any order).

Definition 2.1. For a ribbon graph G and edge e, we let G i e denote the ribbon
graph Gτ(e)/e. We call the operation this defines Penrose-contraction. See Figure 1.

Deletion, contraction and Penrose-contraction are standard ribbon graph oper-
ations. In order to understand Ωk(G) we introduce a new operation on a ribbon
graph. For closure under this operation we need to augment the class of graphic
objects we consider.

Definition 2.2. An edge-point ribbon graph is an object obtained from a ribbon
graph G = (V,E) by contracting each edge in some (possibly empty) subset B of
E to a point. We call the points created by such a process singular points. The
image of edges under the contraction that are not singular points are called edges.
Its pinched-vertices are components of the images of vertices (including the singular
points) under the contraction.

Figure 3 shows a edge-point ribbon graph. Note that the class of ribbon graphs
is properly contained in the class of edge-point ribbon graphs. This is since a ribbon
graph can be regarded as an edge-point ribbon graph that has no singular points.

An edgeless component of an edge-point ribbon graph is called an isolated vertex.

Edge-point ribbon graphs can also be viewed as edge 2-coloured ribbon graphs
where edges of one colour, by convention here dark grey, represent the edges that are
contracted to a point in the formation of an edge-point ribbon graph, and edges of
the other colour (here light grey) correspond to the edges of the edge-point ribbon
graph. See Figure 3.
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Figure 3: An edge-point ribbon graph (left) and its description using edge colours
(right)

Two edge-point ribbon graphs are equivalent if there is a homeomorphism (which
is orientation preserving when the edge-point ribbon graphs are orientable) from one
to the other that sends edges to edges, and pinched-vertices to pinched-vertices. In
the edge 2-colour presentation, they are equivalent if one is equivalent to a partial
Petrial of the other, where the partial Petrial is formed with respect to a (possibly
empty) subset of the (dark grey) edges that are contracted to a point.

The operations of deletion, contraction, partial Petriality, and Penrose-contraction
for edge-point ribbon graphs are inherited from the ribbon graph operations. The
extensions of deletion and partial Petriality require no comment. Contraction is
defined by using the edge 2-coloured model and contracting in that using standard
ribbon graph contraction. The extension of Penrose-contraction then follows. Note
that these operations may not be applied to the dark grey edges when using the edge
2-coloured model.

Definition 2.3. Let G = (V,E) be an edge-point ribbon graph, and e ∈ E. Then
G� e denotes the edge-point ribbon graph obtained by contracting e to a point. See
Figure 4. We call the operation G� e defines, contraction to a point.

An edge e of G G� e G� e using edge colours

Figure 4: Forming G� e at an edge of an edge-point ribbon graph

Observe that the change in an edge-point ribbon graph made by the operations
of deletion, contraction, Penrose-contraction, and contraction to a point is local to
the edge it is applied to. It follows that if the four operations commute when they
are applied to different edges.

For a ribbon graph G and for A ⊆ E(G) we let G\A denote the result of deleting
each edge in A. The notation G/A, Gi A and G� A is defined similarly.

We let κ(G) denote the number of connected components of an edge-point ribbon
graph, and ∂(G) denote its number of boundary components. Note that the boundary
components of an edge-point ribbon graph need not be homeomorphic to a circle
(unless it is also a ribbon graph). For example, the ribbon graph that is a plane
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theta-graph (i.e., the ribbon graph drawn on the plane with two vertices and three
parallel edges between them) has three boundary components. Contracting any edge
to a point results in an edge-point ribbon graph with two boundary components, one
of which is homeomorphic to a circle, the other to a wedge of two circles (i.e., a
figure-of-eight).

If G is an edge-point ribbon graph then it is important to remember that ∂(G),
in general, is not equal to the to the number of boundary components of an edge
2-coloured ribbon graph that represents it.

Remark 2.4. Let us say a few words about what motivated contraction to a point,
and edge-point ribbon graphs. Recent advances in understanding the Bollobás–
Riordan polynomial [2, 3] and the Krushkal polynomial [14], which are extensions
of the Tutte polynomial to the setting of graphs in surfaces, have been achieved by
considering more exotic notions of deletion and contraction for graphs in surfaces,
and extending the domains of the polynomials by requiring that they are closed
under them. (See [8, 10, 16].) In particular, in these extended domains the graph
polynomials have ‘full’ recursive deletion-contraction definitions that terminate in
edgeless graphs, whereas they do not in their original restricted domains.

Contraction to a point, and edge-point ribbon graphs fit into this narrative. The
Bollobás–Riordan and Krushkal polynomials arise from considering a contraction
operation on graphs in surfaces that contracts an edge to a point (as explained
in [10]). Analogously, contraction to a point, and edge-point ribbon graphs can be
regarded as the structures that arise by contracting a 1-band in a band-decomposition
(equivalently, an edge in a cellularly embedded ribbon graph) to a point. This
perspective also indicates why, in Definition 4.1 below, it is natural to insist that in
a k-valuation at a singular vertex all edges incident to a singular vertex are of the
same colour since everything is identified at the singular point.

3 A graph polynomial Ω

We now use the above four operations on edge-point ribbon graphs to define a poly-
nomial invariant of edge-point ribbon graphs.

Definition 3.1. Let Ω(G) ∈ Z[w, x, y, z, t] be a polynomial of edge-point ribbon
graphs recursively defined by

Ω(G) = wΩ(G� e) + xΩ(G/e) + yΩ(G \ e) + zΩ(Gi e),

and when G is edgeless,
Ω(G) = tκ(G),

where κ(G) denotes the number of connected components of an edge-point ribbon
graph.

Example 3.2. Using the edge 2-colour notation for edge-point ribbon graphs, we have
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the following.

Ω

( )
= t3

Ω

( )
= (w + x+ z)t+ yt2

Ω

( )
= w(w + x+ y + z)t+ x(w + y + z)t+ y(w + x+ z)t

+ z(w + x+ y)t+ (x2 + y2 + z2)t2

Ω

( )
= w(w + x+ y + z)t+ x(w + x+ z)t+ y(w + y + z)t

+ z(w + x+ y)t+ (2xy + z2)t2

Definition 3.1 does not a priori result in a well-defined polynomial invariant since
its value could, in principle, depend upon the order of edges to which the recur-
sion relation is applied. The following theorem shows that the value of Ω(G) is in
fact independent of such a choice and hence Definition 3.1 does give a well-defined
polynomial invariant.

Theorem 3.3. Let G be an edge-point ribbon graph with edge set E. Then

Ω(G) =
∑

(A,B,C,D) an
ordered partition of E

w|A|x|B|y|C|z|D|t∂(G[A,B,C,D]), (8)

where
G[A,B,C,D] := ((((G� A)/B) \ C) iD),

and ∂(G[A,B,C,D]) is its number of boundary components.

Proof. Recall that the operations of deletion, contraction, Penrose-contraction, and
contraction to a point commute when they are applied to different edges. We use
induction on the number of edges to prove that the state sum in (8) satisfies the
identities in Definition 3.1. For clarity, in this proof we let Θ(G) denote the sum in
the right-hand side of (8).

If G has no edges then Θ(G) = t∂(G) = tκ(G), and so Θ(G) = Ω(G). Otherwise,
for any edge e, we can write

Θ(G) =
∑

(A,B,C,D) ordered
partition of E(G)

where e∈A

θ(G;A,B,C,D) +
∑

(A,B,C,D) ordered
partition of E(G)

where e∈B

θ(G;A,B,C,D)

+
∑

(A,B,C,D) ordered
partition of E(G)

where e∈C

θ(G;A,B,C,D) +
∑

(A,B,C,D) ordered
partition of E(G)

where e∈D

θ(G;A,B,C,D), (9)
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where θ(G;A,B,C,D) := w|A|x|B|y|C|z|D|t∂(G[A,B,C,D]).

Focussing on the first sum in the right-hand side of (9), we see that, since e ∈ A,
we have G[A,B,C,D] = (G� e)[A \ {e}, B, C,D], and so∑
(A,B,C,D) ordered
partition of E(G)

where e∈A

θ(G;A,B,C,D) = w
∑

(A,B,C,D) ordered
partition of E(G�e)

θ(G�e;A,B,C,D) = wΩ(G�e),

where the last equality is by the inductive hypothesis.

Similar arguments, and making use of the fact that the four operations commute
when applied to different edges, give that the second, third, and fourth sums in (9),
equal xΩ(G/e), yΩ(G \ e), and zΩ(G i e), respectively. It follows that Θ(G) =
Ω(G).

Theorem 3.3 immediately gives the following result.

Corollary 3.4. Ω is well-defined in the sense that it is independent of the order of
edges to which the recursion relations of Definition 3.1 are applied.

We note that Ω subsumes several graph polynomials from the literature. In
the following proposition, T (G) denotes the Tutte polynomial, R(G) the Bollobás–
Riordan polynomial, P (G) the Penrose polynomial, and Q(G) the topological tran-
sition polynomial.

Proposition 3.5. Let G be a ribbon graph. Then

1. Ω
(
G; 0,

√
y/x, 1, 0,

√
xy
)

= xκ(G)(
√
y/x)|V (G)|T (G;x + 1, y + 1), when G is

plane,

2. Ω
(
G; 0,

√
y/x, 1, 0,

√
xy
)

= xκ(G)(
√
y/x)|V (G)|R(G;x+ 1, y, 1/

√
xy),

3. Ω(G; 0, 1, 0,−1, λ) = P (G;λ),

4. Ω(G; 0, α, β, γ, t) = Q(G; (α, β, γ) , t).

Proof. The result for the transition polynomial, Q(G) is immediate. The remain-
ing results follow by expressing T (G), R(G), and P (G) in terms of the transition
polynomial, as in [7, 9].

4 Evaluations and interpretations

In Section 1 we described how to construct the medial graph of a graph embedded
in a surface. Medial graphs can also be constructed from ribbon graphs. Let G be a
ribbon graph. Construct an embedded graph Gm by taking one point in each edge of
G as the vertices of Gm. To construct the edges, from each vertex of Gm draw four
non-intersecting curves on the edge from that vertex to the four “corners” of the edge
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(i.e., the four end-points of the arcs where the edge intersects its incident vertices).
Connect these curves up by following the boundary of G around the vertices. Finally,
for each isolated vertex, add a free-loop that follows its boundary.

The medial graph of an edge-point ribbon graph G is the 4-regular embedded
graph Gm constructed by following the above procedure for ribbon graphs, and then
adding a vertex at each singular point. See Figure 5 for an example. The medial
graph Gm has two types of vertex: those corresponding to edges of G, we call these
non-singular vertices ; and those corresponding to singular points of G, we call these
singular vertices. By convention, here we draw the singular vertices of Gm as hollow
dots.

Figure 5: An edge-point graph G (left) and its medial graph Gm embedded in G
(right)

When using the edge 2-colour model of an edge-point ribbon graph, Gm can be
formed by taking its medial graph of the ribbon graph and declaring the vertices on
the dark grey edges to be singular.

Medial graphs of edge-point ribbon graphs admit canonical checkerboard colour-
ings. The colourings are obtained by colouring a region of the surface it lies in black
if it contains a vertex of G and white otherwise. The notion of a k-valuation extends
to medial graphs of edge-point ribbon graphs by insisting that all edges incident to
a singular vertex are of the same colour (to reflect that everything is identified at a
singular point), as follows.

Definition 4.1. Let k be a natural number, and G be an edge-point ribbon graph.
A k-valuation of Gm is an edge k-colouring of Gm such that each vertex is incident
to an even number (possibly zero) of edges of each colour, and all edges incident to
a singular vertex are of the same colour.

If Gm is canonically checkerboard coloured then the four possible configurations
of colours about a vertex, are white, black, crossing, or total, as described in Figure 1.
Singular vertices are always total. We let tot(φ) denote the number of non-singular
total vertices in a k-valuation φ.

Theorem 4.2. Let G be an edge-point ribbon graph, and let k ∈ N. Then

Ω(G;w, x, y, z, k) =
∑

φ a k-valuation of Gm

(w + x+ y + z)tot(φ)xwh(φ)ybl(φ)zcr(φ). (10)
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Proof. We use induction on the number of edges of an edge-point ribbon graph G.
The claim is easily verified when G has no edges.

Now assume that G has edges and that the claim holds for all edge-point ribbon
graphs with fewer edges than G. For a k-valuation φ of Gm, and for U ⊆ V (Gm), set

ω(G, φ, U) := (w + x+ y + z)tot(φ,U)xwh(φ,U)ybl(φ,U)zcr(φ,U),

where tot(φ, U), wh(φ, U), bl(φ, U), cr(φ, U) denote the numbers of total, white,
black, and crossing vertices contained in U in the k-valuation φ of Gm.

Fix an edge e of G, and let ve be its corresponding vertex in Gm. By separating
the sum according to what the k-valuation does at ve, we can write the sum on the
right-hand side of (10) as

w
( ∑
φ a k-val. of Gm
φ tot. at ve

ω(G, φ, V (Gm)\{ve})
)

+ x
( ∑

φ a k-val. of Gm
φ tot. or wh. at ve

ω(G, φ, V (Gm)\{ve})
)

+y
( ∑

φ a k-val. of Gm
φ tot. or bl. at ve

ω(G, φ, V (Gm)\{ve})
)

+z
( ∑

φ a k-val. of Gm
φ tot. or cr. at ve

ω(G, φ, V (Gm)\{ve})
)

(11)

We show that the sum in the first term in (11) equals Q(G � e). Consider G
locally at an edge e, and Gm locally at the corresponding vertex ve as shown in
Table 2. Note that in the table we are not assuming that the vertices at the ends

G G� e G/e G \ e Gi e

G e

Gm
ve

Table 2: Local differences in G, G � e, G/e, G \ e, G i e, and their medial graphs
for a non-loop edge e

of e are distinct or that they lie on the plane on which they are drawn, and so
Table 2 and the following argument also includes the cases when e is an orientable
or non-orientable loop. Table 2 also shows G� e and (G� e)m at the corresponding
locations. All the embedded graphs in the table are identical outside of the region
shown. Let φ′ be a k-valuation of (G � e)m. Then the arcs of (G � e)m shown in
Table 2 are all coloured with the same element i. The k-valuation φ′ of (G � e)m
naturally induces a k-valuation φ of Gm in which (φ, ve) is total. As this process is
reversible, we have a bijection between the set of all k-valuations of (G � e)m, and
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the set of all k-valuations of Gm in which ve is total. Thus∑
φ a k-val. of Gm

φ tot. ve

ω(G, φ, V (Gm)\{ve}) =
∑

φ a k-val. of (G�e)m

ω(G� e, φ, V ((G� e)m)

= Ω(G� e;w, x, y, z, k),

where the second equality follows by the inductive hypothesis.

Similar arguments give that the second, third, and fourth sums in (11) equal
Ω(G/e), Ω(G \ e) and Ω(G i e) respectively. Thus, Equation (11) equals wΩ(G �
e) + xΩ(G/e) + yΩ(G \ e) + zΩ(Gi e), which is Ω(G).

The significance of Theorem 4.2 is that it provides a recursive, skein-theoretic
way to compute the generating function Ωk for the k-valuations of Definition 1.2.

Corollary 4.3. Let G be a ribbon graph or a cellularly embedded graph, and let k be
a natural number. Then

Ωk(G;w, x, y, z) = Ω(G; (w − x− y − z), x, y, z, k).

In particular, Ωk(G;w, x, y, z) is a polynomial in k.

The (geometric) dual, G∗, of a ribbon graph G = (V (G), E(G)) is constructed as
follows. Recalling that, topologically, a ribbon graph is a surface with boundary, we
cap off the holes using a set of discs, denoted by V (G∗), to obtain a surface without
boundary. Then G∗ = (V (G∗), E(G)) is the ribbon graph obtained by removing the
original vertices.

Corollary 4.4. Let G be a ribbon graph or an embedded graph. Then

Ω(G;−2, 1, 0, 1, λ) =
∑

A⊆E(G)

χ((Gτ(A))∗;λ),

where χ(H;λ) is the chromatic polynomial of H.

Proof. By Theorem 4.2, for each k, Ω(G;−2, 1, 0, 1, λ) counts the number of k-
valuations of Gm in which each vertex is either white or crossing. We restrict to
this type of k-valuation in the remainder of the proof.

A proper boundary k-colouring of a ribbon graph is a map from its set of boundary
components to [k] with the property that whenever two boundary components share
a common edge, they are assigned different colours.

Let Aφ ⊆ E(G) be the set of edges corresponding to vertices of Gm with crossings
in the k-valuation φ. The cycles in Gm determined by the colours in the k-valuation φ
follow exactly the boundary components of the partial Petrial Gτ(Aφ). Moreover, the
colours of the cycles in the k-valuation induce a colouring of the boundary compo-
nents of Gτ(Aφ). It is easy to see that this establishes a 1-1 correspondence between
k-valuations of Gm in which each vertex is either white or crossing, and proper
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boundary colourings of Gτ(Aφ). However, since the boundary components of a rib-
bon graph H correspond with the vertices of its dual H∗, it follows that there is a
1-1 correspondence between proper boundary colourings of Gτ(Aφ), and proper ver-
tex colourings of (Gτ(Aφ))∗. It follows that Ωk(G; 0, 1, 0, 1) =

∑
A⊆E(G) χ((Gτ(e))∗; k).

Since this is true for each natural number k, and using Corollary 4.3, the result about
Ω(G;−2, 1, 0, 1, λ) follows.

It is interesting to compare Corollary 4.4 with Theorem 5.3 of [4] which gives
that Ω(G; 0, 1, 0,−1, λ) =

∑
A⊆E(G)(−1)|A|χ((Gτ(A))∗;λ).

Corollary 4.5. Let G be a plane ribbon graph. Then

Ω(G;−2, 1, 0, 1, λ) = P (G;λ),

where P (G;λ) is the Penrose polynomial.

Proof. This follows from Corollary 4.4 since it was shown in [7] that
∑

A⊆E(G) χ((Gτ(A))∗;λ)
equals the Penrose polynomial of a plane graph.

Corollary 4.6. If G is a cubic ribbon graph then

Ω(G;−2, 1, 0, 1, 3) = #proper edge 3-colourings of G.

Proof. This argument is an adaptation of the argument in [17] used to show that the
Penrose polynomial counts proper edge 3-colourings of plane graphs. Proper edge
3-colourings of a ribbon graph are in bijection with proper boundary 3-colourings of
partial Petrials of that ribbon graph as indicated in Figure 6.

b

c

b

c

a ←→ a a

b

c

b

c

c

b

a ←→ a a

b

c

Figure 6: Moving between edge 3-colourings and boundary 3-colourings

As in the proof of Corollary 4.4, Ω3(G; 0, 1, 0, 1) counts the number of proper
boundary 3-colourings of the partial Petrials of G. The result follows.

For plane graphs G, Corollary 4.5 implies that Ω(G;−2, 1, 0, 1, λ) coincides with
P (G). This is not true, in general, when G in non-plane so Corollary 4.5 does not
give a new interpretation of the topological Penrose polynomial of [15].
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However, a direct consequence of Corollary 4.6 is that Ω(G;−2, 1, 0, 1, λ) (and
Ω(G;w, x, y, z, t)) offers an extension of the original plane Penrose polynomial of
[1, 17] to a topological graph polynomial that counts edge 3-colourings of all (not
just plane) graphs, one of its key properties. With this in mind make the following
definition.

Definition 4.7. Let G be an edge-point ribbon graph. We call

Pp(G;λ) := Ω(G;−2, 1, 0, 1, λ)

the pointed-Penrose polynomial.

Note that it satisfies the recursion Pp(G) = Pp(G/e) + Pp(Gi e)− 2Pp(G� e).
It would be interesting to determine what other properties of the classical plane

Penrose polynomial extend to Pp (a catalog of some properties that do and do not
extend to the topological Penrose polynomial may be found in [6, 7]). Similarly, a
new avenue of investigation would be comparing and contrasting the properties of
the pointed Penrose polynomial Pp and the topological Penrose polynomial P for
non-planar graphs. We leave these as open problems.
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