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Abstract

A well-covered graph G is one in which every maximal independent set of
vertices has the same size. Given a well-covered graph G (not necessar-
ily connected), we establish necessary and sufficient conditions for both
adding edges to and deleting edges from G in such a manner that the
graph so obtained is also well-covered and has the same independence
number as G. In addition, we establish a method for constructing a well-
covered supergraph of G by adjoining a new vertex and its neighbourhood
set to G.

1 Introduction

The independence number of a finite simple graph G with vertex set V (G) and edge
set E(G) is the maximum cardinality of an independent set in V (G) and denoted
by β(G). A graph G is called well-covered if every maximal independent set in
G has cardinality β(G). Clearly G is well-covered if and only if every connected
component of G is well-covered. The girth of a graph containing a cycle is the length
of its shortest cycle and is denoted by g(G); when G is acyclic g(G) is defined to be
infinity. All graphs considered will be simple and finite.

The objective of this study is to establish a constructive procedure for obtaining
all well-covered graphs starting from a collection of known well-covered graphs. In
Section 3 we prove necessary and sufficient conditions for both adding edges to and
deleting edges from a well-covered graph G (not necessarily connected) to give a
well-covered graph H with β(H) = β(G) and present a number of constructions
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based on these results. In Section 4 we establish a method of adjoining a new vertex
and its neighbourhood set to a well-covered graph G to give a well-covered graph
H with β(H) = β(G) + 1. Of fundamental importance to all our constructions in
Section 3 is the recognition of certain distinguished sets of vertices in G, which we call
extendable sets. Although some extendable sets are easily identified, for example the
open neighbourhood set of any independent set of vertices in a graph is an extendable
set, finding all the extendable sets in an arbitrary graph would seem to be a difficult
problem. Properties of extendable sets are established in Section 2.

We have used the results in this paper to construct over 200 non-isomorphic well-
covered connected graphs G with β(G) ≤ 4 that are triangle-free, starting from a
collection of K1s and K2s. Of these, just seventeen graphs G have β(G) ≤ 3 and we
illustrate these, together with those with β(G) = 4 and |V (G)| ≤ 9, in an appendix.
Each of these latter graphs can be produced in several different ways, either by using
a construction established in Section 3 or by using the construction of Section 4.

Well-covered graphs were introduced by M. D. Plummer [19] in 1970. The corre-
sponding recognition problem was found in the early ’90’s to be co-NP-complete
independently by V. Chvátal and P. J. Slater [4] and by R. S. Sankaranarayana and
L. K. Stewart [23]. Recognition is, however, known to be polynomial for certain
classes of well-covered graphs, for instance, those that are bipartite [22], claw-free
[25, 24], have girth at least 5 [6], have neither 4-cycles nor 5-cycles [7], are chordal
[21], are of bounded degree [3], are planar quadrangulations [8] or are planar trian-
gulations [9, 10, 11, 12]. There are surveys of early results regarding well-covered
graphs by B. Hartnell [13] and M. D. Plummer [20].

An extendable vertex in a well-covered graph was first defined in [6].

Definition 1.1 A vertex x ∈ V (G) in a well-covered graph G is called extendable if
G− x is well-covered and β(G) = β(G− x).

Extendable vertices were used in [6] and [7] in the construction of families of well-
covered graphs. The complementary notion, that of a vertex that is not extendable,
was used by S. L. Gasquoine et al. in [15] in establishing constructions for well-
covered graphs with no 4-cycles. The structure of these latter graphs was further
investigated by B. Hartnell in [14]. In [16, 17, 18] M. Pinter established constructions
for building 1-well-covered graphs (well-covered graphs such that each of their vertices
is extendable). These constructions were generalized and additional constructions
found for these graphs by A. Finbow and B. Hartnell in [5].

We use the following notation. For u, v ∈ V (G), let dG(u, v) denote the length
of a shortest u-v path in G. Then NG(v) := {x ∈ V (G) : dG(x, v) = 1} and
NG[v] := NG(v) ∪ {v}. More generally, N r

G[v] := {x ∈ V (G) : dG(x, v) ≤ r}.
Similarly, for any set S ⊆ V (G), NG(S) = (∪v∈SNG(v)) \S and N r

G[S] = ∪v∈SN r
G[v].

Let X, Y ⊆ V (G). Then EG(X, Y ) := {xy ∈ E(G) : x ∈ X, y ∈ Y }. Finally, we
denote by 〈X〉 the subgraph of G generated by the vertices of the set X ⊆ V (G).

We make repeated use of the following well-known observation (see for example [1]).
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Lemma 1.2 Let G be a well-covered graph and let v ∈ V (G). Then H := G−NG[v]
is also well-covered and β(H) = β(G) − 1. Suppose J is an independent set in G.
Then by extension, H ′ := G−NG[J ] is also well-covered and β(H ′) = β(G)− |J |.

It is useful to expand the definition of extendable vertex by allowing such a vertex to
reside in a non-well-covered graph.

Definition 1.3 A vertex x ∈ V (G) in a graphG is called extendable if every maximal
independent set I in G− x contains a vertex of NG(x).

Note that x ∈ V (G) is extendable in this sense if and only if |NG(x) \ NG(I)| ≥ 1,
for every maximal independent set I in G−NG[x].

We note that in the case when G is a well-covered graph, Definition 1.3 is equivalent
to Definition 1.1.

Definition 1.4 A set S ⊆ V (G) in a graph G is called an extendable set in G if
S ⊆ NG(J) for every maximal independent set J in G− S.

Clearly, an extendable set in a component of a graph G is also an extendable set in
G. Further, the empty set is an extendable set in any graph.

Example 1.1 Each of the 4-cycle C4 and the 5-cycle C5 is an example of a well-
covered graph G with β(G) = 2. C5 := x0x1x2x3x4 contains 16 extendable sets: ∅,
{xi}, {xi, xi+2} and {xi, xi+2, xi+3}, for i ∈ {0, 1, 2, 3, 4} (where addition on indices is
modulo 5); while C4 := x0x1x2x3 contains just three extendable sets: ∅, {x0, x2} and
{x1, x3}. The path P5 := x0x1x2x3x4 is not well-covered. It contains the following 9
extendable sets: ∅, {x1}, {x3}, {x0, x2}, {x1, x3}, {x2, x4}, {x0, x2, x3}, {x0, x2, x4},
{x1, x2, x4}.

In the case when G is well-covered, Definition 1.4 implies the following.

Lemma 1.5 Let G be a well-covered graph. A set S ⊆ V (G) is an extendable set in
G provided that G−S is well-covered and β(G−S) = β(G). Conversely, if A ⊆ V (G)
is not an extendable set in G, then G−A contains a maximal independent set J with
|J | < β(G). In this case, either G − A is not well-covered, or it is well-covered but
β(G− A) < β(G).

2 Properties of extendable sets

In this section, we establish some properties of extendable sets and show how they
may be constructed. In particular, our results show that every connected graph of
order at least 4 contains many extendable sets.

Lemma 2.1 Let G be a graph containing a set S of vertices with the property that
S = NG(J) for some independent set J in G. Then S is an extendable set in G.
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Proof. Note that in G − S, every vertex of J is an isolate. Let I be any maximal
independent set in G− S. Then J ⊆ I and the result follows. �

Lemma 2.2 Let S be an extendable set in a graph G and let J be an independent
set in G− S. Then S \NG(J) is an extendable set in H := G−NG[J ].

Proof. Let I be a maximal independent set in H − (S \ NG(J)). We show that
S \NG(J) ⊆ NH(I). Note first that I∪J is a maximal independent set in G−S. But
S is an extendable set in G and hence S ⊆ NG(I ∪ J), implying S \NG(J) ⊆ NG(I).
Then V (H)∩ (S−NG(J)) ⊆ V (H)∩NG(I). However S \NG(J) ⊆ V (H) and so we
have S \NG(J) ⊆ V (H) ∩NG(I) ⊆ NH(I), as required. �

Lemma 2.3 Let S1, S2 be extendable sets in a graph G with NG[S1]∩ S2 = ∅. Then
S1 ∪ S2 is an extendable set in G.

Proof. Let J be a maximal independent set in G− (S1∪S2). We show that S1∪S2 ⊆
NG(J). Let I be a maximal independent set in 〈S2 \ NG(J)〉, where I = ∅ if S2 ⊆
NG(J). Then J ∪ I is a maximal independent set in G− S1. Hence S1 ⊆ NG(J ∪ I)
implying S1 ⊆ NG(J), since NG[S1] ∩ S2 = ∅. Similarly S2 ⊆ NG(J), giving the
result. �

Corollary 2.4 Let G be a graph and let I ⊆ V (G) be an independent set of vertices
each of which is extendable in G. Then I is an extendable set in G.

On the other hand, a vertex of an extendable set is not necessarily individually
extendable. Indeed, it is possible that no vertex of an extendable set S is extendable
even when S is independent (see for example C4 in Example 1.1).

Lemma 2.5 Let G be a graph and let U ⊆ V (G) have the property that U = NG(J)
for some independent set J in G. Let S be an extendable set in G such that S∩J = ∅.
Then S ∪ U is an extendable set in G.

Proof. Let I be a maximal independent set in G− (U ∪S). Then J ⊆ I, since J is a
set of isolates in NG(U ∪S). Hence I \ J is a maximal independent set in G−NG[J ]
and hence S \ U ⊆ NG(I \ U). But U ⊆ NG(J) and so S ∪ U ⊆ NG(I). �

Lemma 2.6 Let G be a well-covered graph with g(G) ≥ 4 and let x, y ∈ V (G) where
xy ∈ E(G). Let NG(y) \ {x} be an extendable set in G−NG[x]. Then NG(x) \ {y}
is an extendable set in G.

Proof. Note that by the girth restriction, y has no neighbour in NG(x). Let S1 :=
NG(y) \ {x}, S2 := NG(x) \ {y} and let H := G − NG[x]. By hypothesis, S1 is
an extendable set in H. Let J be a maximal independent set in G − S2. Since
x is a leaf in G − S2, exactly one of x and y is in J . Clearly S2 ⊆ NG(J) when
x ∈ J and so suppose y ∈ J . Then J \ {y} is a maximal independent set in
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H − S1. But S1 is an extendable set in H and hence H − S1 is well-covered with
β(H − S1) = β(H) = β(G) − 1. But then |J | = β(G) so that J is a maximal
independent set in G, again giving S2 ⊆ NG(J). Hence S2 is extendable in G. �

The following counter-example shows the condition that G is well-covered in Lem-
ma 2.6 is necessary.

Example 2.1 Let C := ystu be a 4-cycle and construct the graph G by adjoining to
C the vertices a, x and the edges ax, xy. Then β(G) = 3, but G is not well-covered.
With the notation of Lemma 2.6, H is the path stu, S1 := {s, u} and S2 := {a}.
Now choose J := {y, t}. Then J is maximal independent in G−S2, but S2 6⊆ NG(J).

Lemma 2.7 Let G be a well-covered graph with g(G) ≥ 4 and let x, y ∈ V (G) be
such that xy ∈ E(G). Then NG(y) \ {x} is an extendable set in G − NG[x] if and
only if NG(y) \ {x} is an extendable set in G.

Proof. By the girth restriction, y has no neighbour in NG(x). Let S := NG(y) \ {x}
and let H := G−NG[x]. Then H is well-covered with β(H) = β(G)− 1.

Suppose first that S is an extendable set in H. Then β(H −S) = β(H) = β(G)− 1.
Let J be a maximal independent set in G − S. Since y is a leaf in G − S, just one
of x or y is in J . If y ∈ J , then clearly S ⊆ NG(J). Otherwise, x ∈ J and hence
J \ {x} is a maximal independent set in H − S so that again S ⊆ NG(J). Thus S is
an extendable set in G.

The converse follows from Lemma 2.2, with J := {x} and S := NG(y) \ {x}. �

Lemma 2.8 Let G be a well-covered graph with g(G) ≥ 4 and let x, y ∈ V (G) be
such that xy ∈ E(G). Then NG({x, y}) is an extendable set in G if and only if
NG(x) \ {y} is an extendable set in G.

Proof. Let S1 := NG(x)\{y}, S2 := NG(y)\{x}. By the girth restriction, S1∩S2 = ∅.
Then NG({x, y}) = S1 ∪ S2.

Suppose S1 is an extendable set in G. Then H := G − S1 is well-covered with
β(H) = β(G). By Lemma 2.6 and Lemma 2.7, S2 is an extendable set in G. Let J
be a maximal independent set in G − (S1 ∪ S2). Then J contains exactly one of x
and y, say y ∈ J . Then J is a maximal independent set in H and hence |J | = β(G).
Thus G− (S1 ∪ S2) is well-covered and S1 ∪ S2 is an extendable set in G.

Conversely, suppose that S1∪S2 is an extendable set in G. By Lemma 2.2, (S1∪S2)\
NG(y) = S1 is extendable in G − NG[y]. But then by Lemma 2.6, S2 is extendable
in G. �

3 Constructions by adding or deleting edges in a
well-covered graph

There are a number of instances of a well-covered graph G remaining well-covered
with the same independence number when a set of edges is deleted from G or added



A.S. FINBOW AND C.A. WHITEHEAD/AUSTRALAS. J. COMBIN. 72 (2) (2018), 273–289 278

to G. Proposition 3.1 together with Proposition 3.10 characterize the set of edges
that can be respectively added to or removed from a well-covered graph G to obtain a
distinct well-covered graph with the same independence number. From these propo-
sitions we deduce several constructions, some of which have been used in previous
work.

Proposition 3.1 Let G be a well-covered graph and let A1, A2 ⊆ V (G) with NG[A1]∩
A2 = ∅. Construct a new graph H from G with V (H) := V (G) and E(H) :=
E(G) ∪ EH(A1, A2). Then H is well-covered with β(H) = β(G) if and only if the
edges in EH(A1, A2) are chosen so that the following condition is satisfied.

(1) For i, j ∈ {1, 2}, whenever B ⊆ Ai is an independent set in G, then NH(B)∩Aj

(i 6= j) is an extendable set in G−NG[B].

Furthermore (i) any subset S ⊆ V (G) \ NG[A1 ∪ A2] that is extendable in G is also
extendable in H; and (ii) any subset T ⊆ V (G) \ (N2

G[A1]∪A2) that is extendable in
H is extendable in G.

Proof. Suppose condition (1) is satisfied. Let J be a maximal independent set
in H and let Ji := J ∩ Ai and Si := NH(Ji) ∩ Aj, for i, j ∈ {1, 2}, i 6= j. Set
J0 := J \ (J1∪J2). By condition (1), Si is extendable in G−NG[Ji], i ∈ {1, 2}. Then
by Lemma 2.2, Ri := Si\NG[J1∪J2] is extendable in G′ := G−NG[J1∪J2], i ∈ {1, 2}.
However, by Lemma 2.3, R1∪R2 is extendable in G′. But J is a maximal independent
set in G − (S1 ∪ S2). Hence J0 is a maximal independent set in G′ − (R1 ∪ R2) so
that R1 ∪R2 ⊆ NG(J0). Thus S1 ∪S2 ⊆ NG(J), so that J is a maximal independent
set in G and hence |J | = β(G). Since J is an arbitrary maximal independent set in
H, this implies H is well-covered with β(H) = β(G).

Conversely, suppose condition (1) does not hold. Then without loss of generality,
there exists an independent set I ⊆ A1 such that S := NH(I)∩A2 is not extendable
in G−NG[I]. This implies there is a maximal independent set J in G− (NG[I] \ S)
such that S \NG(J) 6= ∅. Hence the independent set I ∪ J is not maximal in G, but
is maximal in H. We conclude that either H is not well-covered, or H is well-covered
with β(H) < β(G).

To prove (i), suppose that S ⊆ V (G) \NG[A1 ∪ A2] is extendable in G and let J be
a maximal independent set in H − S. Extend J to a maximal independent set K in
G − S. Then S ⊆ NG[K], since S is extendable in G. But (K \ J) ⊆ A1 ∪ A2 and
hence S ⊆ NH [J ] so that S is extendable in H.

To prove (ii), suppose that T ⊆ V (G) \ (N2
G[A1] ∪ A2) is extendable in H and let I

be a maximal independent set in G−T . Now U := A1∩NH(I ∩A2) is extendable in
G, by hypothesis. Thus if we extend I \U to a maximal independent set L in G−U ,
then U ⊆ NG(L). Hence L is a maximal independent set in G and by construction
is also a maximal independent set in H. But L \ I ⊆ NG(U) ⊆ NG[A1] and hence
T ∩L = ∅. But since T is extendable in H, T ⊆ NH [L]. But L∩ (V (G) \NG[A1]) =
I ∩ (V (G) \NG[A1]) and so T ⊆ NG[I]. Hence T is an extendable set in G. �

Corollary 3.2 through Corollary 3.5 are applications of Proposition 3.1.
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Corollary 3.2 Let G be a well-covered graph containing two extendable sets S1, S2

with NG[S1] ∩ S2 = ∅. Then the graph H := G + {xy : x ∈ S1, y ∈ S2} is well-
covered with β(H) = β(G). Further, if z is an extendable vertex in G such that
NG(z) ∩ (S1 ∪ S2) = ∅, then z is also extendable in H.

The next result was used in [6] and [7] in the construction of families of well-covered
graphs.

Corollary 3.3 Let G be a well-covered graph containing a set S of independent
extendable vertices. Let x, y ∈ S. Then H := G + xy is well-covered with β(H) =
β(G). Further, every vertex of S is also extendable in H.

Note that in general the deletion of an edge joining a pair of extendable vertices in a
well-covered graph does not result in a well-covered graph: consider for example C5.

Corollary 3.4 Let G be a well-covered graph and let x1, x2 be a pair of non-adjacent
extendable vertices in G. Suppose further that Si ⊆ NG(xi), for i = 1, 2, is an
extendable set such that NG[S1]∩S2 = ∅. Then H := G+x1x2+{uv : u ∈ S1, v ∈ S2}
is well-covered and β(H) = β(G). Further, if z is an extendable vertex of G that is
not adjacent to any vertex of {x1, x2} ∪ S1 ∪ S2, then z is also extendable in H.

Corollary 3.5 Let G be a well-covered graph and let x1, x2 be a pair of extendable
vertices in G such that dG(x1, x2) ≥ 4. Then H := G+ x1x2 + {uv : u ∈ NG(x1), v ∈
NG(x2)} is well-covered and β(H) = β(G).

In the case when the sets A1, A2 are in distinct components of G, Proposition 3.1
becomes the following result. Both the construction by S. R. Campbell et al. of their
family W in [2] and the O-join operation of A. S. Finbow et al. in [12] can be viewed
as applications of this result.

Proposition 3.6 Let G be a graph with two distinct well-covered components G1, G2

and let Ai ⊆ V (Gi), i = 1, 2. Construct a new graph H from G with V (H) := V (G)
and E(H) := E(G) ∪EH(A1, A2). Then H is well-covered with β(H) = β(G) if and
only if the edges in EH(A1, A2) are chosen to satisfy the following condition.

(2) For i, j ∈ {1, 2}, whenever B ⊆ Ai is an independent set in Gi, then NH(B)∩Aj

(i 6= j) is an extendable set in Gj.

Furthermore (i) any subset S ⊆ V (G) \ NG[A1 ∪ A2] that is extendable in G is also
extendable in H; and (ii) any subset T ⊆ V (G) \ (A1 ∪ A2) that is extendable in H
is also extendable in G.

Definition 3.7 Let H be a connected well-covered graph. We shall say that H is
composite if it is possible to construct H by adding edges to a well-covered graph G,
where G has two components and β(G) = β(H). Otherwise, we say that H is prime.
We define the graphs K1 and K2 to be prime.
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Example 3.1 In Figure 1, the solid vertices are those which are individually extend-
able in the respective graphs. Let G be the graph with components X,X ′, where
β(X) = β(X ′) = 2. X contains the following extendable sets: {b}, {c}, {b, c}, {a, c},
{b, d}, and similarly for X ′. Adding edges between X and X ′ so that condition (2) of
Proposition 3.6 is satisfied and the graph obtained has girth at least 4 will produce
a composite graph isomorphic to one of the well-covered graphs Hi, with β(Hi) = 4,
i = 12, 13, . . . , 18, shown in Table 2 in the Appendix.

Corollary 3.8 Let G be a well-covered graph containing a complete multipartite
subgraph G0 with partition (X1, X2, . . . , Xr) such that Xi is an extendable set in
G, for i ∈ {1, 2, . . . , r}. Let T ∼= Kr, where V (T ) := {u1, u2, . . . , ur}. Con-
struct a new graph H from the disjoint union of G and T by adding the edge set
F := {u1x : x ∈ X1}∪{u2x : x ∈ X2}∪ . . .∪{urx : x ∈ Xr}. Then H is well-covered
with β(H) = β(G) + 1. Further, when r = 2, then g(H) ≥ 4 whenever g(G) ≥ 4.

Corollary 3.9 Let G1, G2 be well-covered graphs and let Si be an extendable set
in Gi, for i = 1, 2. Construct a new graph H from G1 and G2 with V (H) :=
V (G1) ∪ V (G2) and E(H) := E(G1) ∪ E(G2) ∪ F , where F is the set of edges
obtained by joining each vertex of S1 to every vertex of S2. Then H is well-covered
with β(H) = β(G1) + β(G2).

We now turn our attention to deleting edges from a well-covered graph.

Proposition 3.10 Let H be a well-covered graph and let A1, A2 ⊆ V (H) be such
that A1 ∩ A2 = ∅. Then G := H − E(A1, A2) is well-covered with β(G) = β(H) if
and only if the following conditions are satisfied.

(1) For i, j ∈ {1, 2}, whenever B ⊆ Ai is an independent set in G, then NH(B)∩Aj

(i 6= j) is an extendable set in G−NG[B];

(3) G−NG[X] is well-covered, for any independent set X ⊆ A2.

Proof. Suppose conditions (1) and (3) hold. Let J be a maximal independent set in
G. Let J2 := J ∩ A2 and S2 := NH(J2) ∩ A1. Set M ′ := J \ S2 and extend M ′ to a
maximal independent set M in G− S2. Then, since S2 ∩ J2 = ∅ we have
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(a) M ∩ J2 = J ∩ J2 = J2.

Note that M is independent in H and that M is a maximal independent subset
in G − (NG(J2) ∪ S2). Since by condition (1), S2 is extendable in G − NG[J2] it
follows that S2 ⊆ NG[M \ J2] ⊆ NG[M ]. Then S2 ⊆ NH [M ] and so M is a maximal
independent set in H and hence

(b) |M | = β(H).

Note that both M \ J2 and J \ J2 are maximal independent sets in G − NG[J2].
However, G−NG[J2] is well-covered by condition (3). Hence

|M \ J2| = |J \ J2|.

Then equation (a) gives |J | = |M |. Thus, since J is an arbitrarily chosen independent
set, G is well-covered and β(G) = β(H), from equation (b).

The converse follows from Proposition 3.1 and Lemma 1.2. �

In the case when the sets A1, A2 in the graph G constructed in Proposition 3.10 are
sufficiently far apart, as when they are in distinct components of G for example,
we can use the following modified version of Proposition 3.10 in which a distance
constraint on the sets A1, A2 replaces condition (3).

Proposition 3.11 Let H be a well-covered graph and A1, A2 ⊆ V (H) be such that
N3

G[A1] ∩A2 = ∅ in G := H −E(A1, A2). Then G is well-covered and β(G) = β(H)
if and only if the following condition is also satisfied.

(1) For i, j ∈ {1, 2}, whenever B ⊆ Ai is an independent set in G, then NH(B)∩Aj

(i 6= j) is an extendable set in G−NG[B].

Proof. Suppose condition (1) holds. Let J be a maximal independent set in G. For
i ∈ {1, 2}, set Ji := J ∩ Ai, Si := NH(Ji) ∩ Aj and Ki := Si ∩ Jj, i 6= j. Let
M ′

i := J \Ki and extend M ′
i to a maximal independent set Mi in G− Si by adding

a set Ui of αi vertices. Then for i ∈ {1, 2}, we have

(a) |Mi| = |J | − |Ki|+ αi.

Note that for i = 1, 2, Mi is both an independent set in H and a maximal independent
set in G − (NG(J2) ∪ S2). Since, by condition (1), Si is extendable in G − NG[Ji],
it follows that Si ⊆ NG[Mi] ⊆ NH [Mi]. Then Si ⊆ NH [Mi] and so Mi is a maximal
independent set in H and hence |Mi| = β(H). Then for i ∈ {1, 2}, equation (a)
yields

(b) |J | − |Ki|+ αi = β(H).

Note that all the vertices in Ui are adjacent to vertices in Ki ⊆ Ai and hence since
N3

G[A1]∩A2 = ∅, we have U1 ∩NG[U2] = ∅. Hence M := (J ∪U1 ∪U2) \ (K1 ∪K2) is
independent in G and in H. We claim that M must also be maximal in H. Indeed
if x 6∈ NH [M ], then by the maximality of Mi, for both i = 1 and i = 2 it follows that
x ∈ NG[Kj], i 6= j, and so x ∈ NG[K1]∩NG[K2] ⊆ NG[A1]∩NG[A2] = ∅. Thus M is
maximal in H. It follows that
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(c) |M | = |J | − |K1| − |K2|+ α1 + α2 = β(H).

But (b) and (c) together yield αi = |Ki|, i ∈ {1, 2}, and hence |J | = β(H). Thus G
is well-covered with β(G) = β(H).

The converse follows from Proposition 3.1. �
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u
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Figure 2

The graphs H and G in Figure 2 illustrate the necessity of the condition in Proposi-
tion 3.11 that N3

G[A1]∩A2 = ∅ in G := H −E(A1, A2). Note that H is well-covered
and the sets {xi}, i = 1, 2, are each extendable in G. However, the graph G is not
well-covered.

4 Constructions adding a new neighbourhood set to a well-
covered graph

As we have noted (Lemma 1.2), a well-covered graph H with independence number
β can always be reduced to a well-covered graph G with independence number β− 1
by removing the closed neighbourhood set NH [v] of an arbitrary vertex v ∈ V (H).
In this section, we give in Proposition 4.1 a necessary and sufficient condition for
this process to be reversed to produce a well-covered graph H from a well-covered
graph G. This result provides in theory a constructive procedure for obtaining all
well-covered graphs starting from the empty graph K0. We also note that many
well-covered graphs, including for example Kn for all n ≥ 1, C5 and C7, are prime
and can only be constructed using the method of Proposition 4.1.

Proposition 4.1 Let G be a well-covered graph and let T be a graph with V (T ) :=
{v}∪U , where U := NT (v) 6= ∅. Let H be a graph constructed from the disjoint union
of G and T by adjoining a set of edges between U and G. Then H is well-covered
with β(H) = β(G) + 1 if and only if the following condition is satisfied.

(a) H −NH [u] is well-covered with β(H −NH [u]) = β(G), for all u ∈ U .

Proof. Suppose first that condition (a) is satisfied and let J be any maximal indepen-
dent set in H. When v ∈ J , then H−NH [v] = G, which is well-covered by hypothesis.
Otherwise, J contains an element u ∈ U . But by condition (a), H − NH [u] is well-
covered with β(H −NH [u]) = β(G), so that in either case, |J | = β(G) + 1. Since J
was chosen arbitrarily, H is a well-covered graph with β(H) = β(G) + 1.
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Conversely, suppose that H is well-covered with β(H) = β(G) + 1. Then H −NH [u]
is well-covered with β(H − NH [u]) = β(G), by Lemma 1.2, and so condition (a) is
satisfied. �

Proposition 4.1 can be considered as a special case of Proposition 3.6 when T is a
clique.

The construction described in Proposition 4.1 was used in [6] (where it was called
an expansion) in order to construct those well-covered graphs of girth at least 5 that
contain no extendable vertex.

Corollary 4.2 If in Proposition 4.1 the following additional conditions are satisfied:

(b) T ∼= K1,r, 1 ≤ r ≤ β(G) + 1;

(c) NH(u) is independent, for u ∈ U .

then H is well-covered with g(H) ≥ 4 whenever g(G) ≥ 4.

In general, it is not easy to choose the sets NH(u) ∩ V (G), u ∈ U , to satisfy con-
dition (a) in Proposition 4.1. However, it is useful to note that for each maximal
independent set I ⊆ U , G−NH(I) is well-covered with β(G−NH(I)) = β(H)− |I|.
This method was used in constructing the following example.

Example 4.1 The graph G in Figure 3 below is well-covered with β(G) = 3. We
adjoin T ∼= K1,2 to G to obtain the well-covered graph H. Note first that G contains
a well-covered subgraph G0

∼= K2 + K2 with components b1b2 and b3b4, so that
β(G0) = 2. Using the notation of Proposition 4.1, we require the remaining vertices
of G to be members of NH(U). Choosing NH(u1) \ {v} = {a1, a3}, NH(u2) \ {v} =
{a2, a3} satisfies the conditions of Proposition 4.1 and gives a well-covered graph H.
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There are well-covered graphs which are prime by Definition 3.7 and can only be
constructed from simpler graphs by Proposition 4.1. For example, the primes C5

and C7 can each be obtained by adding a new vertex u and its two independent
neighbours to P2 and P4 respectively.
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Appendix

Connected well-covered graphs H with g(H) ≥ 4, β(H) ≤ 4 and |V (H)| ≤ 9

Table 1: β(H) ≤ 3
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Table 2: β(H) = 4 and |V (H)| = 8. All these graphs are composite.
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Table 3: β(G) = 4 and |V (G)| = 9. All these graphs are composite.
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Table 3 (cont)
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