
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 71(3) (2018), Pages 452–467

Hadamard Matrices, Orthogonal Designs and
Clifford-Gastineau-Hills Algebras

Jennifer Seberry

School of Computing and Information Technology
University of Wollongong, NSW 2522

Australia
jennifer_seberry@uow.edu.au

Dedicated with great respect to Anne Penfold Street

Abstract

Research into the construction of Hadamard matrices and orthogonal
designs has led to deeper algebraic and combinatorial concepts. This
paper surveys the place of amicability, repeat designs and the Clifford and
Clifford-Gastineau-Hills algebras in laying the foundations for a Theory
of Orthogonal Designs.

Research into the existence question for Hadamard matrices has been crucial in
forcing the study of related theoretical results. The pioneering work by Kathy Ho-
radam in her studies on the five-fold path [12], and her ground-breaking efforts with
Warwick de Launey on cocyclic Hadamard matrices [4] are examples, and the foun-
dational efforts by Warwick de Launey and Dane Flannery [3] on algebraic design
theory yet another. Paul Leopardi has explored their relationship to amicability/anti-
amicability graphs [16]. Other authors have concentrated further on their applica-
tions and structure in multidimensional space.

To construct Hadamard matrices, Geramita and Seberry [8] used orthogonal de-
signs. This survey discusses the path from Hadamard matrices to orthogonal designs,
amicable Hadamard matrices and anti-amicable Hadamard matrices to amicable or-
thogonal designs, and then to constructs called product designs and repeat designs.
In each case the number of variables possible has been solved by converting the
question into algebra. The study of the role of algebras in orthogonal design con-
structions leads us to see that product designs are subsets of repeat designs. The
algebras of orthogonal designs are Clifford algebras and the algebras of repeat designs
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are Clifford-Gastineau-Hills algebras. The study of the algebras allows us to obtain
exactly the maximum possible number of variables in each of the designs studied.

We consider Clifford algebras in a more complex context, over fields of charac-
teristic 2: we observe that in fact characteristic �= 2 is easier to deal with, and
characteristic 2 is a special case. We do not treat these, but refer the reader to
Lam [15], O’Meara [17], Kawada and Iwahori [14] and Artin [1]. The more modern
view has been that Clifford algebras arise naturally from quadratic forms. In fact
the class of all Clifford algebras corresponding to non-singular quadratic forms over
a field F of characteristic not 2 coincides with the class of all F -algebras, C, on a
finite number of generators {αi} with defining equations of the form

α2
i = ki (some ki ∈ F = F \ {0})

αjαi = −αiαj (i �= j). (1)

We identify ki in F with ki1C in C.
This leads to questions about how this knowledge, when applied to Hadamard ma-

trices of orders which are powers of two, may be able to have embedded substructures
to hide messages and/or improve some error correction capabilities. Conceivably such
deeper knowledge may have applications in other areas such as spectrometry, sound
enhancement or compression and other signal processing.

1 Introduction

Eddington, in 1932, in his studies of relativity, raised the combinatorial question
“What is the largest number of matrices of a given order which can anti-commute
and square to −I, I the identity matrix?” (see [5,6]). Strongly related to this is the
work of Radon and Hurwitz [7, 13, 18] on orthogonal matrices and the composition
of quadratic forms which we also use. We will see that a set of p n × n matrices Ei

which satisfy the algebraic conditions

E2
i = −I (1 ≤ i ≤ p)

EjEi = −EiEj (1 ≤ i < j ≤ p) ,
(2)

is necessary for the existence of an orthogonal design of order n on p + 1 variables.
That it is sufficient is not immediately clear, since the Ei must satisfy other

combinatorial conditions, namely

each Ei is a {0, ±1} matrix and Ej ∗ Ei = 0 (i �= j) , (3)

where “*” is the Hadamard product defined as

(aij) ∗ (bij) = (aijbij)

the component-wise multiplication.
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An algebra, which is associative with a “1”, on p generators, α1, . . . , αp say, with
defining equations

α2
i = −1 (1 ≤ i ≤ p)

αjαi = −αiαj (1 ≤ i < j ≤ p) .
(4)

is an example of the well-known Clifford Algebras.

2 Orthogonal Designs

While orthogonal designs are known (see [23]) with complex and quaternion elements,
we shall only consider cases with real entries.

Definition 1. An orthogonal design A, of order n, and type (s1, s2, . . . , su), denoted

OD(n; s1, s2, . . . , su)

on the commuting variables (±x1, ±x2, . . . , ±xu, 0) is a square matrix of order n with
real entries ±xk where each xk occurs sk times in each row and column such that the
distinct rows are pairwise orthogonal. In other words it has the additive property,

AA� =
(
s1x2

1 + . . . + sux2
u

)
In (5)

where In is the identity matrix.

We use the notation ‘−’ for −1. Later we use the following notation:
OD(n; s1, . . . , sm) orthogonal design or OD

XX� = (
m∑

i=1
six

2
i )In,

where In is the identity matrix of order n. That is, ±xi occurs si times in each row
(and column) of X. See [23, p1].

AOD(n : (u1, . . . , us); (v1, . . . vt)) amicable orthogonal designs or AOD when (i)
X is an OD(n; u1, . . . , us), (ii) Y is an OD(n; v1, . . . , us), and (iii) XY � = Y X�.
See [23, p157].

P OD(n : a1, a2 . . . , ar; b1, . . . bs; c1, . . . , ct) product (orthogonal) design or POD
when (i) M1 is an OD(n; a1, . . . , ar), (ii) M2 is an OD(n; b1, . . . , bs), (iii) N is an
OD(n; c1, . . . , ct) and (I) M1∗N = M2∗N = 0 (* the Hadamard product), (II) M1+N
is an OD(n; a1, . . . , ar, c1, . . . , ct), (III) M2 + N is an OD(n; b1, . . . , bs, c1, . . . , ct) and
(IV) M1 and M2 are AOD(n : (a1, . . . , ar); (b1, . . . , bs)). See [23, p215].

ROD(n : (r1, r2 . . .); (p11, p12 . . . ; p21, p22, . . . ; . . . ; . . .); (h1, h2 . . .)) repeat (orthog-
onal) design or ROD when
(i) X is an OD(n; r1, r2, . . .),
(ii) Yi is an OD(n; pi1, pi2, . . .),
(iii) Z is an OD(n; h1, h2, . . .) and (I) X ∗ Yi = 0 (* the Hadamard product),
(II) X + Yi are OD(n; r1, r2, . . . , pi1, pi2, . . . , ),
(III) X + Yi and Z are AOD(n; (r1, r2, . . . , pi1, pi2, . . .); (h1, h2, . . .)) and
(IV) Yi and Yj are AOD(n : (pi1, pi2, . . .); (pj1, pj2, . . .)), i �= j. See [23, pp.221-222].
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Example 1. We observe the OD(4; 1, 1, 1, 1), D, and note it can be written, up to
equivalence, as either

D =

⎡
⎢⎢⎢⎣

a b c d
−b a −d c
−c d a −b
−d −c b a

⎤
⎥⎥⎥⎦ (6)

or as the sum
D = aE1 + bE2 + cE3 + dE4 ,

where a, b, c and d are commuting variables (they do not need to be real) and

E1 =

⎡
⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ E2 =

⎡
⎢⎢⎢⎣

0 1 0 0
− 0 0 0
0 0 0 −
0 0 1 0

⎤
⎥⎥⎥⎦

E3 =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− 0 0 0
0 − 0 0

⎤
⎥⎥⎥⎦ E4 =

⎡
⎢⎢⎢⎣

0 0 0 1
0 0 − 0
0 1 0 0

− 0 0 0

⎤
⎥⎥⎥⎦ .

Since D is an orthogonal design,

DD� =
(
a2 + b2 + c2 + d2

)
I4 .

The algebraic conditions which make this an orthogonal design are

E2
1 = I , E2

i = −I (2 ≤ i ≤ 4)
EjEi = −EiEj (1 ≤ i < j ≤ 4) ,

(7)

and the combinatorial conditions which make this an orthogonal design are

each Ei is a {0, ±1} matrix and Ej ∗ Ei = 0 (i �= j) . (8)

Thus we have linked the orthogonal design, the quadratic form a2+b2+c2+d2 and
the Clifford-type algebras together. The orthogonal design has the extra properties
that E2

1 = I and disjointness of matrices in the combinatorial conditions.
The fact that the structure and representation theory of the Clifford algebra

(4) are known means that Eddington’s problem can be solved (see Kawada and
Iwahori, [14]). Moreover this representation theory is known to give a complete
solution to the problem of determining the possible orders of orthogonal designs on
any number of variables. As noted above, the maximum number of variables in
an orthogonal design is ρ(n), the Radon number, where for n = 2ab, b odd, and
a = 4c + d, 0 ≤ d < 4, we have ρ(n) = 8c + 2d [8].

We note the similarity of equations (2) with those of (7) and (1).
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3 Amicable Orthogonal Designs

In the paper, Geramita-Geramita-Wallis [10], the following remarkable pairs of ma-
trices are given:

X2 =
[
x1 x2
x2 −x1

]
; Y2 =

[
y1 y2

−y2 y1

]
; (9)

and

X4 =

⎡
⎢⎢⎢⎣

x1 x2 x3 x3
−x2 x1 x3 −x3

x3 x3 −x1 −x2
x3 −x3 x2 −x1

⎤
⎥⎥⎥⎦ ; Y4 =

⎡
⎢⎢⎢⎣

y1 y2 y3 y3
y2 −y1 y3 −y3

−y3 −y3 y2 y1
−y3 y3 y1 −y2

⎤
⎥⎥⎥⎦ . (10)

They are remarkable in that they satisfy XiY
�

i = YiX
�
i and are called amicable

orthogonal designs AOD(2 : (1, 1; 1, 1)) and AOD(4 : (1, 1, 2; 1, 1, 2)) respectively.
The first pair satisfy the following equations

XX� =
(
x2

1 + x2
2

)
I2

Y Y � =
(
y2

1 + y2
2

)
I2 (11)

XY � =
[
x1y1 + x2y2 −x1y2 + x2y1
x2y1 − x1y2 −x1y1 − x2y2

]
= Y X�.

Thus the quadratic form has the unique property that it factors into (x2
1+x2

2)(y2
1 +y2

2).
[
XY �] [

XY �]�
= XY �Y X� =

(
x2

1 + x2
2

) (
y2

1 + y2
2

)
I2 . (12)

The second pair satisfies the equations

XX� =
(
x2

1 + x2
2 + 2x2

3

)
I4 ,

Y Y � =
(
y2

1 + y2
2 + 2y2

3

)
I4 ,

XY � = Y X� , (13)

and
[
XY �] [

XY �]�
= XY �Y X� =

(
x2

1 + x2
2 + 2x2

3

) (
y2

1 + y2
2 + 2y2

3

)
I4 .

We then ask do any more such amicable pairs of matrices exist? If so, then how
many variables can occur in each of any such pair of orthogonal designs, called am-
icable orthogonal designs, for a given order. The question of the maximum number
of variables has been solved completely by Shapiro in his PhD thesis and published
in [24]. Orders 2, 4 and 8 are constructed in the PhD Thesis of D. J. Street [25] and
Y. Zhao [28]. Seberry [23, Sections 5.5, 5.9] discusses orders 2, 4, and 8 but other
orders remain, as yet, unconstructed. The next problem is to determine whether
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orthogonal designs actually exist satisfying these necessary conditions for the exis-
tence of amicable orthogonal designs. Fortunately the papers and PhD Thesis of P.
Robinson give many possibilities [19, 21, 23].

In constructing Hadamard matrices amicability and anti-amicability proved a
useful tool. Its extension to orthogonal designs proved decisive in the equating and
killing theorem of Geramita and Seberry [8]. Indeed it is crucial to Craigen’s [2]
extension to the previously known asymptotic existence results [26].

So let us be more precise and investigate further.

Definition 2. Two orthogonal designs X and Y are said to be amicable if XY � =
Y X� and to be anti-amicable if XY � = −Y X�. An amicable k-set will be used
to describe a set of k matrices X1, . . . , Xk which pairwise satisfy XiX

�
j = XjX

�
i

for all 1 ≤ i, j ≤ k and an anti-amicable k-set if X1, . . . , Xk pairwise satisfy
XiX

�
j = −XjX

�
i for all 1 ≤ i, j ≤ k, i �= j.

Remark 1. We note that the definitions of amicable k-set and anti-amicable k-
set are mentioned here for purely historical reasons. It was Wolfe’s [27] inspiration
in considering amicable pairs and amicable triples that led to the insight of the
importance of Clifford algebras (4) in solving the question of the number of variables
possible in an orthogonal design. However, as we will see, amicable k-sets or k-tuples
are a special case of repeat designs.

Example 2. We now use part of a proof of Lemma 5.142 of Geramita and Seberry [8].
Where the matrices below have blank space, they should be considered to be filled
with zeros. We give two examples of amicable triples (three matrices which are
pairwise amicable) to show their existence. A. Neeman found the following (1, 7, 1)
which has 1, 7, and 1 non-zero entries in each row and column respectively:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
− 0

0 1
− 0

0 1
− 0

0 1
− 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 − − 1 1 1
− 0 1 1 − − − 1
− − 0 1 1 1 1 1
1 − − 0 − 1 − 1
1 1 − 1 0 − 1 1
− 1 − − 1 0 − 1
− 1 − 1 − 1 0 −
− − − − − − 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The following three matrices give a (2, 7, 1), illustrating that the concept of amicable
triples might lead to different kinds of construction:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0
− 0 0 −
− 0 0 1
0 1 − 0

0 0 1 1
0 0 1 −
− − 0 0
− 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 − 1 − − 1
− 0 1 − − 1 1 1
− − 0 1 1 1 − 1
1 1 − 0 1 1 1 1
− 1 − − 0 1 − −
1 − − − − 0 − 1
1 − 1 − 1 1 0 −
− − − − 1 − 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0 − 0 0
− 0 0 0
0 0 1 0
0 0 0 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We note that the pair of matrices, X4 and Y4, given by equation (10) may be
written as

X4 =
3∑

i=1
xiAi , Y4 =

3∑
i=1

yiBi , (14)

(Ai, Bj {0, ±1, ±2} matrices where Ai ∗ Aj = 0, Bi ∗ Bj = 0, for i �= j) . (15)

Substituting (14) into (13) and comparing like terms gives:
⎧⎪⎪⎨
⎪⎪⎩

AiA
�
i = uiI, BjB

�
j = vjI,

AiA
�
j + AjA

�
i = 0 (i �= j), BiB

�
j + BjB

�
i = 0 (i �= j),

AiB
�
j = BjA

�
i (for all i, j),

and similar equations with products reversed.
Set

Ei =
1√
uiu0

AiA
�
0 , Fj =

1√
vju0

BjA
�
0 .

It is easily verified that E0 = I and E1, E2, F1, F2, F3, satisfy
⎧⎪⎪⎨
⎪⎪⎩

E2
i = −I , F 2

j = −I ,

EjEi = −EiEj (i �= j) FiFj = −FjFi (i �= j) ,

EiFj = FjEi (for all i, j) .
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The equations can be considered as a “Clifford-like algebra" with generators α1, α2,
β1, β2 and β3,

α2
i = −1 β2

i = −1 (−1 ∈ F = F/{0})
αjαi = −αiαj βjβi = −βiβj (i �= j) ,
αiβj = βjαi

4 Foundational Motivating Constructions for Orthogonal
Designs

Geramita and Seberry [8] gave a number of constructions; these were first named
product designs and repeat designs in Robinson’s PhD Thesis [19]. The next con-
struction for orthogonal designs appears in a slightly different form in [8].

Construction 1. Let x1, x2 be commuting variables and W , Y1 and Y2 be matrices
of order n described by

1. W ∗ Yi = 0, for i = 1, 2;

2. Y1Y
�

2 = Y2Y
�

1 more precisely AOD(n : (u1, u2, . . . ; v1, v2; . . . ; w));

3. W is an OD(n; w); and

4. YiW
� = −WY �

i for i = 1, 2.

Then the following matrix is an OD(2n; w, w, u1, u2, . . . , v1, v2, . . . ):[
Y1 + x1W Y2 + x2W
Y2 − x2W −Y1 + x1W

]
.

Construction 2 (Geramita-(Seberry) Wallis [11]). Let Y1, Y2, Y3 be skew-symmetric
orthogonal designs of types (pi1, pi2,
ldots), i = 1, 2, 3 in order n, and Z a symmetric OD(n; h1, h2, . . .). Further, suppose
YiY

�
j = YjY

�
i and YkZ� = ZY �

k . Then
⎡
⎢⎢⎢⎣

x1In + Y1 x2In + Y2 x3In + Y3 Z
−x2In + Y2 x1In − Y1 Z −x3In − Y3
−x3In + Y3 −Z x1In − Y1 x2In + Y2

−Z x3In − Y3 −x2In + Y2 x1In + Y1

⎤
⎥⎥⎥⎦

is an OD(4n; 1, p11, p12, . . . , 1, p21, p22, . . . , 1, p31, p32, . . . , h1, h2, . . . .

Proof. Both proofs are by straightforward verification.

Closer study of these two constructions shows that if we replace W by the identity
matrix and Z by the zero matrix O the matrices satisfy the same equations. The
first was previously used as an illustration of a product design and the second given
as an illustration of a repeat design. We now proceed to study the more general
concept of repeat designs.
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5 Repeat Orthogonal Designs

Robinson and Seberry [22] defined a repeat design, but we prefer to give the formal
definition in an alternative form given by Gastineau-Hills [6, pp.29-30]:

Definition 3. Suppose X, Y1, . . . , Yk, Z are orthogonal designs of order n, types
(u1, . . . , up), (v11, . . . , v1q1), . . . , (vk1, . . . , vkqk

), and (w1, . . . , wr) on the variables
(x1, . . . , xp), (y11, . . . , y1q1), . . . , (yk1, . . . , vkpk

), and (z1, . . . , zr) respectively, and that

(i) X ∗ Yi = 0 (for all i)
(ii) YiX

� = −XY �
i

(iii) YjY
�

i = YiY
�

j , ZX� = XZ�, ZY �
i = YiZ

� (all i, j).

Then we call the (k + 2)-set (X, Y1, . . . , Yk, Z) a repeat design of order n,

ROD(n : u1, . . . , up; v11, . . . , v1q1; . . . ; vk1, . . . , vkqk
; w1, . . . , wr)

on the variables (x1, . . . , xp; y11, . . . , y1q1; . . . ; yk1, . . . , vkpk
; z1, . . . , zr).

X, Y1, . . . , Yk, Z in Definition 3 correspond to R, P1, . . . , Pk, H respectively in [8].
Otherwise, apart from the fact that we have allowed X in Definition 3 to be on more
than one variable, the conditions here and in [8] are equivalent.

Product designs [9] may be regarded as particular cases of repeat designs, given
by k = 2, r = 0 and Z = 0 (zero matrix, which may be regarded as an orthogonal
design on no variables).

A theory of repeat designs should yield a theory of amicable k-sets, if we can
allow X = Z = 0. In the immediate following we assume that X has at least one
variable (while allowing Y1, . . . , Yk, Z to have as few as no variables each), but it will
be found that this restriction may be removed painlessly.

Remark 2. The existence problem for triples (R, S, H) which are repeat designs
(I; (R; S); H) is very difficult and far from resolved.

The following is given in Gastineau-Hills [6, pp.31-32]

XX� =
(∑p

0 ujx
2
j

)
I , YiY

�
i =

(∑qi
1 vijy

2
ij

)
I , ZZ� =

(∑r
1 wjz

2
j

)
I

YiX
� = −XY �

i .
(16)

with similar equations for X�X, etc.,
Write

X =
p∑
0

xjAj , Yi =
qi∑
1

yijBij , Z =
r∑
1

zjCj (17)

(Aj, Bij, Cj , {0 ± 1} matrices) (18)



J. SEBERRY / AUSTRALAS. J. COMBIN. 71 (3) (2018), 452–467 461

Substituting into (16) and comparing like terms gives:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AjA
�
j = ujI, BijB

�
ij = vijI, CjC

�
j = wjI,

AiA
�
j + AjA

�
i = 0 (i �= j), BijB

�
ik + BikB�

ij = 0 (j �= k),

CiC
�
j + CjC

�
i = 0 (i �= j),

BjkA�
i = −AiB

�
jk ,

Bk�B
�
ij = BijB

�
k� (i �= k) , CkB�

ij = BijC
�
k , CjA

�
i = AiC

�
j ,

and similar equations with products reversed.
Set

Ei =
1√
uiu0

AiA
�
0 , Fij =

1√
viju0

BijA
�
0 , Gi =

1√
wiu0

CiA
�
0 .

It is easy to verify E0 = I and E1, . . . , Ep, F11, . . . , F1p1, Fk1, . . . , Fkpk
, G1, . . . , Gr

satisfy
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E2
i = −I , F 2

ij = −I , G2
i = I

EjEi = −EiEj (i �= j) FikFij = −FikFij (j �= k) ,

GjGi = −GjGi (i �= j)

FjkEi = −EiFjk , GjEi = −EiGj , GkFij = −FijGk

Fk�Fij = FijFk� (i �= k) ,

Thus we have arrived at degree n representation of a real algebra which is
“Clifford-like”, with the one “non-Clifford” property that some pairs of distinct gen-
erators commute.

6 Quasi-Clifford Algebras and Clifford-Gastineau-Hills Al-
gebras

We write CGH-algebra for a Clifford-Gastineau-Hills algebra.

Definition 4. A Clifford-Gastineau-Hills algebra is a real algebra on p+q1+· · · qk +r
generators α1, . . . , αp, β11, . . . , β1q1, . . . , βk1, . . . , βkqk

, γ1, . . . , γr, with defining equa-
tions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2
i = −1 , β2

ij = −1 , γ2
i = 1 ,

αjαi = −αiαj (i �= j) , βikβij = −βijβik (j �= k) ,

γjγi = −γiγj (i �= j) ,

βjkαi = −αiβjk , γjαi = −αiγj , γkβij = −βijγk ,

βk�βij = βijβk� (i �= k) .

(19)



J. SEBERRY / AUSTRALAS. J. COMBIN. 71 (3) (2018), 452–467 462

For a repeat design of order n on p+1, q1, . . . , qk, r variables to exist it is necessary
for a real degree n faithful representation of this algebra to exist.

Gastineau-Hills [6] answers completely the questions of just what are the possible
orders of representations of (19), and whether the existence of a degree n represen-
tation of (19) is sufficient for the existence of repeat design (16).

Observe that the case of product designs is included in what we have just done
— we simply take k = 2 and r = 0.

If we also rewrite q1, q2, β1j, β2j as q, r, βj, γj respectively we find that the exis-
tence of an order n product design on (p + 1, q, r) variables implies the existence
of a degree n representation of the real algebra on p + q + r generators α1, . . . , αp,
β1, . . . , βq, γ1, . . . , γr with defining equations

⎧⎪⎪⎨
⎪⎪⎩

α2
i = β2

j = γ2
k = −1

αjαi = −αiαj , βjβi = −βiβj , γjγi = −γiγj (i �= j)
βjαi = −αiβj , γjαi = −αiγj , γjβi = βiγj ,

(20)

again a “not-quite-Clifford” algebra in that the defining equations differ slightly from
those of a Clifford algebra.

Note that (20) is not quite the same as equation (3.10) in [6, p.20], so that a
theory of amicable triples need not necessarily by itself yield a theory of product
designs.

In fact not even equation (3.8) in [6, p.18] (the algebra corresponding to more
general amicable k-sets), seems to contain (20) as a particular case.

Then we have

Theorem 1. Let (L; M1 + M2 + · · · + Ms; N) be product designs
P OD(n : a1, . . . , ap; b11, . . . , b1q1

, b21, . . . , b2q2
, . . . , bs1, . . . , bsqs; c1, . . . , ct), where Mi

is of type (bi1, . . . , biqi
).

Further, let (X; (Y1; Y2; . . . ; Yu); Z) be repeat orthogonal designs,
ROD(m : (r1, . . . , rw); (p11, . . . , p1v1

; p21, . . . , p2v2
; pu1, . . . , puvu);

h1, . . . , hx) . Then, with × the Kronecker product

L × X + M1 × Yj1 + · · · + Mk × Pjk + N × Z

is an orthogonal design of order mn and type 1 with one of the following four sets of
parameters

(i) OD(mn; a1r, . . . , apr, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs, ch1, . . . , chx),

(ii) OD(mn; a1r, . . . , apr, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs, c1h, . . . , cth),

(iii) OD(mn; ar1, . . . , arw, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs, ch1, . . . , chx),

(iv) OD(mn; ar1, . . . , arw, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs, c1h, . . . , cth).
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where a, c, r, h are the sum of some or all of the ai, ci, ri, hi, respectively, and
bi = bi1 + · · · + biqi

.

Proof. We use different combinations of the parameters by equating as necessary.

This construction is at first sight quite formidable, but we see it does lead to new
orthogonal designs [23].

Geramita and Seberry [8], using many theorems by P.J. Robinson [19], give many
results on the usefulness of the previously mentioned product designs. However, we
need to give some repeat designs as our argument is that product designs are a subset
of repeat designs. First we see that repeat designs do lead to new designs:
Example 3. The list below of repeat designs are examples of creating new designs:
for example to choose the the X, Y1, Y2 Z of the ROD(4 : (1; (1; 3); 1, 3)) we use
X = I, Y1 = T1, Y2 = T4 and Z = T0.

ROD Design
ROD(4 : (1; (1; 3); 1, 3)) (I; (T1; T4); T0)
ROD(4 : (1; (2; 3); 1, 3)) (I; (T3; T4); T0)
ROD(4 : (1; (1; 2); 1, 1, 2)) (I; (T1; T3); T3)
ROD(4 : (1; (2; 1, 2); 1, 2)) (I; (T2; T6); T7)

where

T0 =

⎡
⎢⎢⎢⎣
x y y y
y −x y y
y −y y −x
y y −x −y

⎤
⎥⎥⎥⎦ , T1 =

⎡
⎢⎢⎢⎣

0 + 0 0
− 0 0 0
0 0 0 −
0 0 + 0

⎤
⎥⎥⎥⎦ ,

T2 =

⎡
⎢⎢⎢⎣

0 0 + +
0 0 + −
− − 0 0
− + 0 0

⎤
⎥⎥⎥⎦ , T3 =

⎡
⎢⎢⎢⎣

0 0 + +
0 0 − +
− + 0 0
− − 0 0

⎤
⎥⎥⎥⎦ ,

T4 =

⎡
⎢⎢⎢⎣

0 + + +
− 0 + −
− − 0 +
− + − 0

⎤
⎥⎥⎥⎦ , T5 =

⎡
⎢⎢⎢⎣

u v w w
v −u −w w
w −w v −u
w w −u −v

⎤
⎥⎥⎥⎦ ,

T6 =

⎡
⎢⎢⎢⎣

0 a b b
−a 0 −b b
−b b 0 −a
−b −b a 0

⎤
⎥⎥⎥⎦ , T7 =

⎡
⎢⎢⎢⎣

u 0 w w
0 −u −w w
w −w 0 −u
w w −u 0

⎤
⎥⎥⎥⎦ .

These repeat designs can be constructed using Theorem 1.
ROD(4 : (1;(1, 1; 1, 1); 1)) ROD(4 : (1;(1, 1; 1, 2); 2))
ROD(4 : (1; (1, 1; 2); 1, 2)) ROD(4 : (1; (1; 1, 2); 2, 2))
ROD(4 : (1; (1, 2; 1, 2); 4))
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Example 4. There are product designs
P OD(8 : 1, 1, 2, 3; 1, 3, 3; 1), P OD(8 : 2, 2; 1, 1, 1, 1; 4) and P OD(8 : 1, 1, 1; 1, 1, 1; 5).
Then using the repeat design ROD(4 : 1; (2; 3); 1, 3) with the matrix of weight 2 used
once only, we have OD(32; (1, 1, 2, 3, 2, 9, 9, 1, 3)), OD(32; (2, 2, 2, 3, 3, 3, 4, 12)) and
OD(32; (1, 1, 1, 2, 3, 3, 5, 15)).

Since all of these have weight 31, and have 8 variables, we use the Geramita-Verner
Theorem 2.5 in [23] to increase the number of variables to 9 and obtain the following
orthogonal designs: OD(32; 1, 1, 1, 1, 2, 2, 3, 3, 9, 9), OD(32; 1, 2, 2, 2, 3, 3, 3, 4, 12) and
OD(32; 1, 1, 1, 1, 2, 3, 3, 5, 15). These last two designs are exciting.

The product designs P OD(4 : 1, 1, 1; 1, 1, 1; 1) can be used with the repeat designs
of types ROD(4 : 1; (p; 3); 1, 3), p = 1, 2, to obtain OD(16; 1, 1, 1, 1, p, p, 3, 3), p = 1, 2.
These were first given in Geramita and Seberry [8].
Remark 3. In the preceding example we have concentrated on constructing orthog-
onal designs with no zero. There is considerable scope to exploit these constructions
to look for other orthogonal designs in order 32 and higher powers of 2.

We can collect the results from Example 3 in the following statement:
Proposition 1. In order 4 there exist repeat designs of types (1; (r; s); h) for 0 ≤ r,
s ≤ 3, 0 ≤ h ≤ 4.

Noting that the repeat designs (R; (P ); H) are just amicable orthogonal designs
R + P and H , we see that:
Corollary 1. There exist AOD(4; (1, r), (h)) for 0 ≤ r ≤ 3, 0 ≤ h ≤ 4.
Remark 4. The non-existence of AOD(8; (1, 7), (5)) and AOD(16; (1, 15), (1))
means there are no repeat designs of types (1; (r; 7); 5) in order 8 and (1; (r; 15); 1)
in order 16 (see Robinson [20]).

6.1 Construction and Replication of Repeat Designs

We now show that many repeat designs can be constructed.
Lemma 1. Suppose AOD(n1 : (a); (b1, b2) and AOD(n2 : (c); (d1, d2) are amicable
orthogonal designs. Then there is a repeat design in order n1n2 of type ROD(n1n2 :
(b1d1; (ad2, b2d1; b2c, b1d2); ac).

Proof. Let A, x1B1 + x2B2 and C, y1D1 + y2D2 be the amicable orthogonal designs.
Then (B1 × D1;(xA × D2 + yB2 × D1;uB2 × C + wB1 × D2);A × C) is the required
repeat design.
Example 5. Let A = C =

[
1 1
1 −

]
, B1 = D1 =

[
1 0
0 1

]
, and B2 = D2 =

[
0 1− 0

]
. Then

the repeat design in order 4 and type (1; (1, 2; 1, 2); 4) is⎛
⎜⎜⎜⎝I4 ;

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

0 y x x
ȳ 0 x x̄
x̄ x̄ 0 y
x̄ x ȳ 0

⎤
⎥⎥⎥⎦ ;

⎡
⎢⎢⎢⎣

0 u w u
ū 0 ū w
w̄ u 0 ū
ū w̄ u 0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ ; z

⎡
⎢⎢⎢⎣

1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ .
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We refer the reader to Geramita and Seberry [8] for many replication results, and
we also note from [8] the following powerful result given there as Corollary 5.129.

Corollary 2. There are repeat designs of type

ROD(2t : 1; (1, 2, . . . , 2t−1; 1, 2, . . . , 2t−1); 2t).

The construction and replication lemmas given later allow us to say:

Comment 1. In order 8 there exist, in fact, repeat designs (1; (r); h) for all 0 ≤ r ≤ 7
and 0 ≤ h ≤ 8, except r = 7, h = 5 (which cannot exist).

In order 16 there exist repeat designs (1; (r); h) for all r = 1, 2, 3, . . . , 15, h =
1, 2, . . . , 16, except possibly the following pairs (r, h) : (13, 1), (13, 5), (13, 9), (15, 7),
(15, 9), (15, 15) which are undecided, and (15, 1) which does not exist.

6.2 Construction of Orthogonal Designs

The use of repeat designs is so powerful a source of orthogonal designs that it is
quite impossible to indicate all the designs constructed here. We use Robinson’s
Ph.D. Thesis [19] and Seberry [23] as a source for product designs.

The constructions using these methods [8] allow us to say:

Theorem 2. All orthogonal designs of type (2t; a, b, c, 2t − a − b − c) and of type
(a, b, c), 0 ≤ a + b + c ≤ 2t, exist for t = 2, 3, 4, 5, 6, 7, 8, 9.

Remark 5. We believe these results do, in fact, allow the construction of all full
orthogonal designs (that is, with no zero) with four variables in every power of 2,
but we have not been able to prove this result.

Example 6. There is a product design of type P OD(2t : 1, 1, 1, 1, 2, 4, . . . , 2t−4;
2, 2t−3; 2, 4, . . . , 2t−4, 2t−3, 2t−3) in order 2t. So using an amicable pair of weights
(a, b) in order n gives an OD(2tn; 1, 1, 1, 1, 2, 4, . . . , 2t−4, 2a, 2t−3a, 2b, 4b, . . . , 2t−4b,
2t−3b, 2t−3b).
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