On minimum cutsets in independent domination vertex-critical graphs

Nawarat Ananchuen*
Centre of Excellence in Mathematics
CHE, Si Ayutthaya Rd., Bangkok 10400
Thailand
nawarat.ana@mahidol.ac.th
Sriphan Ruangthampisan
Department of Mathematics, Faculty of Science
Silpakorn University, Nakorn Pathom 73000
Thailand
pang_sriphan@hotmail.com
\section*{Watcharaphong Ananchuen Louis Caccetta ${ }^{\dagger}$}
Western Australian Centre of Excellence in Industrial Optimisation Department of Mathematics and Statistics, Curtin University GPO Box U1987, Perth 6845
Australia
wananchuen@yahoo.com
1.caccetta@curtin.edu.au

In memory of Anne Penfold Street

Abstract

Let $\gamma_{i}(G)$ denote the independent domination number of G. A graph G is said to be k - γ_{i}-vertex-critical if $\gamma_{i}(G)=k$ and for each $x \in V(G)$, $\gamma_{i}(G-x)<k$. In this paper, we show that for any k - γ_{i}-vertex-critical graph H of order n with $k \geq 3$, there exists an n-connected k - γ_{i}-vertexcritical graph G_{H} containing H as an induced subgraph. Consequently, there are infinitely many non-isomorphic connected k - γ_{i}-vertex-critical graphs. We also establish a number of properties of connected 3 - γ_{i}-vertexcritical graphs. In particular, we derive an upper bound on $\omega(G-S)$, the number of components of $G-S$ when G is a connected $3-\gamma_{i}$-vertex-critical graph and S is a minimum cutset of G with $|S| \geq 3$.

[^0]
1 Introduction

All graphs in this paper are finite simple undirected. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The complement of G is denoted by \bar{G}. For a vertex u of G, the neighborhood of u in G, denoted by $N_{G}(u)$, is the set of all vertices of G that are adjacent to u. The closed neighborhood of u which is $N_{G}(u) \cup\{u\}$ is denoted by $N_{G}[u]$. For $S \subseteq V(G), N_{S}(u)=N_{G}(u) \cap S$. For simplicity, if H is a subgraph of G, we write $N_{H}(u)$ instead of $N_{V(H)}(u)$. The degree of a vertex u in G, denoted by $\operatorname{deg}_{G}(u)$, is $\left|N_{G}(u)\right|$ while $\operatorname{deg}_{S}(u)$ denotes $\left|N_{S}(u)\right|$. Further, $\Delta(G)$ denotes $\max \left\{\operatorname{deg}_{G}(u) \mid u \in V(G)\right\}$.

A subset S of $V(G)$ is independent if no two vertices of S are adjacent. The number of components of G and the number of odd components of G are denoted by $\omega(G)$ and $\omega_{0}(G)$, respectively. A subset $S \subseteq V(G)$ is called a cutset if $\omega(G-S)>$ $\omega(G)$. If $S=\{u\}$, then the vertex u is called a cutvertex and we shall write $\omega(G-u)$ instead of $\omega(G-\{u\})$.

A graph G is said to be k-factor-critical if $G-S$ has a perfect matching for every $S \subseteq V(G)$ with $|S|=k$. It is easy to see that $|V(G)| \equiv k(\bmod 2)$. For $k=1$ and $k=2, k$-factor-critical graphs are also called factor-critical and bicritical, respectively. The concept of k-factor-critical graphs was introduced by Favaron [3] in 1996.

For subsets S and T of $V(G), S$ is called a dominating set of T, denoted by $S \succ T$, if each vertex of T either belongs to S or is adjacent to some vertex of S. For simplicity, we write $s \succ T$ if $S=\{s\}$ and $S \succ G$ if $T=V(G)$. The minimum cardinality of a dominating set of G is called the domination number of G and denoted by $\gamma(G)$. A dominating set S of G which is also an independent set is called an independent dominating set of G and is denoted by $S \succ_{i} G$. The independent domination number of G is the minimum cardinality of an independent dominating set of G and is denoted by $\gamma_{i}(G)$. It is easy to see that $\gamma(G) \leq \gamma_{i}(G)$ and if $\gamma(G)=1$, then $\gamma_{i}(G)=1$.

A graph G is said to be k - γ_{i}-vertex-critical if $\gamma_{i}(G)=k$ and for each $x \in V(G)$, $\gamma_{i}(G-x)<k$. In fact, it is easy to see that if G is k - γ_{i}-vertex-critical, then $\gamma_{i}(G-$ $x)=k-1$ for each $x \in V(G)$. Further, $|V(G)| \geq k$. The concept of k - γ_{i}-vertexcritical graphs was first introduced by Ao [1] in 1994. The problem that arises is that of characterizing connected k - γ_{i}-vertex-critical graphs. Ao [1] characterized the case $k=1$ and $k=2$. More specifically, she proved that the only 1 - γ_{i}-vertexcritical graphs are K_{1}, and the only $2-\gamma_{i}$-vertex-critical graphs are $K_{2 n}$ with a perfect matching deleted for some positive integer n. The following two simple results are useful in studying k - γ_{i}-vertex-critical graphs. In what follows, for a vertex x of a k - γ_{i}-vertex-critical graph G, we denote by I_{x} any minimum independent dominating set of $G-x$.

Lemma 1.1. [1] Suppose G is a k - γ_{i}-vertex-critical graph for $k \geq 2$. Then for each $x \in V(G),\left|I_{x}\right|=k-1$.

Lemma 1.2. [5] Suppose G is a k - γ_{i}-vertex-critical graph for $k \geq 2$. Then for each $x \in V(G), I_{x} \cap N_{G}[x]=\emptyset$.

The following result follows directly from the definition.
Lemma 1.3. Suppose G is a k - γ_{i}-vertex-critical graph for $k \geq 2$. For $x, y \in V(G)$ such that $x \neq y, I_{x} \neq I_{y}$.

For $k \geq 3$, very few results on k - γ_{i}-vertex-critical graphs are known. In the next section, we establish that for $k \geq 3$, if H is a k - γ_{i}-vertex-critical graph on n vertices, then there exists an n-connected k - γ_{i}-vertex-critical graph on $k n+1$ vertices containing H as an induced subgraph. This suggests that characterizing connected k - γ_{i}-vertex-critical graphs for $k \geq 3$ is a very difficult task. The focus of this paper is the case $k=3$.

We establish a number of properties of connected 3 - γ_{i}-vertex-critical graphs. In Section 4, we derive an upper bound on the number of components $\omega(G-S)$ where G is a connected 3 - γ_{i}-vertex-critical graph and S is a minimum cutset of G with $|S| \geq 3$. Section 3 provides some preliminary results that we make use of in our work.

We conclude this section by pointing out that critical concepts, in both edgecritical and vertex-critical graphs, are studied for various kinds of domination numbers such as ordinary domination number, connected domination number and total domination number. For more details of these, the reader is directed to the books by Haynes et al. [4] and Dehmer [2] and also references therein.

2 A family of connected $k-\gamma_{i}$-vertex-critical graphs

In this section, we provide a construction of a family of connected k - γ_{i}-vertex-critical graphs for $k \geq 3$. For a k - γ_{i}-vertex-critical graph H, we show that there are infinitely many connected k - γ_{i}-vertex-critical graphs containing H as an induced subgraph. Before presenting the construction, we make an observation that there are infinitely many k - γ_{i}-vertex-critical graphs. For positive integers $k \geq 3$ and $n, \bar{K}_{k-2} \cup\left(K_{2 n}-\mathrm{a}\right.$ perfect matching) is a simple example of k - γ_{i}-vertex-critical graph. Moreover, for positive integers m and $n_{i}, \bigcup_{i=1}^{m}\left(K_{2 n_{i}}-\right.$ a perfect matching $)$, and $K_{1} \cup \bigcup_{i=1}^{m}\left(K_{2 n_{i}}-\mathrm{a}\right.$ perfect matching) are examples of k - γ_{i}-vertex-critical graphs when $k=2 m$ is even and $k=2 m+1$ is odd, respectively. For case $k=3, K_{1} \cup\left(K_{2 n}-\right.$ a perfect matching) is the only disconnected 3 - γ_{i}-vertex-critical graphs. Some examples of connected 3 - γ_{i}-vertex-critical graphs are $K_{3,3}, C_{7}$: a cycle of order 7 and the graphs shown in Figure 2.1 for any positive integers n and m. Note that " + " in our diagrams denotes the join and the dash line denotes a missing edge between vertices.

Our next result establishes a class of connected k - γ_{i}-vertex-critical graphs.
Theorem 2.1. For $k \geq 3$, let H be a k - γ_{i}-vertex-critical graph of order n. Then there exists an n-connected k - γ_{i}-vertex-critical graph G_{H} such that H is an induced subgraph of G_{H}.

Figure 2.1: Connected 3 - γ_{i}-vertex-critical graphs.

Proof. Put $V(H)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Now let G_{H} be a graph of order $k n+1$ where $V(G)=\{u\} \cup\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \cup \bigcup_{j=1}^{k-1} Y_{j}$ where $Y_{j}=\left\{y_{j 1}, y_{j 2}, \ldots, y_{j n}\right\}$ and $E(G)=\left\{u x_{i} \mid 1 \leq i \leq n\right\} \cup E(H) \cup \bigcup_{j=1}^{k-1}\left\{x_{i} y_{j l} \mid 1 \leq i \leq n, 1 \leq l \leq n, i \neq l\right\} \cup$ $\bigcup_{j=1}^{k-1}\left\{y_{j l} y_{j l^{\prime}} \mid 1 \leq l \leq n, 1 \leq l^{\prime} \leq n, l \neq l^{\prime}\right\}$. Figure 2.2 illustrates our construction.

Figure 2.2: The graph G_{H}.
It is easy to see that H is an induced subgraph of G_{H} and G_{H} is n-connected. We only need to show that G_{H} is k - γ_{i}-vertex-critical. Let I be a minimum independent dominating set of H. Clearly, $I \succ_{i} G_{H}$. Then $\gamma_{i}\left(G_{H}\right) \leq k$. It is easy to see that no vertex of G_{H} dominates G_{H}, thus $\gamma_{i}\left(G_{H}\right) \geq 2$. Suppose there exists an independent dominating set I_{1} of G_{H} where $\left|I_{1}\right| \leq k-1$. We first show that $u \notin I_{1}$. Suppose this is not the case. Since I_{1} is independent, $\left(I_{1}-\{u\}\right) \cap V(H)=\emptyset$. Thus $I_{1}-\{u\} \subseteq \bigcup_{j=1}^{k-1} Y_{j}$. Since $\left|I_{1}-\{u\}\right| \leq k-2$ and $G_{H}\left[\bigcup_{j=1}^{k-1} Y_{j}\right]$ consists of $k-1$ components, it follows that no vertex of I_{1} dominates $Y_{j^{\prime}}$, for some $1 \leq j^{\prime} \leq k-1$, a contradiction. Hence, $u \notin I_{1}$ as required. Since $\left|I_{1}\right| \leq k-1, I_{1} \nsubseteq V(H)$ otherwise $\gamma_{i}(H)<k$. Then there exists $w \in I_{1} \cap\left(\bigcup_{j=1}^{k-1} Y_{j}\right)$. We may assume without loss of generality that $w=y_{11}$. Since $u \notin I_{1}$ and I_{1} is independent, it follows that $I_{1} \cap V(H)=\left\{x_{1}\right\}$ by our construction. Then $I_{1}-\left\{x_{1}, y_{11}\right\} \subseteq \bigcup_{j=2}^{k-1} Y_{j}$. Because $\left|I_{1}-\left\{x_{1}, y_{11}\right\}\right| \leq k-3$ and $G_{H}\left[\bigcup_{j=2}^{k-1} Y_{j}\right]$ consists of $k-2$ components, it follows that no vertex of I_{1} dominates $Y_{j^{\prime \prime}}$ for some $2 \leq j^{\prime \prime} \leq k-1$, again a contradiction. Hence, $\gamma_{i}\left(G_{H}\right)=k$.

We next show that G_{H} is k - γ_{i}-vertex-critical. It is easy to see that $I_{u}=\left\{y_{11}, y_{22}\right.$, $\left.\ldots, y_{(k-1)(k-1)}\right\}$. Further, for $1 \leq j \leq k-1,1 \leq l \leq n, I_{y_{j l}}=\left\{x_{l}\right\} \cup\left\{y_{j^{\prime} l} \mid 1 \leq j^{\prime} \leq\right.$ $\left.k-1, j^{\prime} \neq j\right\}$. Since H is k - γ_{i}-vertex-critical, $\left|I_{x_{i}}\right|=k-1$ for $1 \leq i \leq n$ and it is easy to see that $I_{x_{i}}$ dominates $G_{H}-x_{i}$. This proves that G_{H} is k - γ_{i}-vertex-critical and completes the proof of our theorem.

In view of Theorem 2.1, we may recursively construct a connected k - γ_{i}-vertexcritical graph for $k \geq 3$. Beginning with a k - γ_{i}-vertex-critical graph H of order n, put $G_{1}=G_{H}, G_{2}=G_{G_{1}}, G_{3}=G_{G_{2}}, \ldots, G_{t}=G_{G_{t-1}}, \ldots$. Then $\left|V\left(G_{t}\right)\right|=k^{t} n+\frac{k^{t}-1}{k-1}$ and G_{t} is a $\left|V\left(G_{t-1}\right)\right|$-connected k - γ_{i}-vertex-critical graph for any positive integer t. Further, each G_{t} contains H as an induced subgraph. By this recursive construction and examples of k - γ_{i}-vertex-critical graphs given at the beginning of this section, there are infinitely many non-isomorphic connected k - γ_{i}-vertex-critical graphs.

We next establish some matching properties of the graph G_{H}. For the rest of this section, F_{Z} denotes a perfect matching in $G_{H}[Z]$ where $Z \subseteq V\left(G_{H}\right)$.
Proposition 2.2. For $k \geq 3$, let H be a k - γ_{i}-vertex-critical graph of order n and let G_{H} be the graph defined in the proof of Theorem 2.1. Then we have:

1. If H is $K_{1, s}$-free, then G_{H} is $K_{1, r}$-free where $r=\max \{s, k+1\}$.
2. If k and n are odd and $n \geq k+2$, then G_{H} is bicritical.
3. If either k or n is even, then G_{H} is factor-critical.

Proof. (1) This follows immediately from the construction.
(2) Let w_{1} and w_{2} be distinct vertices of G_{H}. We need to show that $G_{H}-\left\{w_{1}, w_{2}\right\}$ has a perfect matching. We first suppose that $\left\{w_{1}, w_{2}\right\} \subseteq V(H)$. We may assume without loss of generality that $w_{i}=x_{i}$, for $1 \leq i \leq 2$. We now let

$$
\begin{aligned}
F= & \left\{u x_{3}\right\} \cup\left\{x_{4} y_{21}, x_{5} y_{31}, \ldots, x_{k+1} y_{(k-1) 1}\right\} \cup\left\{x_{s} y_{1(s+1)} \mid k+2 \leq s \leq n\right\} \cup \\
& \bigcup_{l=2}^{k-1} F_{Y_{l}-\left\{y_{l 1}\right\}} \cup F_{Y_{1}-\left\{y_{1(s+1)} \mid k+2 \leq s \leq n\right\}}
\end{aligned}
$$

where our subscript is read modulo n. It is easy to see that F is a perfect matching in $G_{H}-\left\{w_{1}, w_{2}\right\}$. By similar arguments, it is not difficult to show that $G_{H}-\left\{w_{1}, w_{2}\right\}$ contains a perfect matching if $\left\{w_{1}, w_{2}\right\} \nsubseteq V(H)$. This proves (2).
(3) Let w be a vertex of G_{H}. We need to show that $G_{H}-w$ contains a perfect matching. We first suppose that $w=y_{11}$. If n is even, then

$$
F_{1}=\left\{u x_{n}\right\} \cup\left\{x_{s} y_{1(s+1)} \mid 1 \leq s \leq n-1\right\} \cup \bigcup_{l=2}^{k-1} F_{Y_{l}}
$$

is a perfect matching in $G_{H}-w$. We now suppose that n is odd. Thus k is even by our hypothesis. Put

$$
\begin{gathered}
F_{2}=\left\{x_{1} u\right\} \cup\left\{x_{2} y_{31}, x_{3} y_{41}, \ldots, x_{k-2} y_{(k-1) 1}\right\} \cup\left\{x_{s} y_{2(s+1)} \mid k-1 \leq s \leq n\right\} \\
\cup F_{Y_{1}-\left\{y_{11}\right\}} \cup F_{Y_{2}-\left\{y_{2(s+1)} \mid k-1 \leq s \leq n\right\}} \cup \bigcup_{l=3}^{k-1} F_{Y_{l}-\left\{y_{l 1}\right\}}
\end{gathered}
$$

where our subscript is read modulo n. It is easy to see that F_{2} is a perfect matching in $G_{H}-y_{11}$. By similar arguments, it is not difficult to show that $G_{H}-w$ has a perfect matching if $w \notin \bigcup_{l=1}^{k-1} Y_{l}$. This proves (3) and completes the proof of our result.

Note that the lower bound on $n \geq k+2$ in the part 2 of the above result is sharp since the graph G_{H}, where H is \bar{K}_{k}, is not bicritical.

3 Some preliminary results

In this section, we establish some basic results that we make use of in establishing our results in the next section. Recall that, for a vertex x of a k - γ_{i}-vertex-critical graph G, I_{x} denotes any minimum independent dominating set of $G-x$. Our first result concerns a simple property of a graph with a cutset. It follows immediately from the fact that our cutset is minimum.

Lemma 3.1. Let G be a connected graph and S a minimum cutset of G. Further, let C be a component of $G-S$. Then we have:

1. If there is a vertex $x \in V(C)$ such that x is not adjacent to some vertex of S, then $|V(C)| \geq 2$.
2. For each $u \in S, N_{C}(u) \neq \emptyset$.

The following two results concern simple properties of connected $3-\gamma_{i}$-vertexcritical graphs with a minimum cutset.

Lemma 3.2. Let G be a connected 3 - γ_{i}-vertex-critical graph and S a minimum cutset of G. If $\omega(G-S) \geq 4$, then

1. No vertex of $V(G)$ dominates S. Consequently, $\Delta(G[S]) \leq|S|-2$ and $G-S$ has no singleton components.
2. $I_{x} \cap S \neq \emptyset$, for each $x \in V(G)$.

Proof. (1) Suppose to the contrary that there is a vertex $y \in V(G)$ such that $y \succ S$. By Lemma 1.2, $I_{y} \cap S=\emptyset$. Thus $I_{y} \subseteq V(G)-S$. Since $\left|I_{y}\right|=2$ and $\omega(G-S) \geq 4$, it follows that there is a vertex of $V(G)-S$ which is not dominated by I_{y}, a contradiction. This settles (1).
(2) It is easy to see that if $I_{x} \cap S=\emptyset$, for some $x \in V(G)$, then $I_{x} \subseteq V(G)-S$. Thus I_{x} does not dominate at least one component of $G-S$ since $\left|I_{x}\right|=2$ and $\omega(G-S) \geq 4$. Hence, $I_{x} \cap S \neq \emptyset$ for each $x \in V(G)$. This settles (2) and completes the proof of our result.

Lemma 3.3. Let G be a connected 3 - γ_{i}-vertex-critical graph and S a cutset of G where $t=\omega(G-S) \geq 4$. Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$. Suppose there exist $y_{j} \in V\left(C_{j}\right)$ and $y_{j^{\prime}} \in V\left(C_{j^{\prime}}\right)$ for $1 \leq j \leq t, 1 \leq j^{\prime} \leq t, j \neq j^{\prime}$ such that $I_{y_{j}} \cap S=I_{y_{j^{\prime}}} \cap S=\{u\}$ for some $u \in S$. Then

1. $u \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-\left\{y_{j}, y_{j^{\prime}}\right\}$. Consequently, $I_{y_{j}}=\left\{u, y_{j^{\prime}}\right\}$ and $I_{y_{j^{\prime}}}=\left\{u, y_{j}\right\}$.
2. $u \notin I_{x}$ for any $x \in \bigcup_{i=1}^{t} V\left(C_{i}\right)-\left\{y_{j}, y_{j^{\prime}}\right\}$.

Proof. (1) Since $\{u\}=I_{y_{j}} \cap S=I_{y_{j^{\prime}}} \cap S$, it follows by Lemma 1.2 that $u y_{j}, u y_{j^{\prime}} \notin$ $E(G)$. Put $\{z\}=I_{y_{j}}-\{u\}$ and $\{w\}=I_{y_{j^{\prime}}}-\{u\}$. Then $u z, u w \notin E(G)$ since $I_{y_{j}}$ and $I_{y_{j^{\prime}}}$ are independent. It is easy to see that $z \in V\left(C_{j^{\prime}}\right)$ and $w \in V\left(C_{j}\right)$. Then $u \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-\left(V\left(C_{j^{\prime}}\right) \cup\left\{y_{j}\right\}\right)$ and $w=y_{j}$ since $u \in I_{y_{j}}$. Further, $u \succ$ $\bigcup_{i=1}^{t} V\left(C_{i}\right)-\left(V\left(C_{j}\right) \cup\left\{y_{j^{\prime}}\right\}\right)$ and $z=y_{j^{\prime}}$ since $u \in I_{y_{j^{\prime}}}$. This settles (1).
(2) This follows by (1) and Lemma 1.2. This completes the proof of our lemma.

As a consequence of Lemmas 1.2 and 3.3, we have:
Corollary 3.4. Let G, S and $C_{1}, C_{2}, \ldots, C_{t}$ be defined as in Lemma 3.3. If there is $\left\{w_{1}, w_{2}, \ldots, w_{r}\right\} \subseteq \bigcup_{i=1}^{t} V\left(C_{i}\right)$, where $w_{l} \succ S-\{u\}$ for some $u \in S$ and for $1 \leq l \leq r$, such that $\left|\left\{w_{1}, w_{2}, \ldots, w_{r}\right\} \cap V\left(C_{j}\right)\right| \leq 1$ for $1 \leq j \leq t$, then $r \leq 2$.

4 Results on minimum cutsets of connected 3 - γ_{i}-vertex-critical graphs

In this section, we provide an upper bound on $\omega(G-S)$, where G is a connected 3 - γ_{i}-vertex-critical graph and S is a minimum cutset of G. For $1 \leq|S| \leq 2$, Ruangthampisan and Ananchuen [5] showed that $\omega(G-S) \leq|S|+1$:

Theorem 4.1. [5] Let G be a connected $3-\gamma_{i}$-vertex-critical graph and S a minimum cutset of G. Then

$$
\omega(G-S) \leq \begin{cases}2, & \text { for }|S|=1 \\ 3, & \text { for }|S|=2\end{cases}
$$

We now establish that if $3 \leq|S| \leq 4$, then $\omega(G-S) \leq 3$ and if $|S| \geq 5$, then $\omega(G-S) \leq|S|-1$ with some condition on S. We begin with some lemmas.

Lemma 4.2. Let G be a connected 3 - γ_{i}-vertex-critical graph and S a minimum cutset of G. If $\Delta(G[S]) \leq 1$ and $t=\omega(G-S) \geq|S| \geq 5$, then for each $x \in V(G)$, $\left|I_{x} \cap S\right|=1$.

Proof. Since $\left|I_{x}\right|=2$, it is easy to see that the result holds for $\Delta(G[S])=0$. So we may now assume that $\Delta(G[S])=1$ and suppose to the contrary that there exists a vertex $u \in V(G)$ such that $\left|I_{u} \cap S\right|=2$. Put $I_{u} \cap S=\left\{u_{1}, u_{2}\right\}$. Since $\Delta(G([S])=1$ and $|S| \geq 5$, it is easy to see that $u \in S$ and $|S|=5$. Without loss of generality, we let $E(G[S])=\left\{u_{1} u_{3}, u_{2} u_{4}\right\}$ where $\left\{u_{3}, u_{4}\right\}=S-\left\{u, u_{1}, u_{2}\right\}$. Thus u is not adjacent to any of vertex of $S-\{u\}$. Consequently, we have proven the following claim.

Claim 1. For each $x \in V(G)-\{u\},\left|I_{x} \cap S\right|=1$.

Consider $G-u_{3}$. Clearly, $u_{1} \notin I_{u_{3}}$ since $u_{1} u_{3} \in E(G)$. Further, $I_{u_{3}} \cap S \subseteq$ $\left\{u, u_{2}, u_{4}\right\}$. Put $\{z\}=I_{u_{3}}-S$. Thus $z u_{3} \notin E(G)$. Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$. We may assume that $z \in V\left(C_{1}\right)$. We now establish the following claim.

Claim 2. If $u_{3} \in I_{x} \cap S$ for some $x \in V\left(C_{i}\right), 2 \leq i \leq t$ then $I_{x}-\left\{u_{3}\right\} \subseteq V\left(C_{1}\right)-\{z\}$. Further, $u_{3} \succ \bigcup_{i=2}^{t} V\left(C_{i}\right)-\{x\}$ and thus $u_{3} \notin I_{y} \cap S$ for each $y \in \bigcup_{i=2}^{t} V\left(C_{i}\right)-\{x\}$.

Proof. Suppose $u_{3} \in I_{x} \cap S$. Since $z u_{3} \notin E(G)$, it follows that the only vertex of $I_{x}-\left\{u_{3}\right\}$ dominates $z \in V\left(C_{1}\right)$. By Claim 1, $I_{x}-\left\{u_{3}\right\} \subseteq V\left(C_{1}\right)$. If $I_{x}-\left\{u_{3}\right\}=\{z\}$, then no vertex of I_{x} is adjacent to the vertex of $I_{u_{3}}-\{z\}$, a contradiction. This proves that $I_{x}-\left\{u_{3}\right\} \subseteq V\left(C_{1}\right)-\{z\}$. Consequently, $u_{3} \succ \bigcup_{i=2}^{t} V\left(C_{i}\right)-\{x\}$. It follows by Lemma 1.2 that $u_{3} \notin I_{y} \cap S$ for each $y \in \bigcup_{i=2}^{t} V\left(C_{i}\right)-\{x\}$. This settles our claim.

We now distinguish three cases according to $I_{u_{3}} \cap S$.
Case 1. $I_{u_{3}} \cap S=\{u\}$.
Then $u z \notin E(G)$ and $u \succ \bigcup_{i=2}^{t} V\left(C_{i}\right)$. For $2 \leq i \leq t$, choose $y_{i} \in N_{C_{i}}\left(u_{4}\right)$. Such a y_{i} exists by Lemma 3.1(2). Observe that $y_{i} \in N_{C_{i}}(u) \cap N_{C_{i}}\left(u_{4}\right)$. Then $I_{y_{i}} \cap S \subseteq\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\left|I_{y_{i}} \cap S\right|=1$ by Lemma 1.2 and Claim 1. Thus, by Lemma 3.3(2), $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{1}\right\}\right\}\right| \leq 2$ and $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{2}\right\}\right\}\right| \leq 2$. But, by Claim 2, $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{3}\right\}\right\}\right| \leq 1$.

Case 1.1. $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{3}\right\}\right\}\right|=0$.
Since $\left|\left\{y_{2}, y_{3}, \ldots, y_{t}\right\}\right|=t-1 \geq 4$, it follows that $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{1}\right\}\right\}\right|=$ $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{2}\right\}\right\}\right|=2$ and $t=5$. We may assume that $I_{y_{2}} \cap S=I_{y_{3}} \cap S=\left\{u_{1}\right\}$ and $I_{y_{4}} \cap S=I_{y_{5}} \cap S=\left\{u_{2}\right\}$. Then $u_{1} y_{2}, u_{1} y_{3}, u_{2} y_{4}, u_{2} y_{5} \notin E(G)$. By Lemma 3.3(1), $u_{1} \succ \bigcup_{i=1}^{5} V\left(C_{i}\right)-\left\{y_{2}, y_{3}\right\}$ and $u_{2} \succ \bigcup_{i=1}^{5} V\left(C_{i}\right)-\left\{y_{4}, y_{5}\right\}$. Now, for $2 \leq i \leq t$, choose $w_{i} \in V\left(C_{i}\right)-\left\{y_{i}\right\}$. Then $w_{i} \in N_{C_{i}}(u) \cap N_{C_{i}}\left(u_{1}\right) \cap N_{C_{i}}\left(u_{2}\right)$. Such a w_{i} exists by Lemma 3.1(1) and the fact that $u_{1} y_{2}, u_{1} y_{3}, u_{2} y_{4}, u_{2} y_{5} \notin E(G)$. Thus $I_{w_{i}} \cap S \subseteq\left\{u_{3}, u_{4}\right\}$. By Claims 1 and $2,\left|\left\{w_{i} \mid I_{w_{i}} \cap S=\left\{u_{3}\right\}\right\}\right| \leq 1$ and thus $\left|\left\{w_{i} \mid I_{w_{i}} \cap S=\left\{u_{4}\right\}\right\}\right| \geq 3$. But this contradicts Lemma 3.3(2). Hence, Case 1.1 cannot occur.

Case 1.2. $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{3}\right\}\right\}\right|=1$.
Without loss of generality we may assume that $I_{y_{2}} \cap S=\left\{u_{3}\right\}$. Put $\left\{z_{1}\right\}=$ $I_{y_{2}}-\left\{u_{3}\right\}$. By Claim 2, $z_{1} \in V\left(C_{1}\right)-\{z\}$ and $u_{3} \succ \bigcup_{i=2}^{t} V\left(C_{i}\right)-\left\{y_{2}\right\}$. Since $E(G[S])=\left\{u_{1} u_{3}, u_{2} u_{4}\right\}, z_{1}$ is adjacent to every vertex of $\left\{u, u_{2}, u_{4}\right\}$. Thus $I_{z_{1}} \cap S \subseteq$ $\left\{u_{1}, u_{3}\right\}$. If $I_{z_{1}} \cap S=\left\{u_{3}\right\}$, then the only vertex of $I_{z_{1}}-\left\{u_{3}\right\} \subseteq \bigcup_{i=1}^{t} V\left(C_{i}\right)$ is adjacent to $z \in V\left(C_{1}\right)$ and $y_{2} \in V\left(C_{2}\right)$ since $u_{3} z, u_{3} y_{2} \notin E(G)$. But this is not possible. Hence, $I_{z_{1}} \cap S=\left\{u_{1}\right\}$. It then follows by Lemma 3.3(2) that $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{1}\right\}\right\}\right| \leq 1$ and $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{2}\right\}\right\}\right| \leq 2$. Since $\left|\left\{y_{2}, y_{3}, \ldots, y_{t}\right\}\right|=t-1 \geq 4$, it follows that $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{1}\right\}\right\}\right|=1$ and $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{2}\right\}\right\}\right|=2$. In fact, $t=5$. We may assume without loss of generality that $I_{y_{3}} \cap S=\left\{u_{1}\right\}$ and $I_{y_{4}} \cap S=I_{y_{5}} \cap S=\left\{u_{2}\right\}$. By Lemma 3.3(1), $u_{1} \succ \bigcup_{i=1}^{5} V\left(C_{i}\right)-\left\{z_{1}, y_{3}\right\}$ and $u_{2} \succ \bigcup_{i=1}^{5} V\left(C_{i}\right)-\left\{y_{4}, y_{5}\right\}$. For $2 \leq i \leq 5$, choose $w_{i} \in V\left(C_{i}\right)-\left\{y_{i}\right\}$. Then $w_{i} \in N_{C_{i}}(u) \cap N_{C_{i}}\left(u_{1}\right) \cap N_{C_{i}}\left(u_{2}\right) \cap N_{C_{i}}\left(u_{3}\right)$. But this
contradicts Corollary 3.4 since $\left|\left\{w_{2}, w_{3}, w_{4}, w_{5}\right\}\right|=4$. Hence, Case 1.2 cannot occur and therefore Case 1 cannot occur.

Case 2. $I_{u_{3}} \cap S=\left\{u_{2}\right\}$.
By applying similar arguments as in the proof of Case 1, Case 2 cannot occur.
Case 3. $I_{u_{3}} \cap S=\left\{u_{4}\right\}$.
For $2 \leq i \leq t$, choose $y_{i} \in N_{C_{i}}\left(u_{2}\right)$. Then applying similar arguments as in the proof of Case 1, Case 3 cannot occur. This completes the proof of our result.

Lemma 4.3. Let G be a connected $3-\gamma_{i}$-vertex-critical graph and S a minimum cutset of G. Suppose $\Delta(G[S]) \leq 1$ and $t=\omega(G-S) \geq|S| \geq 5$. Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$. Then for $x \in V\left(C_{i}\right), 1 \leq i \leq t, I_{x}-S \subseteq V\left(C_{i}\right)-\{x\}$.

Proof. For $1 \leq i \leq t$, let $x \in V\left(C_{i}\right)$. Assume that $I_{x}=\{u, z\}$. By Lemma 4.2, we may assume that $u \in S$ and $z \notin S$. Clearly, $x u \notin E(G)$. Suppose to the contrary that $z \notin V\left(C_{i}\right)$. Then $z \in V\left(C_{j}\right)$ for some $j, j \neq i$. Because $\Delta(G[S]) \leq 1, z$ dominates at least $|S|-2$ vertices of S. Without loss of generality we may assume that $i=1$ and $j=2$. Since $I_{x}=\{u, z\}, u \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-\left(V\left(C_{2}\right) \cup\{x\}\right)$. By Lemma 4.2, $\left|I_{z} \cap S\right|=1$. We first show that $\{u\} \neq I_{z} \cap S$. Suppose this is not the case. Then $\{u\}=I_{z} \cap S$. By Lemma 3.3(1), $u \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-\{x, z\}$ and $I_{z}=\{u, x\}$. It follows by Lemma 1.2 that $I_{u}-S \subseteq\{x, z\}$. Put $\{w\}=I_{u} \cap S$. Then $w u \notin E(G)$. Since $I_{x}=\{u, z\}, w z \in E(G)$. Consequently, $I_{u}=\{w, x\}$. Then $w x \notin E(G)$. But this contradicts the fact that $I_{z}=\{u, x\}$ since $w u \notin E(G)$. This prove that $\{u\} \neq I_{z} \cap S$.

Put $I_{z}=\left\{u_{1}, y\right\}$ where $u_{1} \in S-\{u\}$ and $y \notin S$. Then $z u_{1} \notin E(G)$ but $u u_{1} \in$ $E(G)$ since $I_{x}=\{u, z\}$. Because $\Delta(G[S]) \leq 1$, no vertex of $\left\{u, u_{1}\right\}$ is adjacent to any vertex of $S-\left\{u, u_{1}\right\}$. Thus y dominates $S-\left\{u, u_{1}\right\}$. We next show that $y \in V\left(C_{2}\right)$. Suppose to the contrary that $y \notin V\left(C_{2}\right)$. Consider $G-y$. Since y dominates $S-\left\{u, u_{1}\right\}, I_{y} \cap S \subseteq\left\{u, u_{1}\right\}$ by Lemma 1.2. By Lemma 4.2, either $I_{y} \cap S=\{u\}$ or $I_{y} \cap S=\left\{u_{1}\right\}$. If $I_{y} \cap S=\{u\}$, then the only vertex of $I_{y}-\{u\} \subseteq \bigcup_{i=1}^{t} V\left(C_{i}\right)$ dominates $x \in V\left(C_{1}\right)$ and $z \in V\left(C_{2}\right)$ which is not possible. Hence, $I_{y} \cap S=\left\{u_{1}\right\}$. Since $I_{z} \cap S=\left\{u_{1}\right\}$, by Lemma 3.3(1), we have $u_{1} \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-\{z, y\}$ and $I_{y}=\left\{u_{1}, z\right\}$. Thus z dominates $S-\left\{u, u_{1}\right\}$. It then follows by Lemma 1.2 that $I_{u_{1}}-S \subseteq\{z, y\}$ and $u \notin I_{u_{1}}$. But this contradicts the fact that $I_{u_{1}}$ is independent since both z and y dominates $S-\left\{u, u_{1}\right\}$ and $\left|I_{u_{1}} \cap S\right|=1$ by Lemma 4.2. This proves that $y \in V\left(C_{2}\right)$. It then follows that $u_{1} \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-V\left(C_{2}\right)$.

Now choose $x_{1} \in V\left(C_{1}\right)-\{x\}$. Such an x_{1} exists by Lemma 3.1(1) since $x u \notin$ $E(G)$. Further, for $3 \leq i \leq t$, choose $v_{i} \in V\left(C_{i}\right)$. Put $A=\left\{x_{1}, v_{3}, v_{4}, \ldots, v_{t}\right\}$. It is easy to see that if $a \in A, a \in N_{C_{i}}(u) \cap N_{C_{i}}\left(u_{1}\right)$. By Lemma 1.2, $I_{a} \cap\left\{u, u_{1}\right\}=\emptyset$ for each $a \in A$. Since $|A|=t-1 \geq 4$ and $\left|S-\left\{u, u_{1}\right\}\right|=|S|-2<t-1$, by Lemma 4.2 and Pigeonhole Principle, it follows that there is $u_{2} \in S-\left\{u, u_{1}\right\}$ such that $\left\{u_{2}\right\}=$ $I_{a_{1}} \cap S=I_{a_{2}} \cap S$ where $\left\{a_{1}, a_{2}\right\} \subseteq A$. By Lemma 3.3(1), $u_{2} \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-\left\{a_{1}, a_{2}\right\}$, $I_{a_{1}}=\left\{u_{2}, a_{2}\right\}$ and $I_{a_{2}}=\left\{u_{2}, a_{1}\right\}$. Further, $I_{u_{2}}-S \subseteq\left\{a_{1}, a_{2}\right\}$. Put $\left\{u_{3}\right\}=I_{u_{2}} \cap S$ for some $u_{3} \in S-\left\{u_{2}\right\}$. Then $u_{2} u_{3} \notin E(G)$. Since $I_{a_{1}}=\left\{u_{2}, a_{2}\right\}$ and $I_{a_{2}}=\left\{u_{1}, a_{1}\right\}$, it follows that $u_{3} a_{1}, u_{3} a_{2} \in E(G)$. But this contradicts the fact that $I_{u_{2}}$ is independent. This completes the proof of our lemma.

Theorem 4.4. Let G be a connected 3 - γ_{i}-vertex-critical graph and S a minimum cutset of G. If $\Delta(G[S]) \leq 1$ and $|S| \geq 5$, then $\omega(G-S) \leq|S|-1$.

Proof. Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$, where $t=\omega(G-S)$. Suppose to the contrary that $t \geq|S|$. For $1 \leq i \leq t$, choose $x_{i} \in V\left(C_{i}\right)$. By Lemma 4.2, $\left|I_{x_{i}} \cap S\right|=1$. Put $\left\{u_{i}\right\}=I_{x_{i}} \cap S$. It then follows by Lemma 4.3 that $u_{i} \succ \bigcup_{l=1}^{t} V\left(C_{l}\right)-V\left(C_{i}\right)$ and thus $u_{i} \neq u_{j}$ for $i \neq j$. Consequently, each vertex of $V\left(C_{i}\right)$ is adjacent to every vertex of $S-\left\{u_{i}\right\}$. Moreover, $I_{u_{i}}-S \subseteq V\left(C_{i}\right)$ by Lemma 1.2. But then $I_{u_{i}}$ is not independent since $\left|I_{u_{i}} \cap S\right|=1$ by Lemma 4.2, a contradiction. This settles our theorem.

Even though we do not give an upper bound on $\omega(G-S)$ when $\Delta(G[S]) \geq 2$ for $|S| \geq 5$, we can provide an upper bound on $\omega(G-S)$ for $3 \leq|S| \leq 4$. We now turn our attention to these cases.

Theorem 4.5. Let G be a connected $3-\gamma_{i}$-vertex-critical graph and S a minimum cutset of G. If $|S|=3$, then $\omega(G-S) \leq 3$. Further, the bound is best possible.

Proof. Let $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ and let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$. Suppose to the contrary that $t \geq 4$. Consider $G-u_{1}$. By Lemma 3.2(2), we may assume that $u_{2} \in I_{u_{1}} \cap S$. Put $\{z\}=I_{u_{1}}-\left\{u_{2}\right\}$. We first show that $z=u_{3}$. Suppose this is not the case. Then $z \in \bigcup_{i=1}^{t} V\left(C_{i}\right)$. We may assume that $z \in V\left(C_{1}\right)$. Then $u_{2} \succ \bigcup_{i=2}^{t} V\left(C_{i}\right)$. For $2 \leq i \leq t$ choose $v_{i} \in N_{C_{i}}\left(u_{3}\right)$. Such a v_{i} exists by Lemma $3.1(2)$. Now $v_{i} \in N_{C_{i}}\left(u_{2}\right) \cap N_{C_{i}}\left(u_{3}\right)$. But this contradicts Corollary 3.4 since $t-1 \geq 3$. This proves that $z \notin \bigcup_{i=1}^{t} V\left(C_{i}\right)$. Hence, $z=u_{3}$ and thus $I_{u_{1}}=\left\{u_{2}, u_{3}\right\}$. For $1 \leq i \leq t$, choose $w_{i} \in N_{C_{i}}\left(u_{1}\right)$. Since $I_{u_{1}}=\left\{u_{2}, u_{3}\right\}$ and $\left|\left\{w_{i} \mid 1 \leq i \leq t\right\}\right| \geq 4$, it follows by Pigeonhole Principle that either u_{2} or u_{3} is adjacent to at least two vertices of $\left\{w_{i} \mid 1 \leq i \leq t\right\}$. We may assume without loss of generality that $w_{1} u_{2}, w_{2} u_{2} \in E(G)$. Then, by Lemmas 1.2 and 3.2(2), $I_{w_{1}} \cap S=I_{w_{2}} \cap S=$ $\left\{u_{3}\right\}$. Then $w_{1} u_{3}, w_{2} u_{3} \notin E(G)$. By Lemma 3.3(1), $u_{3} \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-\left\{w_{1}, w_{2}\right\}$. Consequently, $\left\{w_{3}, w_{4}\right\} \subseteq N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{3}\right)$ and thus $I_{w_{3}} \cap S=I_{w_{4}} \cap S=\left\{u_{2}\right\}$. Then $w_{3} u_{2}, w_{4} u_{2} \notin E(G)$. Again, by Lemma 3.3(1), $u_{2} \succ \bigcup_{i=1}^{t} V\left(C_{i}\right)-\left\{w_{3}, w_{4}\right\}$. It then follows by Lemmas 3.1(2) and 3.2(1), that $t=4$. By Lemma 3.1(1), $\left|V\left(C_{i}\right)\right| \geq 2$, for $1 \leq i \leq 4$. For $1 \leq i \leq 4$, we now choose $z_{i} \in V\left(C_{i}\right)-\left\{w_{i}\right\}$. Clearly, $z_{i} \succ S-\left\{u_{1}\right\}$. But this contradicts Corollary 3.4 since $\left|\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}\right|=4$. This proves the first part of our theorem.

For a positive integer n, let G be the graph in Figure 4.1. It is easy to see that G is connected 3 - γ_{i}-vertex-critical with $\left\{u_{1}, u_{2}, u_{3}\right\}$ a minimum cutset. Clearly, $\omega\left(G-\left\{u_{1}, u_{2}, u_{3}\right\}\right)=3$. This shows that the bound in our theorem is best possible.

Theorem 4.6. Let G be a connected $3-\gamma_{i}$-vertex-critical graph and S a minimum cutset of G. If $|S|=4$, then $\omega(G-S) \leq 3$. Further, the bound is best possible.

Proof. Let $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Put $t=\omega(G-S)$. Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$. Suppose to the contrary that $t \geq 4$.

Figure 4.1: A 3 - γ_{i}-vertex-critical graph with a minimum cutset of order 3.
Claim 1. $G[S]$ contains an edge.
Proof. Suppose this is not the case. Then S is independent. Thus $\left|I_{u_{i}} \cap S\right|=1$ for $1 \leq$ $i \leq 4$ by Lemma 3.2(2). We may assume that $I_{u_{1}} \cap S=\left\{u_{2}\right\}$. Put $I_{u_{1}}-\left\{u_{2}\right\}=\{z\}$. Assume that $z \in V\left(C_{1}\right)$. Then $u_{2} \succ \bigcup_{i=2}^{t} V\left(C_{i}\right)$. By Lemma 1.2, $I_{u_{2}}-S \subseteq V\left(C_{1}\right)$. Then the only vertex of $I_{u_{2}} \cap S$ dominates $\bigcup_{i=2}^{t} V\left(C_{i}\right)$. Now let $w \in S-\left(I_{u_{2}} \cup\left\{u_{2}\right\}\right)$. For $2 \leq i \leq t$, choose $y_{i} \in N_{C_{i}}(w)$. Such a y_{i} exists by Lemma 3.1(2). Observe that $\left|N_{S}\left(y_{i}\right)\right| \geq 3$. In fact, $N_{S}\left(y_{i}\right)=\left(\left(I_{u_{2}} \cap S\right) \cup\left\{w, u_{2}\right\}\right)$ for $2 \leq i \leq t$ by Lemma 3.2(1). But this contradicts Corollary 3.4 since $\left|\left\{y_{2}, y_{3}, \ldots, y_{t}\right\}\right|=t-1 \geq 3$. This settles our claim.

We may now assume that $\operatorname{deg}_{S}\left(u_{1}\right)=\Delta(G[S])$. By Claim 1, $\operatorname{deg}_{S}\left(u_{1}\right) \geq 1$. Further, by Lemma $3.2(1), \operatorname{deg}_{S}\left(u_{1}\right) \leq 2$. Thus $1 \leq \operatorname{deg}_{S}\left(u_{1}\right) \leq 2$. Let $\left\{u_{2}\right\} \subseteq$ $N_{S}\left(u_{1}\right)$. Consider $G-u_{1}$. We may assume that $I_{u_{1}} \cap S=\left\{u_{3}\right\}$ by Lemmas 1.2 and 3.2(2). Put $\{z\}=I_{u_{1}}-\left\{u_{3}\right\}$. Then $u_{1} u_{3}, u_{1} z \notin E(G)$. We first show that $z \neq u_{4}$. Suppose this is not the case. Then $I_{u_{1}}=\left\{u_{3}, u_{4}\right\}$. Thus $u_{1} u_{3}, u_{1} u_{4} \notin E(G)$ but either $u_{2} u_{3} \in E(G)$ or $u_{2} u_{4} \in E(G)$. Consequently, $\operatorname{deg}_{S}\left(u_{2}\right) \geq 2>\operatorname{deg}_{S}\left(u_{1}\right)$. This contradicts the fact that $\operatorname{deg}_{S}\left(u_{1}\right)=\Delta(G[S])$. Hence, $z \neq u_{4}$. Assume that $z \in V\left(C_{1}\right)$. Then $u_{3} \succ \bigcup_{i=2}^{t} V\left(C_{i}\right)$. For $2 \leq i \leq t$, choose $y_{i} \in N_{C_{i}}\left(u_{4}\right)$. Such a y_{i} exists be Lemma 3.1(2). Observe that $y_{i} \in N_{C_{i}}\left(u_{3}\right) \cap N_{C_{i}}\left(u_{4}\right)$ for $2 \leq i \leq t$. It follows by Lemma 1.2 that $I_{y_{i}} \cap S \subseteq\left\{u_{1}, u_{2}\right\}$ for $2 \leq i \leq t$. Since $u_{1} u_{2} \in E(G)$, $\left|I_{y_{i}} \cap S\right|=1$. By Lemma 3.3(2), $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{1}\right\}\right\}\right| \leq 2$ and $\mid\left\{y_{i} \mid I_{y_{i}} \cap S=\right.$ $\left.\left\{u_{2}\right\}\right\} \mid \leq 2$. Because $z u_{1} \notin E(G),\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{1}\right\}\right\}\right| \leq 1$ by Lemma 3.3(1). Consequently, $\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{1}\right\}\right\}\right|=1,\left|\left\{y_{i} \mid I_{y_{i}} \cap S=\left\{u_{2}\right\}\right\}\right|=2$ and thus $t=4$. We may assume that $I_{y_{2}} \cap S=\left\{u_{1}\right\}, I_{y_{3}} \cap S=I_{y_{4}} \cap S=\left\{u_{2}\right\}$. By Lemma 3.3(1), $u_{2} \succ \bigcup_{i=1}^{4} V\left(C_{i}\right)-\left\{y_{3}, y_{4}\right\}$. Since $z u_{1} \notin E(G)$, the only vertex of $I_{y_{2}}-\left\{u_{1}\right\} \subseteq V\left(C_{1}\right)$. Thus $u_{1} \succ \bigcup_{i=2}^{4} V\left(C_{i}\right)-\left\{y_{2}\right\}$. By Lemma 3.1(1), $\left|V\left(C_{i}\right)\right| \geq 2$ for $2 \leq i \leq 4$ since $u_{1} y_{2}, u_{2} y_{3}, u_{2} y_{4} \notin E(G)$. For $2 \leq i \leq 4$, we now choose $w_{i} \in V\left(C_{i}\right)-\left\{y_{i}\right\}$. Observe that $w_{i} \in N_{C_{i}}\left(u_{1}\right) \cap N_{C_{i}}\left(u_{2}\right) \cap N_{C_{i}}\left(u_{3}\right)$. But this contradicts Corollary 3.4 since $\left|\left\{w_{2}, w_{3}, w_{4}\right\}\right|=3$. This proves the first part of our theorem.

We now show that the bound is best possible. Let G be a graph in Figure 4.2. It is easy to see that G is connected 3 - γ_{i}-vertex-critical with $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a minimum cutset. Clearly, $\omega(G-S)=3$.

We conclude our paper by making the following conjecture.

Figure 4.2: A 3 - γ_{i}-vertex-critical graph with a minimum cutset of order 4.

Conjecture. Let G be a connected 3 - γ_{i}-vertex-critical graph and S a minimum cutset of G. If $|S| \geq 5$, then $\omega(G-S) \leq|S|-1$.

If the conjecture is true, then it follows by Theorems 4.1, 4.5 and 4.6 that every connected $3-\gamma_{i}$-vertex-critical graph of even order contains a perfect matching.

Acknowledgements

The authors express their sincere thanks to the referees for their valuable suggestions which have improved our paper.

References

[1] S. Ao, Independent domination critical graphs, Master Thesis, University of Victoria, Canada, 1994.
[2] M. Dehmer, (ed). Structural analysis of complex networks, Birkhauser, Breingsville, 2011.
[3] O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory 16 (1996), 41-51.
[4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, (eds). Domination in GraphsAdvanced Topics, Marcel Dekker, New York, 1998.
[5] S. Ruangthampisan and N. Ananchuen, On connected 3-i-vertex-critical graphs with a minimum cutset, The $4^{\text {th }}$ National and International Graduate Study Conference (2014), Silpakorn University, Nakorn Pathom, Thailand, 3006-3013.

[^0]: * Work supported by Western Australian Centre of Excellence in Industrial Optimisation, Department of Mathematics and Statistics, Curtin University.
 \dagger Corresponding author.

