A short proof of the characterization of binary matroids with no 4 -wheel minor

S. R. Kingan
Department of Mathematics, Brooklyn College
City University of New York, Brooklyn, NY 11210
U.S.A.
skingan@brooklyn.cuny.edu

Abstract

The Strong Splitter Theorem is used to give a short proof that the class of binary matroids with no 4 -wheel minor consists of a few small matroids and the infinite family of binary spikes.

1 Introduction

The class of binary matroids with no minor isomorphic to $M\left(W_{4}\right)$ was characterized as follows by Oxley [2], Theorem 2.1:

Theorem 1.1. Let M be a 3-connected binary matroid. Then M has no minor isomorphic to $M\left(W_{4}\right)$ if and only if M is isomorphic to $U_{0,1}, U_{1,1}, U_{1,2}, U_{1,3}, U_{2,3}$, $M\left(W_{3}\right), F_{7}, F_{7}^{*}$, or $Z_{r}, Z_{r}^{*}, Z_{r} \backslash a_{r}$ or $Z_{r} \backslash c_{r}$, for $r \geq 4$.

Besides the small matroids that are trivially in the class, there is one infinite family Z_{r} (subsequently named the binary spike). Matrix representations for Z_{r} and Z_{r}^{*} are shown below, where we use the name of the matroid to also stand for the matrix representing it:

Observe that Z_{r} has two non-isomorphic 3-connected single-element deletions $Z_{r} \backslash a_{r}$ and $Z_{r} \backslash c_{r}$, both of which are self-dual. Moreover, $Z_{r} \backslash\left\{a_{r}, c_{r}\right\}=Z_{r-1}^{*}$, $Z_{r}^{*} / b_{r+1}=Z_{r} \backslash c_{r}, Z_{r}^{*} / b_{r} \cong Z_{r} \backslash a_{r}$, and $Z_{r}^{*} /\left\{b_{r}, b_{r+1}\right\} \cong Z_{r-1}$. Since $Z_{r} \backslash c_{r} / b_{r} \cong Z_{r-1}$ and Z_{4} has no minor isomorphic to the self-dual matroid $M\left(W_{4}\right)$, neither does Z_{r} nor Z_{r}^{*}.

The main technique used in [2] was the Splitter Theorem [4]. The main technique used here is the Strong Splitter Theorem [1].
Theorem 1.2. Suppose N is a 3-connected proper minor of a 3-connected matroid M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl, respectively. Let $j=r(M)-r(N)$. Then there is a sequence of 3 -connected matroids $M_{0}, M_{1}, \ldots, M_{t}$ such that $M_{0} \cong N, M_{t}=M, M_{i-1}$ is a minor of M_{i} for $1 \leq i \leq n$, and for some $j \leq t$:
(i) For $1 \leq i \leq j$, $r\left(M_{i}\right)-r\left(M_{i-1}\right)=1$ and $\left|E\left(M_{i}\right)-E\left(M_{i-1}\right)\right| \leq 3$; and
(ii) For $j<i \leq t, r\left(M_{i}\right)=r(M)$ and $\left|E\left(M_{i}\right)-E\left(M_{i-1}\right)\right|=1$.

Moreover, when $\left|E\left(M_{i}\right)-E\left(M_{i-1}\right)\right|=3$, for some $1 \leq i \leq j, E\left(M_{i}\right)-E\left(M_{i-1}\right)$ is a triad of M_{i}.

Let \mathcal{M} be a class of matroids closed under minors. We may focus on the 3connected members of \mathcal{M} since matroids that are not 3 -connected can be pieced together from 3-connected matroids using the operations of 1 -sum and 2 -sum [3], 8.3.1. Let us denote a simple single-element extension of M by an element e as $M+e$ and a cosimple single-element coextension of M by an element f as $M \circ f$. Note that a simple extension of a 3-connected matroid is also 3-connected. Likewise for cosimple coextensions.

Suppose N is a 3-connected proper minor of a 3-connected matroid M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl, respectively. The Splitter Theorem states that there is a sequence of 3 -connected matroids $M_{0}, M_{1}, \ldots, M_{t}$ such that $M_{0} \cong N, M_{t}=M$, and for $1 \leq i \leq t$ either $M_{i}=M_{i-1}+e$ or $M_{i}=M_{i-1} \circ f$ [3], Cor. 12.2.1. Thus to reach a matroid isomorphic to M, one may start with N and perform simple single-element extensions and cosimple single-element coextensions. The Splitter Theorem imposes no conditions to restrict how N can grow to (a matroid isomorphic to) M. Theorem 1.2 extends the Splitter Theorem by proving that after two simple single-element extensions a cosimple single-element coextension must be performed, and it puts additional restrictions on how the coextensions are obtained.

A 3-connected rank k matroid in \mathcal{M} that has no further 3-connected extensions in \mathcal{M} is called a monarch for \mathcal{M}. Note that \mathcal{M} may have several monarchs of varying sizes. (The class under consideration has just one monarch and that makes things very easy.) Theorem 1.2 implies that every 3 -connected rank r monarch in \mathcal{M} is a simple extension of a 3 -connected rank r matroid M_{r}, where M_{r} is obtained from a 3-connected rank $r-1$ matroid M_{r-1} in the following ways: $M_{r}=M_{r-1} \circ f$ or $M_{r}=M_{r-1} \circ f+e$ or $M_{r}=M_{r-1} \circ f+\left\{e_{1}, e_{2}\right\}$ or $M_{r}=M_{r-1}+e \circ f$, where f is added in series to an element in M_{r-1} or $M_{r}=M_{r-1}+\left\{e_{1}, e_{2}\right\} \circ f$, where $\left\{e_{1}, e_{2}, f\right\}$ is a triad. There is no reason to asssume a priori that M_{r} is unique for a specific excluded minor class. However, if M_{r} happens to be unique, we get a recursive way of defining it, and consequently a recursive way of defining the corresponding rank r monarch.

2 The proof

The proof of Theorem 1.1 essentially comes down to the following result [2], Theorem 2.2. The class of binary matroids with no minor isomorphic to P_{9} or P_{9}^{*} is denoted as $E X\left[P_{9}, P_{9}^{*}\right]$. The matroids P_{9} and P_{9}^{*} are shown below:

$$
P_{9}=\left[\begin{array}{l}
I_{4} \\
0
\end{array} \left\lvert\, \begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right.\right] P_{9}^{*}=\left[I_{5} \left\lvert\, \begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right.\right]
$$

Theorem 2.1. Let M be a binary non-regular 3-connected matroid. Then M is in $E X\left[P_{9}, P_{9}^{*}\right]$ if and only if M is isomorphic to F_{7}, F_{7}^{*}, or $Z_{r}, Z_{r}^{*}, Z_{r} \backslash a_{r}$ or $Z_{r} \backslash c_{r}$, for $r \geq 4$.

Proof. The proof is by induction on the rank. It is easy to check that the binary non-regular 3-connected rank 4 matroids in $E X\left[P_{9}, P_{9}^{*}\right]$ are $F_{7}^{*}=Z_{4} \backslash\left\{a_{4}, c_{4}\right\}, Z_{4} \backslash a_{4}$, and $Z_{4} \backslash c_{4}$, and Z_{4}. Assume a binary non-regular 3 -connected matroid with rank at most r is in $E X\left[P_{9}, P_{9}^{*}\right]$ if and only if it, or its dual, is isomorphic to a member of the known classes of matroids. Thus Z_{r-3}^{*} has no coextensions and its simple singleelement extensions $Z_{r-2} \backslash a_{r-2}$ and $Z_{r-2} \backslash c_{r-2}$ both coextend only to Z_{r-2}^{*} and Z_{r-2}^{*} extends only to Z_{r-1} in $E X\left[P_{9}, P_{9}^{*}\right]$ (see Figure 1).

The next two claims complete the proof.

Figure 1: Growth of $E X\left[P_{9}, P_{9}^{*}\right]$
Claim A. Z_{r-2}^{*} has no coextensions and its simple single-element extensions $Z_{r-1} \backslash a_{r-1}$ and $Z_{r-1} \backslash c_{r-1}$ both coextend only to Z_{r-1}^{*} in $E X\left[P_{9}, P_{9}^{*}\right]$.

Proof. Suppose M is a cosimple coextension of Z_{r-2}^{*} in $E X\left[P_{9}, P_{9}^{*}\right]$. Theorem 1.2 implies that M must be a cosimple single-element coextension of $Z_{r-2}^{*}, Z_{r-1} \backslash c_{r-1}$, $Z_{r-1} \backslash a_{r-1}$, or Z_{r-1}. Moreover, if M is a cosimple single-element coextension of Z_{r-1},
then $\left\{b_{r}, a_{r}, c_{r}\right\}$ forms a triad in M. By the induction hypothesis the only rows that can be added to Z_{r-3} are $[11 \ldots 10]$ and $[11 \ldots 11]$ (see Figure 1). Adding [11...10] gives $Z_{r-2} \backslash c_{r-2}$ and adding $[11 \ldots 11]$ gives $Z_{r-2} \backslash a_{r-2}$. Adding both gives Z_{r-2}^{*}. Therefore Z_{r-2}^{*} has no further cosimple coextensions in $E X\left[P_{9}, P_{9}^{*}\right]$.

The only simple single-element extensions of Z_{r-2}^{*} in $E X\left[P_{9}, P_{9}^{*}\right]$ are obtained by adding columns $a_{r-1}=[11 \ldots 10]^{T}$ and $c_{r-1}=[11 \ldots 11]^{T}$ giving respectively, $Z_{r-1} \backslash c_{r-1}$ and $Z_{r-1} \backslash a_{r-1}$. However, $Z_{r-1} \backslash c_{r-1}$ and $Z_{r-1} \backslash a_{r-1}$ are also single-element coextensions of Z_{r-2} by rows [11..10] and [11...11], respectively. Adding both these rows to Z_{r-2} gives Z_{r-1}^{*}.

Adding to Z_{r-2}^{*} both columns c_{r-1} and a_{r-1} gives Z_{r-1}. The only cosimple singleelement coextension of Z_{r-1} we must check is the matroid Z_{r-1}^{\prime} formed by adding row [$00 \ldots 011$]. The matroid $Z_{r-1}^{\prime} /\left\{b_{5}, b_{6}, \ldots b_{r-1}\right\} \backslash\left\{a_{5}, a_{6}, \ldots a_{r-1}\right\}$ shown below has a P_{9}^{*}-minor.

$$
Z_{r-1}^{\prime} /\left\{b_{5}, b_{6}, \ldots b_{r-1}\right\} \backslash\left\{a_{5}, a_{6}, \ldots a_{r-1}\right\}=\left[I_{5} \left\lvert\, \begin{array}{ccccc}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right.\right]
$$

Claim B. Z_{r-1}^{*} extends only to Z_{r} in $E X\left[P_{9}, P_{9}^{*}\right]$.
Proof. We will prove that the only columns that can be added to Z_{r-1}^{*} are $c_{r}=$ $[11 \ldots 11]^{T}$ and $a_{r}=[11 \ldots 10]^{T}$. First observe that $Z_{r-1}^{*} / b_{r}=Z_{r-1} \backslash c_{r-1}$ and $Z_{r-1}^{*} / b_{r-1} \cong Z_{r-1} \backslash a_{r-1}$. By the induction hypothesis applied to Z_{r-1}^{*} / b_{r}, the only columns that can be added are c_{r-1} with a zero or one in the last position, b_{1}, b_{2}, \ldots b_{r-2}, b_{r-1} with a one in the last position, and $a_{1}, a_{2}, \ldots a_{r-2}, a_{r-1}$ with the entry in the last position switched. They are:

1. $c_{r-1}^{0}=[11 \ldots 10]^{T}$ and $c_{r-1}^{1}=[11 \ldots 11]^{T}$;
2. $b_{1}^{1}=[100 \ldots 01]^{T}, b_{2}^{1}=[010 \ldots 01]^{T}$ up to $b_{r-2}^{1}=[000 \ldots 0101]^{T}, b_{r-1}^{1}=$ [000 $\ldots 011]^{T}$; and
3. $a_{1}^{0}=[0111 \ldots 1110]^{T}, a_{2}^{0}=[1011 \ldots 1110]^{T}$ up to $a_{r-2}^{0}=[111 \ldots 1010]^{T}, a_{r-1}^{0}=$ $[111 \ldots 1100]^{T}$.

Similary, the only columns that can be added to Z_{r-1}^{*} / b_{r-1} are a_{r-1} with a zero or one, $b_{1}, b_{2}, \ldots b_{r-2}, b_{r}$ with a one in the second-last position, and $a_{1}, a_{2}, \ldots a_{r-2}, c_{r-1}$ with the entry in the second-last position switched. They are:
(4) $a_{r-1}^{0}=[11 \ldots 00]^{T}$ and $a_{r-1}^{1}=[11 \ldots 10]^{T}$;
(5) $b_{1}^{1}=[100 \ldots 10]^{T}, \quad b_{2}^{1}=[010 \ldots 10]^{T}$ up to $b_{r-2}^{1}=[000 \ldots 0110]^{T}$, $b_{r}^{1}=[000 \ldots 011]^{T} ;$ and
(6) $a_{1}^{0}=[0111 \ldots 1101]^{T}, a_{2}^{0}=[1011 \ldots 1101]^{T}$ up to $a_{r-2}^{0}=[111 \ldots 1001]^{T}$, and $a_{r-1}^{1}=[111 \ldots 1111]^{T}$.

Observe that the only overlapping columns among the first set of columns in (1), (2), and (3) and in the second set of columns in (4), (5), and (6) are $[11 \ldots 10]^{T}$, $[11 \ldots 11]^{T}$, and $[00 \ldots 011]$. The first is a_{r} and the second is c_{r}. They give the singleelement extensions $Z_{r} \backslash c_{r}$ and $Z_{r} \backslash a_{r}$, and together the double-element extension Z_{r}. Lastly, let $Z_{r-1}^{*}+b_{r}^{1}$ be the matroid obtained by adding $b_{r}^{1}=[00 \ldots 11]$ to Z_{r-1}^{*}. Observe that

$$
\left(Z_{r-1}^{*}+b_{r-1}^{1}\right) /\left\{b_{4}, \ldots, b_{r-2}\right\} \backslash\left\{a_{4}, \ldots, a_{r-2}\right\}=Z_{5}^{*}+b_{4}^{1} .
$$

The matroid $Z_{5}^{*}+b_{4}^{1}$ shown below has a P_{9}^{*}-minor.

$$
Z_{5}^{*}+b_{4}^{1}=\left[I_{5} \left\lvert\, \begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right.\right]
$$

This completes the proof of Theorem 1.1.

Acknowledgements

The author thanks the unknown referees for many helpful suggestions and the editors for their time and patience.

References

[1] S. R. Kingan and M. Lemos, Strong Splitter Theorem, Ann. Combin. 18-1 (2014), 111-116.
[2] J. G. Oxley, The binary matroids with no 4-wheel minor, Trans. Amer. Math. Soc. 154 (1987), 63-75.
[3] J. G. Oxley, Matroid Theory, Second Ed., (2011), Oxford University Press, New York.
[4] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305-359.

