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Abstract

The closed neighborhood NG[e] of an edge e in a graph G is the set
consisting of e and of all edges having an end-vertex in common with e.
Let f be a function on E(G), the edge set of G, into the set {−1, 1}.
If

∑
x∈N [e] f(x) ≥ 1 for each edge e ∈ E(G), then f is called a signed

edge dominating function of G. The signed edge domination number
of G is the minimum weight of a signed edge dominating function of
G. In this paper, we find the signed edge domination number of the
complete tripartite graph Km,n,p, where 1 ≤ m ≤ n and p ≥ m + n.
This completes the search for the signed edge domination numbers of the
complete tripartite graphs.

1 Introduction

Let G be a simple non-empty graph with vertex set V (G) and edge set E(G). We use
[4] for terminology and notation not defined here. Two edges e1, e2 of G are called
adjacent if they are distinct and have a common end-vertex. The open neighborhood
NG(e) of an edge e ∈ E(G) is the set of all edges adjacent to e. Its closed neighborhood
is NG[e] = NG(e) ∪ {e}. For a function f : E(G) → {−1, 1} and a subset S of E(G)
we define f(S) =

∑
x∈S f(x). If S = NG[e] for some e ∈ E, then we denote f(S) by

f [e]. The weight of vertex v ∈ V (G) is defined by f(v) =
∑

e∈E(v) f(e), where E(v) is

the set of all edges at vertex v. A function f : E(G) → {−1, 1} is called a signed edge
dominating function (SEDF) of G if f [e] ≥ 1 for each edge e ∈ E(G). The SEDF
of a graph was first defined in [5]. The weight of f , denoted w(f), is defined to be
w(f) =

∑
e∈E(G) f(e). The signed edge domination number (SEDN) γ′

s(G) is defined

as γ′
s(G) = min{w(f) | f is an SEDF of G}. An SEDF f is called a γ′

s(G)-function
if ω(f) = γ′

s(G). In [5] it was conjectured that γ′
s(G) ≤ |V (G)| − 1 for every graph

G of order at least 2.
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The signed edge domination numbers of the complete graph Kn and the complete
bipartite graph Km,n were determined in [6] and [1], respectively. In [3], the signed
edge domination number of Km,n,p was calculated when 1 ≤ m ≤ n ≤ p ≤ m + n.
For completeness, we state the main theorem of [3].

Theorem 1.1. Let m,n and p be positive integers and m ≤ n ≤ p ≤ m + n. Let
(m,n, p) �∈ {(1, 1, 1), (2, 3, 5)}.
A. Let m, n and p be even.

1. If m+ n+ p ≡ 0 (mod 4), then γ′
s(Km,n,p) = (m+ n + p)/2.

2. If m+ n+ p ≡ 2 (mod 4), then γ′
s(Km,n,p) = (m+ n + p+ 2)/2.

B. Let m,n and p be odd.

1. If m+ n+ p ≡ 1 (mod 4), then γ′
s(Km,n,p) = (m+ n + p+ 1)/2.

2. If m+ n+ p ≡ 3 (mod 4), then γ′
s(Km,n,p) = (m+ n + p+ 3)/2.

C. Let m,n be odd and p be even or m,n be even and p be odd.

1. If m+ n ≡ 0 (mod 4), then γ′
s(Km,n,p) = (m+ n)/2 + p+ 1.

2. If m+ n ≡ 2 (mod 4), then γ′
s(Km,n,p) = (m+ n)/2 + p.

D. Let m, p be odd and n be even or m, p be even and n be odd.

1. If m+ p ≡ 0 (mod 4), then γ′
s(Km,n,p) = (m+ p)/2 + n+ 1.

2. If m+ p ≡ 2 (mod 4), then γ′
s(Km,n,p) = (m+ p)/2 + n.

E. Let n, p be odd and m be even or n, p be even and m be odd.

1. If n + p ≡ 0 (mod 4), then γ′
s(Km,n,p) = (n + p)/2 +m+ 1.

2. If n + p ≡ 2 (mod 4), then γ′
s(Km,n,p) = (n + p)/2 +m.

In addition, γ′
s(K1,1,1) = 1 and γ′

s(K2,3,5) = 5.

In this paper, we find the signed edge domination number of the complete tripar-
tite graph Km,n,p, when m,n ≥ 1 and p ≥ m + n. In Section 2, we present some
crucial results which will be employed in the rest of this paper. In Section 3, we
prove that if f is a γ′

s(Km,n,p)-function, then f(w) ≥ −1 for every vertex w in the
largest partite set of Km,n,p. In Section 4, we present general constructions for the
SEDFs of Km,n,p with minimum weight. In Section 5, we calculate the signed edge
domination numbers of K1,n,p and K2,2,p, where p is even. These cases do not follow
the constructions given in Section 4. In addition, we notice that γ′

s(K1,n,n+3) = 2n+3
when n is odd. So there is an infinite family of graphs which achieve the upper bound
given in Xu’s conjecture (see [5]). The main theorem of this paper is presented in
Section 6.
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2 Preliminary results

Let f be a SEDF of G. An edge e ∈ E(G) is called a negative edge (positive edge) if
f(e) = −1 (f(e) = 1). Let uv be an edge of G and suppose that x, y are the number
of negative edges at vertices u and v, respectively. Then

f [uv] = deg(u) + deg(v)− 2x− 2y − f(uv) ≥ 1. (1)

Hence, if e = uv, then f(u) + f(v) ≥ 0 for every edge e ∈ E(G). In addition, if
f(u) + f(v) = 0 or 1, then f(e) = −1.

The following result can be found in [2]. Since there are typographical errors in
the proof given in [2] we modify the proof and present it here.

Lemma 2.1. Let G be a graph, u, v ∈ V (G) and N(u) \ {v} = N(v) \ {u}. Let f be
a SEDF of G. Then there exists a SEDF of G, say g, with w(g) = w(f) such that
the difference between the number of negative edges at u and at v is at most 1.

Proof. Let V (G) = {v1 = u, v2 = v, v3, . . . , vn} and let xi, 1 ≤ i ≤ n, be the number
of edges e at vi with f(e) = −1.

If x1 ≤ x2−2, then there exists a vertex v� such that f(v1v�) = 1 and f(v2v�) = −1
for some � ∈ {3, 4, . . . , n}. Define g : E(G) → {−1, 1} by g(v1v�) = −1, g(v2v�) = 1
and g(e) = f(e) for e ∈ E(G) \ {v1v�, v2v�}. Let yi, 1 ≤ i ≤ n, be the number of
edges e at vi with g(e) = −1. Obviously, y1 = x1 + 1, y2 = x2 − 1 and yi = xi for
3 ≤ i ≤ n. In addition, w(g) = w(f). We prove that g is a SEDF of G.

If v1vj ∈ E(G) and j �∈ {1, 2, �}
g[v1vj] = deg(v1) + deg(vj)− 2y1 − 2yj − g(v1vj)

= deg(v1) + deg(vj)− 2x1 − 2− 2xj − f(v1vj)
≥ deg(v2) + deg(vj)− 2x2 + 2− 2xj − f(v1vj)
≥ deg(v2) + deg(vj)− 2x2 − 2xj − f(v2vj)
≥ 1 by (1),

g[v2vj ] = deg(v2) + deg(vj)− 2y2 − 2yj − g(v2vj)
= deg(v2) + deg(vj)− 2x2 + 2− 2xj − f(v2vj)
≥ 3 by (1).

Similarly, for e ∈ E(G) \ {v1vj , v2vj | j �∈ {1, 2, �}}, we obtain g[e] = f [e] ≥ 1. In
addition, if v1v2 ∈ E(G), then

g[v1v2] = deg(v1) + deg(v2)− 2y1 − 2y2 − g(v1v2)
= deg(v1) + deg(v2)− 2x1 − 2x2 − f(v1v2)
≥ 1 by (1).

Hence, g is a SEDF of G. If g satisfies the required condition, the proof is complete.
Otherwise, by repeating this process we can obtain the required function.

Corollary 2.2. Let G be a complete multipartite graph. There exists a γ′
s(G)-

function f such that the difference between the number of negative edges at every
two vertices in the same partite set is at most 1.
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3 SEDFs of complete tripartite graphs with vertices of neg-
ative weight

Consider the complete tripartite graph Km,n,p with partite sets U, V and W .
Throughout this section we assume |U | = m, |V | = n and |W | = p, where 1 ≤
m ≤ n ≤ p. In this section, we study γ′

s(Km,n,p)-functions with the property that the
difference between the number of negative edges at every two vertices in the same
partite set is at most 1 (see Corollary 2.2).

Lemma 3.1. Let m,n, p be all even or all odd and 1 ≤ m ≤ n ≤ p. If f is a
γ′
s(Km,n,p)-function such that the difference between the number of negative edges

at every two vertices in the same partite set is at most 1, then f(w) ≥ 0 for every
vertex of w ∈ W .

Proof. The proof is by contradiction. Assume f(w) = −2k, where 1 ≤ k ≤ (m+n)/2,
for some w ∈ W , and f(w′) ≥ −2k for all w′ ∈ W . Then there are (m + n + 2k)/2
negative edges and (m + n − 2k)/2 positive edges at w. Therefore the weight of
(m+n+2k)/2 vertices in U ∪V must be at least 2k and the weight of (m+n−2k)/2
vertices in U ∪V must be at least 2k+2. Since m ≤ n and f is a γ′

s(Km,n,p)-function,
we can assume f(u) = 2k for every u ∈ U . So there are (n+p−2k)/2 negative edges
at every vertex u ∈ U . Let U ∪V1, where V1 ⊆ V , consist of vertices of weight 2k and
let V2 = V \ V1 consist of vertices of weight 2k+2. Since (m+ n+2k)/2 > m and f
is a γ′

s(Km,n,p)-function, it follows that there is a vertex v ∈ V1 of weight 2k. Indeed,
|V1| = (n−m+ 2k)/2. Therefore there are (m+ p− 2k)/2 negative edges at v. Let
W1 ⊆ W consist of vertices of weight −2k. Since every vertex in V1 must be joined to
every vertex in W1 with a negative edge by (1), it follows that |W1| ≤ (m+p−2k)/2.
Hence, |W \W1| ≥ (p−m+ 2k)/2 and every vertex in this set has weight −2k + 2.
Note that (n + p − 2k)/2 − (m + p − 2k)/2 = (n − m)/2. Let W2 be a subset of
W \ W1 with (n −m)/2 vertices and the edges between W2 and U are all negative
edges. Let W3 = W \ (W1 ∪W2). Then

|W3| ≥ p− [(m+ p− 2k)/2 + (n−m)/2] = (p− n+ 2k)/2 ≥ 1.

Now let w′ ∈ W3. Then the edges between w′ and U ∪ V1 are all positive edges.
Therefor the number of negative edges at w′ is at most (n+m−2k)/2. On the other
hand, for every vertex w ∈ W1 there are (n+m+2k)/2 negative edges. Since k ≥ 1,
the difference between the number of negative edges at w and at w′ is 2k ≥ 2, which
is a contradiction.

The proof of the following result is similar to the proof of Lemma 3.1.

Lemma 3.2. Let m,n be even and p be odd or m,n be odd and p be even, where
1 ≤ m ≤ n < p. If f is a γ′

s(Km,n,p)-function such that the difference between the
number of negative edges at every two vertices in the same partite set is at most 1,
then f(w) ≥ 0 for every vertex of w ∈ W .
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Proof. The proof is by contradiction. Let m,n be even and p be odd. (The case m,n
odd and p even is similar.) Assume f(w) = −2k, where 1 ≤ k ≤ (m+n)/2, for some
w ∈ W , and f(w′) ≥ −2k for all w′ ∈ W . Then there are (m + n + 2k)/2 negative
edges and (m+n−2k)/2 positive edges at w. Therefore the weight of (m+n+2k)/2
vertices in U ∪V must be at least 2k+1 and the weight of (m+n−2k)/2 vertices in
U ∪ V must be at least 2k + 3. Since m ≤ n and f is a γ′

s(Km,n,p)-function, we can
assume f(u) = 2k+1 for every u ∈ U . So there are (n+p−2k−1)/2 negative edges
at every vertex u ∈ U . Let U ∪V1, where V1 ⊆ V , consist of vertices of weight 2k+1
and let V2 = V \V1 consist of vertices of weight 2k+3. Since (m+n+2k)/2 > m and
f is a γ′

s(Km,n,p)-function, it follows that there is a vertex v ∈ V1 of weight 2k + 1.
Indeed, |V1| = (n − m + 2k)/2. Therefore there are (m + p − 2k − 1)/2 negative
edges at v. Let W1 ⊆ W consist of vertices of weight −2k. Since every vertex in
V1 must be joined to every vertex in W1 with a negative edge by (1), it follows that
|W1| ≤ (m+p−2k−1)/2. Hence, |W\W1| ≥ (p−m+2k+1)/2 and every vertex in this
set has weight −2k+2. Note that (n+p−2k−1)/2−(m+p−2k−1)/2 = (n−m)/2.
Let W2 be a subset of W \ W1 with (n − m)/2 vertices and the edges between W2

and U are all negative edges. Let W3 = W \ (W1 ∪W2). Then

|W3| ≥ p− [(m+ p− 2k − 1)/2 + (n−m)/2] = (p− n + 2k + 1)/2 ≥ 1.

Now let w′ ∈ W3. Then the edges between w′ and U ∪ V1 are all positive edges.
Therefor the number of negative edges at w′ is at most (n+m−2k)/2. On the other
hand, for every vertex w ∈ W1 there are (n+m+2k)/2 negative edges. Since k ≥ 1,
the difference between the number of negative edges at w and at w′ is 2k ≥ 2, which
is a contradiction.

Lemma 3.3. Let m be odd and n, p be even or m, p be even and n be odd, where
1 ≤ m < n ≤ p. If f is a γ′

s(Km,n,p)-function such that the difference between the
number of negative edges at every two vertices in the same partite set is at most 1,
then f(w) ≥ −1 for every vertex of w ∈ W .

Proof. The proof is by contradiction. Let m be odd and n, p be even. (The case m, p
even and n odd is similar.) Assume f(w) = −2k−1, where 1 ≤ k ≤ (m+n−1)/2, for
some w ∈ W , and f(w′) ≥ −2k−1 for all w′ ∈ W . Then there are (m+n+2k+1)/2
negative edges and (m + n − 2k − 1)/2 positive edges at w. Therefore the weight
of (m + n + 2k + 1)/2 vertices in U ∪ V must be at least 2k + 1 and the weight of
(m + n − 2k − 1)/2 vertices in U ∪ V must be at least 2k + 3. Since m < n and
f is a γ′

s(Km,n,p)-function, we can assume f(u) = 2k + 2 for every vertex u ∈ U .
So there are (n + p − 2k − 2)/2 negative edges at every vertex u ∈ U . Let V1 ⊂ V
consist of vertices of weight 2k + 1 and let V2 = V \ V1 consist of vertices of weight
2k + 3. Since (m + n + 2k + 1)/2 > m and f is a γ′

s(Km,n,p)-function, it follows
that there is a vertex v ∈ V1 of weight 2k + 1. Indeed, |V1| = (n −m + 2k + 1)/2.
Therefore there are (m+ p− 2k − 1)/2 negative edges at v. Let W1 ⊆ W consist of
vertices of weight −2k − 1. Since every vertex in V1 must be joined to every vertex
in W1 with a negative edge by (1), it follows that |W1| ≤ (m+ p− 2k− 1)/2. Hence,
|W \W1| ≥ (p−m+ 2k + 1)/2 and every vertex in this set has weight −2k + 1.
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Note that (n+ p− 2k− 2)/2− (m+ p− 2k− 1)/2 = (n−m− 1)/2. Let W2 be a
subset of W \W1 with (n−m− 1)/2 vertices and the edges between W2 and U are
all negative edges. Let W3 = W \ (W1 ∪W2). Then

|W3|d ≥ p− [(m+ p− 2k − 1)/2 + (n−m− 1)/2] = (p− n+ 2k + 2)/2 ≥ 2.

Now let w′ ∈ W3. Then the edges between w′ and U ∪ V1 are all positive edges.
Therefor the number of negative edges at w′ is at most (n+m− 2k − 1)/2. On the
other hand, for every vertex w ∈ W1 there are (n +m + 2k + 1)/2 negative edges.
Since k ≥ 1, the difference between the number of negative edges at w and at w′ is
2k + 1 ≥ 3, which is a contradiction.

The proof of the following result is similar to the proof of Lemma 3.3.

Lemma 3.4. Let m, p be odd and n be even or m be even and n, p be odd, where
1 ≤ m < n ≤ p. If f is a γ′

s(Km,n,p)-function such that the difference between the
number of negative edges at every two vertices in the same partite set is at most 1,
then f(w) ≥ −1 for every vertex of w ∈ W .

Proof. The proof is by contradiction. Let m, p be odd and n be even. (The case m
even and n, p odd is similar.) Assume f(w) = −2k−1, where 1 ≤ k ≤ (m+n−1)/2,
for some w ∈ W , and f(w′) ≥ −2k − 1 for all w′ ∈ W . Then there are (m + n +
2k + 1)/2 negative edges and (m + n − 2k − 1)/2 positive edges at w. Therefore
the weight of (m+ n+ 2k + 1)/2 vertices in U ∪ V must be at least 2k + 1 and the
weight of (m+n− 2k− 1)/2 vertices in U ∪ V must be at least 2k+3. Since m < n
and f is a γ′

s(Km,n,p)-function, we can assume f(u) = 2k+1 for every vertex u ∈ U .
So there are (n + p − 2k − 1)/2 negative edges at every vertex u ∈ U . Let V1 ⊂ V
consist of vertices of weight 2k + 2 and let V2 = V \ V1 consist of vertices of weight
2k + 4. Since (m + n + 2k + 1)/2 > m and f is a γ′

s(Km,n,p)-function, it follows
that there is a vertex v ∈ V1 of weight 2k + 2. Indeed, |V1| = (n −m + 2k + 1)/2.
Therefore there are (m+ p− 2k − 2)/2 negative edges at v. Let W1 ⊆ W consist of
vertices of weight −2k − 1. Since every vertex in V1 must be joined to every vertex
in W1 with a negative edge by (1), it follows that |W1| ≤ (m+ p− 2k− 2)/2. Hence,
|W \W1| ≥ (p−m+ 2k + 2)/2 and every vertex in this set has weight −2k + 1.

Note that (n+ p− 2k− 1)/2− (m+ p− 2k− 2)/2 = (n−m+ 1)/2. Let W2 be a
subset of W \W1 with (n−m+ 1)/2 vertices and the edges between W2 and U are
all negative edges. Let W3 = W \ (W1 ∪W2). Then

|W3| ≥ p− [(m+ p− 2k − 2)/2 + (n−m+ 1)/2] = (p− n+ 2k + 1)/2 ≥ 1.

Now let w′ ∈ W3. Then the edges between w′ and U ∪ V1 are all positive edges.
Therefor the number of negative edges at w′ is at most (n+m− 2k − 1)/2. On the
other hand, for every vertex w ∈ W1 there are (n +m + 2k + 1)/2 negative edges.
Since k ≥ 1, the difference between the number of negative edges at w and at w′ is
2k + 1 ≥ 3, which is a contradiction.
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4 The SEDN of Km,n,p

Consider the complete tripartite graph Km,n,p whose partite sets are U, V and W .
Throughout this section we assume |U | = m, |V | = n and |W | = p, where m,n and
p are positive integers, m ≤ n and p ≥ m+n. In this section we compute the signed
edge domination number of Km,n,p, where m ≥ 2 and (m,n) �= (2, 2) if p is odd.

Proposition 4.1. Let m,n and p be even and p ≥ m+n. Then γ′
s(Km,n,p) = m+n.

Proof. Consider the graph Km,n,p whose partite sets are U, V and W . By assumption

m(n + p− 2)/2 + n(m+ p− 2)/2− p(m+ n)/2 = mn−m− n

is even. First we label (mn − m − n)/2 edges between U and V with −1 in the
following way. Label an edge uv, where u ∈ U and v ∈ V , with −1 if

1. the total number of negative edges between U and V is less than (mn−m−n)/2,

2. the number of negative edges at u is less than (n+ p− 2)/2,

3. the number of negative edges at v is less than (m+ p− 2)/2,

4. the number of negative edges at u is less than or equal to the number of negative
edges at u′ for every u′ ∈ (U \ {u}), and

5. the number of negative edges at v is less than or equal to the number of negative
edges at v′ for every v′ ∈ (V \ {v}).

Then we label p(m+ n)/2 edges between U ∪ V and W with −1 in a similar fashion
described above. An edge rw, where r ∈ (U ∪ V ) and w ∈ W is labelled by −1 if

1. the number of negative edges between U ∪ V and W is less than p(m+ n)/2,

2. the number of negative edges at r is less than (n+ p− 2)/2 if r ∈ U ,

3. the number of negative edges at r is less than (m+ p− 2)/2 if r ∈ V ,

4. the number of negative edges at w is less than (m+ n)/2,

5. the number of negative edges at r is less than or equal to the number of negative
edges at u for every u ∈ (U \ {r}) if r ∈ U ,

6. the number of negative edges at r is less than or equal to the number of negative
edges at v for every v ∈ (V \ {r}) if r ∈ V ,

7. the number of negative edges at w is less than or equal to the number of
negative edges at w′ for every w′ ∈ (W \ {w}).
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Then there are exactly ((p+n)/2)−1, ((p+m)/2)−1 and (m+n)/2 negative edges
at every vertex in U, V and W , respectively. Label the remaining edges of Km,n,p by
+1. Then all vertices in U ∪ V have weight 2 and all the vertices in W have weight
zero. Hence, this labeling defines a SEDF f of Km,n,p by (1), and ω(f) = m + n.
Note that since the weight of every vertex of W is zero, no vertices in U ∪V can have
weight zero by (1). Now by Lemma 3.1 and the facts that f(W ) = 0 and f(r) = 2
for every r ∈ U ∪ V , it follows that γ′

s(Km,n,p) = m+ n.

Proposition 4.2. Let m,n and p be odd, m,n ≥ 3 and p ≥ m + n + 1. Then
γ′
s(Km,n,p) = m+ n+ 1.

Proof. Consider the graphKm,n,p whose partite sets are U, V andW . By assumption,

m(n + p− 2)/2 + n(m+ p− 2)/2− p(m+ n)/2 = mn−m− n

is odd. In addition, (n + p − 2)/2, (m + p − 2)/2 and (m + n)/2 are all odd, or
two are even and one is odd. Hence, there is no graph whose m vertices have degree
(n+p−2)/2, n vertices have degree (n+p−2)/2 and p vertices have degree (m+n)/2.
On the other hand,

m(n+ p− 2)/2 + n(m+ p− 2)/2− (p− 1)(m+ n)/2
−(m+ n− 2)/2 = mn−m− n + 1,

is an even number. We label (mn − m − n + 1)/2 edges between U and V and
(p − 1)(m + n)/2 + (m + n − 2)/2 edges between U ∪ V and W with −1 in a
similar fashion described in Proposition 4.1. Then there are (n + p − 2)/2 negative
edges at each vertex of U , (m + p − 2)/2 negative edges at each vertex of V and
(m + n)/2 negative edges at each vertex of W except one vertex which is incident
with (m+n− 2)/2 negative edges. We label the remaining edges of Km,n,p with +1.
Then the weight of vertices in U ∪V are all 2 and the weight of vertices in W are all
zero except one vertex of W whose weight is 2. Hence, this labeling defines a SEDF
f of Km,n,p by (1), and ω(f) = m+ n + 1.

Note that since the weight of every vertex of W is zero, no vertices in U ∪ V
can have weight zero by (1). Now by Lemma 3.1 and the facts that f(W ) = 2 and
f(r) = 2 for every r ∈ U ∪ V , it follows that γ′

s(Km,n,p) = m+ n+ 1.

Proposition 4.3. Let m,n ≥ 3 be odd, p be even and p ≥ m+ n. Then

1. γ′
s(Km,n,p) =

3m+ 3n+ 2

2
if m+ n ≡ 0 (mod 4),

2. γ′
s(Km,n,p) =

3m+ 3n

2
if m+ n ≡ 2 (mod 4).

Proof. Consider the graph Km,n,p whose partite sets are U, V and W .

Case 1. m+ n ≡ 0 (mod 4).
By assumption,

(m− 1)(n+ p− 3)/2 + (n+ p− 5)/2 + n(m+ p− 3)/2
−p(m+ n)/2 = mn− 1− (3m+ 3n)/2
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is even. Label (1/2)[mn− 1− (3m+3n)/2] edges between U and V and p(m+n)/2
edges between U ∪ V and W with −1 in a similar fashion described in the proof of
Proposition 4.1. Then every vertex in U is incident with (n+p−3)/2 negative edges
except one vertex which is incident with (n+ p−5)/2 negative edges. Every vertices
in V is incident with (m+ p− 3)/2 negative edges and every vertex in W is incident
with (m + n)/2 negative edges. Label the remaining edges of Kn,m,p by +1. Then
the weight of vertices in U ∪ V are all 3 except one vertex of U whose weight is 5,
and the weight of vertices in W are all zero. Hence, this labeling defines a SEDF f
with w(f) = (3m+ 3n+ 2)/2.

Note that since the weight of every vertex of W is zero, no vertices in U ∪ V
can have weight one by (1). Now by Lemma 3.2 and the facts that f(W ) = 0 and
f(r) = 3 for every r ∈ U ∪ V except one vertex which has weight 5, it follows that
γ′
s(Km,n,p) = (3m+ 3n+ 2)/2.

Case 2. m+ n ≡ 2 (mod 4).
By assumption,

m(p + n− 3)/2 + n(m+ p− 3)/2− p(m+ n)/2 = mn− (3m+ 3n)/2

is even. Label (1/2)[mn − (3m + 3n)/2] edges between U and V and p(m + n)/2
edges between U ∪ V and W with −1 in a similar fashion described in the proof of
Proposition 4.1. Then every vertex in U is incident with (n+p−3)/2 negative edges,
every vertex in V is incident with (m+ p− 3)/2 negative edges and every vertex in
W is incident with (m + n)/2 negative edges. Label the remaining edges of Kn,m,p

with +1. Then the weight of vertices in U ∪ V are all 3 and the weight of vertices in
W are all zero. Hence, this labeling defines a SEDF f with w(f) = (3m+ 3n)/2.

Note that since the weight of every vertex of W is zero, no vertices in U ∪ V
can have weight one by (1). Now by Lemma 3.2 and the facts that f(W ) = 0 and
f(r) = 3 for every r ∈ U ∪ V , it follows that γ′

s(Km,n,p) = (3m+ 3n)/2.

Proposition 4.4. Let m and n be even, (m,n) �= (2, 2), p be odd and p ≥ m+n+1.
Then

1. γ′
s(Km,n,p) =

3m+ 3n

2
if m+ n ≡ 0 (mod 4),

2. γ′
s(Km,n,p) =

3m+ 3n+ 2

2
if m+ n ≡ 2 (mod 4).

Proof. Consider the graph Km,n,p whose partite sets are U, V and W .
Case 1. m+ n ≡ 0 (mod 4).
By assumption,

m(n + p− 3)/2 + n(m+ p− 3)/2− p(m+ n)/2 = mn− (3m+ 3n)/2

is even. Label (1/2)[mn−3(m+n)/2] edges between U and V and p(m+n)/2 edges
between U ∪ V and W with −1 as described in the proof of Proposition 4.1. Then
every vertex in U is incident with (n+ p− 3)/2 negative edges, every vertex in V is
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incident with (m + p − 3)/2 negative edges and every vertex in W is incident with
(m + n)/2 negative edges. Label the remaining edges of Kn,m,p by +1. Then the
weight of vertices in U ∪ V are all 3 and the weight of vertices in W are all zero.
Hence, this labeling defines a SEDF f with w(f) = (3m+ 3n)/2.

Note that since the weight of every vertex of W is zero, no vertices in U ∪ V
can have weight one by (1). Now by Lemma 3.2 and the facts that f(W ) = 0 and
f(r) = 3 for every r ∈ U ∪ V , it follows that γ′

s(Km,n,p) = (3m+ 3n)/2.

Case 2. m+ n ≡ 2 (mod 4).
By assumption,

(m− 1)(n+ p− 3)/2 + (n+ p− 5)/2 + n(m+ p− 3)/2
−p(m+ n)/2 = mn− 1− (3m+ 3n)/2

is even. Label (1/2)[mn− 1− 3(m+ n)/2] edges between U and V and p(m+ n)/2
edges between U ∪ V and W with −1 as described in the proof of Proposition 4.1.
Then every vertex in U is incident with (n + p − 3)/2 negative edges except one
vertex which is incident with (n + p − 5)/2 negative edges, every vertex in V is
incident with (m + p− 3)/2 negative edges, and every vertex in W is incident with
(m + n)/2 negative edges. Label the remaining edges of Kn,m,p with +1. Then the
weight of vertices in U ∪ V are all 3 except one vertex whose weight is 5 and the
weight of vertices in W are all zero. Hence, this labeling defines a SEDF f with
w(f) = (3m+ 3n+ 2)/2.

Note that since the weight of every vertex of W is zero, no vertices in U ∪ V can
have weight one by (1). Now by Lemma 3.2 and the facts that f(W ) = 0, f(u) = 3
for every vertex u in U except one vertex whose weight is 5, and f(v) = 3 for every
v ∈ V , it follows that γ′

s(Km,n,p) = (3m+ 3n+ 2)/2.

Proposition 4.5. Let m be odd, n, p be even, 3 ≤ m < n and p ≥ m+n+1. Then

1. γ′
s(Km,n,p) =

3m+ 2n+ 1

2
if m ≡ 1 (mod 4),

2. γ′
s(Km,n,p) =

3m+ 2n− 1

2
if m ≡ 3 (mod 4)

Proof. Consider the graph Km,n,p whose partite sets are U, V and W .
Case 1. m ≡ 1 (mod 4).
By assumption,

m(n + p− 2)/2 + ((n−m− 1)/2)(m+ p− 1)/2
+((n+m+ 1)/2)(m+ p− 3)/2− (p/2)(m+ n+ 1)/2
−(p/2)(m+ n− 1)/2 = mn− n− (3m+ 1)/2

is even. Partition V into V1 and V2 with |V1| = (n−m−1)/2 and |V2| = (n+m+1)/2.
Also partition W into W1 and W2 with |W1| = |W2|. In a similar fashion described
in the proof of Proposition 4.1, label (1/2)[mn− n − (3m + 1)/2] edges between U
and V and (p/2)(m+ n + 1)/2 + (p/2)(m+ n − 1)/2 edges between U ∪ V and W
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with −1 such that the edges between V1 and W1 are all negative edges. In addition,
every vertex in U is incident with (n+ p−2)/2 negative edges, every vertex in V1, V2

is incident with (m + p − 1)/2 and (m + p − 3)/2 negative edges, respectively, and
every vertex in W1,W2 is incident with (m + n + 1)/2 and (m + n − 1)/2 negative
edges, respectively. Label the remaining edges of Kn,m,p by +1. Then the weight of
vertices in U are all 2, the weight of vertices in V1, V2 are all 1, 3, respectively, and
the weight of vertices in W1 are all −1 and in W2 are +1. Hence, this labeling defines
a SEDF f with w(f) = (3m+ 2n+ 1)/2.

Note that since the weight of some vertices in W is −1, no vertices in U ∪ V can
have weight zero or −1 by (1). Now by Lemma 3.3 and the facts that f(W ) = 0,
f(u) = 2 for every u ∈ U , f(v) = 1 for every v ∈ V1 and f(v) = 3 for every v ∈ V2,
it follows that γ′

s(Km,n,p) = (3m+ 2n + 1)/2.

Case 2. m ≡ 3 (mod 4).
By assumption,

m(n + p− 2)/2 + ((n−m+ 1)/2)(m+ p− 1)/2
+((n +m− 1)/2)(m+ p− 3)/2− (p/2)(m+ n+ 1)/2
−(p/2)(m+ n− 1)/2 = mn− n− (3m− 1)/2

is even. Partition V into V1 and V2 with |V1| = (n−m+1)/2 and |V2| = (n+m−1)/2.
Also partition, W into W1 and W2 with |W1| = |W2|. In a similar fashion described
in the proof of Proposition 4.1, label (1/2)[mn− n − (3m − 1)/2] edges between U
and V and (p/2)(m+ n + 1)/2 + (p/2)(m+ n − 1)/2 edges between U ∪ V and W
with −1 such that the edges between V1 and W1 are all negative edges. In addition,
every vertex in U is incident with (n+ p−2)/2 negative edges, every vertex in V1, V2

is incident with (m + p − 1)/2 and (m + p − 3)/2 negative edges, respectively, and
every vertex in W1,W2 is incident with (m + n + 1)/2 and (m + n − 1)/2 negative
edges, respectively. Label the remaining edges of Kn,m,p by +1. Then the weight of
vertices in U are all 2, the weight of vertices in V1, V2 are all 1, 3, respectively, and
the weight of vertices in W1 are all −1 and in W2 are +1. Hence, this labeling defines
a SEDF f with w(f) = (3m+ 2n− 1)/2.

Note that since the weight of some vertices in W is −1, no vertices in U ∪ V can
have weight zero or −1 by (1). Now by Lemma 3.3 and the facts that f(W ) = 0,
f(u) = 2 for every u ∈ U , f(v) = 1 for every v ∈ V1 and f(v) = 3 for every v ∈ V2,
it follows that γ′

s(Km,n,p) = (3m+ 2n− 1)/2.

Proposition 4.6. Let m, p be even, n be odd, m < n and p ≥ m+ n + 1. Then

1. γ′
s(Km,n,p) =

2m+ 3n+ 1

2
if n ≡ 1 (mod 4),

2. γ′
s(Km,n,p) =

2m+ 3n− 1

2
if n ≡ 3 (mod 4).

Proof. Consider the graph Km,n,p whose partite sets are U, V and W .
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Case 1. n ≡ 1 (mod 4).
By assumption,

m(n + p− 1)/2 + ((n−m− 1)/2)(m+ p− 2)/2
+((n+m+ 1)/2)(m+ p− 4)/2− (p/2)(m+ n+ 1)/2
−(p/2)(m+ n− 1)/2 = mn−m− (3n+ 1)/2

is even. Partition V into V1 and V2 with |V1| = (n−m−1)/2 and |V2| = (n+m+1)/2.
Also partition, W into W1 and W2 with |W1| = |W2|. In a similar fashion described
in the proof of Proposition 4.1, label (1/2)[mn − n − (3n + 1)/2] edges between U
and V and (p/2)(m+ n + 1)/2 + (p/2)(m+ n − 1)/2 edges between U ∪ V and W
with −1 such that the edges between V1 and W1 are all negative edges. In addition,
every vertex in U is incident with (n+ p−1)/2 negative edges, every vertex in V1, V2

is incident with (m + p − 2)/2 and (m + p − 4)/2 negative edges, respectively, and
every vertex in W1,W2 is incident with (m + n + 1)/2 and (m + n − 1)/2 negative
edges, respectively. Label the remaining edges of Kn,m,p by +1. Then the weight of
vertices in U are all 1, the weight of vertices in V1, V2 are all 2, 4, respectively, the
weight of vertices in W1 are all −1 and in W2 are +1. Hence, this labeling defines a
SEDF f with w(f) = (2m+ 3n+ 1)/2.

Note that since the weight of some vertices in W is −1, no vertices in U ∪ V can
have weight zero or −1 by (1). Now by Lemma 3.3 and the facts that f(W ) = 0,
f(u) = 1 for every u ∈ U , f(v) = 2 for every v ∈ V1 and f(v) = 4 for every v ∈ V2,
it follows that γ′

s(Km,n,p) = (2m+ 3n + 1)/2.

Case 2. n ≡ 3 (mod 4).
By assumption,

m(n + p− 1)/2 + ((n−m− 1)/2)(m+ p− 2)/2
+((n+m+ 1)/2)(m+ p− 4)/2− (p/2)(m+ n+ 1)/2
−(p/2)(m+ n− 1)/2 = mn−m− (3n− 1)/2

is even. Partition V into V1 and V2 with |V1| = (n−m+1)/2 and |V2| = (n+m−1)/2.
Also partition, W into W1 and W2 with |W1| = |W2|. In a similar fashion described
in the proof of Proposition 4.1, label (1/2)[mn − n − (3n + 1)/2] edges between U
and V and (p/2)(m+ n + 1)/2 + (p/2)(m+ n − 1)/2 edges between U ∪ V and W
with −1 such that the edges between V1 and W1 are all negative edges. In addition,
every vertex in U is incident with (n+ p−1)/2 negative edges, every vertex in V1, V2

is incident with (m + p − 2)/2 and (m + p − 4)/2 negative edges, respectively, and
every vertex in W1,W2 is incident with (m + n + 1)/2 and (m + n − 1)/2 negative
edges, respectively. Label the remaining edges of Kn,m,p by +1. Then the weight of
vertices in U are all 1, the weight of vertices in V1, V2 are all 2, 4, respectively, and
the weight of vertices in W1 are all −1 and in W2 are +1. Hence, this labeling defines
a SEDF f with w(f) = (2m+ 3n− 1)/2.

Note that since the weight of some vertices in W is −1, no vertices in U ∪ V can
have weight zero or −1 by (1). Now by Lemma 3.3 and the facts that f(W ) = 0,
f(u) = 1 for every u ∈ U , f(v) = 2 for every v ∈ V1 and f(v) = 4 for every v ∈ V2,
it follows that γ′

s(Km,n,p) = (2m+ 3n− 1)/2.
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Proposition 4.7. Let m, p be odd, n be even, 3 ≤ m < n, and p ≥ m+ n. Then

1. γ′
s(Km,n,p) =

2m+ 3n

2
if n ≡ 0 (mod 4),

2. γ′
s(Km,n,p) =

2m+ 3n− 2

2
if n ≡ 2 (mod 4),

Proof. Consider the graph Km,n,p whose partite sets are U, V and W .
Case 1. n ≡ 0 (mod 4).
By assumption,

m(n+ p− 1)/2 + ((n−m− 1)/2)(m+ p− 2)/2
+((n+m+ 1)/2)(m+ p− 4)/2− ((p+ 1)/2)(m+ n + 1)/2
−((p− 1)/2)(m+ n− 1)/2 = mn−m− (3n + 2)/2

is even. Partition V into V1 and V2 with |V1| = (n−m−1)/2 and |V2| = (n+m+1)/2.
Also partitionW intoW1 and W2 with |W1| = |W2|+1. In a similar fashion described
in the proof of Proposition 4.1, label (1/2)[mn−m − (3n + 2)/2] edges between U
and V and ((p+1)/2)(m+n+1)/2+ ((p−1)/2)(m+n−1)/2 edges between U ∪V
and W with −1 such that the edges between V1 and W1 are all negative edges. In
addition, every vertex in U is incident with (n+p−1)/2 negative edges, every vertex
in V1, V2 is incident with (m+p−2)/2 and (m+p−4)/2 negative edges, respectively,
and every vertex in W1,W2 is incident with (m+n+1)/2 and (m+n−1)/2 negative
edges, respectively. Label the remaining edges of Kn,m,p by +1. Then the weight of
vertices in U are all 1, the weight of vertices in V1, V2 are all 2, 4, respectively, and
the weight of vertices in W1 are −1 and in W2 are +1. Hence, this labeling defines
a SEDF f with w(f) = (2m+ 3n)/2.

Note that since the weight of some vertices in W is −1, no vertices in U ∪ V can
have weight zero or −1 by (1). Now by Lemma 3.4 and the facts that f(W ) = −1,
f(u) = 1 for every u ∈ U , f(v) = 2 for every v ∈ V1 and f(v) = 4 for every v ∈ V2,
it follows that γ′

s(Km,n,p) = (2m+ 3n)/2.

Case 2. n ≡ 2 (mod 4).
By assumption,

m(n + p− 1)/2 + ((n−m+ 1)/2)(m+ p− 2)/2
+((n+m− 1)/2)(m+ p− 4)/2− ((p+ 1)/2)(m+ n + 1)/2
−((p− 1)/2)(m+ n− 1)/2 = mn−m− 3n/2

is even. Partition V into V1 and V2 with |V1| = (n−m+1)/2 and |V2| = (n+m−1)/2.
Also partitionW intoW1 and W2 with |W1| = |W2|+1. In a similar fashion described
in the proof of Proposition 4.1, label (1/2)[mn−m− 3n/2] edges between U and V
and ((p+1)/2)(m+n+1)/2+((p−1)/2)(m+n−1)/2 edges between U ∪V and W
with −1 such that the edges between V1 and W1 are all negative edges. In addition,
every vertex in U is incident with (n+ p−1)/2 negative edges, every vertex in V1, V2

is incident with (m + p − 2)/2 and (m + p − 4)/2 negative edges, respectively, and
every vertex in W1,W2 is incident with (m + n + 1)/2 and (m + n − 1)/2 negative
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edges, respectively. Label the remaining edges of Kn,m,p by +1. Then the weight of
vertices in U are all 1, the weight of vertices in V1, V2 are all 2, 4, respectively, and
the weight of vertices in W1 are all −1 and in W2 are +1. Hence, this labeling defines
a SEDF f with w(f) = (2m+ 3n− 2)/2.

Note that since the weight of some vertices in W is −1, no vertices in U ∪ V can
have weight zero or −1 by (1). Now by Lemma 3.4 and the facts that f(W ) = −1,
f(u) = 1 for every u ∈ U , f(v) = 2 for every v ∈ V1 and f(v) = 4 for every v ∈ V2,
it follows that γ′

s(Km,n,p) = (2m+ 3n− 2)/2.

Proposition 4.8. Let m be even, n, p be odd, m < n, and p ≥ m+ n. Then there
is an SEDF f of Km,n,p with

1. γ′
s(Km,n,p) =

3m+ 2n

2
if m ≡ 0 (mod 4),

2. γ′
s(Km,n,p) =

3m+ 2n− 2

2
if m ≡ 2 (mod 4).

Proof. Consider the graph Km,n,p whose partite sets are U, V and W .
Case 1. m ≡ 0 (mod 4).
By assumption,

m(n + p− 2)/2 + ((n−m+ 1)/2)(m+ p− 1)/2
+((n+m− 1)/2)(m+ p− 3)/2− ((p− 1)/2)(m+ n+ 1)/2
−((p + 1)/2)(m+ n− 1)/2 = mn− n− (3m− 2)/2

is even. Partition V into V1 and V2 with |V1| = (n−m+1)/2 and |V2| = (n+m−1)/2.
Also partitionW into W1 andW2 with |W1| = |W2|−1. In a similar fashion described
in the proof of Proposition 4.1, label (1/2)[mn− n − (3m − 2)/2] edges between U
and V and ((p−1)/2)(m+n+1)/2+ ((p+1)/2)(m+n−1)/2 edges between U ∪V
and W with −1 such that the edges between V1 and W1 are all negative edges. In
addition, every vertex in U is incident with (n+p−2)/2 negative edges, every vertex
in V1, V2 is incident with (m+p−1)/2 and (m+p−3)/2 negative edges, respectively,
and every vertex in W1,W2 is incident with (m+n+1)/2 and (m+n−1)/2 negative
edges, respectively. Label the remaining edges of Kn,m,p by +1. Then the weight of
vertices in U are all 2, the weight of vertices in V1, V2 are all 1, 3, respectively, and
the weight of vertices in W1 are all −1 and in W2 are +1. Hence, this labeling defines
a SEDF f with w(f) = (3m+ 2n)/2.

Note that since the weight of some vertices in W is −1, no vertices in U ∪ V can
have weight zero or −1 by (1). Now by Lemma 3.4 and the facts that f(W ) = 1,
f(u) = 2 for every u ∈ U , f(v) = 1 for every v ∈ V1 and f(v) = 3 for every v ∈ V2,
it follows that γ′

s(Km,n,p) = (3m+ 2n)/2.

Case 2. m ≡ 2 (mod 4).
By assumption,

m(n + p− 2)/2 + ((n−m+ 1)/2)(m+ p− 1)/2
+((n+m− 1)/2)(m+ p− 3)/2− ((p+ 1)/2)(m+ n + 1)/2
−((p− 1)/2)(m+ n− 1)/2 = mn− n− (3m)/2
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is even. Partition V into V1 and V2 with |V1| = (n−m+1)/2 and |V2| = (n+m−1)/2.
Also partitionW intoW1 and W2 with |W1| = |W2|+1. In a similar fashion described
in the proof of Proposition 4.1, label (1/2)[mn− n− 3m/2] edges between U and V
and ((p+1)/2)(m+n+1)/2+((p−1)/2)(m+n−1)/2 edges between U ∪V and W
with −1 such that the edges between V1 and W1 are all negative edges. In addition,
every vertex in U is incident with (n+ p−2)/2 negative edges, every vertex in V1, V2

is incident with (m + p − 1)/2 and (m + p − 3)/2 negative edges, respectively, and
every vertex in W1,W2 is incident with (m + n + 1)/2 and (m + n − 1)/2 negative
edges, respectively. Label the remaining edges of Kn,m,p by +1. Then the weight of
vertices in U are all 2, the weight of vertices in V1, V2 are all 1, 3, respectively, and
the weight of vertices in W1 are all −1 and in W2 are +1. Hence, this labeling defines
a SEDF f with w(f) = (3m+ 2n− 2)/2.

Note that since the weight of some vertices in W is −1, no vertices in U ∪ V can
have weight zero or −1 by (1). Now by Lemma 3.4 and the facts that f(W ) = −1,
f(u) = 2 for every u ∈ U , f(v) = 1 for every v ∈ V1 and f(v) = 3 for every v ∈ V2,
it follows that γ′

s(Km,n,p) = (3m+ 2n− 2)/2.

5 The SEDNs of K1,n,p and K2,2,p

The constructions given in Section 4 work if the sum of the desired negative edges
at vertices in U and at vertices in V is not less than the desired negative edges at
vertices in W . In this section we calculate the signed edge domination numbers of
K1,n,p and K2,2,p which are not covered by constructions given in Section 4.

Lemma 5.1. Let n ≥ 1 and p ≥ n+ 2.

1. If n, p are odd, then γ′
s(K1,n,p) = n+ 2.

2. If n, p are even, then γ′
s(K1,n,p) = n+ 2.

3. If n is even and p ≥ n + 3 is odd, then γ′
s(K1,n,p) = 2n+ 1.

4. If n is odd and p ≥ n+ 3 is even, then γ′
s(K1,n,p) = 2n+ 3.

Proof. Consider the graph K1,n,p whose partite sets are U, V and W .
Case 1. n and p are odd.
Sincemn−m−n = n−1−n = −1 when m = 1, the construction given in Proposition
4.2 does not work. On the other hand,

m(n + p− 2)/2 + n(m+ p− 2)/2− (p− 1)(m+ n)/2− (m+ n− 2)/2 = 0

when m = 1. So we can label (n+p−2)/2+n(1+p−2)/2 edges between U ∪V and
W such that the vertex in U is incident with (n+p−2)/2 negative edges, each vertex
in V is incident with (p− 1)/2 negative edges and all the vertices in W are incident
with (n + 1)/2 negative edges except one vertex which is incident with (n − 1)/2
negative edges. We label the remaining edges with +1. This yields a signed edge



A. KHODKAR/AUSTRALAS. J. COMBIN. 71 (3) (2018), 351–368 366

dominating function of weight n+2. It is easy to see that this is the minimum weight
of a SEDF of K1,n,p when n, p are odd.

Case 2. n and p are even.
Since mn−n− (3m+1)/2 = −2 when m = 1, the construction given in Proposition
4.5 does not work. On the other hand,

m(n + p− 2)/2 + ((n−m+ 1)/2)(m+ p− 1)/2
+((n +m− 1)/2)(m+ p− 3)/2− (p/2)(m+ n+ 1)/2
−((p− 2)/2)(m+ n− 1)/2− (m+ n− 3)/2 = mn− n− (3m− 3)/2 = 0

when m = 1. So we can label m(n+ p− 2)/2 + ((n−m+ 1)/2)(m+ p− 1)/2
+ ((n+m− 1)/2)(m+ p− 3)/2 edges between U ∪V and W such that the vertex in
U is incident with (n+ p− 2)/2 negative edges, half of the vertices in V are incident
with p/2 negative edges and the other half are incident with (p−2)/2 negative edges,
p/2 vertices in W are incident with (n + 2)/2, (p − 2)/2 vertices are incident with
n/2 and one vertex is incident with (n−2)/2 negative edges. We label the remaining
edges with +1. This yields a signed edge dominating function of weight n+ 2. It is
easy to see that this is the minimum weight of a SEDF of K1,n,p when n, p are even.

Case 3. n is even and p ≥ n+ 3 is odd.
If m = 1, then mn−m− 3n/2 < 0, so the constructions given in Proposition 4.7 do
not work. On the other hand,

m(n + p− 1)/2 + ((n−m+ 1)/2)(m+ p− 2)/2
+((n+m− 1)/2)(m+ p− 4)/2− ((p− n− 1)/2)(m+ n+ 1)/2
−((p + n+ 1)/2)(m+ n− 1)/2 = mn−m− n+ 1 = 0

when m = 1. Place m(n + p − 1)/2 + ((n − m + 1)/2)(m + p − 2)/2 + ((n + m −
1)/2)(m + p − 4)/2 negative edges between U ∪ V and W such that the vertex in
U is incident with (n + p − 1)/2 negative edges, (n − m + 1)/2 vertices in V are
incident with (m+ p− 2)/2 negative edges, (n+m− 1)/2 vertices are incident with
(m+p−4)/2 negative edges, (p−n−1)/2 vertices ofW are incident with (m+n+1)/2
negative edges and (p+n+1)/2 vertices of W are incident with (m+n-1)/2 negative
edges. Label the remaining edges with +1. This yields a signed edge dominating
function of weight 2n + m which is 2n + 1 when m = 1. It is an easy to see that
γ(K1,n,p) = 2n+ 1.

Case 4. n is odd and p ≥ n+ 3 is even.
If m = 1, then mn− (3m+ 3n)/2 < 0, so the constructions given in Proposition 4.3
do not work. On the other hand,

m(n+ p− 3)/2 + n(m+ p− 3)/2− (p− (n+ 3)/2)(m+ n)/2
−((n+ 3)/2)(m+ n− 2)/2 = (2mn− 3m− 2n + 3)/2 = 0

when m = 1. So we can find a signed edge dominating function of weight (1/2)[3 +
3n + 2(n+ 3)/2] = 2n+ 3. It is easy to verify that γ′

s(K1,n,p) = 2n+ 3.
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In [5] it was conjectured that γ′
s(G) ≤ |V (G)| − 1 for every graph G of order at

least 2. Note that if n is odd, then γ′
s(K1,n,n+3) = 2n + 3 by Lemma 5.1, Part 4.

Hence, the graph K1,n,n+3 achieves the upper bound in this conjecture.

Lemma 5.2. Let p ≥ 5 be odd. Then γ′
s(K2,2,p) = 8.

Proof. Consider the graph K2,2,p with partite sets U , V and W . Partition W into
W1,W2 and W3 such that |W1| = |W2| and |W3| = 1. Label the edges between U
and W1 and between V and W2 with −1 and the remaining edges with +1. Then
the weight of vertices in W1 ∪W2 are zero and the weight of the vertex in W3 is 4.
The weight of the vertices in U ∪ V are all 3. This leads to γ′

s(K2,2,p) = 8.

6 Main Theorem

Let m,n, p be positive integers, m ≤ n and p ≥ m+ n. In this section we state the
Main Theorem of this paper, which consists of putting together the several lemmas
and propositions that are proved earlier. This result together with the main result
of [3] provide the signed edge domination number of Km,n,p for all positive integers
m,n and p.

Main Theorem Let m,n and p be positive integers, m ≤ n and p ≥ m + n. Let
m ≥ 2 and if p is odd, (m,n) �= (2, 2).

A. If m,n and p are even, then γ′
s(Km,n,p) = m+ n.

B. If m,n and p are odd and m,n ≥ 3, then γ′
s(Km,n,p) = m+ n + 1.

C. If m,n ≥ 3 are odd and p is even, then

1. γ′
s(Km,n,p) =

3m+ 3n+ 2

2
if m+ n ≡ 0 (mod 4),

2. γ′
s(Km,n,p) =

3m+ 3n

2
if m+ n ≡ 2 (mod 4).

D. If m,n are even, p is odd and (m,n) �= (2, 2), then

1. γ′
s(Km,n,p) =

3m+ 3n

2
if m+ n ≡ 0 (mod 4),

2. γ′
s(Km,n,p) =

3m+ 3n+ 2

2
if m+ n ≡ 2 (mod 4).

E. If m is odd, n, p are even and 3 ≤ m < n, then

1. γ′
s(Km,n,p) =

3m+ 2n+ 1

2
if m ≡ 1 (mod 4),

2. γ′
s(Km,n,p) =

3m+ 2n− 1

2
if m ≡ 3 (mod 4).

F. If m, p are even, n is odd and m < n, then
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1. γ′
s(Km,n,p) =

2m+ 3n+ 1

2
if n ≡ 1 (mod 4),

2. γ′
s(Km,n,p) =

2m+ 3n− 1

2
if n ≡ 3 (mod 4).

G. If m, p are odd, n is even and 3 ≤ m < n, then

1. γ′
s(Km,n,p) =

2m+ 3n

2
if n ≡ 0 (mod 4),

2. γ′
s(Km,n,p) =

2m+ 3n− 2

2
if n ≡ 2 (mod 4).

H. If m is even, n, p are odd and m < n, then

1. γ′
s(Km,n,p) =

3m+ 2n

2
if m ≡ 0 (mod 4),

2. γ′
s(Km,n,p) =

3m+ 2n− 2

2
if m ≡ 2 (mod 4).

In addition, γ′
s(K1,n,p) = n+2 if n, p are both odd or both even, γ′

s(K1,n,p) = 2n+1
if n is even and p ≥ n + 3 is odd, γ′

s(K1,n,p) = 2n + 3 if n is odd and p ≥ n + 3 is
even, and γ′

s(K2,2,p) = 8 if p is odd.
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