Core partitions with d-distinct parts

MURAT SAHIN

Department of Mathematics, Faculty of Sciences Ankara University Tandogan, Ankara, 06100 Turkey msahin@ankara.edu.tr

Abstract

In this paper, we study (s, s + 1)-core partitions with *d*-distinct parts. We obtain results on the number and the largest size of such partitions, so we extend Xiong's paper in which results are obtained about (s, s + 1)core partitions with distinct parts. Also we propose a conjecture about (s, s + r)-core partitions with *d*-distinct parts for $1 \le r \le d$.

1 Introduction

A partition of n is a finite nonincreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ such that $n = \lambda_1 + \lambda_2 + \ldots + \lambda_l$. A summand in a partition is called *part*. We say that n is the size of λ and l is the length of λ . For example, $\lambda = (6, 3, 3, 2, 1)$ is a partition of n = 15. The parts of the partition λ are 6, 3, 3, 2 and 1. The size of λ is 15 and the length of λ is 5. A partition λ is called a partition with d-distinct parts if and only if $\lambda_i - \lambda_{i+1} \ge di$ for $1/lei \le l - 1$.

Partitions can be visualized with a Young diagram, which is a finite collection of boxes arranged in left-justified rows, with λ_i boxes in the *i*-th row. The pair (i, j) shows the coordinates of the boxes in the Young diagram. The Young diagram of $\lambda = (6, 3, 3, 2, 1)$ is as follows:

(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
(2, 1)	(2, 2)	(2, 3)			
(3, 1)	(3, 2)	(3, 3)			
(4, 1)	(4, 2)				
(5, 1)		-			

For each box in the Young diagram in coordinates (i, j), the *hook length* is defined as the sum of the number of boxes exactly to the right, exactly below, and the box itself. So the hook lengths of the partition $\lambda = (6, 3, 3, 2, 1)$ can be given as follows:

10	8	6	3	2	1
6	4	2			
5	2	1			
2	1		-		
1		-			

Here h(i, j) will show the entry in coordinate (i, j) of the box, that is, the hook length of the box. If $\lambda = (6, 3, 3, 2, 1)$, then h(1, 1) = 10, h(2, 3) = 2 and h(6, 1) = 1, as you can see from (1.1).

A partition λ is called an *s*-core partition if λ has no boxes of hook length *s*. For example, the partition $\lambda = (6, 3, 3, 2, 1)$ is a 7-core but it is not a 5-core, since λ has no boxes of hook length 7, but it has a box of hook length 5 (see Diagram (1.1)).

A more general definition: a partition λ is called an (s_1, s_2, \ldots, s_t) -core partition if λ has no boxes of hook length s_1, s_2, \ldots, s_t . So for example the partition $\lambda = (6, 3, 3, 2, 1)$ is a (7, 9)-core partition.

There are many studies about core partitions, and such partitions are closely related to posets, cranks, Raney numbers, Catalan numbers, Fibonacci numbers, etc.; see [1, 6, 15, 16].

Anderson [3] shows that the number of (s, t)-core partitions is finite if and only if s and t are coprime. In this case, this number is

$$\frac{1}{s+t}\binom{s+t}{s}.$$

Olsson and Stanton [9] give the largest size of such partitions. Some results on the number, the largest size and the average size of such partitions are provided in [2, 4, 7, 8, 10, 13, 14, 15]. In particular, the number of (s, s + 1)-core partitions is the Catalan number

$$C_s = \frac{1}{s+1} \binom{2s}{s}.$$

Amdeberhan [1] conjectures that the number of (s, s + 1)-core partitions with distinct parts equals the Fibonacci numbers. This conjecture is proved independently by Xiong [12] and Straub [11]. More generally, Straub [11] characterizes the number $N_d(s)$ of (s, ds - 1)-core partitions with distinct parts by $N_d(1) = 1, N_d(2) = d$ and, for $s \geq 3$,

$$N_d(s) = N_d(s-1) + dN_d(s-2).$$

Xiong [12] also obtain results on the number, the largest size and the avarage size of (s, s + 1)-core partitions with distinct parts.

In this paper, we consider the problem of counting the number of special partitions which are s-core for certain values of s. More precisely, we focus on (s, s + 1)-core partitions with d-distinct parts. We obtain results on the number and the largest size of such partitions, and so we extend Xiong's paper in which the results are obtained about (s, s + 1)-core partitions with distinct parts. Also, we propose the following conjecture about (s, s + r)-core partitions with d-distinct parts for $1 \le r \le d$. That is, we conjecture that the number $N_{d,r}(s)$ of (s, s + r)-core partitions with d-distinct parts is characterized by $N_{d,r}(s) = s$ for $1 \le s \le d$, $N_{d,r}(d + 1) = d + r$, and for $s \ge d + 2$,

$$N_{d,r}(s) = N_{d,r}(s-1) + N_{d,r}(s-(d+1))$$

for $1 \leq r \leq d$.

2 (s, s+1)-core partitions with *d*-distinct parts

Suppose that $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ is a partition whose corresponding Young diagram has l rows. The set $\beta(\lambda)$ of λ is defined to be the set of first column hook length in the Young diagram of λ , i.e., $\beta(\lambda) = \{h(i, 1) : 1 \le i \le l\}$. For example, if $\lambda = (6, 3, 3, 2, 1)$, then we get

$$\beta(\lambda) = \{h(1,1), h(2,1), h(3,1), h(4,1), h(5,1)\}$$

= $\{10, 6, 5, 2, 1\}$

by using Diagram (1.1).

Now we generalize the definition of the twin-free set in [11].

Definition 2.1 Suppose that d is a positive integer such that $d \ge 2$. A set $X \subseteq \mathbb{N}$ is called a d-th order twin-free set if there is no $x \in X$ such that

$$\{x, x+k\} \subseteq X$$
, for $1 \le k \le d$.

If we take d = 1 in Definition 2.1, then we obtain the twin-free set in [11], that is, we obtain the first order twin-free set.

Example 2.1 Let us take $X = \{10, 5, 2\}$. For d = 2, X is a second order twin-free set, since the sets

$$\{2,3\},\{5,6\},\{10,11\},\{2,4\},\{5,7\},\{10,12\}$$

are not a subset of X. But the set $\{2, 5\}$ is a subset of X, so X is not a third order twin-free set.

Theorem 2.1 (i) Suppose $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$ is a partition. Then $\lambda_i = h(i, 1) - l + 1$, for $1 \le i \le l$.

Thus

$$|\lambda| = \sum_{x \in \beta(\lambda)} x - \binom{l}{2}.$$

(ii) A partition λ is an s-core partition if and only if for any $x \in \beta(\lambda)$ with x > s, we always have $x - s \in \beta(\lambda)$.

Proof. See [3, 5].

Lemma 2.1 The partition λ is a partition with d-distinct parts if and only if $\beta(\lambda)$ is a d-th order twin free set.

Proof. Suppose that $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ is a partition. Now λ is a partition with d-distinct parts if and only if $\lambda_i - \lambda_{i+1} \ge d$ for $1 \le i \le l-1$. Then by Theorem 2.1(i),

$$h(i,1) - h(i+1,1) = (\lambda_i + l - 1) - (\lambda_{i+1} + l - 1) \\ = \lambda_i - \lambda_{i+1} \\ \ge d.$$

So we obtain

 $h(i, 1) - h(i+1, 1) \ge d$ if and only if $\beta(\lambda)$ is a *d*-th order twin-free set.

Lemma 2.2 Suppose λ is an (s, s+1)-core partition with d-distinct parts. Then

$$\beta(\lambda) \subset \{1, 2, \dots, s-1\}.$$

Proof. Suppose that λ is a partition with *d*-distinct parts. Then, $\beta(\lambda)$ is a *d*-th order twin-free set by Lemma 2.1. Since λ is an (s, s + 1)-core partition, we have $s, s + 1 \notin \beta(\lambda)$. If $x \geq s + 2$ and $x \in \beta(\lambda)$ then, by Theorem 2.1(ii), we know that $x-s, x-(s+1) \in \beta(\lambda)$. But this is a contradiction since $\beta(\lambda)$ is a *d*-th order twin-free set. That is, $x \notin \beta(\lambda)$ and so we get the required result $\beta(\lambda) \subset \{1, 2, \ldots, s - 1\}$. \Box

Lemma 2.3 A partition λ is an (s, s+1)-core partition with d-distinct parts if and only if $\beta(\lambda)$ is a d-th order twin-free subset of the set $\{1, 2, \ldots, s-1\}$.

Proof. If a partition λ is an (s, s + 1)-core partition with *d*-distinct parts then by Lemma 2.2, $\beta(\lambda)$ must be a subset of $\{1, 2, \ldots, s - 1\}$. Also, By Lemma 2.1, $\beta(\lambda)$ must be a *d*-th order twin-free set.

Conversely, suppose that $\beta(\lambda)$ is a *d*-th order twin-free subset of $\{1, 2, \ldots, s-1\}$. By Lemma 2.1, λ is a partition with *d*-distinct parts. Also, since $\beta(\lambda)$ is a subset of the set $\{1, 2, \ldots, s-1\}$, all the hook lengths of the corresponding partition are smaller than *s* and *s* + 1. This means that λ is an (s, s + 1)-core partition.

Theorem 2.2 The number $N_d(s)$ of (s, s + 1)-core partitions with d-distinct parts is characterized by $N_d(s) = s$ for $1 \le s \le (d + 1)$, and for $s \ge d + 2$,

$$N_d(s) = N_d(s-1) + N_d(s-(d+1)).$$

Proof. Let X_k denote the set of all *d*-th order twin-free subsets of the set $\{1, 2, \ldots, k-1\}$. A partition λ is an (s, s+1)-core partition with *d*-distinct parts if and only if $\beta(\lambda)$ is a *d*-th order twin-free subset of the set $\{1, 2, \ldots, s-1\}$ by Lemma 2.3. That is, $N_d(s) = |X_s|$. Suppose that $X \in X_s$. If $s-1 \in X$, then $s-2, s-3, \ldots, s-(d+1) \notin X$, since X is a *d*-th order twin-free set. So

$$|\{X \in X_s : (s-1) \in X\}| = |X_{s-(d+1)}|,$$

and

$$|\{X \in X_s : (s-1) \notin X\}| = |X_{s-1}|.$$

Thus $|X_s| = |X_{s-1}| + |X_{s-(d+1)}|$. Notice that

$$N_{d}(1) = |X_{1}| = 1$$

$$N_{d}(2) = |X_{2}| = 2$$

$$\vdots \quad \vdots \quad \vdots$$

$$N_{d}(d) = |X_{d}| = d$$

$$N_{d}(d+1) = |X_{d+1}| = d+1.$$

So we obtain the required result.

If we take the value d = 1 in Theorem 2.2, we find that the number of (s, s + 1)core partitions with distinct parts is the Fibonacci number F_{s+1} in [11, 12].

Example 2.2 For d = 2, $N_2(6) = 9$. The seven (6,7)-core partitions with 2-distinct parts are

 $\{\}, \{1\}, \{2\}, \{3\}, \{3,1\}, \{4\}, \{4,1\}, \{5\}, \{4,2\}.$

We can see in Table 1 the number $N_2(s)$ of (s, s+1)-core partitions with 2-distinct parts for $1 \le s \le 8$.

Table 1: The number $N_2(s)$ of (s, s+1)-core partitions with 2-distinct parts

The generating function of the sequence $N_2(s)$ is

$$-\frac{x^2 + x + 1}{x^3 + x - 1}$$

Also, the sequence $N_2(s)$ satisfies the recurrence relation

$$N_2(s) = N_2(s-1) + N_2(s-3).$$

Theorem 2.3 If $s \equiv 0, 1$ or $2 \pmod{d+2}$ then the largest size of (s, s+1)-core partitions with d-distinct parts is

$$\left[\frac{1}{d+2}\binom{s+1}{2} + \frac{s(d-1)}{2(d+2)}\right],\,$$

 $or \ otherwise$

$$\left[\frac{1}{d+2}\binom{s+1}{2} + \frac{s(d-1)}{2(d+2)} + 1\right]$$

where [x] is the largest integer not greater than x.

Proof. Let λ be an (s, s + 1)-core partition with *d*-distinct parts. Suppose that $\beta(\lambda) = \{x_1, x_2, \ldots, x_k\}$. We need to maximize λ and since $\beta(\lambda)$ is a *d*-th order twin-free set, we need $x_1 = s - 1$, $x_2 = s - 1 - (d - 1)$, and generally $x_i = s - d(i - 1) - i$, so

$$\begin{aligned} |\lambda| &= \sum_{i=1}^{k} x_i - \binom{k}{2} \\ &\leq \sum_{i=1}^{k} (s - d(i-1) - i) - \binom{k}{2} \\ &= sk + \frac{dk - dk^2}{2} - k^2. \end{aligned}$$

Also, to maximize λ , we want to take k as large as possible; however we also have to subtract the $\binom{k}{2}$ term. So if $x_k < (k-1) = \binom{k}{2} - \binom{k-1}{2}$, the gain we have made by including x_k is offset by the loss of the second term. So there are sometimes two (s, s + 1) cores with d-distinct parts and maximal size: this is when we have $x_k = k - 1$, and so it makes no difference whether we include this term or not.

When s = (d+2)n for some integer n, we obtain

$$|\lambda| \le sk + \frac{dk - dk^2}{2} - k^2 \le \frac{(d+2)n^2}{2} + \frac{dn}{2}.$$

When s = (d+2)n + r, where $1 \le r \le d+1$, for some integer n, we obtain

$$|\lambda| \le sk + \frac{dk - dk^2}{2} - k^2 \le \frac{(d+2)n^2}{2} + \frac{dn}{2} + rn + (r-1).$$

So we can get the desired result for each case.

If we take the value d = 1 in Theorem 2.3, we find that the largest size of the (s, s + 1)-core partitions with distinct parts is $\left[\frac{1}{3}\binom{s+1}{2}\right]$ in [12].

Example 2.3 For s = 6 and d = 2, since $s \equiv 2 \pmod{4}$, the largest size of (6, 7)-core partitions with 2-distinct parts is

$$\left[\frac{1}{2+2}\binom{6+1}{2} + \frac{6(2-1)}{2(2+2)}\right] = 6,$$

by Theorem 2.3. Indeed, (6,7)-core partitions with 2-distinct parts are

 $\{\}, \{1\}, \{2\}, \{3\}, \{3,1\}, \{4\}, \{4,1\}, \{5\}, \{4,2\}.$

So the largest size of (6, 7)-core partitions with 2-distinct parts is 4 + 2 = 6.

For s = 7 and d = 2, since $s \equiv 3 \pmod{4}$, the largest size of (7, 8)-core partitions with 2-distinct parts is

$$\left[\frac{1}{2+2}\binom{7+1}{2} + \frac{7(2-1)}{2(2+2)} + 1\right] = 8,$$

by Theorem 2.3. Indeed, (7, 8)-core partitions with 2-distinct parts are

 $\{\},\{1\},\{2\},\{3\},\{3,1\},\{4\},\{4,1\},\{5\},\{4,2\},\{5,1\},\{6\},\{5,2\},\{5,3\}.$

So the largest size of (7, 8)-core partitions with 2-distinct parts is 5 + 3 = 8.

Theorem 2.4 If $s \equiv 1 \pmod{(d+2)}$ then there are two (s, s+1)-core partitions of largest size with d-distinct parts; otherwise there is only one such partition of largest size.

Proof. Note that if λ is an (s, s + 1)-core partition with d-distinct parts which has the largest size, then $\beta(\lambda) = \{s - 1, s - (d + 2), \dots, s - ((k - 1)d + k)\}$ for some integer k. When t = (d + 2)n for some integer n, we see that λ has the largest size if and only if k = n. When t = (d + 2)n + 1 for some integer n, then λ has the largest size if and only if k = n or k = n + 1. For all other cases t = (d + 2)n + r, where $2 \le r \le d + 1$, we have that λ has the largest size if and only if k = n + 1. So we obtain the desired result.

If we take the value d = 1 in Theorem 2.4, we get the number of the largest size of the (s, s + 1)-core partitions with distinct parts is $\frac{3 - (-1)^{s \mod 3}}{2}$ in [12].

Example 2.4 For s = 5 and d = 2, since $s \equiv 1 \pmod{4}$, there are only two (s, s+1)-core partitions of largest size with 2-distinct parts by Theorem 2.4. Actually, (5, 6)-core partitions with 2-distinct parts are

$$\{\}, \{1\}, \{2\}, \{3\}, \{3, 1\}, \{4\}.$$

So there are two partitions of the largest size of (6,7)-core partitions with 2-distinct parts. These partitions are $\{3,1\}$ and $\{4\}$.

For s = 8 and d = 3, since $s \equiv 3 \pmod{5}$, there is only one (s, s + 1)-core partition of the largest size with 3-distinct parts by Theorem 2.4. Indeed, (8, 9)-core partitions with 3-distinct parts are

 $\{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{4,1\}, \{5\}, \{5,1\}, \{6\}, \{5,2\}, \{6,1\}, \{7\}, \{6,2\}, \{6,3\}.$

So there is only one partition of the largest size of (8, 9)-core partitions with 3-distinct parts. This partition is $\{6, 3\}$.

3 (s, s+r)-core partitions with *d*-distinct parts

More generally, we propose a conjecture about the number of (s, s+r)-core partitions with *d*-distinct parts for $1 \le r \le d$. This conjecture is based on experimental evidence and has been verified for s < 10 after listing all relevant partitions. We will present some of our experimental results in Tables 2 and 3.

Table 2 shows (s, s+2)-core partitions with d-distinct partitions for $2 \le d \le 7$.

$d \qquad (s,s+2)$	(1, 3)	(2,4)	(3,5)	(4,6)	(5,7)	(6,8)	(7,9)	(8,10)
2	1	2	4	5	7	11	16	23
3	1	2	3	5	6	8	11	16
4	1	2	3	4	6	7	9	12
5	1	2	3	4	5	7	8	10
6	1	2	3	4	5	6	8	9
7	1	2	3	4	5	6	7	9

Table 2: The number of (s, s + 2)-core partitions with d-distinct parts

Table 3 shows (s, s + 3)-core partitions with *d*-distinct partitions for $3 \le d \le 7$. According to our experiments, we present the following conjecture.

$d \qquad (s,s+3)$	(1,4)	(2,5)	(3,6)	(4,7)	(5,8)	(6,9)	(7,10)	(8,11)
3	1	2	3	6	7	9	12	18
4	1	2	3	4	7	8	10	13
5	1	2	3	4	5	8	9	11
6	1	2	3	4	5	6	9	10
7	1	2	3	4	5	6	7	10

Table 3: (s, s+3)-core partitions with d-distinct parts

Conjecture 1 For $1 \le r \le d$, the number $N_{d,r}(s)$ of (s, s+r)-core partitions with d-distinct parts is characterized by $N_{d,r}(s) = s$ for $1 \le s \le d$, $N_{d,r}(d+1) = d+r$, and for $s \ge d+2$,

$$N_{d,r}(s) = N_{d,r}(s-1) + N_{d,r}(s-(d+1)).$$

Example 3.1 For s = 6, d = 3 and r = 2, the eight (s, s+r)-core, i.e. the (6, 8)-core, partitions with 3-distinct parts are

$$\{\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,4\}, \{1,6\}.$$

Table 4: The number $N_{3,2}(s)$ of (s, s+2)-core partitions with 3-distinct parts

We can see in Table 4 the number $N_{3,2}(s)$ of (s, s+2)-core partitions with 3-distinct parts for $1 \le s \le 9$. The generating function of the sequence $N_{3,2}(s)$ is

$$-\frac{2x^3 + x^2 + x + 1}{x^4 + x - 1}$$

Also, the sequence $N_{3,2}(s)$ satisfies the recurrence relation

$$N_{3,2}(s) = N_{3,2}(s-1) + N_{3,2}(s-4).$$

References

- T. Amdeberhan, Theorems, problems and conjectures, (preprint), July 2015. arXiv:1207.4045 (updated version available at: http://math.tulane.edu/~tamdeberhan/conjectures.html).
- [2] T. Amdeberhan and E. Leven, Multi-cores, posets, and lattice paths, (preprint). arXiv: 1406.2250v3.
- [3] J. Anderson, Partitions which are simultaneously t1- and t2-core, Disc. Math. 248 (2002), 237-243.
- [4] D. Armstrong, C. R. H. Hanusa and B. Jones, Results and conjectures on simultaneous core partitions, *European J. Combin.* 41 (2014), 205–220.
- [5] C. Berge, *Principles of Combinatorics*, Mathematics in Science and Engineering Vol. 72, Academic Press, New York, 1971.
- [6] F. Garvan, D. Kim and D. Stanton, Cranks and *t*-cores, *Invent. Math.* 101(1), 1–18.
- [7] P. Johnson, Lattice points and simultaneous core partitions, (preprint); arXiv: 1502.07934v2.
- [8] R. Nath and J. A. Sellers, A combinatorial proof of a relationship between maximal (2k-1, 2k+1) and (2k-1, 2k, 2k+1)-cores, (preprint); arXiv:1506.06186.
- [9] J. Olsson and D. Stanton, Block inclusions and cores of partitions, Aequationes Math. 110 (2007), 74–90.

- [10] R. P. Stanley and F. Zanello, The Catalan case of Armstrongs conjectures on simultaneous core partitions, *SIAM J. Discrete Math.* 29 (1) (2015), 658-666.
- [11] A. Straub, Core partitions into distinct parts and analog of Euler's theorem, European J. Combin. 57 (2016),40–49.
- [12] H. Xiong, Core partitions with distinct parts, (preprint), 2015. arXiv: 1508.07918v1.
- [13] H. Xiong, On the largest size of (t, t + 1, ..., t + p)-core partitions, (preprint); arXiv:1410.2061v2.
- [14] H. Xiong, The number of simultaneous core partitions, (preprint); arXiv: 1408.7038v2.
- [15] J. Y. X. Yang, M. X. X. Zhong and R. D. P. Zhou, On the enumeration of (s, s + 1, s + 2)-core partitions, *European J. Combin.* 49 (2015), 203–217.
- [16] R. D. P. Zhou and S. H. F. Yan, The Raney numbers and (s, s+1)-core partitions, European J. Combin. 59 (2017), 114–121.

(Received 4 Aug 2017; revised 5 and 28 Mar 2018)