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Abstract

Recently, George Andrews has given a Glaisher style proof of a finite
version of Euler’s partition identity. We generalise this result by giv-
ing a finite version of Glaisher’s partition identity. Both the generating
function and bijective proofs are presented.

1 Introduction

A partition of a positive integer n is a sequence of positive integers A = (Ay, Aa, ..., Ap)
where \; > A\j;q for all e = 1,2,..../ — 1 and Zle A; = n. In a partition, the
multiplicity of a part is defined to be the number of times that part occurs. An
alternative notation for a partition X is (A, AJ, ..., AJ) where Ay > X\ > ... > )\
and f; is the multiplicity of ;. If we restrict the multiplicities of parts to be 1, we are
said to have a partition into distinct parts. For instance, partitions of 5 into distinct
parts are: (4, 1), (3,2) and (5). Surprisingly, such a number is related to partitions
into odd parts, as in the following theorem due to Euler.

Theorem 1.1 (Euler [1]). The number of partitions of n into distinct parts is equal
to the number of partitions of n into odd parts.

J.W.L. Glaisher gave a bijective proof of the identity (see [4]). This easily stated
theorem was generalised as follows.

Theorem 1.2 (Glaisher [4]). The number of partitions of n into parts not divisible

by s is equal to the number of partitions of n into parts not repeated more than s — 1
times.

We now describe Glaisher’s bijection for this theorem.
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Consider a partition A = (A, A2, ..., /\{‘) of n into parts not divisible by s. Take
the s-ary expansion of the multiplicity f; of the part A;, i.e.

mg

fi= Z ai,j8j7

=0
where a; ; € {0,1,...,s —1}. The map is then defined as
A Uy U (Ags?) i

where union is the multi-set union operation, and the parts are \;s’ with multiplicities
a; ;. We give an example for this.

Let n =6 and s = 3. Partitions of 6 whose parts are not divisible by 3 are:
(5.1),(4,2), (4,1%),(2%), (2%,1%), (2,1%), (1°).
Applying the map, we observe that
(5,1) = (5,1),(4,2) = (4,2), (4,1%) — (4,1%)
(2%) = (6), (2%,1%) — (22,1%),(2,1%) — (3,2,1)
(1%) = (3%).

The image partitions are all partitions of 6 whose parts are not repeated more
than twice. The Glaisher map is clearly reversible.

Theorem 1.2 has been made finite. Its finite version was given together with
bijective proofs (see [2, 3]).We recall this version below.

Theorem 1.3 (Euler’s theorem—finite version). The number of partitions of n into
odd parts, each at most 2N, is equal to the number of partitions of n into parts, each
at most 2N, and every part that is at most N is distinct.

However, the bijections for Theorem 1.3 given in [2] are complicated, and motivated
by their complexity, George Andrews gave a simpler proof that is Glaisher style
(see [1]).

It is clear that Euler’s partition identity (see Theorem 1.1) is a specific case of
Glaisher’s partition identity (see Theorem 1.2) when s = 2.

We are then naturally led to ask whether a finite version of Glaisher’s partition
identity that generalises Theorem 1.3 is possible. If so, can we find a bijective proof
thereof reminiscent of Andrews’ Glaisher style proof?

The goal of this paper is to fully address the questions above. Our main result is
as follows:

Theorem 1.4. Let s be a positive integer. The number of partitions of n into parts
not divisible by s, each at most sN, is equal to the number of partitions of n into
parts, each at most sN, and each part at most N appears not more than s —1 times.

In the subsequent section we give a generating function proof, and in the section
thereafter, a bijective proof that is Glaisher style.
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2 First Proof of Theorem 1.4

Let O, ny(n) denote the number of partitions of n into parts not divisible by s, each
at most sN. On the other hand, let D, y(n) denote the number of partitions of n
into parts, each at most sV, and each part at most N appears not more than s — 1
times. Thus

o'} - N 1
ngz:o Ot =]] 1=gm A —gm?).. (1 —gnH)

n=1

and N
[T (I +a" + ¢+ .. 4" D)

19V — gn)

Z Ds,N(n)qn =
n=0

Observe that

i Dyn(n)g" = [T (1+ ¢+ P gD
n=0 7 Hgs:f)]v(l _ anrN)
[ (L —g)( 4"+ +. . +q" ")
[T (1 —qm) HS;DN(l — gt
HnN:1(1 —q¢")

I (=)

a 1
- Ua—s=a—y =

3 Second Proof of Theorem 1.4

We give a simple Glaisher style extension of the bijection given by George An-
drews [1].

The bijection:

Consider a partition A = (A, A2, A®, ..., AJ) enumerated by O, y(n). Perform
the following steps:

For each \;, find a unique «; such that N < \;s* < sN. Then compute (§; =
| Ji |. Finally, take the s-ary expansion of f; — ;5% i.e.

s

m;
Ji— Bis™ = Zaz‘,jsj'
i=0
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Then the bijection is given by

L m;

A U (s, (nis?)9)

i=1j=0
where the union in the image is the multi-set union and §;’s and a; ;’s are the mul-
tiplicities of the parts \;s% and \;s’, respectively.

It is not difficult to see that the image partition is enumerated by D, y(n).

Example 3.1. Let s =3, N =4 and A = (115,7°,57 45 117).

In this case, \y = 11, f{ =6, \o =7, fo =5,..., 5 = 1, f5 = 17. Following the
steps, we have a; = 0, 81 = 6, a;; = 0 for all 7 > 0, and the reader can verify the
rest of the computations and observe that

(11°,7°,57 4% 1'7) — (12,11%,9,7° 57,42 3% 1?).
The inverse:

Let u be a partition enumerated by D, y(n). Separate the parts divisible by s
from p. Write each of the multiples of s as vs/ for some j > 0 and s { v. Then the
multiplicity of v in the resulting partition enumerated by O; n(n) is

2.
I

where the sum is over i and each part in y is written as vs’ for some j > 0.

Since each part v in the resulting partition comes from the representation of parts
as vs/ with s f v, it is clear that the new partition has all its parts not divisible by s.
Furthermore, since each part in p is at most s/V, it is also clear that v < sN. Hence,
each part in the resulting partition is at most s/N.

Example 3.2. Consider = (12,115,9,75 57,42, 32, 12), s =3, N = 4.

Those parts divisible by 3 are 12,9,3,3. Note that 12 =4-3,9=1-3%3=1-3!
(repeated). From these parts, we find that v = 4 and v = 1. The multiplicity of
v=41is
d s =3"4+3"+3"=5.
P
The multiplicity of v =1 is

Zsj:32+31+31+30+30:17.
I

For the rest of the parts (non-multiples of 3 and excluding v = 1 and v = 4), we
have v = 11 , which has multiplicity

> 5 =3"43"4+3"4+3"+3"+3" =6

m
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v = 7 has multiplicity

d 51 =3"43"4+3"4+3"+3" =5
"

v = 5 has multiplicity

D s =30430 430430430+ 30+ 3" =7
w

Hence the resulting partition is
(115,7°,57, 4% 1'7).

Thus
(12,115,9,7° 57 4% 32 1%) s (115,75 57,45 1'7).

Indeed, (115,7°57, 4% 117) is the partition we started with in Example 3.1.
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