Core partitions with d-distinct parts

Murat Sahin
Department of Mathematics, Faculty of Sciences
Ankara University
Tandogan, Ankara, 06100
Turkey
msahin@ankara.edu.tr

Abstract

In this paper, we study $(s, s+1)$-core partitions with d-distinct parts. We obtain results on the number and the largest size of such partitions, so we extend Xiong's paper in which results are obtained about $(s, s+1)$ core partitions with distinct parts. Also we propose a conjecture about $(s, s+r)$-core partitions with d-distinct parts for $1 \leq r \leq d$.

1 Introduction

A partition of n is a finite nonincreasing sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ such that $n=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{l}$. A summand in a partition is called part. We say that n is the size of λ and l is the length of λ. For example, $\lambda=(6,3,3,2,1)$ is a partition of $n=15$. The parts of the partition λ are $6,3,3,2$ and 1 . The size of λ is 15 and the length of λ is 5 . A partition λ is called a partition with d-distinct parts if and only if $\lambda_{i}-\lambda_{i+1} \geq d$ i for $1 / l e i \leq l-1$.

Partitions can be visualized with a Young diagram, which is a finite collection of boxes arranged in left-justified rows, with λ_{i} boxes in the i-th row. The pair (i, j) shows the coordinates of the boxes in the Young diagram. The Young diagram of $\lambda=(6,3,3,2,1)$ is as follows:

(1, 1)	$(1,2)$	$(1,3)$	$(1,4)$	(1, 5)	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$			
$(3,1)$	$(3,2)$	$(3,3)$			
$(4,1)$	$(4,2)$				
$(5,1)$					

For each box in the Young diagram in coordinates (i, j), the hook length is defined as the sum of the number of boxes exactly to the right, exactly below, and the box itself. So the hook lengths of the partition $\lambda=(6,3,3,2,1)$ can be given as follows:

10	8				2	1
6	4					
5	2					
2	1					
1						

Here $h(i, j)$ will show the entry in coordinate (i, j) of the box, that is, the hook length of the box. If $\lambda=(6,3,3,2,1)$, then $h(1,1)=10, h(2,3)=2$ and $h(6,1)=1$, as you can see from (1.1).

A partition λ is called an s-core partition if λ has no boxes of hook length s. For example, the partition $\lambda=(6,3,3,2,1)$ is a 7 -core but it is not a 5 -core, since λ has no boxes of hook length 7 , but it has a box of hook length 5 (see Diagram (1.1)).

A more general definition: a partition λ is called an $\left(s_{1}, s_{2}, \ldots, s_{t}\right)$-core partition if λ has no boxes of hook length $s_{1}, s_{2}, \ldots, s_{t}$. So for example the partition $\lambda=$ $(6,3,3,2,1)$ is a (7, 9)-core partition.

There are many studies about core partitions, and such partitions are closely related to posets, cranks, Raney numbers, Catalan numbers, Fibonacci numbers, etc.; see $[1,6,15,16]$.

Anderson [3] shows that the number of (s, t)-core partitions is finite if and only if s and t are coprime. In this case, this number is

$$
\frac{1}{s+t}\binom{s+t}{s}
$$

Olsson and Stanton [9] give the largest size of such partitions. Some results on the number, the largest size and the average size of such partitions are provided in $[2,4,7,8,10,13,14,15]$. In particular, the number of $(s, s+1)$-core partitions is the Catalan number

$$
C_{s}=\frac{1}{s+1}\binom{2 s}{s}
$$

Amdeberhan [1] conjectures that the number of ($s, s+1$)-core partitions with distinct parts equals the Fibonacci numbers. This conjecture is proved independently by Xiong [12] and Straub [11]. More generally, Straub [11] characterizes the number $N_{d}(s)$ of $(s, d s-1)$-core partitions with distinct parts by $N_{d}(1)=1, N_{d}(2)=d$ and, for $s \geq 3$,

$$
N_{d}(s)=N_{d}(s-1)+d N_{d}(s-2) .
$$

Xiong [12] also obtain results on the number, the largest size and the avarage size of $(s, s+1)$-core partitions with distinct parts.

In this paper, we consider the problem of counting the number of special partitions which are s-core for certain values of s. More precisely, we focus on $(s, s+1)$-core partitions with d-distinct parts. We obtain results on the number and the largest size of such partitions, and so we extend Xiong's paper in which the results are obtained about $(s, s+1)$-core partitions with distinct parts. Also, we propose the following conjecture about $(s, s+r)$-core partitions with d-distinct parts for $1 \leq r \leq d$. That is, we conjecture that the number $N_{d, r}(s)$ of $(s, s+r)$-core partitions with d-distinct parts is characterized by $N_{d, r}(s)=s$ for $1 \leq s \leq d, N_{d, r}(d+1)=d+r$, and for $s \geq d+2$,

$$
N_{d, r}(s)=N_{d, r}(s-1)+N_{d, r}(s-(d+1))
$$

for $1 \leq r \leq d$.

$2(s, s+1)$-core partitions with d-distinct parts

Suppose that $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is a partition whose corresponding Young diagram has l rows. The set $\beta(\lambda)$ of λ is defined to be the set of first column hook length in the Young diagram of λ, i.e., $\beta(\lambda)=\{h(i, 1): 1 \leq i \leq l\}$. For example, if $\lambda=$ $(6,3,3,2,1)$, then we get

$$
\begin{aligned}
\beta(\lambda) & =\{h(1,1), h(2,1), h(3,1), h(4,1), h(5,1)\} \\
& =\{10,6,5,2,1\}
\end{aligned}
$$

by using Diagram (1.1).
Now we generalize the definition of the twin-free set in [11].
Definition 2.1 Suppose that d is a positive integer such that $d \geq 2$. A set $X \subseteq \mathbb{N}$ is called a d-th order twin-free set if there is no $x \in X$ such that

$$
\{x, x+k\} \subseteq X, \quad \text { for } 1 \leq k \leq d
$$

If we take $d=1$ in Definition 2.1, then we obtain the twin-free set in [11], that is, we obtain the first order twin-free set.

Example 2.1 Let us take $X=\{10,5,2\}$. For $d=2, X$ is a second order twin-free set, since the sets

$$
\{2,3\},\{5,6\},\{10,11\},\{2,4\},\{5,7\},\{10,12\}
$$

are not a subset of X. But the set $\{2,5\}$ is a subset of X, so X is not a third order twin-free set.

Theorem 2.1 (i) Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is a partition. Then

$$
\lambda_{i}=h(i, 1)-l+1, \quad \text { for } 1 \leq i \leq l .
$$

Thus

$$
|\lambda|=\sum_{x \in \beta(\lambda)} x-\binom{l}{2}
$$

(ii) A partition λ is an s-core partition if and only if for any $x \in \beta(\lambda)$ with $x>s$, we always have $x-s \in \beta(\lambda)$.

Proof. See [3, 5].
Lemma 2.1 The partition λ is a partition with d-distinct parts if and only if $\beta(\lambda)$ is a d-th order twin free set.

Proof. Suppose that $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is a partition. Now λ is a partition with d-distinct parts if and only if $\lambda_{i}-\lambda_{i+1} \geq d$ for $1 \leq i \leq l-1$. Then by Theorem 2.1(i),

$$
\begin{aligned}
h(i, 1)-h(i+1,1) & =\left(\lambda_{i}+l-1\right)-\left(\lambda_{i+1}+l-1\right) \\
& =\lambda_{i}-\lambda_{i+1} \\
& \geq d
\end{aligned}
$$

So we obtain

$$
h(i, 1)-h(i+1,1) \geq d \text { if and only if } \beta(\lambda) \text { is a } d \text {-th order twin-free set. }
$$

Lemma 2.2 Suppose λ is an $(s, s+1)$-core partition with d-distinct parts. Then

$$
\beta(\lambda) \subset\{1,2, \ldots, s-1\} .
$$

Proof. Suppose that λ is a partition with d-distinct parts. Then, $\beta(\lambda)$ is a d-th order twin-free set by Lemma 2.1. Since λ is an $(s, s+1)$-core partition, we have $s, s+1 \notin \beta(\lambda)$. If $x \geq s+2$ and $x \in \beta(\lambda)$ then, by Theorem 2.1(ii), we know that $x-s, x-(s+1) \in \beta(\lambda)$. But this is a contradiction since $\beta(\lambda)$ is a d-th order twin-free set. That is, $x \notin \beta(\lambda)$ and so we get the required result $\beta(\lambda) \subset\{1,2, \ldots, s-1\}$.

Lemma 2.3 A partition λ is an $(s, s+1)$-core partition with d-distinct parts if and only if $\beta(\lambda)$ is a d-th order twin-free subset of the set $\{1,2, \ldots, s-1\}$.

Proof. If a partition λ is an $(s, s+1)$-core partition with d-distinct parts then by Lemma 2.2, $\beta(\lambda)$ must be a subset of $\{1,2, \ldots, s-1\}$. Also, By Lemma 2.1, $\beta(\lambda)$ must be a d-th order twin-free set.

Conversely, suppose that $\beta(\lambda)$ is a d-th order twin-free subset of $\{1,2, \ldots, s-1\}$. By Lemma 2.1, λ is a partition with d-distinct parts. Also, since $\beta(\lambda)$ is a subset of the set $\{1,2, \ldots, s-1\}$, all the hook lengths of the corresponding partition are smaller than s and $s+1$. This means that λ is an $(s, s+1)$-core partition.

Theorem 2.2 The number $N_{d}(s)$ of $(s, s+1)$-core partitions with d-distinct parts is characterized by $N_{d}(s)=s$ for $1 \leq s \leq(d+1)$, and for $s \geq d+2$,

$$
N_{d}(s)=N_{d}(s-1)+N_{d}(s-(d+1))
$$

Proof. Let X_{k} denote the set of all d-th order twin-free subsets of the set $\{1,2, \ldots$, $k-1\}$. A partition λ is an $(s, s+1)$-core partition with d-distinct parts if and only if $\beta(\lambda)$ is a d-th order twin-free subset of the set $\{1,2, \ldots, s-1\}$ by Lemma 2.3. That is, $N_{d}(s)=\left|X_{s}\right|$. Suppose that $X \in X_{s}$. If $s-1 \in X$, then $s-2, s-3, \ldots, s-(d+1) \notin X$, since X is a d-th order twin-free set. So

$$
\left|\left\{X \in X_{s}:(s-1) \in X\right\}\right|=\left|X_{s-(d+1)}\right|,
$$

and

$$
\left|\left\{X \in X_{s}:(s-1) \notin X\right\}\right|=\left|X_{s-1}\right| .
$$

Thus $\left|X_{s}\right|=\left|X_{s-1}\right|+\left|X_{s-(d+1)}\right|$. Notice that

$$
\begin{aligned}
N_{d}(1) & =\left|X_{1}\right|=1 \\
N_{d}(2) & =\left|X_{2}\right|=2 \\
\vdots & \vdots \vdots \\
N_{d}(d) & =\left|X_{d}\right|=d \\
N_{d}(d+1) & =\left|X_{d+1}\right|=d+1 .
\end{aligned}
$$

So we obtain the required result.
If we take the value $d=1$ in Theorem 2.2, we find that the number of $(s, s+1)$ core partitions with distinct parts is the Fibonacci number F_{s+1} in [11, 12].

Example 2.2 For $d=2, N_{2}(6)=9$. The seven (6,7)-core partitions with 2-distinct parts are

$$
\},\{1\},\{2\},\{3\},\{3,1\},\{4\},\{4,1\},\{5\},\{4,2\} .
$$

We can see in Table 1 the number $N_{2}(s)$ of $(s, s+1)$-core partitions with 2-distinct parts for $1 \leq s \leq 8$.

s	1	2	3	4	5	6	7	8
$N_{2}(s)$	1	2	3	4	6	9	13	19

Table 1: The number $N_{2}(s)$ of $(s, s+1)$-core partitions with 2-distinct parts

The generating function of the sequence $N_{2}(s)$ is

$$
-\frac{x^{2}+x+1}{x^{3}+x-1} .
$$

Also, the sequence $N_{2}(s)$ satisfies the recurrence relation

$$
N_{2}(s)=N_{2}(s-1)+N_{2}(s-3) .
$$

Theorem 2.3 If $s \equiv 0,1$ or $2(\bmod d+2)$ then the largest size of $(s, s+1)$-core partitions with d-distinct parts is

$$
\left[\frac{1}{d+2}\binom{s+1}{2}+\frac{s(d-1)}{2(d+2)}\right],
$$

or otherwise

$$
\left[\frac{1}{d+2}\binom{s+1}{2}+\frac{s(d-1)}{2(d+2)}+1\right]
$$

where $[x]$ is the largest integer not greater than x.
Proof. Let λ be an $(s, s+1)$-core partition with d-distinct parts. Suppose that $\beta(\lambda)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. We need to maximize λ and since $\beta(\lambda)$ is a d-th order twinfree set, we need $x_{1}=s-1, x_{2}=s-1-(d-1)$, and generally $x_{i}=s-d(i-1)-i$, so

$$
\begin{aligned}
|\lambda| & =\sum_{i=1}^{k} x_{i}-\binom{k}{2} \\
& \leq \sum_{i=1}^{k}(s-d(i-1)-i)-\binom{k}{2} \\
& =s k+\frac{d k-d k^{2}}{2}-k^{2} .
\end{aligned}
$$

Also, to maximize λ, we want to take k as large as possible; however we also have to subtract the $\binom{k}{2}$ term. So if $x_{k}<(k-1)=\binom{k}{2}-\binom{k-1}{2}$, the gain we have made by including x_{k} is offset by the loss of the second term. So there are sometimes two $(s, s+1)$ cores with d-distinct parts and maximal size: this is when we have $x_{k}=k-1$, and so it makes no difference whether we include this term or not.

When $s=(d+2) n$ for some integer n, we obtain

$$
|\lambda| \leq s k+\frac{d k-d k^{2}}{2}-k^{2} \leq \frac{(d+2) n^{2}}{2}+\frac{d n}{2} .
$$

When $s=(d+2) n+r$, where $1 \leq r \leq d+1$, for some integer n, we obtain

$$
|\lambda| \leq s k+\frac{d k-d k^{2}}{2}-k^{2} \leq \frac{(d+2) n^{2}}{2}+\frac{d n}{2}+r n+(r-1) .
$$

So we can get the desired result for each case.
If we take the value $d=1$ in Theorem 2.3, we find that the largest size of the $(s, s+1)$-core partitions with distinct parts is $\left[\frac{1}{3}\binom{s+1}{2}\right]$ in [12].

Example 2.3 For $s=6$ and $d=2$, since $s \equiv 2(\bmod 4)$, the largest size of $(6,7)$-core partitions with 2-distinct parts is

$$
\left[\frac{1}{2+2}\binom{6+1}{2}+\frac{6(2-1)}{2(2+2)}\right]=6,
$$

by Theorem 2.3. Indeed, $(6,7)$-core partitions with 2 -distinct parts are

$$
\},\{1\},\{2\},\{3\},\{3,1\},\{4\},\{4,1\},\{5\},\{4,2\} .
$$

So the largest size of $(6,7)$-core partitions with 2 -distinct parts is $4+2=6$.
For $s=7$ and $d=2$, since $s \equiv 3(\bmod 4)$, the largest size of $(7,8)$-core partitions with 2-distinct parts is

$$
\left[\frac{1}{2+2}\binom{7+1}{2}+\frac{7(2-1)}{2(2+2)}+1\right]=8
$$

by Theorem 2.3. Indeed, $(7,8)$-core partitions with 2 -distinct parts are

$$
\},\{1\},\{2\},\{3\},\{3,1\},\{4\},\{4,1\},\{5\},\{4,2\},\{5,1\},\{6\},\{5,2\},\{5,3\} .
$$

So the largest size of $(7,8)$-core partitions with 2 -distinct parts is $5+3=8$.
Theorem 2.4 If $s \equiv 1(\bmod (d+2))$ then there are two $(s, s+1)$-core partitions of largest size with d-distinct parts; otherwise there is only one such partition of largest size.

Proof. Note that if λ is an $(s, s+1)$-core partition with d-distinct parts which has the largest size, then $\beta(\lambda)=\{s-1, s-(d+2), \ldots, s-((k-1) d+k)\}$ for some integer k. When $t=(d+2) n$ for some integer n, we see that λ has the largest size if and only if $k=n$. When $t=(d+2) n+1$ for some integer n, then λ has the largest size if and only if $k=n$ or $k=n+1$. For all other cases $t=(d+2) n+r$, where $2 \leq r \leq d+1$, we have that λ has the largest size if and only if $k=n+1$. So we obtain the desired result.

If we take the value $d=1$ in Theorem 2.4, we get the number of the largest size of the $(s, s+1)$-core partitions with distinct parts is $\frac{3-(-1)^{s} \bmod 3}{2}$ in [12].

Example 2.4 For $s=5$ and $d=2$, since $s \equiv 1(\bmod 4)$, there are only two $(s, s+1)$ core partitions of largest size with 2-distinct parts by Theorem 2.4. Actually, (5, 6)core partitions with 2-distinct parts are

$$
\},\{1\},\{2\},\{3\},\{3,1\},\{4\} .
$$

So there are two partitions of the largest size of $(6,7)$-core partitions with 2-distinct parts. These partitions are $\{3,1\}$ and $\{4\}$.

For $s=8$ and $d=3$, since $s \equiv 3(\bmod 5)$, there is only one $(s, s+1)$-core partition of the largest size with 3 -distinct parts by Theorem 2.4. Indeed, (8,9)-core partitions with 3 -distinct parts are

$$
\},\{1\},\{2\},\{3\},\{4\},\{4,1\},\{5\},\{5,1\},\{6\},\{5,2\},\{6,1\},\{7\},\{6,2\},\{6,3\} .
$$

So there is only one partition of the largest size of (8,9)-core partitions with 3-distinct parts. This partition is $\{6,3\}$.

$3(s, s+r)$-core partitions with d-distinct parts

More generally, we propose a conjecture about the number of $(s, s+r)$-core partitions with d-distinct parts for $1 \leq r \leq d$. This conjecture is based on experimental evidence and has been verified for $s<10$ after listing all relevant partitions. We will present some of our experimental results in Tables 2 and 3.

Table 2 shows ($s, s+2$)-core partitions with d-distinct partitions for $2 \leq d \leq 7$.

$(s, s+2)$		$(1,3)$	$(2,4)$	$(3,5)$	$(4,6)$	$(5,7)$	$(6,8)$	$(7,9)$
	$(8,10)$							
2	1	2	4	5	7	11	16	23
3	1	2	3	5	6	8	11	16
4	1	2	3	4	6	7	9	12
5	1	2	3	4	5	7	8	10
6	1	2	3	4	5	6	8	9
7	1	2	3	4	5	6	7	9

Table 2: The number of $(s, s+2)$-core partitions with d-distinct parts

Table 3 shows ($s, s+3$)-core partitions with d-distinct partitions for $3 \leq d \leq 7$. According to our experiments, we present the following conjecture.

d	$(s, s+3)$	$(1,4)$	$(2,5)$	$(3,6)$	$(4,7)$	$(5,8)$	$(6,9)$	$(7,10)$
	$(8,11)$							
3	1	2	3	6	7	9	12	18
4	1	2	3	4	7	8	10	13
5	1	2	3	4	5	8	9	11
6	1	2	3	4	5	6	9	10
7	1	2	3	4	5	6	7	10

Table 3: $(s, s+3)$-core partitions with d-distinct parts

Conjecture 1 For $1 \leq r \leq d$, the number $N_{d, r}(s)$ of $(s, s+r)$-core partitions with d-distinct parts is characterized by $N_{d, r}(s)=s$ for $1 \leq s \leq d, N_{d, r}(d+1)=d+r$, and for $s \geq d+2$,

$$
N_{d, r}(s)=N_{d, r}(s-1)+N_{d, r}(s-(d+1))
$$

Example 3.1 For $s=6, d=3$ and $r=2$, the eight $(s, s+r)$-core, i.e. the $(6,8)$-core, partitions with 3 -distinct parts are

$$
\},\{1\},\{2\},\{3\},\{4\},\{5\},\{1,4\},\{1,6\} .
$$

s	1	2	3	4	5	6	7	8	9
$N_{3,2}(s)$	1	2	3	5	6	8	11	16	22

Table 4: The number $N_{3,2}(s)$ of $(s, s+2)$-core partitions with 3 -distinct parts

We can see in Table 4 the number $N_{3,2}(s)$ of ($s, s+2$)-core partitions with 3-distinct parts for $1 \leq s \leq 9$. The generating function of the sequence $N_{3,2}(s)$ is

$$
-\frac{2 x^{3}+x^{2}+x+1}{x^{4}+x-1} .
$$

Also, the sequence $N_{3,2}(s)$ satisfies the recurrence relation

$$
N_{3,2}(s)=N_{3,2}(s-1)+N_{3,2}(s-4) .
$$

References

[1] T. Amdeberhan, Theorems, problems and conjectures, (preprint), July 2015. arXiv:1207.4045 (updated version available at: http://math.tulane.edu/~tamdeberhan/conjectures.html).
[2] T. Amdeberhan and E. Leven, Multi-cores, posets, and lattice paths, (preprint). arXiv: 1406.2250 v 3 .
[3] J. Anderson, Partitions which are simultaneously t1- and t2-core, Disc. Math. 248 (2002), 237-243.
[4] D. Armstrong, C. R. H. Hanusa and B. Jones, Results and conjectures on simultaneous core partitions, European J. Combin. 41 (2014), 205-220.
[5] C. Berge, Principles of Combinatorics, Mathematics in Science and Engineering Vol. 72, Academic Press, New York, 1971.
[6] F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1), 1-18.
[7] P. Johnson, Lattice points and simultaneous core partitions, (preprint); arXiv: 1502.07934 v 2 .
[8] R. Nath and J. A. Sellers, A combinatorial proof of a relationship between maximal $(2 k-1,2 k+1)$ and ($2 k-1,2 k, 2 k+1$)-cores, (preprint); arXiv:1506.06186.
[9] J. Olsson and D. Stanton, Block inclusions and cores of partitions, Aequationes Math. 110 (2007), 74-90.
[10] R. P. Stanley and F. Zanello, The Catalan case of Armstrongs conjectures on simultaneous core partitions, SIAM J. Discrete Math. 29 (1) (2015), 658-666.
[11] A. Straub, Core partitions into distinct parts and analog of Euler's theorem, European J. Combin. 57 (2016),40-49.
[12] H. Xiong, Core partitions with distinct parts, (preprint), 2015. arXiv: 1508.07918v1.
[13] H. Xiong, On the largest size of $(t, t+1, \ldots, t+p)$-core partitions, (preprint); arXiv:1410.2061v2.
[14] H. Xiong, The number of simultaneous core partitions, (preprint); arXiv: 1408.7038 v 2 .
[15] J. Y. X. Yang, M. X. X. Zhong and R. D. P. Zhou, On the enumeration of $(s, s+$ 1, $s+2$)-core partitions, European J. Combin. 49 (2015), 203-217.
[16] R. D. P. Zhou and S. H. F. Yan, The Raney numbers and ($s, s+1$)-core partitions, European J. Combin. 59 (2017), 114-121.

