Outside perfect 8-cycle systems

Selda KüçüKçifçi
Department of Mathematics
Koç University, Istanbul
Turkey
skucukcifci@ku.edu.tr
Charles Curtis Lindner
Department of Mathematics and Statistics
Auburn University
U.S.A.
lindncc@auburn.edu
\section*{Emine Şule Yazici}
Department of Mathematics
Koç University, Istanbul Turkey
eyazici@ku.edu.tr
In memory of Anne Penfold Street

Abstract

The two 4 -cycles (a, b, c, d) and (e, f, g, h) are called the outside 4 -cycles of the 8-cycle (a, b, c, d, e, f, g, h). Given an 8 -cycle system, if we can form a 4 -cycle system by choosing two outside 4 -cycles from each 8 -cycle in the system, then the 8 -cycle system is called outside perfect.

In this paper we prove that an outside perfect maximum packing of K_{n} with 8 -cycles of order n exists for all $n \geq 8$, except $n=9$, for which no such system exists.

1 Introduction

An m-cycle system of order n is a pair $(\mathcal{X}, \mathcal{C})$ where \mathcal{X} is a finite set and \mathcal{C} is a collection of edge-disjoint m-cycles which partitions the edge-set of the complete undirected graph K_{n} with vertex set \mathcal{X}. The spectrum for m-cycle systems (that is,
the set of all n such that an m-cycle system of order n exists) is the set of all n such that [13]
(i) $n \geq m \geq 3$,
(ii) $n \equiv 1(\bmod 2)$ and
(iii) $n(n-1) / 2 m$ is an integer.

An m-cycle, C_{m}, with edges $a_{i} a_{i+1}$ for $1 \leq i \leq m-1$ and $a_{1} a_{m}$ will be denoted by $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. In this paper we will study m-cycle systems when $m=8$ and consider the following property. For each 8 -cycle (a, b, c, d, e, f, g, h) we will call the two 4 -cycles (b, c, d, e) and (a, f, g, h) as outside 4 -cycles of the 8 -cycle and denote the 8 -cycle by $(a-b, c, d, e-f, g, h)$. Note that for every 8 -cycle there are 4 different possible pairs of such 4 -cycles. Given an 8 -cycle system $(\mathcal{X}, \mathcal{C})$, let $8(4) C$ be the collection of outside 4 -cycles of the 8 -cycles in C (two 4 -cycles from each 8 -cycle in $\mathcal{C})$. If $8(4) C$ is a 4 -cycle system, C is said to be outside perfect. We can extend the existence of outside perfect 8 -cycle systems problem to maximum packings of K_{n} with 8-cycles (see [8] and [9]) by constructing for every $n \geq 8$; a maximum packing $(\mathcal{X}, \mathcal{C}, \mathcal{L})$ of K_{n} with 8 -cycles so that $(\mathcal{X}, 8(4) C, \mathcal{L})$ is also a packing, where $8(4) C$ is a collection of outside 4 -cycles of the 8 -cycles of \mathcal{C}, and \mathcal{L} is the leave of the maximum packing. We call such a maximum packing an outside perfect maximum packing with 8-cycles.

In this paper we will construct outside perfect maximum packings of K_{n} with 8 -cycles for all $n \geq 8$, except $n=9$, for which no such system exists.

The existence of outside perfect maximum packing of K_{n} with 6-cycles has been recently introduced and solved by Lindner, Meszka and Rosa in [12]. Studies on different properties of perfect 8-cycle systems and different forms of related systems can be found in $[1,2,3,4,5,6,7,10,11]$.

The following table lists leaves that are considered for the maximum packings with 8 -cycles.

Spectrum for maximum packing with 8-cycles	Leave
$1(\bmod 16)$	\emptyset
$3(\bmod 16)$	C_{3}
$5(\bmod 16)$	K_{5}
$7(\bmod 16)$	C_{5}
$9(\bmod 16), n \neq 9$	C_{4}
$11(\bmod 16)$	$C_{3}+C_{4}$
$13(\bmod 16)$	C_{6}
$15(\bmod 16)$	$C_{4}+C_{5}$
$0,2,8,10(\bmod 16)$	1 -factor
$4,6,12,14(\bmod 16)$	$K_{4}+$ a 1-factor on the remaining vertices

Table 1: Maximum packings with 8-cycles

2 Preliminary results and the main construction

We will start by introducing the necessary construction and lemmas that we will use throughout the paper.

Lemma 2.1 There exists an outside perfect 8-cycle decomposition of $K_{4 t, 4 s}$, for all $t, s \in \mathbb{Z}^{+}$.

Proof Let $X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{0}, y_{1}, y_{2}, y_{3}\right\}$ be the parts of $K_{4,4}$. Consider $\mathcal{C}=\left\{\left(x_{2}-y_{2}, x_{3}, y_{3}, x_{0}-y_{0}, x_{1}, y_{1}\right),\left(y_{2}-x_{0}, y_{1}, x_{3}, y_{0}-x_{2}, y_{3}, x_{1}\right)\right\}$ to get an outside perfect 8 -cycle decomposition of $K_{4,4}$.

Next let $\mathcal{X}=\left\{x_{0}, x_{1}, \ldots, x_{4 t-1}\right\}$ and $\mathcal{Y}=\left\{y_{0}, y_{1}, \ldots, y_{4 s-1}\right\}$ be the parts of $K_{4 t, 4 s}$, where $X_{i}=\left\{x_{4 i}, x_{4 i+1}, x_{4 i+2}, x_{4 i+3}\right\}, Y_{j}=\left\{y_{4 j}, y_{4 j+1}, y_{4 j+2}, y_{4 j+3}\right\}$ for $i=$ $0,1,2, \ldots, t-1, j=0,1, \ldots, s-1$ and $t, s \in \mathbb{Z}^{+}$. Placing an outside perfect 8-cycle decomposition of $K_{4,4}$ on the vertex set $X_{i} \cup Y_{j}$ for each pair i, j gives us an outside perfect 8-cycle decomposition of $K_{4 t, 4 s}$.

Lemma 2.2 There exists an outside perfect 8-cycle decomposition of $K_{4 t, 4 s+2}$, for all $t, s \in \mathbb{Z}^{+}$.

Proof Let $X=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$ be the parts of $K_{4,6}$. Consider $\mathcal{C}=\left\{\left(x_{2}-y_{2}, x_{3}, y_{3}, x_{0}-y_{4}, x_{1}, y_{1}\right),\left(x_{2}-y_{4}, x_{3}, y_{5}, x_{0}-y_{0}, x_{1}, y_{3}\right),\left(y_{2}-\right.\right.$ $\left.\left.x_{0}, y_{1}, x_{3}, y_{0}-x_{2}, y_{5}, x_{1}\right)\right\}$ to get an outside perfect 8-cycle decomposition of $K_{4,6}$.

Next let $\mathcal{X}=\left\{x_{0}, x_{1}, \ldots, x_{4 t-1}\right\}$ and $\mathcal{Y}=\left\{y_{0}, y_{1}, \ldots, y_{4 s+1}\right\}$ be the parts of $K_{4 t, 4 s+2}$, where $X_{i}=\left\{x_{4 i}, x_{4 i+1}, x_{4 i+2}, x_{4 i+3}\right\}, Y_{0}=\left\{y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}, Y_{j}=\left\{y_{4 j+2}\right.$, $\left.y_{4 j+3}, y_{4 j+4}, y_{4 j+5}\right\}$ for $i=0,1, \ldots, t-1, j=1,2, \ldots, s-1$ and $t, s \in \mathbb{Z}^{+}$. Placing an outside perfect 8-cycle decomposition of $K_{4,4}$ on the vertex set $X_{i} \cup Y_{j}$ for each pair i, j and $j \geq 1$, and an outside perfect 8-cycle decomposition of $K_{4,6}$ on the vertex set $X_{i} \cup Y_{0}$ for each $i=0,1, \ldots, t-1$ gives us an outside perfect 8-cycle decomposition of $K_{4 t, 4 s+2}$.

Lemma 2.3 If there exist an outside perfect 8 -cycle system of order $r+1$ and an outside perfect 8-cycle decomposition of $K_{r, s}$, then there exists an outside perfect 8-cycle decomposition of $K_{r+s+1} \backslash K_{s+1}$.

Proof Let $\mathcal{X}=\{\infty\} \cup\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$. Placing an outside perfect 8 -cycle system of order $r+1$ on $\{\infty\} \cup\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and an outside perfect 8cycle decomposition of $K_{r, s}$ on $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ gives an outside perfect 8 -cycle decomposition of $K_{r+s+1} \backslash K_{s+1}$, where the vertex set of K_{s+1} is $\{\infty\} \cup\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$.

Lemma 2.4 If there exist outside perfect maximum 8-cycle packings of order r and of order s with a 1-factor leave and an outside perfect 8 -cycle decomposition of $K_{r, s}$, then there exists an outside perfect maximum 8-cycle packing of order $r+s$ with a 1 -factor leave.

Proof Let $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$. Placing an outside perfect maximum 8-cycle packing of order r on $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and s on $\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ and an outside perfect 8-cycle decomposition of $K_{r, s}$ on $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ gives an outside perfect maximum 8-cycle packing of order $r+s$ with a 1-factor leave.

The main construction

Let $X=H \cup\{(i, j) \mid 1 \leq i \leq k, 1 \leq j \leq 16\}$, where $|H| \in\{0,1, \ldots, 15\}$ and $k \in \mathbb{Z}^{+}$.
(1) On $H \cup\{(1, j) \mid 1 \leq j \leq 16\}$, place an outside perfect maximum 8-cycle packing of order $16+h$, where $h=|H|$.
(2) On each set $H \cup\{(i, j) \mid 1 \leq j \leq 16\}$, for $2 \leq i \leq k$, place an outside perfect 8-cycle decomposition of $K_{16+h} \backslash K_{h}$.
(3) For each $x, y=1,2, \ldots, k, x<y$ place an outside perfect 8-cycle decomposition of $K_{16,16}$ on $\{(x, j) \mid 1 \leq j \leq 16\} \cup\{(y, j) \mid 1 \leq j \leq 16\}$.

If the necessary systems in (1), (2) and (3) exist, this construction gives an outside perfect maximum 8 -cycle packing of order $16 k+h$.

3 Small examples

Example 3.1 An outside perfect maximum 8-cycle packing of order 8 .
Let $\mathcal{X}=\mathbb{Z}_{8}, \mathcal{L}=\{\{0,1\},\{2,3\},\{4,5\},\{6,7\}\}$ and $\mathcal{C}=\{(2-1,3,4,6-5,7,0)$, $(5-1,7,4,2-6,0,3),(1-6,3,7,2-5,0,4)\}$.

Example 3.2 An outside perfect maximum 8-cycle packing of order 10.
Let $\mathcal{X}=\mathbb{Z}_{10}, \mathcal{L}=\{\{0,1\},\{2,3\},\{4,5\},\{6,7\},\{8,9\}\}$ and $\mathcal{C}=\{(3-4,6,5,7-$ $0,2,1),(0-3,5,1,4-8,2,9),(2-6,8,7,9-5,0,4),(7-4,9,3,8-0,6,1),(5-$ $2,7,3,6-9,1,8)\}$.

Example 3.3 An outside perfect maximum 8-cycle packing of order 11.
Let $\mathcal{X}=\mathbb{Z}_{11}, \mathcal{L}=\{(0,1,2),(3,4,5,6)\}$ and $\mathcal{C}=\{(1-4,2,5,7-6,0,3),(6-$ $1,5,8,9-10,0,4),(9-4,8,10,1-7,0,5),(6-10,3,2,7-9,0,8),(9-1,8,3,7-4,10,2)$, $(6-9,3,5,10-7,8,2)\}$.

Example 3.4 Outside perfect maximum 8-cycle packings of orders 12, 14, 20 and 22.
Following the construction in Lemma 2.4 considering $s=4$ and: $r=8$ for the order $12, r=10$ for the order $14, r=16$ for the order 20 and $r=18$ for the order 22 , setting $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ as the vertex set of K_{4} in the leave, gives outside perfect maximum 8 -cycle packings of orders $12,14,20$ and 22 . The leave is a K_{4} and a set of independent edges saturating the remaining elements.

Example 3.5 An outside perfect maximum 8-cycle packing of order 13.
Let $\mathcal{X}=\mathbb{Z}_{13}, \mathcal{L}=\{(0,1,2,3,4,5)\}$ and $\mathcal{C}=\{(6-7,8,9,10-11,12,0),(7-$ $10,12,9,11-6,8,0),(11-8,10,5,3-0,2,4),(3-8,2,5,11-0,4,9),(1-3,7,2,6-$ $10,0,9),(3-12,7,9,5-1,4,10),(6-3,11,2,12-5,8,1),(12-6,9,2,10-1,7,4)$, $(5-6,4,8,12-1,11,7)\}$.

Example 3.6 An outside perfect maximum 8-cycle packing of order 15.
Let $\mathcal{X}=\mathbb{Z}_{15}, \mathcal{L}=\{(6,11,12,13,14),(7,8,9,10)\}$ and $\mathcal{C}=\{(4-5,8,10,12-$ $0,1,2),(12-5,9,11,4-0,14,7),(3-10,2,6,13-0,8,1),(13-10,1,11,3-0,2,9)$, $(9-14,8,2,11-0,5,1),(11-14,12,3,9-0,10,5),(6-1,4,3,13-5,7,0),(7-$ $3,2,12,8-4,14,1),(6-5,14,2,13-1,12,4),(3-8,6,9,4-7,2,5),(6-7,13,8,11-$ $10,14,3),(10-6,12,9,7-11,13,4)\}$.

Example 3.7 Outside perfect maximum 8-cycle packings of order 16 and 18.
In Lemma 2.4, considering $r=8$ and: $s=8$ for the order 16 and $s=10$ for the order 18 gives outside perfect maximum 8 -cycle packings of orders 16 and 18 with a 1 -factor leave.

Example 3.8 An outside perfect 8-cycle system of order 17.
Let $\mathcal{X}=\{\infty\} \cup\{1,2, \ldots, 16\}$. Place a copy of an outside perfect 8-cycle decomposition of $K_{4,6}$ where the groups of size 4 and 6 are $\{1,2,3,4\}$ and $\{11,12,13,14,15,16\}$, and a copy of an outside perfect 8-cycle maximum packing of order 13 on $\{\infty\} \cup$ $\{5,6, \ldots, 16\}$ being sure that the 6 -cycle leave is $(5,6,7,8,9,10)$. Then place the following five outside perfect 8 -cycles $(1-2,3,5,6-7,4, \infty),(2-5,10,4,1-8,3, \infty)$, $(8-7,2,4,6-1,3,9),(1-5,4,9,2-6,3,10),(1-7,3,4,8-2,10,9)$ on the uncovered edges.

Example 3.9 An outside perfect maximum 8-cycle packing of order 19.
Let $\mathcal{X}=\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{8}\right\}$. Place a copy of an outside perfect maximum 8-cycle packing of order 11 on $\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ and on $\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{8}\right\}$ being sure that the 3 -cycle in the leave is $\left(\infty_{1}, \infty_{2}, \infty_{3}\right)$ in both systems and the 4 -cycles in the leave are $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. Then place an outside perfect maximum 8 -cycle packing of order 8 on $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ being sure the 1 -factor leave is $\left\{\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{4}\right\}\right.$, $\left.\left\{y_{1}, y_{3}\right\},\left\{y_{2}, y_{4}\right\}\right\}$ and an outside perfect 8-cycle decomposition of $K_{4,4}$ on $\left\{x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}\right\} \cup\left\{y_{5}, y_{6}, y_{7}, y_{8}\right\}$, on $\left\{x_{5}, x_{6}, x_{7}, x_{8}\right\} \cup\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and on $\left\{x_{5}, x_{6}, x_{7}, x_{8}\right\} \cup\left\{y_{5}, y_{6}\right.$, $\left.y_{7}, y_{8}\right\}$. Then the leave of the system will be $\left(\infty_{1}, \infty_{2}, \infty_{3}\right)$.

Example 3.10 An outside perfect maximum 8-cycle packing of order 21.
Considering $r=16$ and $s=4$ in Lemma 2.3 gives an outside perfect 8-cycle decomposition of $K_{21} \backslash K_{5}$, therefore an outside perfect 8-cycle packing of order 21 with leave a K_{5} on $\{\infty\} \cup\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$.

Example 3.11 An outside perfect maximum 8-cycle packing of order 23.
Let $\mathcal{X}=\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{8}\right\} \cup\left\{y_{1}, y_{2}, \ldots, y_{10}\right\}$. Place a copy of an outside perfect maximum 8-cycle packing of order 15 on $\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\}$ $\cup\left\{y_{1}, y_{2}, \ldots, y_{10}\right\}$ with leave a 5 cycle $\left(\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right)$ and a 4 -cycle $\left(y_{1}, y_{2}, y_{3}\right.$, y_{4}). Place a copy of an outside perfect maximum 8-cycle packing of $K_{13} \backslash K_{5}$ on $\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ where the vertex set of the hole K_{5} is $\left\{\infty_{1}, \infty_{2}, \infty_{3}, \infty_{4}, \infty_{5}\right\}$, the leave 4 -cycle is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Then place an outside perfect maximum 8 -cycle packing of order 8 on $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ being sure that the 1 -factor leave is $\left\{\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{4}\right\},\left\{y_{1}, y_{3}\right\},\left\{y_{2}, y_{4}\right\}\right\}$, an outside perfect 8-cycle decomposition of $K_{4,4}$ on $\left\{x_{5}, x_{6}, x_{7}, x_{8}\right\} \cup\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, an outside perfect 8 -cycle decomposition of $K_{4,6}$ on $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{y_{5}, y_{6}, y_{7}, y_{8}, y_{9}, y_{10}\right\}$ and on $\left\{x_{5}, x_{6}, x_{7}, x_{8}\right\} \cup\left\{y_{5}, y_{6}, y_{7}, y_{8}, y_{9}, y_{10}\right\}$. The eight 8 -cycles of an outside perfect maximum 8-cycle packing of $K_{13} \backslash K_{5}$ is $\left(\infty_{1}-x_{1}, \infty_{2}, x_{2}, \infty_{3}-x_{3}, \infty_{4}, x_{4}\right)$, $\left(x_{1}-\right.$ $\left.\infty_{3}, x_{4}, \infty_{2}, x_{3}-\infty_{1}, x_{2}, \infty_{4}\right),\left(\infty_{1}, x_{5}, \infty_{2}, x_{6}, \infty_{3}-x_{7}, \infty_{4}, x_{8}\right),\left(x_{7}-\infty_{1}, x_{6}, \infty_{4}, x_{5}-\right.$ $\left.\infty_{3}, x_{8}, \infty_{5}\right),\left(x_{1}-\infty_{5}, x_{5}, x_{3}, x_{6}-x_{8}, \infty_{2}, x_{7}\right),\left(x_{1}-x_{8}, x_{7}, x_{4}, x_{6}-\infty_{5}, x_{2}, x_{5}\right),\left(x_{3}-\right.$ $\left.x_{7}, x_{2}, x_{6}, x_{5}-x_{8}, x_{4}, \infty_{5}\right),\left(x_{3}-x_{8}, x_{2}, x_{4}, x_{5}-x_{7}, x_{6}, x_{1}\right)$.

Example 3.12 An outside perfect maximum 8-cycle packing of order 25.
Let $\mathcal{X}=\{\infty\} \cup X_{1} \cup X_{2} \cup X_{3} \cup Y_{1} \cup Y_{2}$, where $X_{1}=\{0,1,2,3,4,5\}, Y_{1}=$ $\{6,7,8,9,10,11\}$ and $\left|X_{2}\right|=\left|X_{3}\right|=\left|Y_{2}\right|=4$. Place a copy of an outside perfect maximum 8-cycle packing of order 15 on $\{\infty\} \cup X_{1} \cup X_{2} \cup X_{3}$, where the leave is the 5 -cycle $(0,1,2,3,4)$ and a 4 -cycle in X_{2}. Now place a copy of an outside perfect maximum 8-cycle packing of order 11 on $\{\infty\} \cup Y_{1} \cup Y_{2}$, where the leave is the 3-cycle $(6,7,8)$ and a 4 -cycle in Y_{2}. Then place an outside perfect maximum 8-cycle packing of order 8 on $X_{2} \cup Y_{2}$, an outside perfect 8-cycle decomposition of $K_{4,4}$ on $X_{3} \cup Y_{2}$, and an outside perfect 8-cycle decomposition of $K_{4,6}$ on $X_{2} \cup Y_{1}$, on $X_{3} \cup Y_{1}$ and on $X_{1} \cup Y_{2}$. Finally place the following 5 outside perfect 8 -cycles $(3-2,6,1,8-$ $7,0,4),(8-2,9,4,10-5,11,0),(3-7,4,11,2-10,0,9),(2-7,5,6,8-3,11,1)$, ($5-8,4,6,3-10,1,9$) on the uncovered edges of $X_{1} \cup Y_{1}$. Note that the leave of this packing is $(0,1,7,6)$

Example 3.13 Outside perfect maximum 8-cycle packings of $K_{22} \backslash K_{6}, K_{24} \backslash K_{8}$, $K_{26} \backslash K_{10}, K_{28} \backslash K_{12}$ and $K_{30} \backslash K_{14}$.

In Lemma 2.4, considering $r=16$; and $s=6$ for the case $K_{22} \backslash K_{6}, s=8$ for the case $K_{24} \backslash K_{8}, s=10$ for the case $K_{26} \backslash K_{10}, s=12$ for the case $K_{28} \backslash K_{12}$ and $s=14$ for the case $K_{30} \backslash K_{14}$ but keeping the hole of order s on $\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ gives the required decompositions with a 1 -factor leave on $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$.

Example 3.14 Outside perfect 8-cycle decompositions of $K_{23} \backslash K_{7}, K_{25} \backslash K_{9}, K_{27} \backslash$ $K_{11}, K_{29} \backslash K_{13}$ and $K_{31} \backslash K_{15}$.

In Lemma 2.3, considering $r=16$ and; $s=6$ for the case $K_{23} \backslash K_{7}, s=8$ for the case $K_{25} \backslash K_{9}, s=10$ for the case $K_{27} \backslash K_{11}, s=12$ for the case $K_{29} \backslash K_{13}$ and $s=14$ for the case $K_{31} \backslash K_{15}$ gives an outside perfect 8-cycle decompositions of $K_{23} \backslash K_{7}$, $K_{25} \backslash K_{9}, K_{27} \backslash K_{11}, K_{29} \backslash K_{13}$ and $K_{31} \backslash K_{15}$.

4 Maximum packings with outside perfect 8-cycles

We will consider ten cases for n modulo 16 .

Lemma 4.1 For every $n \equiv 1(\bmod 16)$ there exists an outside perfect 8 -cycle system of order n.

Proof Let $h=1$ in the main construction. Since there exist an outside perfect 8cycle system of order 17 by Example 3.8 and an outside perfect 8 -cycle decomposition of $K_{16,16}$ by Lemma 2.1, the result follows.

Lemma 4.2 For every $n \equiv 3(\bmod 16)$ there exists an outside perfect maximum 8 -cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 19 with a C_{3} leave by Example 3.9 and therefore an outside perfect 8-cycle decomposition of $K_{19} \backslash K_{3}$. The result follows by the main construction considering $h=3$.

Lemma 4.3 For every $n \equiv 5(\bmod 16)$ there exists an outside perfect maximum 8 -cycle packing of order n.

Proof There exists an outside perfect maximum 8-cycle packing of order 21 with a K_{5} leave by Example 3.10. The result follows by the main construction considering $h=5$.

Lemma 4.4 For every $n \equiv 7(\bmod 16)$ there exists an outside perfect maximum 8 -cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 23 with a 5cycle leave by Example 3.11 and an outside perfect 8-cycle decomposition of $K_{23} \backslash K_{7}$ by Example 3.14. The result follows by the main construction considering $h=7$.

Lemma 4.5 For every $n \equiv 9(\bmod 16)$ except $n=9$, there exists an outside perfect maximum 8-cycle packing of order n.

Proof A comprehensive computer search showed that none of the maximum 8-cycle packings of order 9 is outside perfect. So the smallest case when $n \equiv 9(\bmod 16)$ is 25 . There exist an outside perfect maximum 8 -cycle packing of order 25 with a 4-cycle leave and an outside perfect 8-cycle decomposition of $K_{25} \backslash K_{9}$ by Examples 3.12 and 3.14. The result follows by the main construction considering $h=9$.

Lemma 4.6 For every $n \equiv 11(\bmod 16)$ there exists an outside perfect maximum 8 -cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 11 with a 3-cycle and a 4-cycle leave, and an outside perfect 8-cycle decomposition of $K_{27} \backslash K_{11}$ by Examples 3.3 and 3.14. The result follows by the main construction considering $h=11$.

Lemma 4.7 For every $n \equiv 13(\bmod 16)$ there exists an outside perfect maximum 8 -cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 13 with a 6 -cycle leave, and an outside perfect 8-cycle decomposition of $K_{29} \backslash K_{13}$ by Examples 3.5 and 3.14. The result follows by the main construction considering $h=13$.

Lemma 4.8 For every $n \equiv 15(\bmod 16)$ there exists an outside perfect maximum 8 -cycle packing of order n.

Proof There exist an outside perfect maximum 8-cycle packing of order 15 with a 4-cycle and a 5-cycle leave, and an outside perfect 8-cycle decomposition of $K_{31} \backslash K_{15}$ by Examples 3.6 and 3.14. The result follows by the main construction considering $h=15$.

Lemma 4.9 For every $n \equiv 0,2,8$ and $10(\bmod 16)$ there exists an outside perfect maximum 8-cycle packing of order n.
Proof There exist outside perfect maximum 8-cycle packings of order 10, 16 and 18, outside perfect maximum 8-cycle decompositions of $K_{24} \backslash K_{8}$ and $K_{26} \backslash K_{10}$ by Examples 3.2, 3.7 and 3.13. The result follows by the main construction by considering $h=0,2,8$ and 10 , where the leave is a 1 -factor.
Lemma 4.10 For every $n \equiv 4,6,12$ and 14 (mod 16) there exists an outside perfect maximum 8-cycle packing of order n.
Proof There exist outside perfect maximum 8-cycle packings of order 12, 14, 20 and 22 , outside perfect maximum 8-cycle decompositions of $K_{22} \backslash K_{6}, K_{28} \backslash K_{12}$ and $K_{30} \backslash K_{14}$ by Examples 3.4 and 3.13. The result follows by the main construction by considering $h=4,6,12,14$, where the leave is a K_{4} and 1 -factor on the remaining vertices.

Combining Lemmas 4.1 to 4.10 gives the following result.
Theorem 4.11 There exists an outside perfect maximum 8-cycle packing of order n for every $n \geq 8$, except $n=9$ for which no such system exists.

References

[1] P. Adams and E. J. Billington, The spectrum for 2-perfect 8-cycle systems, Ars Combin. 36 (1993), 47-56.
[2] P. Adams, E. J. Billington and D. E. Bryant, Partitionable perfect cycle systems with cycle lengths 6 and 8, Discrete Math. 149 (1-3) (1996), 1-9.
[3] L. Berardi, M. Gionfriddo and R. Rota, Perfect octagon quadrangle systems, Discrete Math. 310 (2010), 1979-1985.
[4] L. Berardi, M. Gionfriddo and R. Rota, Perfect octagon quadrangle systems with upper C_{4}-systems, J. Stat. Plann. Inf. 141 (7) (2011), 2249-2255.
[5] L. Berardi, M. Gionfriddo and R. Rota, Perfect octagon quadrangle systems II, Discrete Math. 312 (3) (2012), 614-620.
[6] E. J. Billington and A. Khodkar, Twofold 2-perfect 8-cycle systems with an extra property, J. Combin. Math. Combin. Comput. 77 (2011), 243-252.
[7] C. J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC, Boca Raton, FL (2007). Online updates www.emba.uvm.edu/~dinitz/newresults.html.
[8] Q. Kang, M. Li and J. Huo, Nonisomorphic maximum packing and minimum covering of K_{v} with 8-cycles, Graphs Combin. 29 (4) (2013), 1007-1040.
[9] M. Li, J. Huo and Z. Gao, Maximum packings and minimum coverings of K_{v} with octagons, Graphs Combin. 25 (5) (2009), 735-752.
[10] E. M. Li Marzi, C. C. Lindner, F. Rania and R. M. Wilson, $\{2,3\}$-perfect m-cycle systems are equationally defined for $m=5,7,8,9$, and 11 only, J. Combin. Des. 12 (6) (2004), 449-458.
[11] C. C. Lindner, G. Lo Faro, M. Meszka and A. Tripodi, Squashing maximum packings of K_{n} with 8 -cycles into maximum packings of K_{n} with 4 cycles, Filomat 28 (4) (2014), 887-896.
[12] C. C. Lindner, M. Meszka and A. Rosa, Converting a 6 -cycle system into a Steiner triple system, Australas. J. Combin. 71 (3) (2018), 394-402.
[13] M. Šajna, Cycle decompositions III. Complete graphs and fixed length cycles, J. Combin. Des. 10 (1) (2002), 27-78.

