Outside perfect 8-cycle systems

Selda Küçükçifçi

Department of Mathematics Koç University, Istanbul Turkey skucukcifci@ku.edu.tr

CHARLES CURTIS LINDNER

Department of Mathematics and Statistics Auburn University U.S.A. lindncc@auburn.edu

Emine Şule Yazıcı

Department of Mathematics Koç University, Istanbul Turkey eyazici@ku.edu.tr

In memory of Anne Penfold Street

Abstract

The two 4-cycles (a, b, c, d) and (e, f, g, h) are called the outside 4-cycles of the 8-cycle (a, b, c, d, e, f, g, h). Given an 8-cycle system, if we can form a 4-cycle system by choosing two outside 4-cycles from each 8-cycle in the system, then the 8-cycle system is called outside perfect.

In this paper we prove that an outside perfect maximum packing of K_n with 8-cycles of order n exists for all $n \ge 8$, except n = 9, for which no such system exists.

1 Introduction

An *m*-cycle system of order *n* is a pair $(\mathcal{X}, \mathcal{C})$ where \mathcal{X} is a finite set and \mathcal{C} is a collection of edge-disjoint *m*-cycles which partitions the edge-set of the complete undirected graph K_n with vertex set \mathcal{X} . The spectrum for *m*-cycle systems (that is,

the set of all n such that an m-cycle system of order n exists) is the set of all n such that [13]

- (i) $n \ge m \ge 3$,
- (ii) $n \equiv 1 \pmod{2}$ and
- (iii) n(n-1)/2m is an integer.

An *m*-cycle, C_m , with edges $a_i a_{i+1}$ for $1 \leq i \leq m-1$ and $a_1 a_m$ will be denoted by (a_1, a_2, \ldots, a_m) . In this paper we will study *m*-cycle systems when m = 8 and consider the following property. For each 8-cycle (a, b, c, d, e, f, g, h) we will call the two 4-cycles (b, c, d, e) and (a, f, g, h) as outside 4-cycles of the 8-cycle and denote the 8-cycle by (a-b, c, d, e-f, g, h). Note that for every 8-cycle there are 4 different possible pairs of such 4-cycles. Given an 8-cycle system $(\mathcal{X}, \mathcal{C})$, let 8(4)C be the collection of outside 4-cycles of the 8-cycles in C (two 4-cycles from each 8-cycle in \mathcal{C}). If 8(4)C is a 4-cycle system, C is said to be outside perfect. We can extend the existence of outside perfect 8-cycle systems problem to maximum packings of K_n with 8-cycles (see [8] and [9]) by constructing for every $n \geq 8$; a maximum packing $(\mathcal{X}, \mathcal{C}, \mathcal{L})$ of K_n with 8-cycles so that $(\mathcal{X}, 8(4)C, \mathcal{L})$ is also a packing, where 8(4)C is a collection of outside 4-cycles of the 8-cycles of \mathcal{C} , and \mathcal{L} is the leave of the maximum packing. We call such a maximum packing an outside perfect maximum packing with 8-cycles.

In this paper we will construct outside perfect maximum packings of K_n with 8-cycles for all $n \ge 8$, except n = 9, for which no such system exists.

The existence of outside perfect maximum packing of K_n with 6-cycles has been recently introduced and solved by Lindner, Meszka and Rosa in [12]. Studies on different properties of perfect 8-cycle systems and different forms of related systems can be found in [1, 2, 3, 4, 5, 6, 7, 10, 11].

Spectrum for maximum Leave packing with 8-cycles Ø $1 \pmod{16}$ $3 \pmod{16}$ C_3 $5 \pmod{16}$ K_5 $7 \pmod{16}$ C_5 9 (mod 16), $n \neq 9$ C_4 $11 \pmod{16}$ $C_{3} + C_{4}$ $13 \pmod{16}$ C_6 $15 \pmod{16}$ $C_4 + C_5$ $0, 2, 8, 10 \pmod{16}$ 1-factor K_4 + a 1-factor on the remaining vertices 4, 6, 12, 14 (mod 16)

The following table lists leaves that are considered for the maximum packings with 8-cycles.

Table 1: Maximum packings with 8-cycles

477	

2 Preliminary results and the main construction

We will start by introducing the necessary construction and lemmas that we will use throughout the paper.

Lemma 2.1 There exists an outside perfect 8-cycle decomposition of $K_{4t,4s}$, for all $t, s \in \mathbb{Z}^+$.

Proof Let $X = \{x_0, x_1, x_2, x_3\}$ and $Y = \{y_0, y_1, y_2, y_3\}$ be the parts of $K_{4,4}$. Consider $\mathcal{C} = \{(x_2 - y_2, x_3, y_3, x_0 - y_0, x_1, y_1), (y_2 - x_0, y_1, x_3, y_0 - x_2, y_3, x_1)\}$ to get an outside perfect 8-cycle decomposition of $K_{4,4}$.

Next let $\mathcal{X} = \{x_0, x_1, \dots, x_{4t-1}\}$ and $\mathcal{Y} = \{y_0, y_1, \dots, y_{4s-1}\}$ be the parts of $K_{4t,4s}$, where $X_i = \{x_{4i}, x_{4i+1}, x_{4i+2}, x_{4i+3}\}$, $Y_j = \{y_{4j}, y_{4j+1}, y_{4j+2}, y_{4j+3}\}$ for $i = 0, 1, 2, \dots, t-1, j = 0, 1, \dots, s-1$ and $t, s \in \mathbb{Z}^+$. Placing an outside perfect 8-cycle decomposition of $K_{4,4}$ on the vertex set $X_i \cup Y_j$ for each pair i, j gives us an outside perfect 8-cycle decomposition of $K_{4t,4s}$.

Lemma 2.2 There exists an outside perfect 8-cycle decomposition of $K_{4t,4s+2}$, for all $t, s \in \mathbb{Z}^+$.

Proof Let $X = \{x_0, x_1, x_2, x_3\}$ and $Y = \{y_0, y_1, y_2, y_3, y_4, y_5\}$ be the parts of $K_{4,6}$. Consider $\mathcal{C} = \{(x_2 - y_2, x_3, y_3, x_0 - y_4, x_1, y_1), (x_2 - y_4, x_3, y_5, x_0 - y_0, x_1, y_3), (y_2 - x_0, y_1, x_3, y_0 - x_2, y_5, x_1)\}$ to get an outside perfect 8-cycle decomposition of $K_{4,6}$.

Next let $\mathcal{X} = \{x_0, x_1, \dots, x_{4t-1}\}$ and $\mathcal{Y} = \{y_0, y_1, \dots, y_{4s+1}\}$ be the parts of $K_{4t,4s+2}$, where $X_i = \{x_{4i}, x_{4i+1}, x_{4i+2}, x_{4i+3}\}$, $Y_0 = \{y_0, y_1, y_2, y_3, y_4, y_5\}$, $Y_j = \{y_{4j+2}, y_{4j+3}, y_{4j+4}, y_{4j+5}\}$ for $i = 0, 1, \dots, t-1$, $j = 1, 2, \dots, s-1$ and $t, s \in \mathbb{Z}^+$. Placing an outside perfect 8-cycle decomposition of $K_{4,4}$ on the vertex set $X_i \cup Y_j$ for each pair i, j and $j \ge 1$, and an outside perfect 8-cycle decomposition of $K_{4,6}$ on the vertex set $X_i \cup Y_0$ for each $i = 0, 1, \dots, t-1$ gives us an outside perfect 8-cycle decomposition of $K_{4,6}$ on the vertex set $X_i \cup Y_0$ for each $i = 0, 1, \dots, t-1$ gives us an outside perfect 8-cycle decomposition of $K_{4,6}$ on the vertex set $X_i \cup Y_0$ for each $i = 0, 1, \dots, t-1$ gives us an outside perfect 8-cycle decomposition of $K_{4t,4s+2}$.

Lemma 2.3 If there exist an outside perfect 8-cycle system of order r + 1 and an outside perfect 8-cycle decomposition of $K_{r,s}$, then there exists an outside perfect 8-cycle decomposition of $K_{r+s+1} \setminus K_{s+1}$.

Proof Let $\mathcal{X} = \{\infty\} \cup \{x_1, x_2, \dots, x_r\} \cup \{y_1, y_2, \dots, y_s\}$. Placing an outside perfect 8-cycle system of order r + 1 on $\{\infty\} \cup \{x_1, x_2, \dots, x_r\}$ and an outside perfect 8-cycle decomposition of $K_{r,s}$ on $\{x_1, x_2, \dots, x_r\} \cup \{y_1, y_2, \dots, y_s\}$ gives an outside perfect 8-cycle decomposition of $K_{r+s+1} \setminus K_{s+1}$, where the vertex set of K_{s+1} is $\{\infty\} \cup \{y_1, y_2, \dots, y_s\}$.

Lemma 2.4 If there exist outside perfect maximum 8-cycle packings of order r and of order s with a 1-factor leave and an outside perfect 8-cycle decomposition of $K_{r,s}$, then there exists an outside perfect maximum 8-cycle packing of order r + s with a 1-factor leave.

Proof Let $\mathcal{X} = \{x_1, x_2, \ldots, x_r\} \cup \{y_1, y_2, \ldots, y_s\}$. Placing an outside perfect maximum 8-cycle packing of order r on $\{x_1, x_2, \ldots, x_r\}$ and s on $\{y_1, y_2, \ldots, y_s\}$ and an outside perfect 8-cycle decomposition of $K_{r,s}$ on $\{x_1, x_2, \ldots, x_r\} \cup \{y_1, y_2, \ldots, y_s\}$ gives an outside perfect maximum 8-cycle packing of order r+s with a 1-factor leave.

The main construction

Let $X = H \cup \{(i, j) \mid 1 \le i \le k, 1 \le j \le 16\}$, where $|H| \in \{0, 1, \dots, 15\}$ and $k \in \mathbb{Z}^+$.

(1) On $H \cup \{(1, j) \mid 1 \le j \le 16\}$, place an outside perfect maximum 8-cycle packing of order 16 + h, where h = |H|.

(2) On each set $H \cup \{(i, j) \mid 1 \le j \le 16\}$, for $2 \le i \le k$, place an outside perfect 8-cycle decomposition of $K_{16+h} \setminus K_h$.

(3) For each x, y = 1, 2, ..., k, x < y place an outside perfect 8-cycle decomposition of $K_{16,16}$ on $\{(x, j) \mid 1 \le j \le 16\} \cup \{(y, j) \mid 1 \le j \le 16\}$.

If the necessary systems in (1), (2) and (3) exist, this construction gives an outside perfect maximum 8-cycle packing of order 16k + h.

3 Small examples

Example 3.1 An outside perfect maximum 8-cycle packing of order 8.

Let $\mathcal{X} = \mathbb{Z}_8$, $\mathcal{L} = \{\{0, 1\}, \{2, 3\}, \{4, 5\}, \{6, 7\}\}$ and $\mathcal{C} = \{(2 - 1, 3, 4, 6 - 5, 7, 0), (5 - 1, 7, 4, 2 - 6, 0, 3), (1 - 6, 3, 7, 2 - 5, 0, 4)\}.$

Example 3.2 An outside perfect maximum 8-cycle packing of order 10.

Let $\mathcal{X} = \mathbb{Z}_{10}$, $\mathcal{L} = \{\{0, 1\}, \{2, 3\}, \{4, 5\}, \{6, 7\}, \{8, 9\}\}$ and $\mathcal{C} = \{(3 - 4, 6, 5, 7 - 0, 2, 1), (0 - 3, 5, 1, 4 - 8, 2, 9), (2 - 6, 8, 7, 9 - 5, 0, 4), (7 - 4, 9, 3, 8 - 0, 6, 1), (5 - 2, 7, 3, 6 - 9, 1, 8)\}.$

Example 3.3 An outside perfect maximum 8-cycle packing of order 11.

Let $\mathcal{X} = \mathbb{Z}_{11}$, $\mathcal{L} = \{(0, 1, 2), (3, 4, 5, 6)\}$ and $\mathcal{C} = \{(1 - 4, 2, 5, 7 - 6, 0, 3), (6 - 1, 5, 8, 9 - 10, 0, 4), (9 - 4, 8, 10, 1 - 7, 0, 5), (6 - 10, 3, 2, 7 - 9, 0, 8), (9 - 1, 8, 3, 7 - 4, 10, 2), (6 - 9, 3, 5, 10 - 7, 8, 2)\}.$

Example 3.4 Outside perfect maximum 8-cycle packings of orders 12, 14, 20 and 22.

Following the construction in Lemma 2.4 considering s = 4 and: r = 8 for the order 12, r = 10 for the order 14, r = 16 for the order 20 and r = 18 for the order 22, setting $\{y_1, y_2, y_3, y_4\}$ as the vertex set of K_4 in the leave, gives outside perfect maximum 8-cycle packings of orders 12, 14, 20 and 22. The leave is a K_4 and a set of independent edges saturating the remaining elements.

Example 3.5 An outside perfect maximum 8-cycle packing of order 13.

Let $\mathcal{X} = \mathbb{Z}_{13}$, $\mathcal{L} = \{(0, 1, 2, 3, 4, 5)\}$ and $\mathcal{C} = \{(6 - 7, 8, 9, 10 - 11, 12, 0), (7 - 10, 12, 9, 11 - 6, 8, 0), (11 - 8, 10, 5, 3 - 0, 2, 4), (3 - 8, 2, 5, 11 - 0, 4, 9), (1 - 3, 7, 2, 6 - 10, 0, 9), (3 - 12, 7, 9, 5 - 1, 4, 10), (6 - 3, 11, 2, 12 - 5, 8, 1), (12 - 6, 9, 2, 10 - 1, 7, 4), (5 - 6, 4, 8, 12 - 1, 11, 7)\}.$

Example 3.6 An outside perfect maximum 8-cycle packing of order 15.

Let $\mathcal{X} = \mathbb{Z}_{15}$, $\mathcal{L} = \{(6, 11, 12, 13, 14), (7, 8, 9, 10)\}$ and $\mathcal{C} = \{(4 - 5, 8, 10, 12 - 0, 1, 2), (12 - 5, 9, 11, 4 - 0, 14, 7), (3 - 10, 2, 6, 13 - 0, 8, 1), (13 - 10, 1, 11, 3 - 0, 2, 9), (9 - 14, 8, 2, 11 - 0, 5, 1), (11 - 14, 12, 3, 9 - 0, 10, 5), (6 - 1, 4, 3, 13 - 5, 7, 0), (7 - 3, 2, 12, 8 - 4, 14, 1), (6 - 5, 14, 2, 13 - 1, 12, 4), (3 - 8, 6, 9, 4 - 7, 2, 5), (6 - 7, 13, 8, 11 - 10, 14, 3), (10 - 6, 12, 9, 7 - 11, 13, 4)\}.$

Example 3.7 Outside perfect maximum 8-cycle packings of order 16 and 18.

In Lemma 2.4, considering r = 8 and: s = 8 for the order 16 and s = 10 for the order 18 gives outside perfect maximum 8-cycle packings of orders 16 and 18 with a 1-factor leave.

Example 3.8 An outside perfect 8-cycle system of order 17.

Let $\mathcal{X} = \{\infty\} \cup \{1, 2, ..., 16\}$. Place a copy of an outside perfect 8-cycle decomposition of $K_{4,6}$ where the groups of size 4 and 6 are $\{1, 2, 3, 4\}$ and $\{11, 12, 13, 14, 15, 16\}$, and a copy of an outside perfect 8-cycle maximum packing of order 13 on $\{\infty\} \cup \{5, 6, ..., 16\}$ being sure that the 6-cycle leave is (5, 6, 7, 8, 9, 10). Then place the following five outside perfect 8-cycles $(1-2, 3, 5, 6-7, 4, \infty), (2-5, 10, 4, 1-8, 3, \infty), (8-7, 2, 4, 6-1, 3, 9), (1-5, 4, 9, 2-6, 3, 10), (1-7, 3, 4, 8-2, 10, 9)$ on the uncovered edges.

Example 3.9 An outside perfect maximum 8-cycle packing of order 19.

Let $\mathcal{X} = \{\infty_1, \infty_2, \infty_3\} \cup \{x_1, x_2, \dots, x_8\} \cup \{y_1, y_2, \dots, y_8\}$. Place a copy of an outside perfect maximum 8-cycle packing of order 11 on $\{\infty_1, \infty_2, \infty_3\} \cup \{x_1, x_2, \dots, x_8\}$ and on $\{\infty_1, \infty_2, \infty_3\} \cup \{y_1, y_2, \dots, y_8\}$ being sure that the 3-cycle in the leave is $(\infty_1, \infty_2, \infty_3)$ in both systems and the 4-cycles in the leave are (x_1, x_2, x_3, x_4) and (y_1, y_2, y_3, y_4) . Then place an outside perfect maximum 8-cycle packing of order 8 on $\{x_1, x_2, x_3, x_4\} \cup \{y_1, y_2, y_3, y_4\}$ being sure the 1-factor leave is $\{\{x_1, x_3\}, \{x_2, x_4\}, \{y_1, y_3\}, \{y_2, y_4\}\}$ and an outside perfect 8-cycle decomposition of $K_{4,4}$ on $\{x_1, x_2, x_3, x_4\} \cup \{y_5, y_6, y_7, y_8\}$, on $\{x_5, x_6, x_7, x_8\} \cup \{y_1, y_2, y_3, y_4\}$ and on $\{x_5, x_6, x_7, x_8\} \cup \{y_1, y_2, y_3, y_4\}$ and on $\{x_5, x_6, x_7, x_8\} \cup \{y_5, y_6, y_7, y_8\}$. Then the leave of the system will be $(\infty_1, \infty_2, \infty_3)$.

Example 3.10 An outside perfect maximum 8-cycle packing of order 21.

Considering r = 16 and s = 4 in Lemma 2.3 gives an outside perfect 8-cycle decomposition of $K_{21} \setminus K_5$, therefore an outside perfect 8-cycle packing of order 21 with leave a K_5 on $\{\infty\} \cup \{y_1, y_2, y_3, y_4\}$.

Example 3.11 An outside perfect maximum 8-cycle packing of order 23.

Let $\mathcal{X} = \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\} \cup \{x_1, x_2, \dots, x_8\} \cup \{y_1, y_2, \dots, y_{10}\}$. Place a copy of an outside perfect maximum 8-cycle packing of order 15 on $\{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\}$ $\cup \{y_1, y_2, \ldots, y_{10}\}$ with leave a 5 cycle $(\infty_1, \infty_2, \infty_3, \infty_4, \infty_5)$ and a 4-cycle $(y_1, y_2, y_3, \ldots, y_{10})$ y_4). Place a copy of an outside perfect maximum 8-cycle packing of $K_{13} \setminus K_5$ on $\{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\} \cup \{x_1, x_2, \dots, x_8\}$ where the vertex set of the hole K_5 is $\{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\}$, the leave 4-cycle is (x_1, x_2, x_3, x_4) . Then place an outside perfect maximum 8-cycle packing of order 8 on $\{x_1, x_2, x_3, x_4\} \cup \{y_1, y_2, y_3, y_4\}$ being sure that the 1-factor leave is $\{\{x_1, x_3\}, \{x_2, x_4\}, \{y_1, y_3\}, \{y_2, y_4\}\}$, an outside perfect 8-cycle decomposition of $K_{4,4}$ on $\{x_5, x_6, x_7, x_8\} \cup \{y_1, y_2, y_3, y_4\}$, an outside perfect 8-cycle decomposition of $K_{4,6}$ on $\{x_1, x_2, x_3, x_4\} \cup \{y_5, y_6, y_7, y_8, y_9, y_{10}\}$ and on $\{x_5, x_6, x_7, x_8\} \cup \{y_5, y_6, y_7, y_8, y_9, y_{10}\}$. The eight 8-cycles of an outside perfect maximum 8-cycle packing of $K_{13} \setminus K_5$ is $(\infty_1 - x_1, \infty_2, x_2, \infty_3 - x_3, \infty_4, x_4), (x_1 - x_1, \infty_2, x_2, \infty_3 - x_3, \infty_4, x_4)$ $\infty_3, x_4, \infty_2, x_3 - \infty_1, x_2, \infty_4), (\infty_1, x_5, \infty_2, x_6, \infty_3 - x_7, \infty_4, x_8), (x_7 - \infty_1, x_6, \infty_4, x_5 - x_7, \infty_4, x_8), (x_8 - x_8, \infty_1, x_8, \infty_2, x_8, \infty_3 - x_7, \infty_4, x_8), (x_8 - x_8, \infty_1, x_8, \infty_2, x_8, \infty_3 - x_7, \infty_4, x_8)$ $x_7, x_2, x_6, x_5 - x_8, x_4, \infty_5), (x_3 - x_8, x_2, x_4, x_5 - x_7, x_6, x_1).$

Example 3.12 An outside perfect maximum 8-cycle packing of order 25.

Let $\mathcal{X} = \{\infty\} \cup X_1 \cup X_2 \cup X_3 \cup Y_1 \cup Y_2$, where $X_1 = \{0, 1, 2, 3, 4, 5\}, Y_1 = \{6, 7, 8, 9, 10, 11\}$ and $|X_2| = |X_3| = |Y_2| = 4$. Place a copy of an outside perfect maximum 8-cycle packing of order 15 on $\{\infty\} \cup X_1 \cup X_2 \cup X_3$, where the leave is the 5-cycle (0, 1, 2, 3, 4) and a 4-cycle in X_2 . Now place a copy of an outside perfect maximum 8-cycle packing of order 11 on $\{\infty\} \cup Y_1 \cup Y_2$, where the leave is the 3-cycle (6, 7, 8) and a 4-cycle in Y_2 . Then place an outside perfect maximum 8-cycle packing of order 11 on $\{\infty\} \cup Y_1 \cup Y_2$, where the leave is the 3-cycle (6, 7, 8) and a 4-cycle in Y_2 . Then place an outside perfect maximum 8-cycle packing of order 8 on $X_2 \cup Y_2$, an outside perfect 8-cycle decomposition of $K_{4,4}$ on $X_3 \cup Y_2$, and an outside perfect 8-cycle decomposition of $K_{4,6}$ on $X_2 \cup Y_1$, on $X_3 \cup Y_1$ and on $X_1 \cup Y_2$. Finally place the following 5 outside perfect 8-cycles (3 - 2, 6, 1, 8 - 7, 0, 4), (8 - 2, 9, 4, 10 - 5, 11, 0), (3 - 7, 4, 11, 2 - 10, 0, 9), (2 - 7, 5, 6, 8 - 3, 11, 1), (5 - 8, 4, 6, 3 - 10, 1, 9) on the uncovered edges of $X_1 \cup Y_1$. Note that the leave of this packing is (0, 1, 7, 6)

Example 3.13 Outside perfect maximum 8-cycle packings of $K_{22} \setminus K_6$, $K_{24} \setminus K_8$, $K_{26} \setminus K_{10}$, $K_{28} \setminus K_{12}$ and $K_{30} \setminus K_{14}$.

In Lemma 2.4, considering r = 16; and s = 6 for the case $K_{22} \setminus K_6$, s = 8 for the case $K_{24} \setminus K_8$, s = 10 for the case $K_{26} \setminus K_{10}$, s = 12 for the case $K_{28} \setminus K_{12}$ and s = 14 for the case $K_{30} \setminus K_{14}$ but keeping the hole of order s on $\{y_1, y_2, \ldots, y_s\}$ gives the required decompositions with a 1-factor leave on $\{x_1, x_2, \ldots, x_r\}$. **Example 3.14** Outside perfect 8-cycle decompositions of $K_{23} \setminus K_7$, $K_{25} \setminus K_9$, $K_{27} \setminus K_{11}$, $K_{29} \setminus K_{13}$ and $K_{31} \setminus K_{15}$.

In Lemma 2.3, considering r = 16 and; s = 6 for the case $K_{23} \setminus K_7$, s = 8 for the case $K_{25} \setminus K_9$, s = 10 for the case $K_{27} \setminus K_{11}$, s = 12 for the case $K_{29} \setminus K_{13}$ and s = 14 for the case $K_{31} \setminus K_{15}$ gives an outside perfect 8-cycle decompositions of $K_{23} \setminus K_7$, $K_{25} \setminus K_9$, $K_{27} \setminus K_{11}$, $K_{29} \setminus K_{13}$ and $K_{31} \setminus K_{15}$.

4 Maximum packings with outside perfect 8-cycles

We will consider ten cases for n modulo 16.

Lemma 4.1 For every $n \equiv 1 \pmod{16}$ there exists an outside perfect 8-cycle system of order n.

Proof Let h = 1 in the main construction. Since there exist an outside perfect 8-cycle system of order 17 by Example 3.8 and an outside perfect 8-cycle decomposition of $K_{16,16}$ by Lemma 2.1, the result follows.

Lemma 4.2 For every $n \equiv 3 \pmod{16}$ there exists an outside perfect maximum 8-cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 19 with a C_3 leave by Example 3.9 and therefore an outside perfect 8-cycle decomposition of $K_{19} \setminus K_3$. The result follows by the main construction considering h = 3.

Lemma 4.3 For every $n \equiv 5 \pmod{16}$ there exists an outside perfect maximum 8-cycle packing of order n.

Proof There exists an outside perfect maximum 8-cycle packing of order 21 with a K_5 leave by Example 3.10. The result follows by the main construction considering h = 5.

Lemma 4.4 For every $n \equiv 7 \pmod{16}$ there exists an outside perfect maximum 8-cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 23 with a 5-cycle leave by Example 3.11 and an outside perfect 8-cycle decomposition of $K_{23} \setminus K_7$ by Example 3.14. The result follows by the main construction considering h = 7. \Box

Lemma 4.5 For every $n \equiv 9 \pmod{16}$ except n = 9, there exists an outside perfect maximum 8-cycle packing of order n.

Proof A comprehensive computer search showed that none of the maximum 8-cycle packings of order 9 is outside perfect. So the smallest case when $n \equiv 9 \pmod{16}$ is 25. There exist an outside perfect maximum 8-cycle packing of order 25 with a 4-cycle leave and an outside perfect 8-cycle decomposition of $K_{25} \setminus K_9$ by Examples 3.12 and 3.14. The result follows by the main construction considering h = 9. \Box

Lemma 4.6 For every $n \equiv 11 \pmod{16}$ there exists an outside perfect maximum 8-cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 11 with a 3-cycle and a 4-cycle leave, and an outside perfect 8-cycle decomposition of $K_{27} \setminus K_{11}$ by Examples 3.3 and 3.14. The result follows by the main construction considering h = 11.

Lemma 4.7 For every $n \equiv 13 \pmod{16}$ there exists an outside perfect maximum 8-cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 13 with a 6-cycle leave, and an outside perfect 8-cycle decomposition of $K_{29} \setminus K_{13}$ by Examples 3.5 and 3.14. The result follows by the main construction considering h = 13.

Lemma 4.8 For every $n \equiv 15 \pmod{16}$ there exists an outside perfect maximum 8-cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 15 with a 4-cycle and a 5-cycle leave, and an outside perfect 8-cycle decomposition of $K_{31} \setminus K_{15}$ by Examples 3.6 and 3.14. The result follows by the main construction considering h = 15.

Lemma 4.9 For every $n \equiv 0, 2, 8$ and 10 (mod 16) there exists an outside perfect maximum 8-cycle packing of order n.

Proof There exist outside perfect maximum 8-cycle packings of order 10, 16 and 18, outside perfect maximum 8-cycle decompositions of $K_{24} \setminus K_8$ and $K_{26} \setminus K_{10}$ by Examples 3.2, 3.7 and 3.13. The result follows by the main construction by considering h = 0, 2, 8 and 10, where the leave is a 1-factor.

Lemma 4.10 For every $n \equiv 4, 6, 12$ and 14 (mod 16) there exists an outside perfect maximum 8-cycle packing of order n.

Proof There exist outside perfect maximum 8-cycle packings of order 12, 14, 20 and 22, outside perfect maximum 8-cycle decompositions of $K_{22} \setminus K_6$, $K_{28} \setminus K_{12}$ and $K_{30} \setminus K_{14}$ by Examples 3.4 and 3.13. The result follows by the main construction by considering h = 4, 6, 12, 14, where the leave is a K_4 and 1-factor on the remaining vertices.

Combining Lemmas 4.1 to 4.10 gives the following result.

Theorem 4.11 There exists an outside perfect maximum 8-cycle packing of order n for every $n \ge 8$, except n = 9 for which no such system exists.

References

- P. Adams and E. J. Billington, The spectrum for 2-perfect 8-cycle systems, Ars Combin. 36 (1993), 47–56.
- [2] P. Adams, E. J. Billington and D. E. Bryant, Partitionable perfect cycle systems with cycle lengths 6 and 8, *Discrete Math.* 149 (1-3) (1996), 1–9.
- [3] L. Berardi, M. Gionfriddo and R. Rota, Perfect octagon quadrangle systems, Discrete Math. 310 (2010), 1979–1985.
- [4] L. Berardi, M. Gionfriddo and R. Rota, Perfect octagon quadrangle systems with upper C_4 -systems, J. Stat. Plann. Inf. 141 (7) (2011), 2249–2255.
- [5] L. Berardi, M. Gionfriddo and R. Rota, Perfect octagon quadrangle systems II, Discrete Math. 312 (3) (2012), 614–620.
- [6] E. J. Billington and A. Khodkar, Twofold 2-perfect 8-cycle systems with an extra property, J. Combin. Math. Combin. Comput. 77 (2011), 243–252.
- [7] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC, Boca Raton, FL (2007). Online updates www.emba.uvm.edu/~dinitz/newresults.html.
- [8] Q. Kang, M. Li and J. Huo, Nonisomorphic maximum packing and minimum covering of K_v with 8-cycles, *Graphs Combin.* 29 (4) (2013), 1007–1040.
- [9] M. Li, J. Huo and Z. Gao, Maximum packings and minimum coverings of K_v with octagons, *Graphs Combin.* 25 (5) (2009), 735–752.
- [10] E. M. Li Marzi, C. C. Lindner, F. Rania and R. M. Wilson, $\{2,3\}$ -perfect *m*-cycle systems are equationally defined for m = 5, 7, 8, 9, and 11 only, *J. Combin. Des.* 12 (6) (2004), 449–458.
- [11] C. C. Lindner, G. Lo Faro, M. Meszka and A. Tripodi, Squashing maximum packings of K_n with 8-cycles into maximum packings of K_n with 4 cycles, *Filomat* 28 (4) (2014), 887–896.
- [12] C. C. Lindner, M. Meszka and A. Rosa, Converting a 6-cycle system into a Steiner triple system, Australas. J. Combin. 71 (3) (2018), 394–402.
- [13] M. Sajna, Cycle decompositions III. Complete graphs and fixed length cycles, J. Combin. Des. 10 (1) (2002), 27–78.