4-Cycle decompositions of complete 3-uniform hypergraphs

Heather Jordon
Department of Mathematics and Computer Science Albion College
Albion, MI 49224
U.S.A.
hjordon@albion.edu

Genevieve Newkirk
Beach Park Middle School
Beach Park, IL 60099
U.S.A.
gennynewk@gmail.com

Abstract

A 3 -uniform complete hypergraph of order n has vertex set $\{1,2, \ldots, n\}$ and, as its edge set, the set of all possible subsets of size 3. A 4-cycle in this hypergraph is $v_{1}, e_{1}, v_{2}, e_{2}, v_{3}, e_{3}, v_{4}, e_{4}, v_{1}$ where $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are distinct vertices and $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ are distinct 3 -edges such that $v_{i}, v_{i+1} \in$ e_{i} for $i=1,2,3$ and $v_{4}, v_{1} \in e_{4}$ (also known as a Berge cycle). A decomposition of a hypergraph is a partition of its edge set into edge-disjoint subsets. In this paper, we give necessary and sufficient conditions for a decomposition of the complete 3 -uniform hypergraph of order n into 4 -cycles.

1 Introduction

Problems concerning decompositions of graphs into edge-disjoint subgraphs have been well-studied; see for example the survey in [6]. A decomposition of a graph G is a set $\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ of subgraphs of G such that $E\left(F_{1}\right) \cup E\left(F_{2}\right) \cup \cdots \cup E\left(F_{k}\right)=$ $E(G)$ and $E\left(F_{i}\right) \cap E\left(F_{j}\right)=\emptyset$ for all $1 \leq i<j \leq k$. If F is a fixed graph and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ is a decomposition such that $F_{1} \cong F_{2} \cong \ldots \cong F_{k} \cong F$, then \mathcal{F} is called an F-decomposition. The problem of determining all values of n for which there is an F-decomposition of the complete graph K_{n} of order n has attracted a lot of interest for various graphs F (see the survey [1]).

The notion of decompositions of graphs naturally extends to hypergraphs. A hypergraph H consists of a finite nonempty set V of vertices and a set $E=\left\{e_{1}, e_{2}, \ldots\right.$, $\left.e_{m}\right\}$ of hyperedges where each $e_{i} \subseteq E$ with $\left|e_{i}\right|>0$ for $1 \leq i \leq m$. If $\left|e_{i}\right|=h$, then we call e_{i} an h-edge. If every edge of H is an h-edge for some h, then we say that H is h-uniform. The complete h-uniform hypergraph $K_{n}^{(h)}$ is the hypergraph with vertex set V, where $|V|=n$, in which every h-subset of V determines an h-edge. It then follows that $K_{n}^{(h)}$ has $\binom{n}{h}$ hyperedges. When $h=2$, then $K_{n}^{(2)}=K_{n}$, the complete graph on n vertices. We will use the notation $K_{n}-I$ to denote the complete graph of order n with the edges of a 1 -factor I removed.

As in the case of graphs, a decomposition of a hypergraph H is a partition of its edge set into subsets. A decomposition of a hypergraph H is a set $\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ of subhypergraphs of H such that $E\left(F_{1}\right) \cup E\left(F_{2}\right) \cup \cdots \cup E\left(F_{k}\right)=E(H)$ and $E\left(F_{i}\right) \cap$ $E\left(F_{j}\right)=\emptyset$ for all $1 \leq i<j \leq k$. If F is a fixed hypergraph and $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ is a decomposition such that $F_{1} \cong F_{2} \cong \ldots \cong F_{k} \cong F$, then \mathcal{F} is called an F-decomposition. In [7], necessary and sufficient conditions are given for an F decompostion of $K_{n}^{(3)}$ for all 3-uniform hypergraphs F with at most three edges and at most six vertices.

A cycle of length k in a hypergraph H with vertex set $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and hyperedge set $E(H)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is a sequence of the form

$$
v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{k}, e_{k}, v_{1}
$$

where $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are distinct vertices and $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ are distinct hyperedges satisfying $v_{i}, v_{i+1} \in e_{i}$ for $1 \leq i \leq k-1$ and $v_{k}, v_{1} \in e_{k}$. This cycle is known as a Berge cycle, having been introduced by Berge in [3]. Decompositions of the complete 3 -uniform hypergraph into hamiltonian cycles were considered in $[4,5]$ and the completion of the proof of their existence was completed in [15]. Decompositions of the complete k-uniform hypergraph into hamiltonian cycles were considered in [11, 13], where a complete solution was given in [11] for $k \geq 4$ and $n \geq 30$ and cyclic decompositions were considered in [13]. In [10], a different type of cycle in a hypergraph was introduced: a tight ℓ-cycle in a k-uniform hypergraph is a cyclic ordering of ℓ vertices, $\ell>k$, such that each consecutive k-tuple of vertices is a hyperedge. Tight hamiltonian cycles of 3 -uniform hypergraphs were investigated in [2, 9, 12], and no complete resolution of the problem is known. As a consequence of the results in $[2,9,12]$, decompositions of $K_{n}^{(3)}$ into tight hamiltonian cycles are known for all admissible $n \leq 46$. Tight (not necessarily hamiltonian) cycles are briefly considered in [12] where it is remarked that a decomposition of $K_{n}^{(3)}$ into tight 4 -cycles exists if and only if $n \equiv 2,4(\bmod 6)$ due to a classical result of Hanani [8] regarding the existence of balanced incomplete block designs of order 4.

Thus, in this paper, we are interested in (Berge) 4-cycle decompositions of complete 3-uniform hypergraphs. We seek to partition the edge set of $K_{n}^{(3)}$ into subsets of four hyperedges each such that each subset gives rise to a 4 -cycle in $K_{n}^{(3)}$. For convenience, we will often write the 3 -edge $\{a, b, c\}$ as $a b c$ and cycles of length k in
a 3-uniform hypergraph as

$$
\left(x_{1} y_{1} x_{2}, x_{2} y_{2} x_{3}, \ldots, x_{k-1} y_{k-1} x_{k}, x_{k} y_{k} x_{1}\right)
$$

where $x_{i} y_{i} x_{i+1}$ is a 3 -edge for $1 \leq i \leq k$ (addition modulo k), $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ are distinct vertices, and all 3 -edges in the cycle are different.

A necessary condition for the existence of a 4-cycle decomposition of $K_{n}^{(3)}$ is that 4 must divide the number of hyperedges in $K_{n}^{(3)}$, that is, $4 \left\lvert\,\binom{ n}{3}\right.$. Clearly, if n is even, then $4 \left\lvert\,\binom{ n}{3}\right.$ and if n is odd and $4 \left\lvert\,\binom{ n}{3}\right.$, then $n \equiv 1(\bmod 8)$. Hence, we have the following lemma.

Lemma 1.1 For $n \geq 4$, if there exists a 4-cycle decomposition of $K_{n}^{(3)}$, then either n is even or $n \equiv 1(\bmod 8)$.

For n even, we handle the case in which $n \equiv 4,0,2(\bmod 6)$ in Sections 2, 3, and 4 respectively. The case in which $n \equiv 1(\bmod 8)$ is handled in Section 5.

2 The $n \equiv 4(\bmod 6)$ case

In this section, we consider the case when $n \equiv 4(\bmod 6)$. In this case, since $4 \left\lvert\,\binom{ n}{3}\right.$ and $n \equiv 4(\bmod 6)$, we know that $4 \mid[n(n-2) / 2]$ and $3 \mid(n-1)$. Thus, since $K_{n}-I$ has $n(n-2) / 2$ edges, we may use a decomposition of $K_{n}-I$ into 4-cycles, and then blow up each 4-cycle of $K_{n}-I$ exactly $(n-1) / 3$ times to obtain a 4-cycle decomposition of $K_{n}^{(3)}$. For the rest of this section, we will assume the vertex set of $K_{n}^{(3)}\left(\right.$ or $\left.K_{n}\right)$ is \mathbb{Z}_{n}, the integers modulo n. Without loss of generality, we consider a specific 1-factor of K_{n}, namely,

$$
I=\{\{0, n / 2\},\{1, n / 2+1\}, \ldots,\{n / 2-1, n-1\}\} .
$$

Note that $K_{n}^{(3)}$ has $n(n-1)(n-2) / 6$ hyperedges and $K_{n}-I$ has $n(n-2) / 2$ edges. Now, as mentioned previously, if we have a decomposition of $K_{n}-I$ into 4-cycles, we seek a procedure by which we can build each 4-cycle of $K_{n}-I$ into $(n-1) / 3$ 4 -cycles in $K_{n}^{(3)}$. Thus, following [15], we define a choice design on a given 3-uniform hypergraph H to be a choice of one vertex from each 3-edge of H to represent that 3edge. Given two vertices a and b, we define $a b *$ to be the set of all 3 -edges containing both a and b for which neither a nor b is the representative.

The following grouping of the elements of the vertex set $V=\mathbb{Z}_{n}$ of either $K_{n}^{(3)}$ or K_{n} will be used in the construction of a suitable choice design. Group the elements of V into $n / 2$ groups $G_{i}=\{i, n / 2+i\}$ for $0 \leq i \leq n / 2-1$. The notation $G(a)$ will denote the subscript of the group containing element a, that is, $G(a)=i$ if $a \in G_{i}$. Let $\binom{V}{3}$ denote the set of all 3-edges of $K_{n}^{(3)}$ and define two types of 3-edges in $\binom{V}{3}$:
Type 1: 3-edges $a b c$ in which a and b are in the same group and c is in a different group; and

Type 2: 3-edges $a b c$ in which a, b, and c are all in different groups.
The following lemma describes a choice design on $K_{n}^{(3)}$ in which given b and c in different groups, the set $b c *$ contains $(n-1) / 3$ elements.

Lemma 2.1 For every positive integer $n \equiv 4(\bmod 6)$, there exists a choice design on $K_{n}^{(3)}$ with vertex set $V=\mathbb{Z}_{n}$ grouped into sets $G_{i}=\{i, i+n / 2\}$ for $i=0,1, \ldots, n / 2-1$ such that

1. if abc $\in\binom{V}{3}$ and a and b are in the same group, then c is not chosen as the representative of this 3-edge; and
2. given b and c in different groups, the set bc* contains $(n-1) / 3$ elements.

Proof: Let $n \equiv 4(\bmod 6)$ be a positive integer, say $n=6 k+4$ for some positive integer k. We construct a choice design on $K_{n}^{(3)}$ and then show it satisfies the two conditions given above.
Let $V=\mathbb{Z}_{n}$ be the vertex set of $K_{n}^{(3)}$ and let $G_{i}=\{i, i+n / 2\}$ for $i=0,1, \ldots, n / 2-1$. Choosing representatives for 3 -edges of Type 1: Order the 3-edge abc of Type 1 as $a, a+n / 2, b$ so that $a, a+n / 2 \in G_{i}$ for some i with $0 \leq i \leq n / 2-1$. Then, choose the representative for this 3-edge as follows:

- if $b<a$, choose $a+n / 2$;
- if $a<b<a+n / 2$, choose a; and
- if $b>a+n / 2$ choose $a+n / 2$.

Choosing representatives for 3-edges of Type 2: Order the 3-edge abc so that $G(a)<$ $G(b)<G(c)$. Then, choose the representative for this 3-edge as follows:

- if $a+b+c \equiv 0(\bmod 3)$, choose a;
- if $a+b+c \equiv 1(\bmod 3)$, choose b; and
- if $a+b+c \equiv 2(\bmod 3)$, choose c.

We must now prove that this is indeed the desired choice design. Clearly, Condition (1) follows immediately by the choice of representatives for Type 1 edges. We now wish to show Condition (2) holds. Let b and c belong to different groups and without loss of generality assume $b<c$. We wish to show that $b c *$ contains $(n-1) / 3$ elements. Consider first the Type 1 edges containing b and c. There are only two: $b c(b+n / 2)$ or $b c(c+n / 2)$ where all arithmetic is done modulo n. If $c<c+n / 2$, then $c+n / 2$ represents $b c(c+n / 2)$ and b represents $b c(b+n / 2)$. If $c>c+n / 2$, then rewrite $b c(c+n / 2)$ as $(c-n / 2) b c$. If $c-n / 2<b<c$, then $c-n / 2$ represents this edge and b represents $b c(b+n / 2)$. On the other hand, if $b<c-n / 2$, then c represents $(c-n / 2) b c$ and $b+n / 2$ represents $b c(b+n / 2)$. In all cases, we conclude that if b and c are in different groups, then exactly one representative is added to $b c *$ from the Type 1 edges.

Now suppose $a b c$ is a Type 2 edge. With b and c fixed, the 3 -edges $a b c$ of Type 2 are created by allowing a to run through each of the two elements in the remaining $3 k$ groups, giving $6 k$ possible choices for a. Thus, exactly $2 k$ times a will be chosen as the representative, $2 k$ times b will be chosen at the representative, and $2 k$ times c will be chosen as the representative. Hence, $b c *$ will contain $2 k+1=(n-1) / 3$ elements.

We now show that $K_{n}^{(3)}$ decomposes into 4 -cycles when $n \equiv 4(\bmod 6)$.
Theorem 2.2 For each positive integer $n \geq 10$ with $n \equiv 4(\bmod 6)$, the complete 3-uniform hypergraph $K_{n}^{(3)}$ decomposes into 4-cycles.

Proof: Let $n \geq 10$ be a positive integer with $n \equiv 4(\bmod 6)$. Then, $4 \mid[n(n-2) / 2]$ and it is well-known that $K_{n}-I$ decomposes into 4 -cycles. Hence let $V\left(K_{n}\right)=\mathbb{Z}_{n}$ and decompose $K_{n}-I$ into 4-cycles. Consider the choice design on $K_{n}^{(3)}$ given by Lemma 2.1. Let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a 4 -cycle in the decomposition of $K_{n}-I$, and let y_{j}^{i} represent each of the $(n-1) / 3$ representatives in $x_{j} x_{j+1} *$, that is, $x_{j} x_{j+1} *=$ $\left\{y_{j}^{1}, y_{j}^{2}, \ldots, y_{j}^{(n-1) / 3}\right\}$, for $j=1,2,3,4$ and where all arithmetic is done modulo 4 . Then, for $i=1,2, \ldots,(n-1) / 3$, the 4 -cycle $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in the decomposition of $K_{n}-I$ will give rise to ($n-1$)/3 edge-disjoint 4 -cycles ($x_{1} y_{1}^{i} x_{2}, x_{2} y_{2}^{i} x_{3}, x_{3} y_{3}^{i} x_{4}, x_{4} y_{4}^{i} x_{1}$) in $K_{n}^{(3)}$. Thus, the $n(n-2) / 8$ edge-disjoint 4 -cycles in the decomposition of $K_{n}-I$ will give rise to $n(n-1)(n-2) / 24$ edge-disjoint 4 -cycles in $K_{n}^{(3)}$.

3 The $n \equiv 0(\bmod 6)$ case

In this section, we consider the case when $n \equiv 0(\bmod 6)$. We begin with a few special cases.

Lemma 3.1 The hypergraph $K_{6}^{(3)}$ decomposes into 4-cycles.
Proof: A decomposition of $K_{6}^{(3)}$ into 4-cycles can be found in the Appendix.
Define the 3 -uniform hypergraph H_{m} of order $2 m$ as follows: Let $V\left(H_{m}\right)=$ $\{0,1, \ldots, 2 m-1\}$ grouped as $G_{0}=\{0,2, \ldots 2 m-2\}$ and $G_{1}=\{1,3, \ldots, 2 m-1\}$. Let $E\left(H_{m}\right)$ be the set of all 3 -edges $a b c$ such that a, b, and c are not all from the same group, that is, at least one of a, b, c is an element of G_{0} and at least one of a, b, c is an element of G_{1}. Note that $\left|E\left(H_{m}\right)\right|=m^{2}(m-1)$.

We now require a decomposition of H_{6} of order 12 into 4 -cycles.
Lemma 3.2 The 3-uniform hypergraph H_{6}, as defined above, decomposes into 4cycles.

Proof: Note that H_{6} is the 3-uniform hypergraph with $V\left(H_{6}\right)=\{0,1, \ldots, 11\}$ groups as $G_{0}=\{0,2,4,6,8,10\}$ and $G_{1}=\{1,3,5,7,9,11\}$, every 3 -edge $a b c$ has at least one element of G_{0} and at least one element of G_{1}. Note also that $\left|E\left(H_{6}\right)\right|=180$. First, $K_{6,6}$ decomposes into 9 edge-disjoint 4-cycles and we seek a decomposition of H_{6} into 45 edge-disjoint 4 -cycles. Thus, we want to define a choice design on H_{6} so that $b c *$ is empty if b and c are in the same group or $b c *$ has 5 elements if b and c are in different groups. Such a choice design is given in the Appendix.
As in the proof of Theorem 2.2, each 4-cycle in the decomposition of $K_{6,6}$ with partite sets $\{0,2, \ldots, 10\}$ and $\{1,3, \ldots, 11\}$ will give rise to five edge-disjoint 4 -cycles in H_{6}. Thus, the desired conclusion follows.

Next, define the 3-uniform hypergraph H_{m}^{\prime} of order $3 m$ as follows: Let $V\left(H_{m}^{\prime}\right)=$ $\{0,1, \ldots, 3 m-1\}$ and let $E\left(H_{m}^{\prime}\right)$ be the set of all 3-edges abc such that $a \in$ $\{0,1, \ldots, m-1\}, b \in\{m, m+1, \ldots, 2 m-1\}$, and $c \in\{2 m, 2 m+1, \ldots, 3 m-1\}$. Note that $\left|E\left(H_{m}^{\prime}\right)\right|=m^{3}$. We now show that H_{m}^{\prime} decomposes into 4-cycles when m is even.

Lemma 3.3 For each positive integer $k \geq 1$, the 3-uniform hypergraph $H_{2 k}^{\prime}$, as defined above, decomposes into 4-cycles.

Proof: Note that $V\left(H_{2 k}^{\prime}\right)=\{0,1, \ldots, 6 k-1\}$ and that $E\left(H_{2 k}^{\prime}\right)$ is the set of all 3 -edges $a b c$ such that $a \in\{0,1, \ldots, 2 k-1\}, b \in\{2 k, 2 k+1, \ldots, 4 k-1\}$, and $c \in$ $\{4 k, 4 k+1, \ldots, 6 k-1\}$. Note that $\left|E\left(H_{2 k}^{\prime}\right)\right|=8 k^{3}$ and thus we seek to decompose $H_{2 k}^{\prime}$ into $2 k^{3}$ edge-disjoint 4 -cycles. Recall that $K_{2 k, 2 k}$, with partite sets $\{0,1, \ldots, 2 k-1\}$ and $\{2 k, 2 k+1, \ldots, 4 k-1\}$, decomposes into 4 -cycles by [14]. For each 4 -cycle $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of $K_{2 k, 2 k}$, construct $2 k$ edge-disjoint 4-cycles $\left(x_{1}(4 k+i) x_{2}, x_{2}(4 k+\right.$ i) $\left.x_{3}, x_{3}(4 k+i) x_{4}, x_{4}(4 k+i) x_{1}\right)$ of $H_{2 k}^{\prime}$ where $0 \leq i \leq 2 k-1$. Thus, the k^{2} edgedisjoint 4 -cycles in $K_{2 k, 2 k}$ will give rise to $2 k^{3}$ edge-disjoint 4 -cycles in $H_{2 k}^{\prime}$.

We now have all the tools necessary to show that the complete 3 -uniform hypergraph $K_{n}^{(3)}$ decomposes into 4 -cycles when $n \equiv 0(\bmod 6)$ with $n \geq 6$.

Theorem 3.4 For each positive integer $n \geq 6$ with $n \equiv 0(\bmod 6)$, the complete 3-uniform hypergraph $K_{n}^{(3)}$ decomposes into 4-cycles.

Proof: Let $n \geq 6$ with $n \equiv 0(\bmod 6)$, say $n=6 k$ for some positive integer k. The case $k=1$ is given in Lemma 3.1, and thus we may assume $k>1$. Now, we may think of $K_{n}^{(3)}$ as k copies of $K_{6}^{(3)}$ with a copy of H_{6} between any two of these copies of $K_{6}^{(3)}$, giving $k(k-1) / 2$ copies of H_{6}, and a copy of H_{6}^{\prime} between any three of these copies of $K_{6}^{(3)}$, giving $k(k-1)(k-2) / 6$ copies of H_{6}^{\prime}. Since H_{6}^{\prime}, H_{6} and $K_{6}^{(3)}$ all decompose into 4 -cycles, the desired result follows.

4 The $n \equiv 2(\bmod 6)$ case

In this section, we consider the case when $n \equiv 2(\bmod 6)$. We begin with a special case.

Lemma 4.1 The hypergraph $K_{8}^{(3)}$ decomposes into 4-cycles.
Proof: A decomposition of $K_{8}^{(3)}$ into 4-cycles can be found in the Appendix.
When $n \equiv 2(\bmod 6)$, say $n=6 k+2$, it is helpful to think of the vertex set $V\left(K_{n}^{(3)}\right)$ of $K_{n}^{(3)}$ as

$$
\left\{\infty_{1}, \infty_{2}\right\} \cup\left(\bigcup_{0 \leq i \leq k-1}\{6 i, 6 i+1, \ldots, 6 i+5\}\right)
$$

Then, a 3-edge has one of the following forms:

1. $\infty_{1} \infty_{2} c$ where $c \in\{6 \ell, 6 \ell+1, \ldots, 6 \ell+5\}$ for some $0 \leq \ell \leq k-1$;
2. $\infty_{j} b c$ where $j \in\{1,2\}$ and $b, c \in\{6 \ell, 6 \ell+1, \ldots, 6 \ell+5\}$ for some $0 \leq \ell \leq k-1$;
3. $\infty_{j} b c$ where $j \in\{1,2\}, b \in\left\{6 \ell_{1}, 6 \ell_{1}+1, \ldots, 6 \ell_{1}+5\right\}$ and $c \in\left\{6 \ell_{2}, 6 \ell_{2}+\right.$ $\left.1, \ldots, 6 \ell_{2}+5\right\}$ where $0 \leq \ell_{1}<\ell_{2} \leq k-1$;
4. $a b c$ where $a, b, c \in\{6 \ell, 6 \ell+1, \ldots, 6 \ell+5\}$ for some $0 \leq \ell \leq k-1$;
5. $a b c$ where $a, b \in\left\{6 \ell_{1}, 6 \ell_{1}+1, \ldots, 6 \ell_{1}+5\right\}$ and $c \in\left\{6 \ell_{2}, 6 \ell_{2}+1, \ldots, 6 \ell_{2}+5\right\}$ for some $0 \leq \ell_{1}, \ell_{2} \leq k-1$ with $\ell_{1} \neq \ell_{2}$; and
6. $a b c$ where $a \in\left\{6 \ell_{1}, 6 \ell_{1}+1, \ldots, 6 \ell_{1}+5\right\}, b \in\left\{6 \ell_{2}, 6 \ell_{2}+1, \ldots, 6 \ell_{2}+5\right\}$ and $c \in\left\{6 \ell_{3}, 6 \ell_{3}+1, \ldots, 6 \ell_{3}+5\right\}$ where $0 \leq \ell_{1}<\ell_{2}<\ell_{3} \leq k-1$.

Note that, for a fixed value of ℓ, the hypergraph with edges of types (1), (2), and (4) above is isomorphic to $K_{8}^{(3)}$ which decomposes into 4 -cycles by Lemma 4.1. Next, the hypergraph with edges of type (5) for fixed values of ℓ_{1} and ℓ_{2} is isomorphic to the hypergraph H_{6} given in Section 3 which decomposes into 4 -cycles by Lemma 3.2 , and the hypergraph with edges of type (6) for fixed values of ℓ_{1}, ℓ_{2} and ℓ_{3} is the hypergraph H_{6}^{\prime} given in Section 3 which decomposes into 4 -cycles by Lemma 3.3. Thus, it remains to show that the hypergraph with edges of type (3) for fixed values of ℓ_{1} and ℓ_{2} decomposes into 4 -cycles.

Define the hypergraph $H_{m}^{\prime \prime}$ of order $2 m+1$ as follows: let $V\left(H_{m}^{\prime \prime}\right)=\{\infty, 0,1, \ldots$, $2 m-1\}$ and let $E\left(H_{m}^{\prime \prime}\right)$ be the set of all 3-edges $\infty a b$ where $a \in\{0,1, \ldots, m-1\}$ and $b \in\{m, m+1, \ldots, 2 m-1\}$. Note that $\left|E\left(H_{m}^{\prime \prime}\right)\right|=m^{2}$ and that for fixed values of ℓ_{1} and ℓ_{2}, the hypergraph with edges of type (3) above is isomorphic to $H_{6}^{\prime \prime}$. We now show that $H_{m}^{\prime \prime}$ decomposes into 4 -cycles when m is even.

Lemma 4.2 For each positive integer $k \geq 1$, the 3-uniform hypergraph $H_{2 k}^{\prime \prime}$, as defined above, decomposes into 4-cycles.

Proof: Let $H_{2 k}^{\prime \prime}$ be the hypergraph with $V\left(H_{2 k}^{\prime \prime}\right)=\{\infty, 0,1, \ldots, 4 k-1\}$ and $E\left(H_{2 k}^{\prime \prime}\right)$ is the set of all 3 -edges $\infty a b$ where $a \in\{0,1, \ldots, 2 k-1\}$ and $b \in\{2 k, 2 k+1, \ldots, 4 k-$ $1\}$. Note that $\left|E\left(H_{2 k}^{\prime \prime}\right)\right|=4 k^{2}$. Now $K_{2 k, 2 k}$ has $4 k^{2}$ edges and decomposes into k^{2} edge-disjoint 4 -cycles by [14], say ($x_{1}, x_{2}, x_{3}, x_{4}$) is one such 4 -cycle where the partite sets of $K_{2 k, 2 k}$ are $\{0,1, \ldots, 2 k-1\}$ and $\{2 k, 2 k+1, \ldots, 4 k-1\}$. Thus, for each 4-cycle of $K_{2 k, 2 k}$, construct the 4 -cycle ($\left.x_{1} \propto x_{2}, x_{2} \propto x_{3}, x_{3} \propto x_{4}, x_{4} \infty x_{1}\right)$ of $H_{2 k}^{\prime \prime}$.

We now have all the tools necessary to show that the complete 3 -uniform hypergraph $K_{n}^{(3)}$ decomposes into 4 -cycles when $n \equiv 2(\bmod 6)$ with $n \geq 8$.

Theorem 4.3 For each positive integer $n \geq 8$ with $n \equiv 2(\bmod 6)$, the complete 3-uniform hypergraph $K_{n}^{(3)}$ decomposes into 4 -cycles.

Proof: Let $n \geq 8$ with $n \equiv 2(\bmod 6)$, say $n=6 k+2$ for some positive integer k. The case $k=1$ is given in Lemma 4.1, and thus we may assume that $k>1$. Now, we may think of $K_{n}^{(3)}$ as k copies of $K_{8}^{(3)}, k(k-1) / 2$ copies of the hypergraph H_{6} given in Section 3, $k(k-1)$ copies of the hypergraph $H_{6}^{\prime \prime}$ given above, and $k(k-1)(k-$ 2) $/ 6$ copies of the hypergraph H_{6}^{\prime} given in Section 3. Since $K_{8}^{(3)}, H_{6}, H_{6}^{\prime}$ and $H_{6}^{\prime \prime}$ all decompose into 4 -cycles by Lemmas 4.1, 3.2, 3.3, and 4.2, the desired result follows.

$5 \quad$ The $n \equiv 1(\bmod 8)$ case

In this section, we consider the case when $n \equiv 1(\bmod 8)$. We begin with a special case.

Lemma 5.1 The hypergraph $K_{9}^{(3)}$ decomposes into 4-cycles.
Proof: A decomposition of $K_{9}^{(3)}$ into 4-cycles can be found in the Appendix.
When $n \equiv 1(\bmod 8)$, say $n=8 k+1$, it is helpful to think of the vertex set $V\left(K_{n}^{(3)}\right)$ of $K_{n}^{(3)}$ as

$$
\{\infty\} \cup\left(\bigcup_{0 \leq i \leq k-1}\{8 i, 8 i+1, \ldots, 8 i+7\}\right)
$$

Then, a 3-edge $a b c$ has one of the following forms:

1. $\infty b c$ where $b, c \in\{8 \ell, 8 \ell+1, \ldots, 8 \ell+7\}$ for some $0 \leq \ell \leq k-1$;
2. $\infty b c$ where $b \in\left\{8 \ell_{1}, 8 \ell_{1}+1, \ldots, 8 \ell_{1}+7\right\}$ and $c \in\left\{8 \ell_{2}, 8 \ell_{2}+1, \ldots, 8 \ell_{2}+7\right\}$ where $0 \leq \ell_{1}<\ell_{2} \leq k-1$;
3. $a b c$ where $a, b, c \in\{8 \ell, 8 \ell+1, \ldots, 8 \ell+7\}$ for some $0 \leq \ell \leq k-1$;
4. $a b c$ where $a, b \in\left\{8 \ell_{1}, 8 \ell_{1}+1, \ldots, 8 \ell_{1}+7\right\}$ and $c \in\left\{8 \ell_{2}, 8 \ell_{2}+1, \ldots, 8 \ell_{2}+7\right\}$ for some $0 \leq \ell_{1}, \ell_{2} \leq k-1$ with $\ell_{1} \neq \ell_{2}$; and
5. $a b c$ where $a \in\left\{8 \ell_{1}, 8 \ell_{1}+1, \ldots, 8 \ell_{1}+7\right\}, b \in\left\{8 \ell_{2}, 8 \ell_{2}+1, \ldots, 8 \ell_{2}+7\right\}$ and $c \in\left\{8 \ell_{3}, 8 \ell_{3}+1, \ldots, 8 \ell_{3}+7\right\}$ where $0 \leq \ell_{1}<\ell_{2}<\ell_{3} \leq k-1$.

Note that, for a fixed value of ℓ, the hypergraph with edges of types (1)and (3) above is isomorphic to $K_{9}^{(3)}$ which decomposes into 4 -cycles by Lemma 5.1. Next, the hypergraph with edges of type (5) for fixed values of ℓ_{1}, ℓ_{2} and ℓ_{3} is the hypergraph H_{8}^{\prime}, given in Section 3 which decomposes into 4 -cycles by Lemma 3.3 and the hypergraph with edges of type (2) for fixed values of ℓ_{1} and ℓ_{2} is the hypergraph $H_{8}^{\prime \prime}$ given in Section 4 which decomposes into 4 -cycles by Lemma 4.2. The hypergraph with edges of type (4) for fixed values of ℓ_{1} and ℓ_{2} is the hypergraph H_{8} defined in Section 3, and it remains to show that this hypergraph decomposes into 4-cycles.

Lemma 5.2 The 3-uniform hypergraph H_{8} decomposes into 4-cycles.
Proof: Note that H_{8} is the 3 -uniform hypergraph with $V\left(H_{8}\right)=\{0,1, \ldots, 15\}$ groups as $G_{0}=\{0,2,4,6,8,10,12,14\}$ and $G_{1}=\{1,3,5,7,9,11,13,15\}$, every 3edge $a b c$ has at least one element of G_{0} and at least one element of G_{1}. Note also that $\left|E\left(H_{8}\right)\right|=448$. First, $K_{8,8}$ decomposes into 16 edge-disjoint 4-cycles and we seek a decomposition of H_{8} into 112 edge-disjoint 4 -cycles. Thus, we want to define a choice design on H_{8} so that $b c *$ is empty if b and c are in the same group or $b c *$ has 7 elements if b and c are in different groups. Such a choice design is given in the Appendix.
As in the proof of Theorem 2.2, each 4-cycle in the decomposition of $K_{8,8}$ with partite sets $\{0,2, \ldots, 10,12,14\}$ and $\{1,3, \ldots, 11,13,15\}$ will give rise to 7 edge-disjoint 4cycles in H_{8}. Thus, the desired conclusion follows.

We now have all the tools necessary to show that the complete 3 -uniform hypergraph $K_{n}^{(3)}$ decomposes into 4 -cycles when $n \equiv 1(\bmod 8)$ with $n \geq 9$.

Theorem 5.3 For each positive integer $n \geq 9$ with $n \equiv 1(\bmod 8)$, the complete 3-uniform hypergraph $K_{n}^{(3)}$ decomposes into 4-cycles.

Proof: Let $n \geq 8$ with $n \equiv 1(\bmod 8)$, say $n=8 k+1$ for some positive integer k. The case $k=1$ is given in Lemma 5.1, and thus we may assume that $k>1$. Now, we may think of $K_{8 k+1}^{(3)}$ as k copies of $K_{9}^{(3)}, k(k-1) / 2$ copies of the hypergraph $H_{8}, k(k-1) / 2$ copies of the hypergraph $H_{8}^{\prime \prime}$, and $k(k-1)(k-2) / 6$ copies of the hypergraph H_{8}^{\prime}. Since $K_{9}^{(3)}, H_{8}, H_{8}^{\prime}$ and $H_{8}^{\prime \prime}$ all decompose into 4 -cycles by Lemmas 5.1, 5.2, 3.3, and 4.2 , the desired result follows.

6 Appendix

Let $V\left(K_{6}^{(3)}\right)$ be $\{0,1,2,3,4,5\}$. Then the following five 4-cycles decompose $K_{6}^{(3)}$:
$(132,243,354,421),(143,325,530,041),(125,502,230,051),(130,024,415,531),(210,034,405,542)$

Let $V\left(K_{8}^{(3)}\right)$ be $\{0,1,2,3,4,5,6,7\}$. Then the following 144 -cycles decompose $K_{8}^{(3)}$:
$(041,162,203,340),(051,102,213,370),(072,214,416,640),(062,204,426,630),(045,502,217,740)$, (065, 512, 237, 760),
$(013,305,516,601),(153,325,526,671),(154,465,507,701),(174,425,517,731),(314,427,726,613)$, (324, 437, 736, 623),
$(354,475,576,643),(527,746,653,375)$.

Let $V\left(K_{9}^{(3)}\right)$ be $\{0,1,2,3,4,5,6,7,8\}$. Then the following 214 -cycles decompose $K_{9}^{(3)}$:
$(021,128,803,310),(132,230,054,401),(243,341,125,502),(354,402,216,613),(425,583,317,704)$, $(506,604,408,805)$,
$(657,715,570,086),(728,816,651,187),(870,017,742,208),(061,158,813,370),(142,260,043,461)$, (253, 351, 145, 526),
$(384,462,276,623),(465,573,327,714),(536,684,418,825),(637,785,510,036),(738,836,671,127)$, (810, 067, 752, 238),
$(586,643,347,745),(687,764,428,826),(748,845,530,027)$.

The Representatives in a Choice Design on H_{6} with $|b c *|=5$ for all $b \in\{0,2,4,6,8,10\}$ and $c \in\{1,3,5,7,9,11\}:$

$$
\begin{array}{lll}
01 *=\{2,6,10,5,9\} & 03 *=\{4,8,5,9,11\} & 05 *=\{4,8,1,7,11\} \\
07 *=\{2,8,1,3,9\} & 09 *=\{4,8,10,5,11\} & 011 *=\{6,8,10,1,7\} \\
21 *=\{6,10,3,7,11\} & 23 *=\{0,4,8,5,9\} & 25 *=\{0,4,8,1,9\} \\
27 *=\{6,10,3,5,9\} & 29 *=\{0,6,8,1,11\} & 211 *=\{0,4,3,5,7\} \\
41 *=\{0,2,8,5,9\} & 43 *=\{6,10,1,7,11\} & 45 *=\{6,10,3,7,11\} \\
47 *=\{0,2,1,9,11\} & 49 *=\{2,8,10,3,5\} & 411 *=\{0,8,10,1,9\} \\
& & \\
61 *=\{4,8,3,7,11\} & 63 *=\{0,2,8,5,9\} & 65 *=\{0,2,10,1,9\} \\
67 *=\{0,4,8,3,5\} & 69 *=\{0,4,1,7,11\} & 611 *=\{2,4,3,5,7\} \\
& & \\
81 *=\{0,2,3,7,11\} & 83 *=\{4,10,5,7,11\} & 85 *=\{4,6,10,1,9\} \\
87 *=\{2,4,10,5,9\} & 89 *=\{6,10,1,3,11\} & 811 *=\{2,6,10,5,7\} \\
& & \\
101 *=\{4,6,8,5,9\} & 103 *=\{0,2,6,1,5\} & 105 *=\{0,2,7,9,11\} \\
107 *=\{0,4,6,1,3\} & 109 *=\{2,6,3,7,11\} & 1011 *=\{2,6,1,3,7\}
\end{array}
$$

The Representatives in a Choice Design on H_{8} with $|b c *|=7$ for all $b \in\{0,2, \ldots, 14\}$ and $c \in\{1,3, \ldots, 15\}:$

$01 *=\{2,6,10,14,5,9,15\}$	$03 *=\{4,8,12,5,9,11,15\}$	$05 *=\{4,8,12,1,7,11,15\}$
$07 *=\{2,8,14,1,3,9,13\}$	$09 *=\{4,8,10,14,5,11,15\}$	$011 *=\{6,8,10,12,1,7,13\}$
$013 *=\{4,8,12,1,3,5,9\}$	$015 *=\{2,6,10,14,7,11,13\}$	
$21 *=\{6,10,14,3,7,11,15\}$	$23 *=\{0,4,8,12,5,9,13\}$	$25 *=\{0,4,8,12,1,9,15\}$
$27 *=\{6,10,14,3,5,9,13\}$	$29 *=\{0,6,8,14,1,11,13\}$	$211 *=\{0,4,12,3,5,7,15\}$
$213 *=\{0,4,12,14,1,5,11\}$	$215 *=\{6,12,14,3,7,9,13\}$	
$41 *=\{0,2,8,12,5,9,13\}$	$43 *=\{6,10,14,1,7,11,15\}$	$45 *=\{6,10,12,3,7,11,15\}$
$47 *=\{0,2,12,1,9,11,13\}$	$49 *=\{2,8,10,14,3,5,13\}$	$411 *=\{0,8,10,12,1,9,15\}$
$413 *=\{6,8,10,3,5,11,15\}$	$415 *=\{0,2,8,10,1,7,9\}$	
$61 *=\{4,8,12,3,7,11,15\}$	$63 *=\{0,2,8,14,5,9,13\}$	$65 *=\{0,2,10,14,1,9,13\}$
$67 *=\{0,4,8,12,3,5,15\}$	$69 *=\{0,4,12,1,7,11,13\}$	$611 *=\{2,4,14,3,5,7,15\}$
$613 *=\{0,2,8,1,7,11,15\}$	$615 *=\{4,8,10,14,3,5,9\}$	
$81 *=\{0,2,12,3,7,11,15\}$	$83 *=\{4,10,14,5,7,11,15\}$	$85 *=\{4,6,10,12,1,9,13\}$
$87 *=\{2,4,10,14,5,9,15\}$	$89 *=\{6,10,12,1,3,11,13\}$	$811 *=\{2,6,10,14,5,7,13\}$
$813 *=\{2,10,12,14,1,3,7\}$	$815 *=\{0,2,12,5,9,11,13\}$	
$101 *=\{4,6,8,14,5,9,13\}$	$103 *=\{0,2,6,12,1,5,13\}$	$105 *=\{0,2,14,7,9,11,15\}$
$107 *=\{0,4,6,12,1,3,13\}$	$109 *=\{2,6,14,3,7,11,15\}$	$1011 *=\{2,6,12,1,3,7,15\}$
$1013 *=\{0,2,6,5,9,11,15\}$	$1015 *=\{2,8,12,14,1,3,7\}$	
$121 *=\{0,2,10,14,3,7,11\}$	$123 *=\{4,6,8,12,5,9,11,13\}$	$125 *=\{6,10,14,1,7,11,15\}$
$127 *=\{0,2,8,14,3,9,15\}$	$129 *=\{0,2,4,10,1,5,13\}$	$1211 *=\{6,8,14,7,9,13,15\}$
$1213 *=\{4,6,10,14,1,5,7\}$	$1215 *=\{0,4,6,1,3,9,13\}$	
$141 *=\{4,6,8,3,7,11,13\}$	$143 *=\{0,2,10,12,5,9,15\}$	$145 *=\{0,2,4,8,1,7,13\}$
$147 *=\{4,6,10,3,9,11,13\}$	$149 *=\{6,8,12,1,5,13,15\}$	$1411 *=\{0,2,4,10,3,5,9\}$
$1413 *=\{0,4,6,10,3,11,15\}$	$1415 *=\{4,8,12,1,5,7,11\}$	

References

[1] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373-410.
[2] R. F. Bailey and B. Stevens, Hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math. 310 (2010), 3088-3095.
[3] C. Berge, Graphs \& Hypergraphs, North-Holland, Amsterdam, 1979.
[4] J. C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978), 21-28.
[5] J. C. Bermond, A. Germa, M. C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, in Problèmes combinatoires et théorie des graphes, (Colloq. In-
ternat. CNRS, Univ. Orsay, Orsay, 1976), pp. 39-43, Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.
[6] D. Bryant and S. El-Zanati, Graph decompositions, in The CRC handbook of Combinatorial Designs, 2nd ed., (eds. C.J. Colbourn and J.H. Dinitz), CRC Press, Boca Raton (2007), 477-486.
[7] D. Bryant, S. Herke, B. Maenhaut and W. Wannasit, Decompositions of complete 3 -uniform hypergraphs into small 3 -unifrom hypergraphs, Australas. J. Combin. 60 (2) (2014), 227-254.
[8] H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), 145-157.
[9] H. Huo, L. Q. Zhao, W. Feng, Y. S. Yang and Jirimutu, Decomposing the complete 3-uniform hypergraphs $K_{n}^{(3)}$ into hamiltonian cycles, Acta Math. Sinica 58 (2015), 965-976.
[10] G. Y. Katona and H. A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999), 205-212.
[11] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128-135.
[12] M. Meszka and A. Rosa, Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles, Australas. J. Combin. 45 (2009), 291-302.
[13] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math. 325 (2014), 74-76.
[14] D. Sotteau, Decompositions of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory Ser. B 29 (1981), 75-81.
[15] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994), 333-348.

