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Abstract

Bryant, Horsley, Maenhaut and Smith recently gave necessary and suf-
ficient conditions for the existence of a decomposition of the complete
multigraph into cycles of specified lengths m1, m2, . . . , mτ . In this paper
we find necessary and sufficient conditions for when the complete mulit-
graph admits a packing with cycles of specified lengths m1, m2, . . . , mτ .
While some cycle packings can be obtained by removing cycles from a
suitable cycle decomposition, in general it has not been previously known
when there exists a packing of the complete multigraph with cycles of var-
ious specified lengths.

1 Introduction

A decomposition of a multigraph G is a collection D of submultigraphs of G such that
each edge of G is in exactly one of the multigraphs in D. A packing of a multigraph
G is a collection P of submultigraphs of G such that each edge of G is in at most
one of the multigraphs in P. The leave of a packing P is the multigraph obtained by
removing the edges in multigraphs in P from G. A cycle packing of a multigraph G is
a packing P of G such that each submultigraph in P is a cycle. For positive integers
λ and v, λKv denotes the complete multigraph with λ parallel edges between each
pair of v distinct vertices. Here we give necessary and sufficient conditions for the
existence of a packing of λKv with cycles of specified lengths m1, m2, . . . , mτ . Note
that for v � 2 and λ � 2, the multigraph λKv contains 2-cycles (pairs of parallel
edges).

Theorem 1.1. Let m1, m2, . . . , mτ , λ and v be positive integers. There exists a
packing of λKv with τ cycles of lengths m1, m2, . . . , mτ if and only if

(i) 2 � mi � v for i ∈ {1, . . . , τ};
(ii) m1+m2+ · · ·+mτ = λ

(
v
2

)−δ, where δ is a nonnegative integer such that δ �= 1
and (δ, λ) �= (2, 1) when λ(v − 1) is even, and δ � v

2
when λ(v − 1) is odd;
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(iii)
∑

mi=2mi �
{

(λ− 1)
(
v
2

)− 2 if λ and v are odd and δ = 2,

(λ− 1)
(
v
2

)
if λ is odd; and

(iv) max(m1, m2, . . . , mτ ) �

⎧⎨
⎩

λ
2

(
v
2

)− τ + 2 if λ is even and δ = 0,
λ
2

(
v
2

)− τ + 1 if λ is even and
2 � δ < max(m1, m2, . . . , mτ ).

Bryant, Horsley, Maenhaut and Smith [5] recently characterised the complete
multigraphs λKv that admit a decomposition into cycles of specified lengths m1, m2,
. . . , mτ (see also [4, 12]). Since a decomposition of a multigraph is a packing whose
leave contains no edges, many instances of the cycle packing problem can be solved
by removing cycles from a suitable cycle decomposition of λKv. However there are
cases which cannot be solved in this manner. These cases occur when λ(v − 1) is
odd and there are v

2
+1 or v

2
+2 edges in the leave of the required packing, and they

are addressed in Case 2 in the proof of Lemma 3.3.
When λ = 1, it had previously been found exactly when there exist decompo-

sitions of the complete graph Kv into cycles of specified lengths [6]. Furthermore,
Horsley [10] found conditions for the existence of packings of the complete graph with
uniform length cycles. These results built on earlier results for cycle decompositions
and packings of the complete graph [1, 2, 9, 11] (see [7] for a survey). However, even
in the λ = 1 case, necessary and sufficient conditions for the existence of a packing
of Kv with cycles of lengths m1, m2, . . . , mτ had not previously been obtained.

We will show that the necessity of conditions (i)–(iv) in Theorem 1.1 follows from
known results for cycle decompositions of λKv. The sufficiency of these conditions
is proved by first decomposing λKv into cycles of suitable lengths, and a 1-factor if
λ(v−1) is even. We then remove some of these cycles and modify the resulting pack-
ing to obtain the one that we require. The existence of these cycle decompositions of
λKv was obtained by Bryant et al. [5] and the exact result is stated as Theorem 3.1
in Section 3. Section 2 contains the results required for modifying cycle packings.

1.1 Notation

The following definitions and notation will be used throughout this paper. For a list of
integers (m1, m2, . . . , mτ ), an (m1, m2, . . . , mτ )-decomposition of λKv is a decompo-
sition of λKv into τ cycles of lengths m1, m2, . . . , mτ . Similarly, an (m1, m2, . . . , mτ )-
packing of λKv is a packing of λKv with τ cycles of lengths m1, m2, . . . , mτ .

For lists M = (m1, m2, . . . , mτ ) and N = (n1, n2, . . . , ns), we define the list
MN = (m1, m2, . . . , mτ , n1, n2, . . . , ns). If s � τ and M and N can be reordered
so that M = (m1, m2, . . . , mτ ) and N = (m1, m2, . . . , ms), then let M \ N =
(ms+1, ms+2, . . . , mτ ). We shall also write (m�1

1 , m
�2
2 , . . . , m

�τ
τ ) to denote the list of

integers (m1, . . . , m1︸ ︷︷ ︸
�1

, m2, . . . , m2︸ ︷︷ ︸
�2

, . . . , mτ , . . . , mτ︸ ︷︷ ︸
�τ

).

For vertices x and y in a multigraph G, the multiplicity of xy is the number of
edges in G which have x and y as their endpoints, denoted μG(xy). If μG(xy) � 1
for all pairs of vertices in V (G) then we say that G is a simple graph. A multigraph
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is said to be even if every vertex has even degree and is said to be odd if every vertex
has odd degree.

Given a permutation π of a set V , a subset S of V and a multigraph G with
V (G) ⊆ V , π(S) is defined to be the set {π(x) : x ∈ S} and π(G) is defined to be
the multigraph with vertex set π(V (G)) and edge set {π(x)π(y) : xy ∈ E(G)}. The
m-cycle with vertices x0, x1, . . . , xm−1 and edges xixi+1 for i ∈ {0, . . . , m− 1} (with
subscripts modulo m) is denoted by (x0, x1, . . . , xm−1), and the n-path with vertices
y0, y1, . . . , yn and edges yjyj+1 for j ∈ {0, 1, . . . , n− 1} is denoted by [y0, y1, . . . , yn].

A chord of a cycle is an edge which is incident with two vertices of the cycle but
is not in the cycle. Note that in a multigraph, a chord may be an edge parallel to
an edge of the cycle. For integers p � 2 and q � 1, a (p, q)-lasso is the union of a
p-cycle and a q-path such that the cycle and the path share exactly one vertex and
that vertex is an end-vertex of the path. A (p, q)-lasso with cycle (x1, x2, . . . , xp) and
path [xp, y1, y2, . . . , yq] is denoted by (x1, x2, . . . , xp)[xp, y1, y2, . . . , yq]. The order of
a (p, q)-lasso is p+ q.

2 Modifying cycle packings of λKv

The aim of this section is to obtain some useful tools for modifying cycle packings
of the complete multigraph, namely Lemmas 2.2 and 2.3. The simple graph versions
of Lemmas 2.2 and 2.3 are due to Bryant and Horsley [8] and have been applied to
prove the result on maximum packings of the simple complete graph with uniform
length cycles [10].

We require the following cycle switching lemma for cycle packings of multigraphs.
Lemma 2.1 is similar to [4, Lemma 2.1] and is also closely related to the cycle
switching method which has been applied to simple graphs (see for example [3]).

Lemma 2.1 ([4, Lemma 2.1]). Let v and λ be positive integers, let M be a list of
integers, let P be an M-packing of λKv, let L be the leave of P, let α and β be distinct
vertices of L, and let π be the transposition (αβ). Let E be a subset of E(L) such that,
for each vertex x ∈ V (L)\{α, β}, E contains precisely max(0, μL(xα)−μL(xβ)) edges
with endpoints x and α, and precisely max(0, μL(xβ)−μL(xα)) edges with endpoints
x and β (so E may contain multiple edges with the same endpoints), and E contains
no other edges. Then there exists a partition of E into pairs such that for each
pair {x1y1, x2y2} of the partition, there exists an M-packing P ′ of λKv with leave
L′ = (L− {x1y1, x2y2}) + {π(x1)π(y1), π(x2)π(y2)}.

Furthermore, if P = {C1, . . . , Ct}, then P ′ = {C ′
1, . . . , C

′
t} where for i ∈ {1, . . . , t},

C ′
i is a cycle of the same length as Ci such that for i ∈ {1, . . . , t}
• If neither α nor β is in V (Ci), then C ′

i = Ci;

• If exactly one of α and β is in V (Ci), then C ′
i = Ci or C ′

i = π(Ci); and

• If both α and β are in V (Ci), then C ′
i = Qi ∪ Q∗

i where Qi = Pi or π(Pi),
Q∗

i = P ∗
i or π(P ∗

i ), and Pi and P ∗
i are the two paths from α to β in Ci.
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When λ(v − 1) is even, Lemma 2.1 reduces to [4, Lemma 2.1]. Note that P is
a cycle packing of λKv regardless of the parity of λ(v − 1), whereas when λ(v − 1)
is odd [4, Lemma 2.1] concerns a cycle packing of λKv − I, where I is a 1-factor of
λKv. Nevertheless, the proof of Lemma 2.1 follows from similar arguments to those
used in the corresponding case of the proof in [4].

We will use the following notation when we apply Lemma 2.1. For vertices x and
y so that {x1, y1, x2, y2} ⊆ {α, β, x, y} for some pair {x1y1, x2y2} in the partition of
E given by Lemma 2.1, we say that we are performing an (α, β)-switch with origin
x and terminus y. Note that when λ � 2, x1y1 and x2y2 may be parallel edges, in
which case x = y.

Lemma 2.2. Let v, s and λ be positive integers such that s � 3, and let (m1, m2, . . . ,
mτ ) be a list of integers. Suppose there exists an (m1, m2, . . . , mτ )-packing P of λKv

whose leave contains a lasso of order at least s + 2 and suppose that if s is even
then the cycle of the lasso has even length. Then there exists an (m1, m2, . . . , mτ , s)-
packing of λKv.

Proof. Let L be the leave of P. Suppose that L contains a (p, q)-lasso (x1, x2, . . . , xp)
[xp, y1, y2, . . . , yq] such that p + q � s + 2 and p is even if s is even. If L contains
an s-cycle then we add it to the packing to complete the proof, so assume L does
not contain an s-cycle and hence p �= s. In each of the following applications of an
(α, β)-switch with origin x, we observe that μL(αx) > 0 and, because L does not
contain an s-cycle, we can assume that μL(βx) = 0 and hence the switch exists.
Case 1. Suppose 2 � p < s and either p = 2 or p ≡ s (mod 2). We can assume that
p + q = s+ 2 since L contains a (p, s+ 2− p)-lasso.

Note that μL(x2yq−1) = 0 since L does not contain an s-cycle. Then let L′ be the
leave of the packing P ′ obtained from P by applying an (x1, yq−1)-switch with origin
x2. If the terminus of the switch is not yq−2 then L′ contains an s-cycle which we
add to P ′ to obtain an (m1, m2, . . . , mτ , s)-packing of λKv. Otherwise, the terminus
of the switch is yq−2 and L′ contains a (q, p)-lasso (x′

1, x
′
2, . . . , x

′
q)[x

′
q, y

′
1, y

′
2, . . . , y

′
p]. If

p = 2 then L′ contains an s-cycle which we add to the packing to obtain the required
(m1, m2, . . . , mτ , s)-packing of λKv, so assume p � 3 and that L′ contains no s-cycle.

We apply an (x′
2, y

′
p)-switch with origin x′

3 to P ′. As before, we observe that
μL′(x′

3y
′
p) = 0, for otherwise L′ contains an s-cycle. Let L′′ be the leave of the

resulting packing P ′′. If the terminus of this switch is not y′p−1 then L′′ contains a
(p+q−2)-cycle, and since s = p+q−2, we add this cycle to P ′′ to obtain the required
packing. If y′p−1 is the terminus of the switch, then L′′ contains a (p+2, q− 2)-lasso.

Since p < s and p ≡ s (mod 2), after p−s
2

iterations of this case we will obtain a
packing whose leave contains an s-cycle, and hence the required packing exists.
Case 2. Suppose 3 � p < s and p �≡ s (mod 2). As above, assume p + q = s + 2.
Then s is odd, p � 4 is even and q is odd by our hypotheses.

Let L′ be the leave of the packing P ′ obtained from P by applying an (x2, yq)-
switch with origin x3. If the terminus of the switch is not yq−1 then L′ contains an
s-cycle which we add to P ′ to obtain the required packing. Otherwise, the terminus
of the switch is yq−1 and L′ contains a (q+2, p−2)-lasso. Note that q+2 ≡ s (mod 2)
and q + 2 � s because p + q = s + 2 and p � 4. If q + 2 = s then we can add the
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s-cycle to P ′ to obtain the required packing, otherwise q+2 < s and we can proceed
as in Case 1.
Case 3. Suppose 3 � s < p. We apply an (xp−s+1, y1)-switch with origin xp−s+2

to P. Let P ′ be the resulting packing, with leave L′. If the terminus of the switch
is not xp then L′ contains an s-cycle which completes the proof. Otherwise, L′

contains a (p − s + 2, q + s − 2)-lasso. By repeating this process we obtain an
(m1, m2, . . . , mτ )-packing of λKv whose leave contains a (p′, p + q − p′)-lasso such
that 2 � p′ � s and p′ ≡ p (mod (s− 2)). If p′ = s then we include this cycle to
obtain an (m1, m2, . . . , mτ , s)-packing of λKv, and if p′ < s then we apply Case 1 or
Case 2.

Lemma 2.3. Let v, s and λ be positive integers with s � 3, and let M be a list of
integers. Suppose there exists an M-packing of λKv whose leave L has a component
H containing an (s+1)-cycle with a chord. Then there exists an M-packing of λKv

with a leave L′ such that E(L′) = (E(L) \E(H)) ∪E(H ′), where H ′ is a graph with
V (H ′) = V (H) and |E(H ′)| = |E(H)| which contains an (s, 1)-lasso. Furthermore,
degH′(x) � degH(x) for each vertex x in the s-cycle of this lasso.

Proof. Let (x1, . . . , xs+1) be an (s + 1)-cycle in H with chord x1xe for some e ∈
{2, 3, . . . , s} and note that L is not necessarily a simple graph. If H contains an
(s, 1)-lasso then this is the required leave, so suppose otherwise.

If e = 2, then perform an (x3, x2)-switch with origin x4. This switch exists because
H contains no (s, 1)-lasso and hence μL(x2x4) = 0. Regardless of the terminus, the
leave of the resulting packing contains the (s, 1)-lasso (x4, . . . , xs+1, x1, x2)[x2, x3],
and degH′(xi) � degH(xi) for i ∈ {1, . . . , s + 1} \ {3}. If e = 3, then H contains an
(s, 1)-lasso. In either case we obtain an M-packing of λKv with the required leave.

Suppose e � 4 and, since H does not contain a (s, 1)-lasso, μL(xe−2xe) = 0. Let
P∗ be the packing with leave L∗ obtained from P by applying an (xe−1, xe)-switch
with origin xe−2. If the terminus of the switch is not xe+1 then E(L∗) = (E(L) \
E(H)) ∪ E(H∗), where H∗ is a graph with V (H∗) = V (H) and |E(H∗)| = |E(H)|
which contains the (s, 1)-lasso (xe+1, . . . , xs+1, x1, . . . , xe−2, xe)[xe, xe−1]. Also note
that degH∗(xe) � degH(xe) and degH∗(xi) = degH(xi) for i ∈ {1, . . . , s+1}\{e, e−1}
as required. Otherwise xe+1 is the terminus of the switch and hence E(L∗) = (E(L)\
E(H)) ∪ E(H∗), where H∗ is a graph with V (H∗) = V (H) and |E(H∗)| = |E(H)|
which contains an (s + 1)-cycle (x∗

1, . . . , x
∗
s+1) with chord x∗

1x
∗
e−1. Furthermore, the

degree of each vertex in this (s+ 1)-cycle remains unchanged in H∗. We can repeat
this process until we obtain a packing whose leave has the required (s, 1)-lasso.

3 Main result

This section contains the proof of Theorem 1.1. We first use Theorem 3.1 to prove
Lemma 3.2 which shows the necessity of the conditions in Theorem 1.1. The suffi-
ciency of these conditions is then established for odd λ and even λ in Lemmas 3.3 and
3.4 respectively. Lemmas 3.3 and 3.4 rely on using Lemmas 2.2 and 2.3 to modify
suitable cycle packings of λKv obtained via Theorem 3.1.
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Theorem 3.1 ([5]). Let (m1, m2, . . . , mτ ) be a list of integers and let λ and v be
positive integers. There is an (m1, m2, . . . , mτ )-decomposition of λKv if and only if

• λ(v − 1) is even;

• 2 � mi � v for i ∈ {1, . . . , τ};
• m1 +m2 + · · ·+mτ = λ

(
v
2

)
;

• max(m1, m2, . . . , mτ ) + τ − 2 � λ
2

(
v
2

)
when λ is even; and

• ∑
mi=2mi � (λ− 1)

(
v
2

)
when λ is odd.

There is an (m1, m2, . . . , mτ )-decomposition of λKv−I, where I is a 1-factor in λKv,
if and only if

• λ(v − 1) is odd;

• 2 � mi � v for i ∈ {1, . . . , τ};
• m1 +m2 + · · ·+mτ = λ

(
v
2

)− v
2
; and

• ∑
mi=2mi � (λ− 1)

(
v
2

)
.

The necessity of conditions (i)–(iv) in Theorem 1.1 follows from Theorem 3.1 as
we now show.

Lemma 3.2. Let (m1, m2, . . . , mτ ) be a list of integers and let λ and v be positive
integers. If there exists an (m1, m2, . . . , mτ )-packing of λKv then

(i) 2 � mi � v for i ∈ {1, . . . , τ};
(ii) m1+m2+ · · ·+mτ = λ

(
v
2

)−δ, where δ is a nonnegative integer such that δ �= 1
and (δ, λ) �= (2, 1) when λ(v − 1) is even, and δ � v

2
when λ(v − 1) is odd;

(iii)
∑

mi=2mi �
{

(λ− 1)
(
v
2

)− 2 if λ and v are odd and δ = 2,

(λ− 1)
(
v
2

)
if λ is odd; and

(iv) max(m1, m2, . . . , mτ ) �

⎧⎨
⎩

λ
2

(
v
2

)− τ + 2 if λ is even and δ = 0,
λ
2

(
v
2

)− τ + 1 if λ is even and
2 � δ < max(m1, m2, . . . , mτ ).

Proof. Let M = (m1, m2, . . . , mτ ). Suppose there exists an M-packing P of λKv

with leave L. Condition (i) is obvious. The degree of each vertex in λKv is λ(v− 1),
so if λ(v − 1) is even then L is an even multigraph and if λ(v − 1) is odd then L
is an odd multigraph. Hence (ii) follows because a loopless even graph cannot have
a single edge, an even simple graph cannot have two edges, and an odd graph on
v vertices has at least v

2
edges. To see that condition (iii) holds, note that there

are at most �λ
2
�(v

2

)
edge-disjoint 2-cycles in λKv. Furthermore, note that if λ and

v are both odd and δ = 2 then L is an even multigraph with two edges and hence
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L is a 2-cycle. If λ is even and δ = 0 then (iv) follows directly from Theorem 3.1,
so suppose λ is even and 2 � δ < max(m1, m2, . . . , mτ ). Then L contains at least
one cycle so there exists an MN -decomposition of λKv for some list N containing
at least one entry. So (iv) follows from Theorem 3.1.

It remains to prove the sufficiency of conditions (i)–(iv) in Theorem 1.1 for the
existence of cycle packings of λKv.

Lemma 3.3. Let (m1, m2, . . . , mτ ) be a list of integers and let λ and v be positive
integers with λ odd. Then there exists an (m1, m2, . . . , mτ )-packing of λKv if and
only if

(i) 2 � mi � v for i ∈ {1, . . . , τ};
(ii) m1+m2+ · · ·+mτ = λ

(
v
2

)−δ, where δ is a nonnegative integer such that δ �= 1
and (δ, λ) �= (2, 1) if v is odd, and δ � v

2
if v is even; and

(iii)
∑

mi=2mi �
{

(λ− 1)
(
v
2

)− 2 if v is odd and δ = 2,

(λ− 1)
(
v
2

)
otherwise.

Proof. Let M = (m1, m2, . . . , mτ ). If there exists an M-packing of λKv, then
conditions (i)–(iii) hold by Lemma 3.2. So it remains to show that if λ, v and M
satisfy (i)–(iii), then there is an M-packing of λKv.

Let ε = δ if v is odd, and ε = δ − v
2
if v is even. If ε = 0 then there exists an

M-packing of λKv by Theorem 3.1. If v = 2, then ε is even by (i) and (ii) and there
exists a 2-cycle decomposition of λK2− I, where I is a 1-factor of λK2, so we obtain
an M-packing of λKv by removing all but τ of the 2-cycles from this decomposition.
So suppose ε � 1 and v � 3, and note that if v is odd then ε �= 1 and (λ, ε) �= (1, 2).
Case 1. Suppose v is odd or ε � 3. Note that if v is odd and ε = 2 then
2 +

∑
mi=2mi � (λ− 1)

(
v
2

)
by (iii).

We will show that there exists a list N such that 2 � n � v for all n ∈ N ,∑
n∈N n = ε and

∑
n∈N,n=2 n +

∑
mj=2mj � (λ − 1)

(
v
2

)
. We then show that by

Theorem 3.1 there exists an MN -decomposition D of λKv (if v is odd) or λKv − I
(if v is even), where I is a 1-factor of λKv. We obtain an M-packing of λKv by
removing cycles of the lengths in N from D.

We first consider v = 3. If v = 3 and ε is even, thenmi = 3 for some i ∈ {1, . . . , τ}
by (i) and (ii). Then ε +

∑
mi=2mi � (λ − 1)

(
v
2

)
by (ii) and we take N = (2ε/2).

If v = 3 and ε is odd then ε − 3 +
∑

mi=2mi � (λ − 1)
(
v
2

)
by (ii) and we take

N = (2(ε−3)/2, 3). In each of these cases we can see that there exists an MN -
decomposition of λKv since the assumptions of Theorem 3.1 are satisfied by (i)–(iii).

Now assume v � 4 and let q and r be nonnegative integers such that ε = vq+r and
0 � r < v. If q = 0 or r �∈ {1, 2} then we take N = (r, vq). If q � 1 and r ∈ {1, 2},
note that either v− 3+ r � 3, or v = 4 and r = 1 and let N = (3, v− 3+ r, vq−1). If
ε = 2 or (v, r) = (4, 1), then N contains exactly one entry equal to 2 and otherwise
n � 3 for all n ∈ N . By (iii) and the assumption that v is odd or ε � 3, if ε = 2 then
2 +

∑
mi=2mi � (λ− 1)

(
v
2

)
. Further, if v = 4 and ε = 4q + 1 for some q � 1 then (i)
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and (ii) imply thatmi = 3 for some i ∈ {1, . . . , τ} so again 2+
∑

mi=2mi � (λ−1)
(
v
2

)
.

We can therefore see that there exists an MN -decomposition of λKv (or λKv − I)
since the assumptions of Theorem 3.1 are satisfied by (i)–(iii) and the fact that∑

n∈N n = ε.
Case 2. Suppose v � 4 is even and ε ∈ {1, 2}. Let m be the least odd entry in M if
M contains an odd entry, otherwise let m be the least entry in M such that m � 4.
It follows from (iii) that such an entry exists. Note that if ε = 1 then it follows from
(ii) that M contains an odd entry and hence m is odd.
Case 2a. Suppose m + ε � v. By Theorem 3.1 there exists an M ′-decomposition
D of λKv − I, where I is a 1-factor of λKv and M ′ = (m1, m2, . . . , mτ , m+ ε) \ (m).
Let P be the M \ (m)-packing of λKv that is obtained by removing an (m+ ε)-cycle
from D. Let L be the leave of P and note that L is an edge-disjoint union of an
(m+ ε)-cycle and the 1-factor I.

If L contains an (m + ε, 1)-lasso then we apply Lemma 2.2 to P with s = m to
obtain an M-packing of λKv. The assumptions of Lemma 2.2 are satisfied because
ε+ 1 � 2, and if m is even then M contains no odd entries so ε = 2 by (ii).

So suppose L does not contain an (m + ε, 1)-lasso. Then m + ε is even and L
contains a component H such thatH is the edge-disjoint union of an (m+ε)-cycle and
a 1-factor on the vertex set of this cycle. We apply Lemma 2.3 to P with s = m+ε−1
to obtain an M \ (m)-packing P ′ of λKv whose leave L′ contains a component H ′

on m + ε vertices that has 3
2
(m + ε) edges and contains an (m + ε − 1, 1)-lasso. If

ε = 1 then adding the m-cycle of this lasso to P ′ results in the required M-packing of
λKv. Otherwise ε = 2 and H ′ contains an (m+1)-cycle with a chord because m � 3
and any vertex in this cycle has degree at least 3. Then we can apply Lemma 2.3
with s = m to P ′ to obtain an M \ (m)-packing P ′′ of λKv whose leave contains an
(m, 1)-lasso. We add the m-cycle of this lasso to P ′′ to obtain the required packing.
Case 2b. Suppose m+ε > v. Then m � v−1 and ε = 2 because ε is even if m = v.

If m = v then mi ∈ {2, v} for all i ∈ {1, . . . , τ}, so

λ

(
v

2

)
− v

2
≡ 2 +

∑
mi=2

mi (mod v)

by (ii) and hence 2 +
∑

mi=2mi � (λ − 1)
(
v
2

)
by (iii). Then by Theorem 3.1 there

exists an (m1, m2, . . . , mτ , 2)-decomposition D of λKv−I. We remove a 2-cycle from
D to complete the proof.

Now suppose that m = v − 1. It follows from (ii) and the definition of ε that
ε+

∑τ
i=1mi =

v
2
(λ(v−1)−1), so since ε and v are even, ε+

∑τ
i=1mi is also even and at

least two entries ofM are equal to v−1. LetM ′ = (m1, m2, . . . , mτ , v, v)\(v−1, v−1),
then by Theorem 3.1 there exists an M ′-decomposition D0 of λKv−I. Let P0 be the
M ′ \(v)-packing of λKv formed by removing a v-cycle from D0. The leave L0 of P0 is
the edge-disjoint union of a v-cycle and the 1-factor I. Let P1 be the M

′\(v)-packing
of λKv obtained by applying Lemma 2.3 to P0 with s = v− 1. Then the leave of P1

contains a (v− 1, 1)-lasso. We add the (v− 1)-cycle of this lasso to P1 and remove a
v-cycle to obtain an M \ (v− 1)-packing P2 of λKv. The leave of P2 has size 3v

2
+1.
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By applying Lemma 2.3 to P2 with s = v − 1 we obtain an M \ (v − 1)-packing
P3 of λKv whose leave contains a (v − 1, 1)-lasso. We add the (v − 1)-cycle of this
lasso to P3 to obtain the required M-packing of λKv.

Lemma 3.4. Let (m1, m2, . . . , mτ ) be a list of integers and let λ and v be positive
integers with λ even. Then there exists an (m1, m2, . . . , mτ )-packing of λKv if and
only if

(i) 2 � mi � v for i ∈ {1, . . . , τ};
(ii) m1 + m2 + · · · + mτ = λ

(
v
2

) − δ, where δ is a nonnegative integer such that
δ �= 1; and

(iii) max(m1, m2, . . . , mτ ) �
{

λ
2

(
v
2

)− τ + 2 if δ = 0,
λ
2

(
v
2

)− τ + 1 if 2 � δ < max(m1, m2, . . . , mτ ).

Proof. Let M = (m1, m2, . . . , mτ ) and, without loss of generality, reorder M so that
mτ is a maximal entry in M . If there exists an M-packing P of λKv with leave L,
then conditions (i)–(iii) hold by Lemma 3.2. So it remains to show that if λ, v and
M satisfy (i)–(iii), then there exists an M-packing of λKv. If δ = 0 then the result
follows immediately from Theorem 3.1, so suppose δ � 2.

Let

N =

⎧⎨
⎩

(δ) if 2 � δ < mτ ,
(2(δ−mτ )/2, mτ ) if δ � mτ and δ ≡ mτ (mod 2),
(2(δ−mτ+1)/2, mτ − 1) if δ � mτ and δ �≡ mτ (mod 2).

Note that in each case
∑

n∈N n = δ. Also note that n � 2 for each n ∈ N because
δ � 2 and, it follows from (ii) that δ is even when mτ = 2. We now show that MN ,
λ and v satisfy the conditions of Theorem 3.1, giving an MN -decomposition of λKv

from which we obtain the required M-packing of λKv.
Let s be the number of entries in N . First observe that

∑
m∈M m+

∑
n∈N n = λ

(
v
2

)
by (ii) and since

∑
n∈N n = δ. By (i) and the definition of N it also holds that

2 � n � mτ � v for all n ∈ N . If 2 � δ < mτ , then mτ � λ
2

(
v
2

) − τ − s + 2 by
(iii) and because s = 1. If δ � mτ , then because

∑
m∈M m � mτ + 2(τ − 1) and∑

n∈N n � mτ − 1 + 2(s− 1), it follows that

λ
2

(
v
2

)− τ − s+ 2 = 1
2
(
∑

m∈M m+
∑

n∈N n)− τ − s+ 2

� 1
2
(mτ + 2(τ − 1) +mτ − 1 + 2(s− 1))− τ − s+ 2

= mτ − 1
2
.

Therefore mτ � λ
2

(
v
2

)− τ − s+2 is a maximal entry in MN because λ
2

(
v
2

)− τ − s+2
is an integer. So by Theorem 3.1 we can see that there exists an MN -decomposition
of λKv from which we remove cycles of the lengths in N .
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