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Abstract

A Roman dominating function (RD-function) on a graphG = (V (G), E(G))
is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has
a neighbor with label 2. The weight f(V (G)) of a RD-function f on
G is the value Σv∈V (G)f(v). The Roman domination number γR(G) of
G is the minimum weight of a RD-function on G. The six classes of
graphs resulting from the changing or unchanging of the Roman domi-
nation number of a graph when a vertex is deleted, or an edge is deleted
or added are considered. We consider relationships among the classes,
which are illustrated in a Venn diagram.

1 Introduction and preliminaries

By a graph, we mean a finite, undirected graph with neither loops nor multiple
edges. For basic notation and graph theory terminology not explicitly defined here,
in general we follow Haynes et al. [7]. We denote the vertex set and the edge set of a
graph G by V (G) and E(G), respectively. In a graph G, for a subset S ⊆ V (G) the
subgraph induced by S is the graph G[S] with vertex set S and edge set {xy ∈ E(G) |
x, y ∈ S}. We write Kn for the complete graph of order n, Km,n for the complete
bipartite graph with partite sets of order m and n, Pn for the path on n vertrices, and
Cm for the cycle of lengthm. For vertices x and y in a connected graphG, the distance
dist(x, y) is the length of a shortest x − y path in G. For any vertex x of a graph
G, NG(x) denotes the set of all neighbors of x in G, NG[x] = NG(x) ∪ {x} and the
degree of x is deg(x,G) = |NG(x)|. The minimum and maximum degrees of a graph
G are denoted by δ(G) and Δ(G), respectively. For a graph G, let x ∈ X ⊆ V (G).
A vertex y ∈ V (G) is an X-private neighbor of x if NG[y] ∩X = {x}. The set of all
X-private neighbors of x is denoted by pnG[x,X]. A leaf of a graph is a vertex of
degree 1, while a support vertex is a vertex adjacent to a leaf. A vertex cover of a
graph is a set of vertices such that each edge of the graph is incident to at least one
vertex of the set.
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The study of domination and related subset problems is one of the fastest growing
areas in graph theory. For a comprehensive introduction to the theory of domination
in graphs, we refer the reader to Haynes et al. [7]. A dominating set for a graph G
is a subset D ⊆ V (G) of vertices such that every vertex not in D is adjacent to at
least one vertex in D. The minimum cardinality of a dominating set is called the
domination number of G and is denoted by γ(G).

A variation of domination called Roman domination was introduced by ReVelle
[11, 12]. Also see ReVelle and Rosing [13] for an integer programming formulation
of the problem. The concept of Roman domination can be formulated in terms of
graphs ([3]). A Roman dominating function (RD-function) on a graph G is a vertex
labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor
with label 2. For a RD-function f , let V f

i = {v ∈ V (G) : f(v) = i} for i = 0,
1, 2. Since these 3 sets determine f , we can equivalently write f = (V f

0 ;V
f
1 ;V

f
2 ).

The weight f(V (G)) of a RD-function f on G is the value Σv∈V (G)f(v), which equals

|V f
1 | + 2|V f

2 |. The Roman domination number γR(G) of G is the minimum weight
of a RD-function on G. A RD-function with minimum weight in a graph G will be
referred to as a γR-function on G. If H is a subgraph of G and f a γR-function on
G, then we denote the restriction of f on H by f |H .

It is often of interest to known how the value of a graph parameter μ is affected
when a change is made in a graph. The addition of a set of edges, or the removal of
a set of vertices/edges may increase or decrease μ, or leave μ unchanged. Thus, it
is naturally to consider the following classes of graphs. We use acronyms to denote
these classes (V represents vertex; E: edge; R: removal; A: addition). Let k be a
positive integer.

(i) (k-V R−
μ ) μ(G− S) < μ(G) for any set S ⊆ V (G) with |S| = k,

(ii) (k-V R+
μ ) μ(G− S) > μ(G) for any set S ⊆ V (G) with |S| = k,

(iii) (k-V R=
μ ) μ(G− S) = μ(G) for any set S ⊆ V (G) with |S| = k,

(iv) (k-V R �=
μ ) μ(G− S) �= μ(G) for any set S ⊆ V (G) with |S| = k

(v) (k-ER−
μ ) μ(G−R) < μ(G) for any set R ⊆ E(G) with |R| = k,

(vi) (k-ER+
μ ) μ(G−R) > μ(G) for any set R ⊆ E(G) with |R| = k,

(vii) (k-ER=
μ ) μ(G−R) = μ(G) for any set R ⊆ E(G) with |R| = k,

(viii) (k-ER �=
μ ) μ(G−R) �= μ(G) for any set R ⊆ E(G) with |R| = k,

(ix) (k-EA−
μ ) μ(G+ U) < μ(G) for any set U ⊆ E(G) with |U | = k,

(x) (k-EA+
μ ) μ(G+ U) > μ(G) for any set U ⊆ E(G) with |U | = k,

(xi) (k-EA=
μ ) μ(G+ U) = μ(G) for any set U ⊆ E(G) with |U | = k,

(xii) (k-EA�=
μ ) μ(G+ U) �= μ(G) for any set U ⊆ E(G) with |U | = k.
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Two mathematical problems arise immediately: 1) to find a nontrivial charac-
terization of every one of the above classes, and 2) to establish relationships among
these twelve classes. Here we concentrate on the second problem in the case when
μ ≡ γR and k = 1.

We end this section with some known results which will be useful in proving our
main results.

Observation A ([3]) Let f = (V f
0 ;V

f
1 ;V

f
2 ) be any γR-function on a graph G. Then

Δ(G[V f
1 ]) ≤ 1 and no edge of G joins V f

1 and V f
2 . If |V f

1 | is a minimum then V f
1 is

independent and if in addition G is isolate-free then V f
0 ∪ V f

2 is a vertex cover.

In most cases, Observation A will be used in the sequel without specific reference.

Theorem B ([10]) Let v be a vertex of a graph G. Then γR(G−v) < γR(G) if and
only if there is a γR-function f on G such that v ∈ V f

1 . If γR(G− v) < γR(G) then
γR(G− v) = γR(G) − 1. If γR(G − v) > γR(G) then for every γR-function f on G,
f(v) = 2.

According to the effects of vertex removal on the Roman domination number of
a graph G, let

• V +
R (G) = {v ∈ V (G) | γR(G− v) > γR(G)},

• V −
R (G) = {v ∈ V (G) | γR(G− v) < γR(G)},

• V =
R (G) = {v ∈ V (G) | γR(G− v) = γR(G)}.

Clearly V −
R (G), V =

R (G) and V +
R (G) are pairwise disjoint, and their union is V (G).

Theorem C Let G be a graph.

(i) ([6]) Let x and y be non-adjacent vertices of G. Then γR(G) ≥ γR(G+ xy) ≥
γR(G) − 1. Moreover, γR(G + xy) = γR(G) − 1 if and only if there is a γR-
function f on G such that {f(x), f(y)} = {1, 2}.

(ii) ([10]) If e is an edge of G, then γR(G) ≤ γR(G− e) ≤ γR(G) + 1.

2 Six classes

We will write RCV R, RUV R, RCER, RUER, RCEA, and RUEA instead of 1-V R−
γR
,

1-V R=
γR
, 1-ER+

γR
, 1-ER=

γR
, 1-EA−

γR
, and 1-EA=

γR
, respectively. The first four classes

of graphs were introduced in [10] by Jafari Rad and Volkmann. On the other hand,
the graphs in RCEA and RUEA were investigated by Hansberg et al. [6], and Chellali
and Jafari Rad [9], respectively. Let us note that Theorems B and C imply that
(a) the class 1-V R+

γR
is empty, (b) the class 1-EA+

γR
consists of all complete graphs,

(c) the class 1-ER−
γR

consists of all edgeless graphs, (d) 1-V R �=
γR

≡ RCV R, (e) 1-
ER �=

γR
≡ RCER, and (f) 1-EA�=

γR
≡ RCEA. That is why we concentrate, in what

follows, on the establishing relationships among the following six classes: RCV R,
RUV R, RCER, RUER, RCEA, and RUEA. For further results on these classes see
[2, 4, 5, 14]. Our main goal is to show that these six classes are related as in the
Venn diagram of Fig. 1.
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Figure 1: Classes of changing and unchanging graphs.

Theorem 1 Let a graph G be in RCEA. Then all the following hold.

(i) ([2]) V (G) = V −(G) ∪ V =(G) and either V =(G) is empty or G[V =(G)] is a
complete graph.

(ii) A vertex x ∈ V =(G) if and only if there are γR-functions fx and gx on G with
{fx(x), gx(x)} = {0, 2}.

(iii) If V =(G) is not empty and G[V =(G)] is not a connected component of G, then
each vertex in V =(G) has a neighbor in V −(G).

(iv) G is in RUER.

Proof. For complete graphs the results are obvious. So, let G be noncomplete.

(ii) By Theorem B, V =(G) = A ∪ B ∪ C, where A = {x ∈ V (G) | f(x) =
0 for each γR − function f on G}, B = {x ∈ V (G) | γR(G − x) = γR(G) and f(x)∐

= 2 for each γR − function f on G}, and C = {x ∈ V (G) | there are γR −
functions fx and gx with {fx(x), gx(x)} = {0, 2}}.
Theorem C implies that A is empty. Suppose B is not empty, and u ∈ B. By (i) we
have B ⊆ V =(G) ⊆ N [u]. Now Observation A and Theorem B lead to N [u] = V =(G)
and B � V =(G). Since A = ∅, there is v ∈ C. But then there exists a γR-function
f on G with f(v) = 2. Define a RD-function f ′ on G as follows: f ′(u) = 0 and
f ′(x) = f(x) for all x ∈ V (G− x). Since f ′ has a weight less than γR(G), we arrive
to a contradiction. Thus V =(G) = C, as required.

(iii) Assume to the contrary, that N [v] = V =(G) for some v ∈ V =(G). Clearly, there
are u ∈ V −(G) and w ∈ V =(G) which are adjacent. Since uv �∈ E(G) and G is
in RCEA, there is a γR-function f ′′ on G with f ′′(u) = 1 and f ′′(v) = 2. But then

f ′′(w) = 0 and f ′′′ = ((V f ′′
0 (G) − {w}) ∪ {u, v};V f ′′

1 − {u}; (V f ′′
2 − {v}) ∪ {w}) is a

RD-function on G with weight less than γR(G), a contradiction.

(iv) Assume G ∈ RCEA−RUER. Then there is an edge x1x2 ∈ E(G) with γR(G12) >
γR(G), where G12 = G−x1x2. Now by Theorem C, applied to G12 and x1x2, there is
a γR-function f on G12 with {f(x1), f(x2)} = {1, 2}, say without loss of generality,
f(x1) = 2. Note also that f12 = (V f

0 (G) ∪ {x2};V f
1 (G) − {x2};V f

2 (G)) is a γR-
function on G. Since G is in RCEA, we already know that V (G) = V =(G) ∪ V −(G).
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If there is a γR-function f ′ on G with f ′(xi) = 1, then f ′ is a RD-function on G12, a
contradiction. Thus, x1, x2 ∈ V =(G) = C.

Suppose that x1 ∈ V +(G12)∪V =(G12). Then γR(G−x1) = γR(G12−x1) ≥ γR(G12) >
γR(G). This immediately implies x1 ∈ V +(G), a contradiction.

So, in what follows let x1 ∈ V −(G12). If G[V =(G)] is a component of G, then
γR(G12) = γR(G), a contradiction. Hence each vertex in V =(G) is adjacent to a
vertex in V −(G) (by (iii)). Assume first that y ∈ V −(G) is adjacent to both x1 and
x2. Then there is a γR-function g on G with g(y) = 1. This implies g(x1) = g(x2) = 0
(recall that x1, x2 ∈ V =(G)). But then g is a RD-function on G12 with weight less
than γR(G12), a contradiction. Thus, all common neighbors of x1 and x2 are in
V =(G). Suppose x3 ∈ V =(G) and u ∈ N(x1) ∩ V −(G). If ux3 �∈ E(G) then there is
a γR-function f1 on G with f1(x3) = 2 and f1(u) = 1. Since f1 is a RD-function on
G12, we arrive to a contradiction. Therefore N [x1] = N [x3], which implies f(x3) = 0.
But then f2 = (V f

0 − {x3} ∪ {x1, x2};V f
1 −{x2};V f

2 − {x1} ∪ {x3}) is a RD-function
on G12 of weight less than γR(G12), a contradiction.

Thus, V =(G) = {x1, x2} and N(x1) ∩N(x2) = ∅. Let N(x1)− {x2} = {y1, y2, .., yr}
and N(x2)−{x1} = {z1, z2, .., zs}. If there are nonadjacent yi and yj, then there is a
γR-function g on G with {g(yi), g(yj)} = {1, 2}. Hence g(x1) = 0 which implies that
g is a RD-function on G12, a contradiction. Thus N [xi] − {xj} induces a complete
graph for {i, j} = {1, 2}.
Assume now that yizj �∈ E(G). Then, without loss of generality, there is a γR-
function l on G with l(yi) = 2 and l(zj) = 1. Since x2 ∈ V =(G), l(x2) = 0. If
l(x1) �= 2, then l is a RD-function on G12, a contradiction. Thus l(x1) = 2. But
then l1 = (V l

0 (G)− {x2};V l
1 (G) ∪ {x1, x2};V l

2 (G)− {x1}) is a γR-function on G and
l1(x1) = l1(x2) = l1(yj) = 1, a contradiction. So, (N(x1)∪N(x2))−{x1, x2} induce a
complete graph. Now, let h be any γR-function on G with h(x1) = 2 and h(z1) = 1.
But then h′ = (V h

0 (G), (V h
1 (G)−{z1})∪{x1}; (V h

2 (G)−{x1}∪{z1}) is a γR-function
on G with h′(x1) = 1, a contradiction. �

Theorem 2 For an edge e = uv of a graph G is fulfilled γR(G− e) = γR(G) if and
only if there is a γR-function fe on G such that at least one of the following holds:

(i) fe(u) = fe(v),

(ii) at least one of u and v is in V fe
1 ,

(iii) fe(u) = 2, fe(v) = 0 and v �∈ pn[u, V fe
2 ],

(iv) fe(u) = 0, fe(v) = 2 and u �∈ pn[v, V fe
2 ].

Proof. ⇐: Let fe be a γR-function on G and at least one of (i)–(iv) is true. Then
obviously fe is a RD-function on G−e, which implies γR(G−e) ≤ γR(G). The result
now follows by Theorem C(ii).

⇒: Assume γR(G− e) = γR(G). Hence each γR-function on G− e is a γR-function
on G. Suppose that for each γR-function fe on G none of (i)–(iv) is valid and let
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g be a γR-function on G − e. Then g is a γR-function on G and at least one of
(g(u) = 2, g(v) = 0 and v ∈ pn[u, V g

2 ]) and (g(u) = 0, g(v) = 2 and u ∈ pn[v, V g
2 ]) is

fulfilled. But clearly this is impossible. Thus, for each γR-function on G at least one
of (i)–(iv) is valid, as required. �

Corollary 3 Let G be a graph with edges. Then for each edge e incident to a vertex
in V −(G), γR(G− e) = γR(G). If V −(G) contains a vertex cover of G, then G is in
RUER. In particular, if G is in RCV R, then G is in RUER.

Proof. Let x ∈ V −(G). By Theorems B and 2, for each edge e ∈ E(G) incident to
x, γR(G− e) = γR(G). Hence if V −(G) has as a subset some vertex cover of G, then
G is in RUER. From this it immediately follows RCV R ⊆ RUER. �

Lemma D [1] Let G be a graph of order n ≥ 3. A graph G is in RUEA if and only
if for every γR-function f = (V0, V1, V2), V1 = ∅.

In order to establish a Venn diagram representing the classesRCV R, RUV R, RCER,
RUER, RCEA, and RUEA, we do not consider the cases that are vacuously true. For
example (a) the complete graphs are in both RCEA and RUEA, and (b) the edgeless
graphs are in both RCER and RUER. Therefore we exclude edgeless graphs and
complete graphs.

To continue, we need to relabel the Venn diagram of Fig. 1 in 11 regions R1−R11

as shown in Fig. 2.

Figure 2: Regions of Venn diagram: general case

Theorem 4 Classes RCV R, RCEA, RCER, RUV R, RUER and RUEA are related as
shown in the Venn diagram of Fig. 1.

Proof. By Theorem 1 and Corollary 3 we have RCEA ∪RCV R ⊆ RUER. It is obvious
that all RUER ∩ RCER, RUV R ∩ RCV R, and RUEA ∩ RCEA are empty. If a graph G
is in RUV R, then clearly V (G) = V =(G). Lemma D now implies RUV R ⊆ RUEA. If
G ∈ RCV R then V −(G) �= ∅ and by Lemma D, RCV R and RUEA are disjoint.

The next obvious claim shows that none of regions R1 − R11 is empty. The double
star Sm,n, where m,n ≥ 2, is the graph consisting of the union of two stars K1,n and
K1,m together with an edge joining their centers.
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Claim 4.1

(i) Any double star Sp,q with p, q ≥ 3, is in R1.

(ii) The graph G obtained from S2,2 by subdividing once the edge joining the sup-
port vertises of S2,2, is in R2.

(iii) The graph G obtained from K4 by adding a new vertex v, joining it to three
vertices of the K4, and then subdividing once each of the edges incident to v,
is in R3.

(iv) C6 is in R4.

(v) K1,2 is in R5.

(vi) K1,n, n ≥ 3 is in R6.

(vii) The double star S2,2 is in R7.

(viii) C7 is in R8.

(ix) C4 is in R9.

(x) The graph obtained from 2 disjoint copies of P5 by joining their central vertices
is in R10.

(xi) K1 ∪K1,2 is in R11.

�

Lemma E [10] Let a graph G have at least one edge. Then G is in RCER if and
only if Δ(G) ≥ 2 and G is a forest in which each component is an isolated vertex or
a star of order at least 3.

Remark 5 Using Lemma E it is easy to see that the following assertions hold.

(i) A graph G is in R5 if and only if G = nK1,2, n ≥ 1.

(ii) A graph G is in R6 if and only if each component of G is a star of order at
least 4.

(iii) A graph G is in R11 if and only if δ(G) = 0 and each component of G is an
isolated vertex or a star of order at least 3.

By Theorem 4, Claim 4.1 and Remark 5 we immediately obtain:

Corollary 6 For connected graphs:
(a) the subset R11 is empty, and (b) all R1, R2, . . . , R10 are nonempty.

Now our aim is to determine where trees of order at least 3 fit into the subsets
of the Venn diagram.

Corollary 7 For trees of order n ≥ 3, (a) all regions R3, R4, R8, R9 and R11 of the
Venn diagram (see Fig. 2) are empty, and (b) all regions R1, R2, R5, R6, R7 and R10

are nonempty.
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Proof. Let T be a tree. By Corollary 6, R11 is empty. Clearly K1,2 is in R5 and K1,r,
r ≥ 2, is in R6. Since a tree T is in RCV R if and only if T = K2 (see [6]), R8 and R9

are empty. Assume T is in RUEA ∩RUER. By Lemma D, V −(T ) is empty. Let x be
a leaf of T and {y} = N(x). As T is in RUER, γR(T ) = γR(T −xy) = γR(T −x)+ 1,
a contradiction. Thus both R3 and R4 are empty.

The rest follows immediately by Theorem 4. �

Thus, we have shown that for trees of order n ≥ 3, the regions of the Venn
diagram can be reduced to the six shown in Fig. 3.

Figure 3: Regions of Venn diagram: trees

A constructive characterization of the trees belonging toRUEA is given by Chellali
and Jafari Rad [1], and for the trees belonging to RUV R, by the present author in
[14]. By Remark 5, all trees in RCER are K1,r, r ≥ 2; hence K1,2 is the unique
element of R5, and R6 consists of all stars K1,r, r ≥ 3.

Let Ui be the graph obtained by disjoint copies of P5 and P3+i by joining the
central vertex of P5 with a central vertex of P3+i, i = 1, 2. Hansberg et al. [6] show
that U1 and U2 are the only trees which are in RCEA (i.e. R10).

So, the following problem naturally arises.

Problem 1 Find a constructive characterization for trees in RUER.

We close with:

Problem 2 Let μ be a domination-related parameter. 1) Give a characterization of
every of the twelve classes of graphs stated in the introduction. 2) Establish relation-
ships among these twelve classes.

This problem has been well-studied in the case when μ = γ. See the excellent
article [8] of Haynes and Henning and the references therein.
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