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Abstract

Let γi(G) denote the independent domination number of G. A graph G
is said to be k-γi-vertex-critical if γi(G) = k and for each x ∈ V (G),
γi(G − x) < k. In this paper, we show that for any k-γi-vertex-critical
graph H of order n with k ≥ 3, there exists an n-connected k-γi-vertex-
critical graph GH containing H as an induced subgraph. Consequently,
there are infinitely many non-isomorphic connected k-γi-vertex-critical
graphs. We also establish a number of properties of connected 3-γi-vertex-
critical graphs. In particular, we derive an upper bound on ω(G−S), the
number of components of G−S when G is a connected 3-γi-vertex-critical
graph and S is a minimum cutset of G with |S| ≥ 3.
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1 Introduction

All graphs in this paper are finite simple undirected. Let G be a graph with vertex
set V (G) and edge set E(G). The complement of G is denoted by G. For a vertex
u of G, the neighborhood of u in G, denoted by NG(u), is the set of all vertices of
G that are adjacent to u. The closed neighborhood of u which is NG(u) ∪ {u} is
denoted by NG[u]. For S ⊆ V (G), NS(u) = NG(u) ∩ S. For simplicity, if H is a
subgraph of G, we write NH(u) instead of NV (H)(u). The degree of a vertex u in
G, denoted by degG(u), is |NG(u)| while degS(u) denotes |NS(u)|. Further, Δ(G)
denotes max{degG(u)|u ∈ V (G)}.

A subset S of V (G) is independent if no two vertices of S are adjacent. The
number of components of G and the number of odd components of G are denoted by
ω(G) and ω0(G), respectively. A subset S ⊆ V (G) is called a cutset if ω(G− S) >
ω(G). If S = {u}, then the vertex u is called a cutvertex and we shall write ω(G−u)
instead of ω(G− {u}).

A graph G is said to be k-factor-critical if G − S has a perfect matching for
every S ⊆ V (G) with |S| = k. It is easy to see that |V (G)| ≡ k( mod 2). For
k = 1 and k = 2, k-factor-critical graphs are also called factor-critical and bicritical,
respectively. The concept of k-factor-critical graphs was introduced by Favaron [3]
in 1996.

For subsets S and T of V (G), S is called a dominating set of T , denoted by
S 	 T , if each vertex of T either belongs to S or is adjacent to some vertex of
S. For simplicity, we write s 	 T if S = {s} and S 	 G if T = V (G). The
minimum cardinality of a dominating set of G is called the domination number of
G and denoted by γ(G). A dominating set S of G which is also an independent
set is called an independent dominating set of G and is denoted by S 	i G. The
independent domination number of G is the minimum cardinality of an independent
dominating set of G and is denoted by γi(G). It is easy to see that γ(G) ≤ γi(G)
and if γ(G) = 1, then γi(G) = 1.

A graph G is said to be k-γi-vertex-critical if γi(G) = k and for each x ∈ V (G),
γi(G− x) < k. In fact, it is easy to see that if G is k-γi-vertex-critical, then γi(G−
x) = k − 1 for each x ∈ V (G). Further, |V (G)| ≥ k. The concept of k-γi-vertex-
critical graphs was first introduced by Ao [1] in 1994. The problem that arises is
that of characterizing connected k-γi-vertex-critical graphs. Ao [1] characterized
the case k = 1 and k = 2. More specifically, she proved that the only 1-γi-vertex-
critical graphs are K1, and the only 2-γi-vertex-critical graphs are K2n with a perfect
matching deleted for some positive integer n. The following two simple results are
useful in studying k-γi-vertex-critical graphs. In what follows, for a vertex x of a
k-γi-vertex-critical graph G, we denote by Ix any minimum independent dominating
set of G− x.

Lemma 1.1. [1] Suppose G is a k-γi-vertex-critical graph for k ≥ 2. Then for each
x ∈ V (G), |Ix| = k − 1.
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Lemma 1.2. [5] Suppose G is a k-γi-vertex-critical graph for k ≥ 2. Then for each
x ∈ V (G), Ix ∩NG[x] = ∅.

The following result follows directly from the definition.

Lemma 1.3. Suppose G is a k-γi-vertex-critical graph for k ≥ 2. For x, y ∈ V (G)
such that x �= y, Ix �= Iy.

For k ≥ 3, very few results on k-γi-vertex-critical graphs are known. In the
next section, we establish that for k ≥ 3, if H is a k-γi-vertex-critical graph on n
vertices, then there exists an n-connected k-γi-vertex-critical graph on kn+1 vertices
containing H as an induced subgraph. This suggests that characterizing connected
k-γi-vertex-critical graphs for k ≥ 3 is a very difficult task. The focus of this paper
is the case k = 3.

We establish a number of properties of connected 3-γi-vertex-critical graphs. In
Section 4, we derive an upper bound on the number of components ω(G− S) where
G is a connected 3-γi-vertex-critical graph and S is a minimum cutset of G with
|S| ≥ 3. Section 3 provides some preliminary results that we make use of in our
work.

We conclude this section by pointing out that critical concepts, in both edge-
critical and vertex-critical graphs, are studied for various kinds of domination num-
bers such as ordinary domination number, connected domination number and total
domination number. For more details of these, the reader is directed to the books
by Haynes et al. [4] and Dehmer [2] and also references therein.

2 A family of connected k-γi-vertex-critical graphs

In this section, we provide a construction of a family of connected k-γi-vertex-critical
graphs for k ≥ 3. For a k-γi-vertex-critical graph H , we show that there are infinitely
many connected k-γi-vertex-critical graphs containing H as an induced subgraph.
Before presenting the construction, we make an observation that there are infinitely
many k-γi-vertex-critical graphs. For positive integers k ≥ 3 and n, Kk−2 ∪ (K2n−a
perfect matching) is a simple example of k-γi-vertex-critical graph. Moreover, for
positive integers m and ni,

⋃m
i=1(K2ni

−a perfect matching), and K1 ∪
⋃m

i=1(K2ni
−a

perfect matching) are examples of k-γi-vertex-critical graphs when k = 2m is even
and k = 2m+1 is odd, respectively. For case k = 3, K1∪ (K2n− a perfect matching)
is the only disconnected 3-γi-vertex-critical graphs. Some examples of connected
3-γi-vertex-critical graphs are K3,3, C7: a cycle of order 7 and the graphs shown in
Figure 2.1 for any positive integers n and m. Note that “+” in our diagrams denotes
the join and the dash line denotes a missing edge between vertices.

Our next result establishes a class of connected k-γi-vertex-critical graphs.

Theorem 2.1. For k ≥ 3, let H be a k-γi-vertex-critical graph of order n. Then
there exists an n-connected k-γi-vertex-critical graph GH such that H is an induced
subgraph of GH .
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2 a perfect matchingnK 2 a perfect matchingnK 2 a perfect matchingmK

(a) (b)

Figure 2.1: Connected 3-γi-vertex-critical graphs.

Proof. Put V (H) = {x1, x2, . . . , xn}. Now let GH be a graph of order kn + 1
where V (G) = {u} ∪ {x1, x2, . . . , xn} ∪ ⋃k−1

j=1 Yj where Yj = {yj1, yj2, . . . , yjn} and

E(G) = {uxi|1 ≤ i ≤ n} ∪ E(H) ∪ ⋃k−1
j=1{xiyjl|1 ≤ i ≤ n, 1 ≤ l ≤ n, i �= l} ∪⋃k−1

j=1{yjlyjl′|1 ≤ l ≤ n, 1 ≤ l′ ≤ n, l �= l′}. Figure 2.2 illustrates our construction.

H1x nx2x

u

nK

( 1)1ky ( 1)2ky ( 1)k ny

nK nK
11y 12y 1ny

21y 22y 2ny

Figure 2.2: The graph GH .

It is easy to see that H is an induced subgraph of GH and GH is n-connected. We
only need to show that GH is k-γi-vertex-critical. Let I be a minimum independent
dominating set of H . Clearly, I 	i GH . Then γi(GH) ≤ k. It is easy to see that no
vertex of GH dominates GH , thus γi(GH) ≥ 2. Suppose there exists an independent
dominating set I1 of GH where |I1| ≤ k−1. We first show that u /∈ I1. Suppose this is
not the case. Since I1 is independent, (I1−{u})∩V (H) = ∅. Thus I1−{u} ⊆ ⋃k−1

j=1 Yj.

Since |I1−{u}| ≤ k−2 and GH [
⋃k−1

j=1 Yj ] consists of k−1 components, it follows that
no vertex of I1 dominates Yj′, for some 1 ≤ j′ ≤ k−1, a contradiction. Hence, u /∈ I1
as required. Since |I1| ≤ k − 1, I1 � V (H) otherwise γi(H) < k. Then there exists

w ∈ I1 ∩ (
⋃k−1

j=1 Yj). We may assume without loss of generality that w = y11. Since
u /∈ I1 and I1 is independent, it follows that I1 ∩ V (H) = {x1} by our construction.
Then I1 − {x1, y11} ⊆ ⋃k−1

j=2 Yj . Because |I1 − {x1, y11}| ≤ k − 3 and GH [
⋃k−1

j=2 Yj]
consists of k − 2 components, it follows that no vertex of I1 dominates Yj′′ for some
2 ≤ j′′ ≤ k − 1, again a contradiction. Hence, γi(GH) = k.
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We next show that GH is k-γi-vertex-critical. It is easy to see that Iu = {y11, y22,
. . . , y(k−1)(k−1)}. Further, for 1 ≤ j ≤ k − 1, 1 ≤ l ≤ n, Iyjl = {xl} ∪ {yj′l|1 ≤ j′ ≤
k − 1, j′ �= j}. Since H is k-γi-vertex-critical, |Ixi

| = k − 1 for 1 ≤ i ≤ n and it is
easy to see that Ixi

dominates GH − xi. This proves that GH is k-γi-vertex-critical
and completes the proof of our theorem. �

In view of Theorem 2.1, we may recursively construct a connected k-γi-vertex-
critical graph for k ≥ 3. Beginning with a k-γi-vertex-critical graph H of order n,
put G1 = GH , G2 = GG1 , G3 = GG2 , . . . , Gt = GGt−1, . . .. Then |V (Gt)| = ktn+ kt−1

k−1

and Gt is a |V (Gt−1)|-connected k-γi-vertex-critical graph for any positive integer t.
Further, each Gt contains H as an induced subgraph. By this recursive construction
and examples of k-γi-vertex-critical graphs given at the beginning of this section,
there are infinitely many non-isomorphic connected k-γi-vertex-critical graphs.

We next establish some matching properties of the graph GH . For the rest of this
section, FZ denotes a perfect matching in GH [Z] where Z ⊆ V (GH).

Proposition 2.2. For k ≥ 3, let H be a k-γi-vertex-critical graph of order n and let
GH be the graph defined in the proof of Theorem 2.1. Then we have:

1. If H is K1,s-free, then GH is K1,r-free where r = max{s, k + 1}.
2. If k and n are odd and n ≥ k + 2, then GH is bicritical.

3. If either k or n is even, then GH is factor-critical.

Proof. (1) This follows immediately from the construction.

(2) Let w1 and w2 be distinct vertices of GH . We need to show that GH−{w1, w2}
has a perfect matching. We first suppose that {w1, w2} ⊆ V (H). We may assume
without loss of generality that wi = xi, for 1 ≤ i ≤ 2. We now let

F = {ux3} ∪ {x4y21, x5y31, . . . , xk+1y(k−1)1} ∪ {xsy1(s+1)|k + 2 ≤ s ≤ n} ∪
k−1⋃
l=2

FYl−{yl1} ∪ FY1−{y1(s+1)|k+2≤s≤n}

where our subscript is read modulo n. It is easy to see that F is a perfect matching in
GH − {w1, w2}. By similar arguments, it is not difficult to show that GH − {w1, w2}
contains a perfect matching if {w1, w2} � V (H). This proves (2).

(3) Let w be a vertex of GH . We need to show that GH − w contains a perfect
matching. We first suppose that w = y11. If n is even, then

F1 = {uxn} ∪ {xsy1(s+1)|1 ≤ s ≤ n− 1} ∪
k−1⋃
l=2

FYl

is a perfect matching in GH −w. We now suppose that n is odd. Thus k is even by
our hypothesis. Put

F2 = {x1u} ∪ {x2y31, x3y41, . . . , xk−2y(k−1)1} ∪ {xsy2(s+1)|k − 1 ≤ s ≤ n}

∪FY1−{y11} ∪ FY2−{y2(s+1)|k−1≤s≤n} ∪
k−1⋃
l=3

FYl−{yl1}
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where our subscript is read modulo n. It is easy to see that F2 is a perfect matching
in GH − y11. By similar arguments, it is not difficult to show that GH − w has a
perfect matching if w /∈ ⋃k−1

l=1 Yl. This proves (3) and completes the proof of our
result. �

Note that the lower bound on n ≥ k+2 in the part 2 of the above result is sharp
since the graph GH , where H is Kk, is not bicritical.

3 Some preliminary results

In this section, we establish some basic results that we make use of in establishing
our results in the next section. Recall that, for a vertex x of a k-γi-vertex-critical
graph G, Ix denotes any minimum independent dominating set of G − x. Our first
result concerns a simple property of a graph with a cutset. It follows immediately
from the fact that our cutset is minimum.

Lemma 3.1. Let G be a connected graph and S a minimum cutset of G. Further,
let C be a component of G− S. Then we have:

1. If there is a vertex x ∈ V (C) such that x is not adjacent to some vertex of S,
then |V (C)| ≥ 2.

2. For each u ∈ S, NC(u) �= ∅.
The following two results concern simple properties of connected 3-γi-vertex-

critical graphs with a minimum cutset.

Lemma 3.2. Let G be a connected 3-γi-vertex-critical graph and S a minimum cutset
of G. If ω(G− S) ≥ 4, then

1. No vertex of V (G) dominates S. Consequently, Δ(G[S]) ≤ |S| − 2 and G− S
has no singleton components.

2. Ix ∩ S �= ∅, for each x ∈ V (G).

Proof. (1) Suppose to the contrary that there is a vertex y ∈ V (G) such that
y 	 S. By Lemma 1.2, Iy ∩ S = ∅. Thus Iy ⊆ V (G) − S. Since |Iy| = 2 and
ω(G− S) ≥ 4, it follows that there is a vertex of V (G)− S which is not dominated
by Iy, a contradiction. This settles (1).

(2) It is easy to see that if Ix ∩ S = ∅, for some x ∈ V (G), then Ix ⊆ V (G)− S.
Thus Ix does not dominate at least one component of G − S since |Ix| = 2 and
ω(G− S) ≥ 4. Hence, Ix ∩ S �= ∅ for each x ∈ V (G). This settles (2) and completes
the proof of our result. �

Lemma 3.3. Let G be a connected 3-γi-vertex-critical graph and S a cutset of G
where t = ω(G − S) ≥ 4. Let C1, C2, . . . , Ct be the components of G − S. Suppose
there exist yj ∈ V (Cj) and yj′ ∈ V (Cj′) for 1 ≤ j ≤ t, 1 ≤ j′ ≤ t, j �= j′ such that
Iyj ∩ S = Iyj′ ∩ S = {u} for some u ∈ S. Then
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1. u 	 ⋃t
i=1 V (Ci)− {yj, yj′}. Consequently, Iyj = {u, yj′} and Iyj′ = {u, yj}.

2. u /∈ Ix for any x ∈ ⋃t
i=1 V (Ci)− {yj, yj′}.

Proof. (1) Since {u} = Iyj ∩ S = Iyj′ ∩ S, it follows by Lemma 1.2 that uyj, uyj′ /∈
E(G). Put {z} = Iyj − {u} and {w} = Iyj′ − {u}. Then uz, uw /∈ E(G) since
Iyj and Iyj′ are independent. It is easy to see that z ∈ V (Cj′) and w ∈ V (Cj).

Then u 	 ⋃t
i=1 V (Ci) − (V (Cj′) ∪ {yj}) and w = yj since u ∈ Iyj . Further, u 	⋃t

i=1 V (Ci)− (V (Cj) ∪ {yj′}) and z = yj′ since u ∈ Iyj′ . This settles (1).

(2) This follows by (1) and Lemma 1.2. This completes the proof of our lemma.
�

As a consequence of Lemmas 1.2 and 3.3, we have:

Corollary 3.4. Let G, S and C1, C2, . . . , Ct be defined as in Lemma 3.3. If there
is {w1, w2, . . . , wr} ⊆ ⋃t

i=1 V (Ci), where wl 	 S − {u} for some u ∈ S and for
1 ≤ l ≤ r, such that |{w1, w2, . . . , wr} ∩ V (Cj)| ≤ 1 for 1 ≤ j ≤ t, then r ≤ 2.

4 Results on minimum cutsets of connected 3-γi-vertex-crit-

ical graphs

In this section, we provide an upper bound on ω(G − S), where G is a connected
3-γi-vertex-critical graph and S is a minimum cutset of G. For 1 ≤ |S| ≤ 2, Ru-
angthampisan and Ananchuen [5] showed that ω(G− S) ≤ |S|+ 1:

Theorem 4.1. [5] Let G be a connected 3-γi-vertex-critical graph and S a minimum
cutset of G. Then

ω(G− S) ≤
{

2, for |S| = 1,
3, for |S| = 2.

We now establish that if 3 ≤ |S| ≤ 4, then ω(G − S) ≤ 3 and if |S| ≥ 5, then
ω(G− S) ≤ |S| − 1 with some condition on S. We begin with some lemmas.

Lemma 4.2. Let G be a connected 3-γi-vertex-critical graph and S a minimum
cutset of G. If Δ(G[S]) ≤ 1 and t = ω(G− S) ≥ |S| ≥ 5, then for each x ∈ V (G),
|Ix ∩ S| = 1.

Proof. Since |Ix| = 2, it is easy to see that the result holds for Δ(G[S]) = 0. So we
may now assume that Δ(G[S]) = 1 and suppose to the contrary that there exists a
vertex u ∈ V (G) such that |Iu ∩ S| = 2. Put Iu ∩ S = {u1, u2}. Since Δ(G([S]) = 1
and |S| ≥ 5, it is easy to see that u ∈ S and |S| = 5. Without loss of generality, we
let E(G[S]) = {u1u3, u2u4} where {u3, u4} = S − {u, u1, u2}. Thus u is not adjacent
to any of vertex of S − {u}. Consequently, we have proven the following claim.

Claim 1. For each x ∈ V (G)− {u}, |Ix ∩ S| = 1.
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Consider G − u3. Clearly, u1 /∈ Iu3 since u1u3 ∈ E(G). Further, Iu3 ∩ S ⊆
{u, u2, u4}. Put {z} = Iu3 − S. Thus zu3 /∈ E(G). Let C1, C2, . . . , Ct be the
components of G − S. We may assume that z ∈ V (C1). We now establish the
following claim.

Claim 2. If u3 ∈ Ix∩S for some x ∈ V (Ci), 2 ≤ i ≤ t then Ix−{u3} ⊆ V (C1)−{z}.
Further, u3 	

⋃t
i=2 V (Ci)−{x} and thus u3 /∈ Iy ∩S for each y ∈ ⋃t

i=2 V (Ci)−{x}.

Proof. Suppose u3 ∈ Ix ∩ S. Since zu3 /∈ E(G), it follows that the only vertex of
Ix−{u3} dominates z ∈ V (C1). By Claim 1, Ix−{u3} ⊆ V (C1). If Ix−{u3} = {z},
then no vertex of Ix is adjacent to the vertex of Iu3 − {z}, a contradiction. This
proves that Ix − {u3} ⊆ V (C1) − {z}. Consequently, u3 	 ⋃t

i=2 V (Ci) − {x}. It
follows by Lemma 1.2 that u3 /∈ Iy ∩ S for each y ∈ ⋃t

i=2 V (Ci)− {x}. This settles
our claim.

We now distinguish three cases according to Iu3 ∩ S.

Case 1. Iu3 ∩ S = {u}.
Then uz /∈ E(G) and u 	 ⋃t

i=2 V (Ci). For 2 ≤ i ≤ t, choose yi ∈ NCi
(u4).

Such a yi exists by Lemma 3.1(2). Observe that yi ∈ NCi
(u) ∩ NCi

(u4). Then
Iyi ∩S ⊆ {u1, u2, u3} and |Iyi ∩S| = 1 by Lemma 1.2 and Claim 1. Thus, by Lemma
3.3(2), |{yi|Iyi ∩ S = {u1}}| ≤ 2 and |{yi|Iyi ∩ S = {u2}}| ≤ 2. But, by Claim 2,
|{yi|Iyi ∩ S = {u3}}| ≤ 1.

Case 1.1. |{yi|Iyi ∩ S = {u3}}| = 0.

Since |{y2, y3, . . . , yt}| = t − 1 ≥ 4, it follows that |{yi|Iyi ∩ S = {u1}}| =
|{yi|Iyi ∩ S = {u2}}| = 2 and t = 5. We may assume that Iy2 ∩ S = Iy3 ∩ S = {u1}
and Iy4 ∩S = Iy5 ∩S = {u2}. Then u1y2, u1y3, u2y4, u2y5 /∈ E(G). By Lemma 3.3(1),
u1 	

⋃5
i=1 V (Ci)−{y2, y3} and u2 	

⋃5
i=1 V (Ci)−{y4, y5}. Now, for 2 ≤ i ≤ t, choose

wi ∈ V (Ci)−{yi}. Then wi ∈ NCi
(u)∩NCi

(u1)∩NCi
(u2). Such a wi exists by Lemma

3.1(1) and the fact that u1y2, u1y3, u2y4, u2y5 /∈ E(G). Thus Iwi
∩ S ⊆ {u3, u4}. By

Claims 1 and 2, |{wi|Iwi
∩ S = {u3}}| ≤ 1 and thus |{wi|Iwi

∩ S = {u4}}| ≥ 3. But
this contradicts Lemma 3.3(2). Hence, Case 1.1 cannot occur.

Case 1.2. |{yi|Iyi ∩ S = {u3}}| = 1.

Without loss of generality we may assume that Iy2 ∩ S = {u3}. Put {z1} =
Iy2 − {u3}. By Claim 2, z1 ∈ V (C1) − {z} and u3 	 ⋃t

i=2 V (Ci) − {y2}. Since
E(G[S]) = {u1u3, u2u4}, z1 is adjacent to every vertex of {u, u2, u4}. Thus Iz1 ∩S ⊆
{u1, u3}. If Iz1∩S = {u3}, then the only vertex of Iz1−{u3} ⊆ ⋃t

i=1 V (Ci) is adjacent
to z ∈ V (C1) and y2 ∈ V (C2) since u3z, u3y2 /∈ E(G). But this is not possible. Hence,
Iz1 ∩ S = {u1}. It then follows by Lemma 3.3(2) that |{yi|Iyi ∩ S = {u1}}| ≤ 1
and |{yi|Iyi ∩ S = {u2}}| ≤ 2. Since |{y2, y3, . . . , yt}| = t − 1 ≥ 4, it follows that
|{yi|Iyi∩S = {u1}}| = 1 and |{yi|Iyi∩S = {u2}}| = 2. In fact, t = 5. We may assume
without loss of generality that Iy3∩S = {u1} and Iy4∩S = Iy5∩S = {u2}. By Lemma
3.3(1), u1 	 ⋃5

i=1 V (Ci) − {z1, y3} and u2 	 ⋃5
i=1 V (Ci) − {y4, y5}. For 2 ≤ i ≤ 5,

choose wi ∈ V (Ci)−{yi}. Then wi ∈ NCi
(u)∩NCi

(u1)∩NCi
(u2)∩NCi

(u3). But this
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contradicts Corollary 3.4 since |{w2, w3, w4, w5}| = 4. Hence, Case 1.2 cannot occur
and therefore Case 1 cannot occur.

Case 2. Iu3 ∩ S = {u2}.
By applying similar arguments as in the proof of Case 1, Case 2 cannot occur.

Case 3. Iu3 ∩ S = {u4}.
For 2 ≤ i ≤ t, choose yi ∈ NCi

(u2). Then applying similar arguments as in the
proof of Case 1, Case 3 cannot occur. This completes the proof of our result. �

Lemma 4.3. Let G be a connected 3-γi-vertex-critical graph and S a minimum cutset
of G. Suppose Δ(G[S]) ≤ 1 and t = ω(G− S) ≥ |S| ≥ 5. Let C1, C2, . . . , Ct be the
components of G− S. Then for x ∈ V (Ci), 1 ≤ i ≤ t, Ix − S ⊆ V (Ci)− {x}.
Proof. For 1 ≤ i ≤ t, let x ∈ V (Ci). Assume that Ix = {u, z}. By Lemma 4.2, we
may assume that u ∈ S and z /∈ S. Clearly, xu /∈ E(G). Suppose to the contrary
that z /∈ V (Ci). Then z ∈ V (Cj) for some j, j �= i. Because Δ(G[S]) ≤ 1, z
dominates at least |S| − 2 vertices of S. Without loss of generality we may assume
that i = 1 and j = 2. Since Ix = {u, z}, u 	 ⋃t

i=1 V (Ci)−(V (C2)∪{x}). By Lemma
4.2, |Iz∩S| = 1. We first show that {u} �= Iz∩S. Suppose this is not the case. Then
{u} = Iz ∩S. By Lemma 3.3(1), u 	 ⋃t

i=1 V (Ci)−{x, z} and Iz = {u, x}. It follows
by Lemma 1.2 that Iu − S ⊆ {x, z}. Put {w} = Iu ∩ S. Then wu /∈ E(G). Since
Ix = {u, z}, wz ∈ E(G). Consequently, Iu = {w, x}. Then wx /∈ E(G). But this
contradicts the fact that Iz = {u, x} since wu /∈ E(G). This prove that {u} �= Iz∩S.

Put Iz = {u1, y} where u1 ∈ S − {u} and y /∈ S. Then zu1 /∈ E(G) but uu1 ∈
E(G) since Ix = {u, z}. Because Δ(G[S]) ≤ 1, no vertex of {u, u1} is adjacent to any
vertex of S−{u, u1}. Thus y dominates S−{u, u1}. We next show that y ∈ V (C2).
Suppose to the contrary that y /∈ V (C2). Consider G − y. Since y dominates
S − {u, u1}, Iy ∩ S ⊆ {u, u1} by Lemma 1.2. By Lemma 4.2, either Iy ∩ S = {u}
or Iy ∩ S = {u1}. If Iy ∩ S = {u}, then the only vertex of Iy − {u} ⊆ ⋃t

i=1 V (Ci)
dominates x ∈ V (C1) and z ∈ V (C2) which is not possible. Hence, Iy ∩ S = {u1}.
Since Iz ∩ S = {u1}, by Lemma 3.3(1), we have u1 	 ⋃t

i=1 V (Ci) − {z, y} and
Iy = {u1, z}. Thus z dominates S − {u, u1}. It then follows by Lemma 1.2 that
Iu1 − S ⊆ {z, y} and u /∈ Iu1. But this contradicts the fact that Iu1 is independent
since both z and y dominates S − {u, u1} and |Iu1 ∩ S| = 1 by Lemma 4.2. This
proves that y ∈ V (C2). It then follows that u1 	

⋃t
i=1 V (Ci)− V (C2).

Now choose x1 ∈ V (C1) − {x}. Such an x1 exists by Lemma 3.1(1) since xu /∈
E(G). Further, for 3 ≤ i ≤ t, choose vi ∈ V (Ci). Put A = {x1, v3, v4, . . . , vt}. It is
easy to see that if a ∈ A, a ∈ NCi

(u) ∩NCi
(u1). By Lemma 1.2, Ia ∩ {u, u1} = ∅ for

each a ∈ A. Since |A| = t− 1 ≥ 4 and |S−{u, u1}| = |S| − 2 < t− 1, by Lemma 4.2
and Pigeonhole Principle, it follows that there is u2 ∈ S − {u, u1} such that {u2} =
Ia1 ∩S = Ia2 ∩S where {a1, a2} ⊆ A. By Lemma 3.3(1), u2 	

⋃t
i=1 V (Ci)−{a1, a2},

Ia1 = {u2, a2} and Ia2 = {u2, a1}. Further, Iu2 −S ⊆ {a1, a2}. Put {u3} = Iu2 ∩S for
some u3 ∈ S − {u2}. Then u2u3 /∈ E(G). Since Ia1 = {u2, a2} and Ia2 = {u1, a1}, it
follows that u3a1, u3a2 ∈ E(G). But this contradicts the fact that Iu2 is independent.
This completes the proof of our lemma. �
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Theorem 4.4. Let G be a connected 3-γi-vertex-critical graph and S a minimum
cutset of G. If Δ(G[S]) ≤ 1 and |S| ≥ 5, then ω(G− S) ≤ |S| − 1.

Proof. Let C1, C2, . . . , Ct be the components of G − S, where t = ω(G − S).
Suppose to the contrary that t ≥ |S|. For 1 ≤ i ≤ t, choose xi ∈ V (Ci). By
Lemma 4.2, |Ixi

∩ S| = 1. Put {ui} = Ixi
∩ S. It then follows by Lemma 4.3 that

ui 	 ⋃t
l=1 V (Cl) − V (Ci) and thus ui �= uj for i �= j. Consequently, each vertex

of V (Ci) is adjacent to every vertex of S − {ui}. Moreover, Iui
− S ⊆ V (Ci) by

Lemma 1.2. But then Iui
is not independent since |Iui

∩ S| = 1 by Lemma 4.2, a
contradiction. This settles our theorem. �

Even though we do not give an upper bound on ω(G−S) when Δ(G[S]) ≥ 2 for
|S| ≥ 5, we can provide an upper bound on ω(G− S) for 3 ≤ |S| ≤ 4. We now turn
our attention to these cases.

Theorem 4.5. Let G be a connected 3-γi-vertex-critical graph and S a minimum
cutset of G. If |S| = 3, then ω(G− S) ≤ 3. Further, the bound is best possible.

Proof. Let S = {u1, u2, u3} and let C1, C2, . . . , Ct be the components of G − S.
Suppose to the contrary that t ≥ 4. Consider G − u1. By Lemma 3.2(2), we may
assume that u2 ∈ Iu1 ∩ S. Put {z} = Iu1 − {u2}. We first show that z = u3.
Suppose this is not the case. Then z ∈ ⋃t

i=1 V (Ci). We may assume that z ∈ V (C1).
Then u2 	 ⋃t

i=2 V (Ci). For 2 ≤ i ≤ t choose vi ∈ NCi
(u3). Such a vi exists

by Lemma 3.1(2). Now vi ∈ NCi
(u2) ∩ NCi

(u3). But this contradicts Corollary
3.4 since t − 1 ≥ 3. This proves that z /∈ ⋃t

i=1 V (Ci). Hence, z = u3 and thus
Iu1 = {u2, u3}. For 1 ≤ i ≤ t, choose wi ∈ NCi

(u1). Since Iu1 = {u2, u3} and
|{wi|1 ≤ i ≤ t}| ≥ 4, it follows by Pigeonhole Principle that either u2 or u3 is adjacent
to at least two vertices of {wi|1 ≤ i ≤ t}. We may assume without loss of generality
that w1u2, w2u2 ∈ E(G). Then, by Lemmas 1.2 and 3.2(2), Iw1 ∩ S = Iw2 ∩ S =
{u3}. Then w1u3, w2u3 /∈ E(G). By Lemma 3.3(1), u3 	 ⋃t

i=1 V (Ci) − {w1, w2}.
Consequently, {w3, w4} ⊆ NG(u1)∩NG(u3) and thus Iw3 ∩S = Iw4 ∩S = {u2}. Then
w3u2, w4u2 /∈ E(G). Again, by Lemma 3.3(1), u2 	

⋃t
i=1 V (Ci) − {w3, w4}. It then

follows by Lemmas 3.1(2) and 3.2(1), that t = 4. By Lemma 3.1(1), |V (Ci)| ≥ 2, for
1 ≤ i ≤ 4. For 1 ≤ i ≤ 4, we now choose zi ∈ V (Ci)− {wi}. Clearly, zi 	 S − {u1}.
But this contradicts Corollary 3.4 since |{w1, w2, w3, w4}| = 4. This proves the first
part of our theorem.

For a positive integer n, let G be the graph in Figure 4.1. It is easy to see
that G is connected 3-γi-vertex-critical with {u1, u2, u3} a minimum cutset. Clearly,
ω(G− {u1, u2, u3}) = 3. This shows that the bound in our theorem is best possible.

�

Theorem 4.6. Let G be a connected 3-γi-vertex-critical graph and S a minimum
cutset of G. If |S| = 4, then ω(G− S) ≤ 3. Further, the bound is best possible.

Proof. Let S = {u1, u2, u3, u4}. Put t = ω(G − S). Let C1, C2, . . . , Ct be the
components of G− S. Suppose to the contrary that t ≥ 4.
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2 a perfect matchingnK

1u 2u
3u

Figure 4.1: A 3-γi-vertex-critical graph with a minimum cutset of order 3.

Claim 1. G[S] contains an edge.

Proof. Suppose this is not the case. Then S is independent. Thus |Iui
∩S| = 1 for 1 ≤

i ≤ 4 by Lemma 3.2(2). We may assume that Iu1 ∩S = {u2}. Put Iu1 −{u2} = {z}.
Assume that z ∈ V (C1). Then u2 	

⋃t
i=2 V (Ci). By Lemma 1.2, Iu2 − S ⊆ V (C1).

Then the only vertex of Iu2 ∩S dominates
⋃t

i=2 V (Ci). Now let w ∈ S− (Iu2 ∪{u2}).
For 2 ≤ i ≤ t, choose yi ∈ NCi

(w). Such a yi exists by Lemma 3.1(2). Observe that
|NS(yi)| ≥ 3. In fact, NS(yi) = ((Iu2 ∩ S) ∪ {w, u2}) for 2 ≤ i ≤ t by Lemma 3.2(1).
But this contradicts Corollary 3.4 since |{y2, y3, . . . , yt}| = t − 1 ≥ 3. This settles
our claim.

We may now assume that degS(u1) = Δ(G[S]). By Claim 1, degS(u1) ≥ 1.
Further, by Lemma 3.2(1), degS(u1) ≤ 2. Thus 1 ≤ degS(u1) ≤ 2. Let {u2} ⊆
NS(u1). Consider G − u1. We may assume that Iu1 ∩ S = {u3} by Lemmas 1.2
and 3.2(2). Put {z} = Iu1 − {u3}. Then u1u3, u1z /∈ E(G). We first show that
z �= u4. Suppose this is not the case. Then Iu1 = {u3, u4}. Thus u1u3, u1u4 /∈ E(G)
but either u2u3 ∈ E(G) or u2u4 ∈ E(G). Consequently, degS(u2) ≥ 2 > degS(u1).
This contradicts the fact that degS(u1) = Δ(G[S]). Hence, z �= u4. Assume that
z ∈ V (C1). Then u3 	 ⋃t

i=2 V (Ci). For 2 ≤ i ≤ t, choose yi ∈ NCi
(u4). Such a

yi exists be Lemma 3.1(2). Observe that yi ∈ NCi
(u3) ∩ NCi

(u4) for 2 ≤ i ≤ t. It
follows by Lemma 1.2 that Iyi ∩ S ⊆ {u1, u2} for 2 ≤ i ≤ t. Since u1u2 ∈ E(G),
|Iyi ∩ S| = 1. By Lemma 3.3(2), |{yi|Iyi ∩ S = {u1}}| ≤ 2 and |{yi|Iyi ∩ S =
{u2}}| ≤ 2. Because zu1 /∈ E(G), |{yi|Iyi ∩ S = {u1}}| ≤ 1 by Lemma 3.3(1).
Consequently, |{yi|Iyi ∩ S = {u1}}| = 1, |{yi|Iyi ∩ S = {u2}}| = 2 and thus t = 4.
We may assume that Iy2 ∩ S = {u1}, Iy3 ∩ S = Iy4 ∩ S = {u2}. By Lemma 3.3(1),
u2 	

⋃4
i=1 V (Ci)−{y3, y4}. Since zu1 /∈ E(G), the only vertex of Iy2−{u1} ⊆ V (C1).

Thus u1 	 ⋃4
i=2 V (Ci) − {y2}. By Lemma 3.1(1), |V (Ci)| ≥ 2 for 2 ≤ i ≤ 4 since

u1y2, u2y3, u2y4 /∈ E(G). For 2 ≤ i ≤ 4, we now choose wi ∈ V (Ci) − {yi}. Observe
that wi ∈ NCi

(u1) ∩ NCi
(u2) ∩ NCi

(u3). But this contradicts Corollary 3.4 since
|{w2, w3, w4}| = 3. This proves the first part of our theorem.

We now show that the bound is best possible. Let G be a graph in Figure 4.2.
It is easy to see that G is connected 3-γi-vertex-critical with S = {u1, u2, u3, u4} is a
minimum cutset. Clearly, ω(G− S) = 3. �

We conclude our paper by making the following conjecture.
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1u 2u 3u
4u

Figure 4.2: A 3-γi-vertex-critical graph with a minimum cutset of order 4.

Conjecture. Let G be a connected 3-γi-vertex-critical graph and S a minimum
cutset of G. If |S| ≥ 5, then ω(G− S) ≤ |S| − 1.

If the conjecture is true, then it follows by Theorems 4.1, 4.5 and 4.6 that every
connected 3-γi-vertex-critical graph of even order contains a perfect matching.
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