A short proof of the characterization of binary matroids with no 4-wheel minor

S. R. KINGAN

Department of Mathematics, Brooklyn College City University of New York, Brooklyn, NY 11210 U.S.A. skingan@brooklyn.cuny.edu

Abstract

The Strong Splitter Theorem is used to give a short proof that the class of binary matroids with no 4-wheel minor consists of a few small matroids and the infinite family of binary spikes.

1 Introduction

The class of binary matroids with no minor isomorphic to $M(W_4)$ was characterized as follows by Oxley [2], Theorem 2.1:

Theorem 1.1. Let M be a 3-connected binary matroid. Then M has no minor isomorphic to $M(W_4)$ if and only if M is isomorphic to $U_{0,1}$, $U_{1,1}$, $U_{1,2}$, $U_{1,3}$, $U_{2,3}$, $M(W_3)$, F_7 , F_7^* , or Z_r , Z_r^* , $Z_r \setminus a_r$ or $Z_r \setminus c_r$, for $r \ge 4$.

Besides the small matroids that are trivially in the class, there is one infinite family Z_r (subsequently named the binary spike). Matrix representations for Z_r and Z_r^* are shown below, where we use the name of the matroid to also stand for the matrix representing it:

	b_1		b_r	a_1	a_2		a_{r-1}	a_r	c_r		b_1		b_{r+1}	a_1	a_2	• • •	a_{r-1}	a_r
	, -		· .		1		1		1 \		1			0	1		1	$1 \rangle$
	(0	1		1	1	1)		1			1	0		1	1
				1	0		1	1	1			I_{n+1}		1	1			
		I_r		1	1		1	1	1			7 - 1						
$Z_r =$.	$Z_r^* =$				•	·		•	·
										,	1			:	:	· ·	:	1
				÷		-		÷						1	1		0	1
				1	1		1	1	1/					1	1		1	0
	`			1	1		1	0	т /					1	1		1	1/

Observe that Z_r has two non-isomorphic 3-connected single-element deletions $Z_r \setminus a_r$ and $Z_r \setminus c_r$, both of which are self-dual. Moreover, $Z_r \setminus \{a_r, c_r\} = Z_{r-1}^*$, $Z_r^*/b_{r+1} = Z_r \setminus c_r$, $Z_r^*/b_r \cong Z_r \setminus a_r$, and $Z_r^*/\{b_r, b_{r+1}\} \cong Z_{r-1}$. Since $Z_r \setminus c_r/b_r \cong Z_{r-1}$ and Z_4 has no minor isomorphic to the self-dual matroid $M(W_4)$, neither does Z_r nor Z_r^* .

The main technique used in [2] was the Splitter Theorem [4]. The main technique used here is the Strong Splitter Theorem [1].

Theorem 1.2. Suppose N is a 3-connected proper minor of a 3-connected matroid M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl, respectively. Let j = r(M) - r(N). Then there is a sequence of 3-connected matroids M_0, M_1, \ldots, M_t such that $M_0 \cong N$, $M_t = M$, M_{i-1} is a minor of M_i for $1 \le i \le n$, and for some $j \le t$:

- (i) For $1 \le i \le j$, $r(M_i) r(M_{i-1}) = 1$ and $|E(M_i) E(M_{i-1})| \le 3$; and
- (*ii*) For $j < i \le t$, $r(M_i) = r(M)$ and $|E(M_i) E(M_{i-1})| = 1$.

Moreover, when $|E(M_i) - E(M_{i-1})| = 3$, for some $1 \le i \le j$, $E(M_i) - E(M_{i-1})$ is a triad of M_i .

Let \mathcal{M} be a class of matroids closed under minors. We may focus on the 3connected members of \mathcal{M} since matroids that are not 3-connected can be pieced together from 3-connected matroids using the operations of 1-sum and 2-sum [3], 8.3.1. Let us denote a *simple* single-element extension of \mathcal{M} by an element e as $\mathcal{M} + e$ and a *cosimple* single-element coextension of \mathcal{M} by an element f as $\mathcal{M} \circ f$. Note that a simple extension of a 3-connected matroid is also 3-connected. Likewise for cosimple coextensions.

Suppose N is a 3-connected proper minor of a 3-connected matroid M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl, respectively. The Splitter Theorem states that there is a sequence of 3-connected matroids M_0, M_1, \ldots, M_t such that $M_0 \cong N$, $M_t = M$, and for $1 \le i \le t$ either $M_i = M_{i-1} + e$ or $M_i = M_{i-1} \circ f$ [3], Cor. 12.2.1. Thus to reach a matroid isomorphic to M, one may start with N and perform simple single-element extensions and cosimple single-element coextensions. The Splitter Theorem imposes no conditions to restrict how N can grow to (a matroid isomorphic to) M. Theorem 1.2 extends the Splitter Theorem by proving that after two simple single-element extensions a cosimple single-element coextension must be performed, and it puts additional restrictions on how the coextensions are obtained.

A 3-connected rank k matroid in \mathcal{M} that has no further 3-connected extensions in \mathcal{M} is called a *monarch* for \mathcal{M} . Note that \mathcal{M} may have several monarchs of varying sizes. (The class under consideration has just one monarch and that makes things very easy.) Theorem 1.2 implies that every 3-connected rank r monarch in \mathcal{M} is a simple extension of a 3-connected rank r matroid M_r , where M_r is obtained from a 3-connected rank r-1 matroid M_{r-1} in the following ways: $M_r = M_{r-1} \circ f$ or $M_r = M_{r-1} \circ f + e$ or $M_r = M_{r-1} \circ f + \{e_1, e_2\}$ or $M_r = M_{r-1} + e \circ f$, where f is added in series to an element in M_{r-1} or $M_r = M_{r-1} + \{e_1, e_2\} \circ f$, where $\{e_1, e_2, f\}$ is a triad. There is no reason to assume a priori that M_r is unique for a specific excluded minor class. However, if M_r happens to be unique, we get a recursive way of defining it, and consequently a recursive way of defining the corresponding rank r monarch.

2 The proof

The proof of Theorem 1.1 essentially comes down to the following result [2], Theorem 2.2. The class of binary matroids with no minor isomorphic to P_9 or P_9^* is denoted as $EX[P_9, P_9^*]$. The matroids P_9 and P_9^* are shown below:

	-		1	1	1	1 -	1		0	1	1	1
	_	U	T	T	1	T			1	0	1	1
D	I_4	1	0	1	1	1	D*	T.	1	1	0	1
19 —		1	1	0	1	0	$1_{9} - 1_{9}$	15	T	T	0	T
		1	1	1	1	0			1	1	1	1
	_		T	T	T	0 -	J		1	1	0	0

Theorem 2.1. Let M be a binary non-regular 3-connected matroid. Then M is in $EX[P_9, P_9^*]$ if and only if M is isomorphic to F_7 , F_7^* , or Z_r , Z_r^* , $Z_r \setminus a_r$ or $Z_r \setminus c_r$, for $r \geq 4.$

Proof. The proof is by induction on the rank. It is easy to check that the binary non-regular 3-connected rank 4 matroids in $EX[P_9, P_9^*]$ are $F_7^* = Z_4 \setminus \{a_4, c_4\}, Z_4 \setminus a_4, a_4\}$ and $Z_4 \setminus c_4$, and Z_4 . Assume a binary non-regular 3-connected matroid with rank at most r is in $EX[P_9, P_9^*]$ if and only if it, or its dual, is isomorphic to a member of the known classes of matroids. Thus Z_{r-3}^* has no coextensions and its simple singleelement extensions $Z_{r-2} \setminus a_{r-2}$ and $Z_{r-2} \setminus c_{r-2}$ both coextend only to Z_{r-2}^* and Z_{r-2}^* extends only to Z_{r-1} in $EX[P_9, P_9^*]$ (see Figure 1).

The next two claims complete the proof.

Claim A. Z_{r-2}^* has no coextensions and its simple single-element extensions $Z_{r-1} \setminus a_{r-1}$ and $Z_{r-1} \setminus c_{r-1}$ both coextend only to Z_{r-1}^* in $EX[P_9, P_9^*]$.

Proof. Suppose M is a cosimple coextension of Z_{r-2}^* in $EX[P_9, P_9^*]$. Theorem 1.2 implies that M must be a cosimple single-element coextension of Z_{r-2}^* , $Z_{r-1} \setminus c_{r-1}$, $Z_{r-1} \setminus a_{r-1}$, or Z_{r-1} . Moreover, if M is a cosimple single-element coextension of Z_{r-1} ,

then $\{b_r, a_r, c_r\}$ forms a triad in M. By the induction hypothesis the only rows that can be added to Z_{r-3} are [11...10] and [11...11] (see Figure 1). Adding [11...10]gives $Z_{r-2} \setminus c_{r-2}$ and adding [11...11] gives $Z_{r-2} \setminus a_{r-2}$. Adding both gives Z_{r-2}^* . Therefore Z_{r-2}^* has no further cosimple coextensions in $EX[P_9, P_9^*]$.

The only simple single-element extensions of Z_{r-2}^* in $EX[P_9, P_9^*]$ are obtained by adding columns $a_{r-1} = [11 \dots 10]^T$ and $c_{r-1} = [11 \dots 11]^T$ giving respectively, $Z_{r-1} \setminus c_{r-1}$ and $Z_{r-1} \setminus a_{r-1}$. However, $Z_{r-1} \setminus c_{r-1}$ and $Z_{r-1} \setminus a_{r-1}$ are also single-element coextensions of Z_{r-2} by rows $[11 \dots 10]$ and $[11 \dots 11]$, respectively. Adding both these rows to Z_{r-2} gives Z_{r-1}^* .

Adding to Z_{r-2}^* both columns c_{r-1} and a_{r-1} gives Z_{r-1} . The only cosimple singleelement coextension of Z_{r-1} we must check is the matroid Z'_{r-1} formed by adding row $[00 \dots 011]$. The matroid $Z'_{r-1}/\{b_5, b_6, \dots b_{r-1}\}\setminus\{a_5, a_6, \dots a_{r-1}\}$ shown below has a P_9^* -minor.

$$Z_{r-1}'/\{b_5, b_6, \dots b_{r-1}\} \setminus \{a_5, a_6, \dots a_{r-1}\} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Claim B. Z_{r-1}^* extends only to Z_r in $EX[P_9, P_9^*]$.

Proof. We will prove that the only columns that can be added to Z_{r-1}^* are $c_r = [11...11]^T$ and $a_r = [11...10]^T$. First observe that $Z_{r-1}^*/b_r = Z_{r-1} \setminus c_{r-1}$ and $Z_{r-1}^*/b_{r-1} \cong Z_{r-1} \setminus a_{r-1}$. By the induction hypothesis applied to Z_{r-1}^*/b_r , the only columns that can be added are c_{r-1} with a zero or one in the last position, b_1, b_2, \ldots b_{r-2}, b_{r-1} with a one in the last position, and $a_1, a_2, \ldots, a_{r-2}, a_{r-1}$ with the entry in the last position switched. They are:

- 1. $c_{r-1}^0 = [11 \dots 10]^T$ and $c_{r-1}^1 = [11 \dots 11]^T$;
- 2. $b_1^1 = [100...01]^T$, $b_2^1 = [010...01]^T$ up to $b_{r-2}^1 = [000...0101]^T$, $b_{r-1}^1 = [000...011]^T$; and
- 3. $a_1^0 = [0111...1110]^T$, $a_2^0 = [1011...1110]^T$ up to $a_{r-2}^0 = [111...1010]^T$, $a_{r-1}^0 = [111...1100]^T$.

Similarly, the only columns that can be added to Z_{r-1}^*/b_{r-1} are a_{r-1} with a zero or one, $b_1, b_2, \ldots, b_{r-2}, b_r$ with a one in the second-last position, and $a_1, a_2, \ldots, a_{r-2}, c_{r-1}$ with the entry in the second-last position switched. They are:

- (4) $a_{r-1}^0 = [11 \dots 00]^T$ and $a_{r-1}^1 = [11 \dots 10]^T$;
- (5) $b_1^1 = [100...10]^T$, $b_2^1 = [010...10]^T$ up to $b_{r-2}^1 = [000...0110]^T$, $b_r^1 = [000...011]^T$; and

(6)
$$a_1^0 = [0111...1101]^T$$
, $a_2^0 = [1011...1101]^T$ up to $a_{r-2}^0 = [111...1001]^T$, and $a_{r-1}^1 = [111...1111]^T$.

Observe that the only overlapping columns among the first set of columns in (1), (2), and (3) and in the second set of columns in (4), (5), and (6) are $[11...10]^T$, $[11...11]^T$, and [00...011]. The first is a_r and the second is c_r . They give the singleelement extensions $Z_r \setminus c_r$ and $Z_r \setminus a_r$, and together the double-element extension Z_r . Lastly, let $Z_{r-1}^* + b_r^1$ be the matroid obtained by adding $b_r^1 = [00...11]$ to Z_{r-1}^* . Observe that

$$(Z_{r-1}^* + b_{r-1}^1) / \{b_4, \dots, b_{r-2}\} \setminus \{a_4, \dots, a_{r-2}\} = Z_5^* + b_4^1.$$

The matroid $Z_5^* + b_4^1$ shown below has a P_9^* -minor.

$$Z_5^* + b_4^1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

This completes the proof of Theorem 1.1.

Acknowledgements

The author thanks the unknown referees for many helpful suggestions and the editors for their time and patience.

References

- S. R. Kingan and M. Lemos, Strong Splitter Theorem, Ann. Combin. 18-1 (2014), 111–116.
- [2] J. G. Oxley, The binary matroids with no 4-wheel minor, Trans. Amer. Math. Soc. 154 (1987), 63–75.
- [3] J. G. Oxley, *Matroid Theory*, Second Ed., (2011), Oxford University Press, New York.
- [4] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305–359.

(Received 9 Mar 2017; revised 21 Aug 2017, 20 Jan 2018, 12 May 2018)