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Abstract

The rainbow and strong rainbow connection numbers, as well as variants
of these in which the edge colorings are required to be proper, are es-
timated and in some cases determined exactly for some Cayley graphs,
including the Hamming graphs H(n, q, k), excluding the cases (i) k = n
and (ii) k < n, k even and q = 2 .
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1 Introduction

In this paper G is a finite connected graph with the edges colored. A subgraph H
of G is rainbow with respect to the coloring if no color appears more than once on
the edges of H . The graph G is rainbow-connected by the coloring if for any two
vertices u, v of G there is a rainbow u − v path in G. In this case, the coloring of
edge set E(G) of G is said to be a rainbow connection coloring of G. If for every
u, v ∈ V (G) (the vertex set of G), there is a rainbow u–v geodesic (a shortest u–v
path) in G, then G is strongly rainbow-connected by the coloring and the coloring is
a strong rainbow connection coloring of G.

The rainbow connection number of G, denoted rc(G), is the minimum number of
colors needed for a rainbow connection coloring of G. The strong rainbow connection
number of G, denoted src(G), is the minimum number of colors needed for a strong
rainbow connection coloring of G. A (strong) rainbow connection coloring of G with
(s)rc(G) colors is a minimum (strong) rainbow connection coloring of G.

Any coloring of the edges of Kn, the complete graph on n vertices, is a strong
rainbow connection coloring of Kn. Hence for n > 1, rc(G) = src(G) = 1. This
example serves to emphasize that rainbow connection colorings are not necessarily
proper edge colorings: different edges incident to the same vertex may carry the
same color.

We venture to define proper (strong) rainbow connection colorings in the same
way as (strong) rainbow connection colorings were defined, with the additional re-
quirement that the colorings be proper. Let the corresponding edge coloring pa-
rameters, the proper rainbow connection number and the proper strong rainbow
connection number, be denoted prc and psrc, respectively. Clearly, for n = 1, 2, . . .,

prc(Kn) = psrc(Kn) = χ′(Kn),

where χ′(Kn) is the chromatic index of Kn.

For a connected simple graph G, we have

diam(G) ≤ rc(G) ≤ src(G) ≤ psrc(G) ≤ |E(G)|, (1)

rc(G) ≤ prc(G), (2)

and
χ′(G) ≤ prc(G) ≤ psrc(G) (3)

where diam(G) denotes the diameter of G.

Rainbow connectivity was introduced by Chartrand et al. in [1], where rc(G) and
src(G) are evaluated forG in various classes (quite spectacularly whenG is a complete
multipartite graph), and the question of possible ordered pairs (rc(G), src(G)) is
addressed. Rainbow connections are studied in [3, 4], among which [4] is a survey of
topics and problems. In particular, [4] contains a survey of recent results on rainbow
connectivity of Cayley graphs and cartesian products. These results are essentially
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disjoint from results in our paper. We shall point out overlaps as they occur in the
progress of our paper.

For our purposes, several of the results from [1] will be useful, which are collected
in the following. (Here, Cn denotes the cycle on n vertices.)

Proposition 1.1 ([1]). (a) rc(G) = 2 if and only if src(G) = 2;

(b) rc(G) = |E(G)| if and only if G is a tree;

(c) if n ≥ 4, rc(Cn) = src(Cn) =
⌈n
2

⌉
.

Corollary 1.2. src(G) = |E(G)| if and only if G is a tree.

Proof. If G is a tree then |E(G)| = rc(G) ≤ src(G) ≤ |E(G)| by Proposition 1.1(b)
and inequalities (1), and hence src(G) = |E(G)|.

Now suppose that G is not a tree. Then G contains a shortest cycle C. For any
two vertices on C, the shortest path around C from one to the other is a shortest
path in G between the two. It follows that for any geodesic in G containing at least
an edge of C, there is a geodesic in G with the same end vertices whose intersection
with C is a geodesic in C.

By Proposition 1.1 (c) and the fact that src(C3) = src(K3) = 1, we have that
src(C) < |E(C)|. Give C a minimum strong rainbow connection coloring and then
color the remaining |E(G)| − |E(C)| edges of G with that many different colors,
all different from the colors on the edges of C. We then have a strong rainbow
connection coloring of G with src(C) + |E(G)| − |E(C)| < |E(G)| colors, and hence
src(G) < |E(G)|.

The result of Corollary 1.2 is asserted in [1] without proof.

By Proposition 1.1 and inequalities (1)–(3), if G is a tree then prc(G) = psrc(G) =
|E(G)|. The converse does not hold, since prc(K3) = psrc(K3) = 3 = |E(K3)|.
Presently we do not know of a characterization of connected graphs G such that
prc(G) = |E(G)|.

This is just one of numerous open questions bearing on the general problem
of characterizing the quadruples (a, b, c, d) such that there exits a graph G with
a = rc(G), b = src(G), c = prc(G), and d = psrc(G). Pursuit of this problem is not
our aim here. We shall close this introduction with something that we have noticed,
that refutes an obvious conjecture about the relation between rc and prc. The obvious
conjecture: if rc(G) ≥ χ′(G), then rc(G) = prc(G). A class of counterexamples is
depicted in Figure 1.

Explanation: Pm is the path on m vertices. In any rainbow connection coloring of
G, all m− 1 edges of Pm are colored differently and with colors different from any of
the colors on edges of the Kn incident to v. Therefore src(G) ≥ rc(G) ≥ 1+m−1 =
m, and src(G) = m is achieved by coloring all edges of Kn with one color.
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Kn

Figure 1: A graph G such that, if m,n ≥ 2, then rc(G) = src(G) = m and prc(G) =
psrc(G) = n+m− 2. One end of a path of order m is identified to a vertex v of the
complete graph of order n.

In any proper rainbow connection coloring of G there must be at least

χ′(Kn) =

{
n− 1, n even

n, n odd

colors on Kn as well as m−1 colors on Pm different from the n−1 different colors on
edges of Kn incident to v. Therefore psrc(G) ≥ prc(G) ≥ n−1+m−1 = n+m−2.
We get psrc(G) ≤ n+m− 2 with a proper strong rainbow connection coloring with
χ′(Kn) colors on Kn and m− 1 colors on Pm, all different from those on Kn when n
is even; when n is odd, use once on Pm the one color on Kn which is not on an edge
incident to v.

We have

psrc(G) = prc(G) = n+m− 2

≥ m = src(G) = rc(G),

while χ′(G) = Δ(G) = n. Therefore, whenever m > n > 2,

prc(G) > rc(G) > χ′(G).

2 Cubes and related graphs

The n-cube, Qn, n = 1, 2, . . . , has vertex set V (Qn) = {0, 1}n = {binary words of
length n}, with u, v ∈ {0, 1}n adjacent if and only if u and v differ at exactly one
position. Let the n positions in those binary words be numbered 1, . . . , n and color
E(Qn) as follows: if uv ∈ E(Qn) then color uv with the integer i ∈ {1, . . . , n} that
is the number of the position at which u and v differ. This coloring and inequalities
(1) show that diam(Qn) = n = rc(Qn) = src(Qn) = prc(Qn) = psrc(Qn) for all
n = 1, 2, . . .. This coloring also has the remarkable property that a path in Qn is
rainbow with respect to this coloring if and only if it is a geodesic path.

Remark. The fact that rc(Qn) = n appears in [4] (Corollary 2.67).

The coloring of Q3 is illustrated in Figure 2. The illustration in Figure 2 shows a
proper strong rainbow connection coloring of Q3 with three colors that is essentially
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Figure 2: Two essentially different proper strong rainbow connection colorings of Q3

with 3 colors.

different from the “coordinate-of-difference” coloring. You cannot get from one col-
oring to the other by renaming the colors and then applying an automorphism of Q3.
To verify this difference, observe that, for the second coloring, there are geodesics
that are not rainbow colored.

As in [5], let � denote the direct Cartesian product of graphs. Since, for n > 1,
Qn = Qn−1�K2, it is easy to see that the second coloring in Figure 2 can be extended
to a proper strong rainbow connection coloring ofQn with n colors which is essentially
different from the “coordinate-of-difference” coloring.

But we digress! Our aim here is to give some answers to the question: what
makes the cube Qn, n = 1, 2, . . . , so wonderful with regard to rainbow connectivity?
We depart from the obvious: Qn = K2� · · ·�K2︸ ︷︷ ︸

n times

is a direct product of complete

graphs. These are Cayley graphs.

Cayley graphs: Let (A,+, 0) be a non-trivial finite abelian group. Suppose that
∅ �= S ⊆ A\{0} and S = −S. The Cayley graph G = Cay(A, S) is defined by:
V (G) = A, and a, b ∈ A are adjacent in G if and only if b− a ∈ S.

Cay(A, S), thus defined, is connected if and only if the subgroup of A generated
by S is A itself. Some authors require this in the definition of Cayley graphs; we do
not.

Cayley graphs can be associated with non-abelian groups and self-inverse subsets
of them; for our purposes there is nothing to be gained (that we can see at this
point) by thus enlarging our stock of Cayley graphs. All our groups here will be
finite abelian groups.

Cayley digraphs can be defined similarly: given a non-trivial abelian group
(A,+, 0) and ∅ �= S ⊂ A\{0}, the digraph D = Cay∗(A, S) has vertex set A, and
arc set {(a, b) ∈ A2 | b− a ∈ S}. Note that S is not required to be self-inverse. D
is strongly connected if and only if every a ∈ A is a sum of elements of S. In other
words: the semigroup generated by S is A. We need the change in notation, using ∗,
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for a reason: if S = −S then the digraph D = Cay∗(A, S) is obtained from the graph
G = Cay(A, S) by replacing each edge of G by two arcs, one in each direction. In
much of graph theory the graph G and the digraph D = G∗ are interchangeable, but
this is not clear in questions about rainbow connectivity. There will be a question
about this in the last section.

If n > 1 then Kn is a Cayley graph: take any abelian group (A,+, 0) with |A| = n
and S = A\{0}. The direct product of Cayley graphs is a Cayley graph: if (Bi,+, 0)
is an abelian group, i = 1, . . . , n (we omit indices on + and 0), ∅ �= Si ⊂ Bi\{0},
Si = −Si, i = 1, . . . , n and Gi = Cay(Bi, Si), then G = G1� · · ·�Gn = Cay(A, S)
where A = B1×· · ·×Bn, a direct sum of finite abelian groups, and S = {(b1, . . . , bn) ∈
A | bi = 0 for all but one value of i, and, for that value of i, bi ∈ Si}.

We will have more on Cayley graphs in the next section. We conclude this section
with an obvious result about direct products. In the following, for any graph H , the
maximum degree of H is denoted Δ(H).

Theorem 2.1. Suppose that n > 1, G1, . . . , Gn are connected finite simple graphs,
each with at least one edge, and G = G1� · · ·�Gn. Then for each F ∈ {rc, src, prc,
psrc},

n∑
i=1

diam(Gi) ≤ F (G) ≤
n∑

i=1

F (Gi). (4)

Also,
n∑

i=1

Δ(Gi) ≤ prc(G). (5)

Proof. The first inequality in (4) follows from inequalities (1) and (2), and the fact
that diam(G) =

∑n
i=1 diam(Gi). Inequality (5) follows from (3) and the fact that

χ′(G) ≥ Δ(G) =
∑n

i=1Δ(Gi). What remains to be shown is the upper inequality
in (4).

Let each Gi be edge-colored with F (Gi) colors so that the coloring has the prop-
erty (rainbow, strong rainbow, proper rainbow, or proper strong rainbow connection)
indicated by F . Let the color sets on E(Gi) and E(Gj) be disjoint, whenever i �= j.
Now color E(G) in the obvious way: if u = (u1, . . . , un) and v = (v1, . . . , vn) are adja-
cent in G then color uv with the color on the edge uivi ∈ E(Gi), where i ∈ {1, . . . , n}
is the unique index such that ui �= vi. The resulting coloring of G has the property
indicated by F , and uses

∑n
i=1 F (Gi) colors. Thus

F (G) ≤
n∑

i=1

F (Gi).

Remark. For F = rc, the right-most inequality in (4) appears in [4] (Theorem 2.61),
together with the remark that the equality holds if rc(Gi) = diam(Gi) for each i.
For every F ∈ {rc, src, prc, psrc}, a similar condition for equality follows from (4).
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Corollary 2.2. Suppose that integers n, p1, . . . , pn > 1 and G = Kp1� · · ·�Kpn.
Then rc(G) = src(G) = n and

∑n
i=1(pi − 1) ≤ prc(G) ≤ psrc(G) ≤ ∑n

i=1 χ
′(Kpi).

Proof. As previously noted,

diam(Kpi) = 1 = rc(Kpi) = src(Kpi),

psrc(Kpi) = χ′(Kpi) = prc(Kpi),

and, by definition, Δ(Kpi) = pi − 1. The conclusions follow from Theorem 2.1.

Remark. The conclusion rc(G) = n in Corollary 2.2 appears in [4] (Corollary 2.67).

With G as in Corollary 2.2, note that the “coordinate-of-difference” coloring
serves to verify that rc(G) = src(G) = n. Also, if all pi are even, then χ′(Kpi) = pi−1,
i = 1, . . . , n. We have

prc(G) = psrc(G) =
n∑

i=1

(pi − 1).

What happens when some of the pi are odd? This is an open question.

Corollary 2.2 generalizes previously noted facts about

Qn = K2� · · ·�K2.

It may be noted that for all p1, . . . , pn > 1 the “coordinate-of-difference” edge coloring
of

G = Kp1� · · ·�Kpn

has the property that a path in G is rainbow if and only if it is a geodesic in G.

3 Hamming graphs

In this section, let n, q, and k be positive integers satisfying n ≥ 2, q ≥ 2 and
n ≥ k. The Hamming graph H = H(n, q, k) is defined by V (H) = An, where A
is a set (called an alphabet, in this context) with q elements (called letters), and u,
v ∈ An are adjacent in H if and only if they differ at exactly k positions. (In the
language of coding theory, the Hamming distance between u and v is k.) The cubes
Qn = H(n, 2, 1) are examples of Hamming graphs where k = 1. The elements of An

will be denoted as words rather than as n-tuples: a1 · · · an rather than (a1, . . . , an).

The Hamming graph H(n, q, k) is a Cayley graph: let A be an abelian group with
|A| = q, let An be the n-fold direct sum of A, and let S = {a1 · · ·an ∈ An | ai �= 0
for exactly k values of i}. Then S = −S and H(n, q, k) = Cay(An, S). For more
clarity, H = H(n, q, k) is a Cayley graph for which V (H) is a direct sum of finite
abelian groups (all identical to A), but H is not a direct product of Cayley graphs
unless k = 1, in which case H = Kq� · · ·�Kq. From Section 2, we know something
about the rainbow connectivity of cubes.
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For u, v words of the same length, let h(u, v) denote the Hamming distance
between u and v, that is, the number of positions at which u and v differ. Let
the alphabet A be a finite abelian group. For u ∈ An, the Hamming weight of u
is wt(u) = h(u, 0n), the number of positions in the word u where the letter is not
0, the identity element in A. Note that for all u, v ∈ An, h(u, v) = wt(u − v).
Also, u and v are adjacent in H(n, q, k) (q = |A|) if and only v = u + w for some
w ∈ An such that wt(w) = k. Therefore, adjacency is translation invariant in
H = H(n, q, k) = Cay(An, S) : if u, v, x ∈ V (H) and u and v are adjacent in H ,
then so are u+ x and v + x.

Theorem 3.1. H = H(n, q, k) is connected if and only if either (i) q > 2 or (ii)
q = 2, k < n, and k is odd.

Proof. If n, q, k satisfy neither (i) nor (ii) then q = 2, so we can take A = {0, 1}, and
either k = n or k < n and k is even. If k = n then H = H(n, 2, n) is a matching
consisting of 2n−1 independent edges, so H is not connected, because n > 1. If k is
even and u, v ∈ An are adjacent then wt(u) ≡ wt(v) mod 2. Therefore there is no
path in H from a vertex of even Hamming weight to one of odd Hamming weight,
so H is not connected. This finishes the proof of the “only if” assertion.

Suppose that q = 2, k < n, and k is odd. When k = 1, H = Qn, which we know
to be connected, so we may assume that 3 ≤ k < n. Because adjacency is translation
invariant, to show that H is connected it suffices to show that there is a walk in H
from 0 = 0n to each vertex of Hamming weight 1. It will suffice to show that there
is such a walk from 0 to u = 10n−1. In other words, it suffices to show that 10n−1 is
in the subgroup of An generated by S = {v ∈ An | wt(v) = k}.

For any two elements i, j ∈ {1, . . . , n}, i �= j, two k-subsets of {1, . . . , n} can be
found with symmetric difference {i, j}. This implies that v, w ∈ S can be found such
that v+w is the binary word with Hamming weight 2, with 1’s in positions i and j.
(Note that A = {0, 1} � Z2, so + and − are the same in A and in An.) Therefore,

10n−1 = 1k0n−k +

(k−1)/2∑
j=1

02j−1110n−2j−1

is in the subgroup of An generated by S. That H(n, q, k) is connected whenever
q > 2 will follow from the following lemma.

Let the distance in H between two vertices u, v ∈ An = V (H) be denoted
distH(u, v).

Lemma 3.2. Let H = H(n, q, k), q > 2, u, v ∈ An = V (H), and h(u, v) = r > 0.
If r < k then distH(u, v) = 2. Otherwise, distH(u, v) = �r/k.

Proof. Let A be an abelian group, so thatH = Cay(An, S), as above. Since adjacency
is translation invariant, we may as well assume that u = 0, so v is a word of Hamming
weight r. Without loss of generality, v = a1 · · · ar0n−r, a1, . . . , ar ∈ A\{0}.
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If r < k then 0 and v are not adjacent in H , so distH(0, v) ≥ 2. On the other
hand, because |A\{0}| = q − 1 ≥ 2, it is straightforward to find x = x1 · · ·xk0

n−k,
y = y1 · · · yk0n−k ∈ S satisfying xi + yi = ai, i = 1, . . . , r, xi+ yi = 0, i = r+1, . . . , k.
Thus distH(0, v) = 2.

Suppose r ≥ k. Any sum of t words from S = {w ∈ An | wt(w) = k} will have
Hamming weight no greater than tk. Therefore, distH(0, v) ≥ �r/k. If k divides
r, say r = tk, then clearly v is a sum of t = r/k words from S. (Note, for future
reference, that in every such sum the “supports” of the words—the sets of positions
at which the words have non-zero entries—are pairwise disjoint.)

Suppose r = tk + f , t ≥ 1, 1 ≤ f < k. Let x be a sum of t − 1 words from
S with pairwise disjoint supports such that wt(v − x) = k + f . Without loss of
generality, v − x = a1 · · · ak+f0

n−(k+f). Again, because q ≥ 3, there are y1, . . . yk,
zf+1, . . . , zk+f ∈ A\{0}, such that yi = ai, i = 1, . . . , f , zi = ai, i = k + 1, . . . , k + f ,
and yi + zi = ai, f + 1 ≤ i ≤ k. Let y = y1 · · · yk0n−k, z = 0fzf+1 · · · zf+k0

n−(k+f);
then v = x+ y + z is a sum of t− 1 + 2 = t+ 1 = �r/k words from S. (For future
reference: although not pairwise disjoint, the supports of the words from S in that
sum are all different.) Thus distH(0, v) = �r/k.

Corollary 3.3. If q > 2, k < n, and H = H(n, q, k) then diam(H) =
⌈n
k

⌉
. If q > 2

and n = k > 1 then diam(H) = 2.

For any Cayley graph G = Cay(A, S), there is a simple way to color the edges
of G: partition S = P1 ∪ · · · ∪ Pt into non-empty sets Pi satisfying Pi = −Pi, and
then color each edge uv ∈ E(G) with the index i such that v − u ∈ Pi. This type
of coloring is called a partition edge coloring of G. It is straightforward to see that
each partition edge-coloring of a Cayley graph is translation invariant: this means
that for u, v, w ∈ V (G) = A, if uv ∈ E(G) then the color on uv is the same as the
color on (u+ w)(v + w).

Proposition 3.4. If G = Cay(A, S) is a Cayley graph, then every translation in-
variant edge coloring of G is a partition edge coloring.

Proof. If ϕ : E(G) → {1, . . . , t} is a translation invariant edge coloring of G, then
let

Pi = {u ∈ S | ϕ(u0) = i}.
Then P1 . . . , Pt partition S, and for u ∈ S, u0 = (u + 0)(u + (−u)) so the edges
u0 and 0(−u) have the same color; thus – Pi = Pi, i = 1, . . . , t. Finally, ϕ is the
partition edge coloring of G defined by P1, . . . , Pt.

Translation invariance is probably not a striking property for an edge coloring of
a Cayley graph. Partition edge colorings, on the other hand, are easy to define. By
Proposition 3.4, a translation invariant edge coloring may be considered by way of
a partition edge coloring. For proper edge colorings, translation invariant colorings
are rare.
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Proposition 3.5. Suppose that G = Cay(A, S) is a Cayley graph and S is partitioned
into P1 ∪ · · · ∪ Pt, with each Pi satisfying Pi = −Pi and Pi �= ∅. The partition edge
coloring defined by this partition is proper if and only if |Pi| = 1 for each i = 1, . . . , t.

Proof. If u, v ∈ Pi, u �= v, then u0 and v0 are edges of G with the same color, and
both are incident to the vertex 0. Therefore, if the partition coloring based on the
partition is proper, then |Pi| = 1, i = 1, . . . , t. The converse is straightforward.

Corollary 3.6. If an abelian group A contains an element that is not self-inverse,
then there is no S ⊆ A\{0} satisfying S = −S such that the Cayley graph Cay(A, S)
is connected and has a proper translation invariant edge coloring.

Proof. If there is an S ⊆ A\{0} satisfying S = −S such that Cay(A, S) is connected
and, for some partition P1, . . . , Pt of S into non-empty sets satisfying Pi = −Pi,
i = 1, . . . , t, the partition edge coloring associated with the partition is proper, then,
by Proposition 3.5, |Pi| = 1 for each i = 1, . . . , t. Since Pi = −Pi, it must be that the
unique element of each Pi is self-inverse. Since S = P1∪ · · ·∪Pt and the subgraph of
A generated by S is all of A, because Cay(A, S) is connected, it must be that every
element of A is self-inverse.

Theorem 3.7. Let H = H(n, q, k) and suppose that q > 2 and k < n. Then⌈n
k

⌉
≤ rc(H) ≤

(
n

k

)
and

(q − 1)k
(
n

k

)
≤ prc(H) ≤ psrc(H) ≤ 1

2
qn(q − 1)k

(
n

k

)
.

Proof. All the inequalities except

rc(H) ≤
(
n

k

)
(6)

follow from inequalities (1) and (3), in conjunction with
⌈n
k

⌉
= diam(H) (Corollary

3.3), (q − 1)k
(
n

k

)
= Δ(H) ≤ χ′(H), and 1

2
qn(q − 1)k

(
n

k

)
= |E(H)|.

To prove (6) we consider H in its incarnation as a Cayley graph, H = Cay(An, S),
as in the proofs of Theorem 3.1 and Lemma 3.2. With a variant of the standard

notation, let

(
[n]

k

)
= {I ⊆ {1, . . . , n} | |I| = k}, and for each I ∈

(
[n]

k

)
, let

PI = {v = v1 · · · vn ∈ S | I = {i | vi �= 0}}. That is, PI is the set of words
in H of Hamming weight k whose support is precisely I. Clearly −PI = PI and

the PI , I ∈
(
[n]

k

)
, partition S. The translation–invariant edge coloring defined by

this partition uses

(
n

k

)
colors. Therefore, to prove (6), it suffices to show that this
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coloring is a rainbow connection coloring of H . Because the coloring is translation
invariant, as is adjacency in H , it suffices to show that for all v ∈ An\{0} there is a
rainbow path in H from 0 to v. Because of the way adjacency is defined in Cayley
graphs, the proof boils down to showing that each v is a sum of words in S, no two
in the same Pi —so, no two with the same support. The proof of Lemma 3.2 shows
how to do this except in the case where 1 ≤ r = wt(v) < k. (In that case, in that
proof, v is represented as the sum of 2 = distH(0, v) words in S, each with the same
support— so the 2 paths of length 2, each from 0 to v, defined by the sum are not
rainbow. The edges involved have the same color.)

But under the assumptions that q > 2 and k < n, this situation can be remedied.
Without loss of generality, let v = v1 · · · vr0n−r, vi �= 0, 1 ≤ i ≤ r, 1 ≤ r ≤ k − 1 ≤
n− 2. Then v = x+ y + z where

x =x1 · · ·xk0
n−k,

y =0y2 · · · ykyk+10
n−k−1

z =z10 · · · zkzk+10
n−k−1, and

the xi, yi, zi ∈ A are chosen to satisfy the equation v = x + y + z, with 0 �=
x1, . . . , xk, y2, . . . , yk+1, z1, z3, . . . , zk+1. (When r = 1, k = 2, we have x = x1x20

n−2,
y = 0y2y30

n−3, z = z10z30
n−3). Thus there is a rainbow path of length 3 from 0 to

v, with respect to this partition coloring.

When k = 1 the partition coloring of H = H(n, q, 1) in the proof of Theorem 3.7
is the coordinate-of-difference coloring, and is a strong rainbow connection coloring.
When 1 < k < n, and q > 2, the coloring is not a strong rainbow connection coloring:
the sum of two words in An each of Hamming weight k, with different supports, will
have Hamming weight at least 2. Therefore, if v ∈ An has wt(v) = 1, then v cannot

be represented as a sum x + y, x ∈ PI , y ∈ PJ , I, J ∈
(
[n]

k

)
, I �= J . Since

distH(0, v) = 2, by Lemma 3.2, we conclude from this that there is no rainbow (with
respect to the partition coloring) geodesic in H from 0 to v.

Yet the partition coloring in the proof of Theorem 3.7 is very “close” to being a
strong rainbow connection coloring. We claim—but we will not prove here—that for
any v ∈ An such that wt(v) > 1, there is a rainbow geodesic in H from 0 to v. (For
wt(v) ≥ k the proof can be extracted from the proof of Lemma 3.2.)

4 Problems

Corollary 2.2 and Theorem 3.7 obviously leave a great many unanswered questions
about all four rainbow connectivity parameters. We are especially intrigued by H =
H(n, 2, k), 1 < k < n, k odd. We conjecture that

rc(H) ≤ prc(H) =

(
n

k

)
.
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The partition edge coloring of H(n, q, k) used in the proof of Theorem 3.7 is, when
q = 2, proper because each PI is a singleton, whose only element is the characteristic
vector of the set I ∈ (

[n]
k

)
. To prove the conjecture, it suffices to prove that this

coloring is a rainbow connection coloring, which seems a very do-able chore—in fact,
quite a lot of the mopping is done in the proof of Theorem 3.1. But we are leaving this
conjecture open because there is much that we would like to know about H(n, 2, k),
and hope to deal with this conjecture as part of an interesting whole at some point
in the future.

When 1 < k < n and k is even, H = H(n, 2, k) has two connected components; in
one the vertices are the binary words of length n of even Hamming weight, and in the
other the words have odd Hamming weight. These two graphs are isomorphic. Let
H0 = H0(n, 2, k) be the component of H in which the vertices have even Hamming
weight. As in the cases when k is odd, H0 = Cay(A, S) where A is the subgroup of
(Z2)

n whose elements are the vertices of H0. H0 has an obvious proper translation-
invariant edge coloring with

(
n
k

)
colors. Again, we conjecture that this coloring is a

rainbow connection coloring, which would imply

rc(H0) ≤ prc(H0) =

(
n

k

)
= Δ(H0).

Whether k be odd or even, are these canonical edge colorings of H or H0 strong
rainbow connection colorings? Recall that when 1 < k < n and q > 2, the analogous
canonical partition edge-colorings of H(n, q, k) with

(
n
k

)
colors are almost but not

quite strong rainbow connection colorings; the situation in the cases q = 2 is not so
clear.

Strongly connected Cayley digraphs are briefly discussed in Section 2. For an
instance of a rainbow connectivity problem in general strongly connected digraphs,
see [2]. The definitions of rc and src are what one would expect: if D is a strongly
connected digraph, a coloring of the arcs of D is a (strong) rainbow connection
coloring if and only if for every ordered pair (u, v) of vertices of D there is a rainbow
(shortest) directed path from u to v, with respect to the coloring, and (s)rc(D) is the
smallest number of colors appearing in a (strong) rainbow connection arc-coloring of
D. Because there are at least two different notions of proper arc coloring in digraphs,
we will postpone discussion of proper (strong) rainbow connectivity.

Cayley digraphs Cay∗(A, S) are discussed in Section 2. As with Cayley graphs,
the arcs of such a digraph can be colored by partitioning S; the partition sets Pi are
not required to satisfy Pi = −Pi. In such a coloring, an arc (a, b) is colored with
the i such that b − a ∈ Pi. As in the undirected case, such a coloring is translation
invariant, since, for any a, b, c ∈ A, (b+ c)− (a+ c) = b− a.

As in Section 2, for any undirected graph G, let G∗ denote the directed graph
obtained from G by replacing each edge by two arcs, one in each direction. If G has
a (strong) rainbow connection edge coloring, and the two arcs of G∗ associated with
an edge of G are both given the color of that edge, then the resulting arc-coloring of
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G∗ is a (strong) rainbow connection coloring. Therefore,

rc(G∗) ≤ rc(G) and

src(G∗) ≤ src(G).

On slender evidence we suspect that when H = H(n, q, k) is connected and k > 1,
rc(H∗) may be significantly less than rc(H). One of us (Matzke) proposes, for n,
q > 2, a partition arc-coloring ofH∗ = H∗(n, q, 2) = Cay∗(An, S) which, it is claimed,
shows that rc(H∗) ≤ n; compare this with the conclusion in Theorem 3.7 that

rc(H) ≤
(
n

2

)
.

References

[1] G. Chartrand, G. L. Johns, K. A. McKeon and P. Zhang, Rainbow connection
in graphs, Mathematica Bohemica 133 no. 1 (2008), 85–98.

[2] R. Holliday, C. Magnant and P. S. Nowbandegani, Note on rainbow connection in
oriented graphs with diameter 2, Theory and Applications of Graphs, Vol. 1, Iss.
1, Art. 2, 6 pp., http://digitalcommons.georgiasouthern.edu/tag/vol1/iss1/2 .

[3] X. Li, and Y. Sun, Rainbow connections of graphs, Springer Briefs in Math.,
Springer, New York, 2012.

[4] X. Li, Y. Shi, and Y. Sun, Rainbow connections of graphs: A survey, Graphs and
Combin. 29(1) (2013), 1–38.

[5] Douglas West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, 2001.

(Received 10 May 2017; revised 8 Nov 2017)


