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Abstract

In this article, the extremal structures for the mean order of connected
induced subgraphs of cographs are determined. It is shown that among
all connected cographs of order n ≥ 7, the star K1,n−1 has maximum
mean connected induced subgraph order, and for n ≥ 3, the n-skillet,
K1+(K1∪Kn−2), has minimum mean connected induced subgraph order.
It is deduced that the density for connected cographs (i.e. the ratio of the
mean to the order of the graph) is asymptotically 1/2. The mean order of
all connected induced subgraphs containing a given vertex v of a cograph
G, called the local mean of G at v, is shown to be at least as large as
the mean order of all connected induced subgraphs of G, called the global
mean of G.

1 Introduction

The study of the mean order of subtrees of a tree was initiated by Jamison in [6, 7].
Several open problems posed in [6] were subsequently studied in [9, 11, 12, 13]. In
this article we extend the concept of the mean subtree order of trees to other graphs.
Since the subtrees of a tree are precisely the connected induced subgraphs of a tree,
it is natural to study the problem of finding the mean order of the connected induced
subgraphs of a (connected) graph. This extension is of interest since it also relates
to the study of node reliability, as we will discuss. One could also extend Jamison’s
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work [6] by studying the mean order of connected subgraphs (or trees) induced by
sets of edges. However, these measures do not have an immediate connection to node
reliability, and also appear to be more difficult to compute in general.

If G is a graph of order n and ak(G) denotes the number of connected induced
subgraphs of order k in G, for each k ∈ {1, . . . , n}, then the connected induced
subgraph polynomial of G is given by

ΦG(x) =
n∑

k=1

ak(G)xk.

The mean order of the connected induced subgraphs of G, called the global mean of
G, is given by the logarithmic derivative

MG =
Φ′G(1)

ΦG(1)
.

We note that the polynomial ΦG(x) is related to the residual node connectedness
reliability (or node reliability) of G, first studied in [10]. For p ∈ (0, 1) the node
reliability of G is given by

RG(p) =
n∑

k=1

ak(G)pk(1− p)n−k.

It is readily seen that
ΦG(x) = (1 + x)nRG

(
x

1+x

)
.

Given that each vertex of G operates independently with probability p, the node
reliability RG(p) is the probability that the operational vertices induce a connected
subgraph. In particular, it was shown in [10] that the problem of counting the total
number of connected induced subgraphs of G (that is, finding ΦG(1)) is #P-complete,
even for split graphs, and for planar bipartite graphs. It follows that computing
either RG(p) or ΦG(x) is NP-hard in general. However, polynomial algorithms have
been found for certain restricted families [3], including trees, series-parallel graphs,
and permutation graphs. Several authors have considered optimality questions for
node reliability [5, 8, 14], while others have investigated the (complex) roots of the
polynomial [1] and the shape on the interval (0, 1) [2].

Let v be a vertex of G and, for each k ∈ {1, . . . , n}, let ak(G; v) denote the
number of connected induced subgraphs of G containing v and having order k. Then
the generating polynomial for the connected induced subgraphs of G containing v,
called the local connected induced subgraph polynomial of G at v, is given by

ΦG,v(x) =
n∑

k=1

ak(G; v)xk.

The mean order of the connected induced subgraphs containing v, called the local
mean of G at v, is given by the logarithmic derivative MG,v = Φ′G,v(1)/ΦG,v(1).
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The density of a graph G of order n is defined as MG/n. The density of a graph
G is the probability that a randomly chosen vertex belongs to a randomly chosen
connected induced subgraph of G. This notion of density is not to be confused with
the edge-density of a graph.

This paper focuses on the mean order of connected induced subgraphs of ‘co-
graphs’. A graph is a cograph if it contains no induced path on four vertices. Thus a
graph is a cograph if and only if its complement is a cograph. The following useful
characterization of cographs can be gleaned from Theorem 2 in [4] and the discussion
preceding this result. For graphs G1 and G2, the union of G1 and G2 is denoted by
G1 ∪ G2 while the join is denoted by G1 + G2. The complement of a graph G is
denoted by G.

Result 1.1. Let G be a graph. The following are equivalent:

(a) G is a cograph.

(b) G ∼= K1, or there exist two cographs G1 and G2 such that either G = G1 ∪G2,
or G = G1 +G2.

(c) For each S ⊆ V (G) with |S| ≥ 2, S induces a connected subgraph of G if and
only if S induces a disconnected subgraph of G (i.e. each nontrivial vertex set
induces a connected graph in exactly one of G or G).

This result implies that G is a connected cograph if and only if G ∼= K1 or G is
the join of two cographs. Moreover, G is a nontrivial connected cograph if and only
if its complement is a disconnected cograph.

We also make frequent use of the following straightforward result from [6] on
logarithmic derivatives. Essentially, if we express ΦG(x) as a sum of polynomials
with nonnegative coefficients, then MG is a weighted average of the logarithmic
derivatives (means) of the polynomials in the sum. Here and throughout this article,
we use the convention that the logarithmic derivative of the zero polynomial is 0.

Result 1.2. Let Φ1, . . . ,Φk be polynomials with nonnegative coefficients. Then the
logarithmic derivative of Φ1 + · · · + Φk is a convex combination of the logarithmic
derivatives of the Φi, i.e.

Φ′1(1) + . . .+ Φ′k(1)

Φ1(1) + . . .+ Φk(1)
=

Φ′1(1)

Φ1(1)
c1 + . . .+

Φ′k(1)

Φk(1)
ck

where c1 + . . .+ ck = 1, and ci ≥ 0 for all i ∈ {1, . . . , k}.

In several proofs throughout the article, we make use of a variant of the global
mean. Let G be a graph of order n, and let

Φ∗G(x) = ΦG(x)− nx.

The logarithmic derivative of Φ∗G, denoted M∗
G, is the mean order of the nontrivial

(that is, order at least 2) connected induced subgraphs of G. By our convention that
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Kn−1

Figure 1: An n-skillet

the logarithmic derivative of a zero polynomial is 0, if G has no edges, then M∗
G = 0.

The value M∗
G is called the M∗ mean of G.

The layout of this article is as follows. In Section 2, we show that among all
connected cographs of order n ≥ 7, the star K1,n−1 has maximum mean connected
induced subgraph order. In Section 3, we show that the local mean at any vertex of a
connected cograph is at least as large as the global mean. In Section 4, we show that
among all connected cographs of order n ≥ 3, the n-skillet Sn = K1+(K1∪Kn−2) (see
Fig. 1) has minimum mean connected induced subgraph order. Finally, in Section
5, we find the extremal structures for the mean connected induced subgraph order
of disconnected cographs of order n. We conclude by observing that the density of
connected cographs is asymptotically 1/2.

2 Connected cographs with maximum mean

We show in this section that among all connected cographs of order n ≥ 7, the star
K1,n−1 has maximum global mean. First note that

ΦK1,n−1(x) = x(1 + x)n−1 + (n− 1)x,

so it is easy to verify that

MK1,n−1 =
(n+ 1) · 2n−2 + n− 1

2n−1 + n− 1
=
n+ 1

2
− (n− 1)2

2(2n−1 + n− 1)
.

The fact that this mean is maximum among all connected cographs of order n ≥ 7
follows from two intermediate results which we prove in this section:

(a) Among all complete bipartite graphs Ks,n−s, where 1 ≤ s ≤ n − 1, the star
K1,n−1 has largest mean whenever n ≥ 7.

(b) If G = G1 + G2, where |V (G1)| = s and |V (G2)| = n − s and G1 and G2 are
cographs, then MG ≤MKs,n−s .

While both results rely on fairly technical arguments, we briefly provide some
intuition for (b). The idea is that we can obtain the connected cograph G = G1 +G2

from the complete bipartite graph Ks,n−s simply by adding edges in the bipartition
sets. The only new connected induced subgraphs that are introduced by this process
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lie completely inside of either G1 or G2. Since G1 and G2 are cographs, we can
show that the average order of these new connected induced subgraphs is smaller
than the average order of the connected induced subgraphs of Ks,n−s by an inductive
argument. So intuitively, the connected cograph G1 + G2 will have largest mean if
G1 and G2 have no edges.

We begin with some useful observations. Let G = G1 +G2, where G1 and G2 are
graphs of orders s and n − s, respectively. Then the connected induced subgraph
polynomial of G is given by

ΦG(x) = ΦG1(x) + ΦG2(x) + Φ∗Ks,n−s
(x),

as the connected induced subgraphs of G lie completely in either G1 or G2, or have
at least one vertex from each graph (and every vertex of G1 is joined to every vertex
of G2). The polynomial Φ∗Ks,n−s

(x) plays an important role in much of our work. By
a basic counting argument, we have

Φ∗Ks,n−s
(x) = ((1 + x)s − 1)((1 + x)n−s − 1)

= (1 + x)n − (1 + x)s − (1 + x)n−s + 1.

For ease of notation, we let ψs,n−s(x) = Φ∗Ks,n−s
(x), so that

ψs,n−s(1) = 2n − 2n−s − 2s + 1, (1)

ψ′s,n−s(1) = n2n−1 − s2s−1 − (n− s)2n−s−1, (2)

and

M∗
Ks,n−s

=
ψ′s,n−s(1)

ψs,n−s(1)
=
n2n−1 − s2s−1 − (n− s)2n−s−1

2n − 2n−s − 2s + 1
.

In order to show that K1,n−1 has largest global mean among all complete bipartite
graphs of order n ≥ 7, we first show that K1,n−1 has largest M∗ mean among all
complete bipartite graphs of order n ≥ 1. The result is trivial for n ≤ 3, and for n ≥ 4
we prove the stronger result that M∗

Ks,n−s
is decreasing in s for s ∈

{
1, . . . , bn

2
c
}
.

This stronger result is used to prove several of our later results, so we include it in
the Lemma statement below.

Lemma 2.1. For n ≥ 4 and s ∈
{

1, . . . ,
⌊
n
2

⌋
− 1
}
,

M∗
Ks,n−s

> M∗
Ks+1,n−s−1

.

In particular, K1,n−1 uniquely maximizes the M∗ mean among all complete bipartite
graphs of order n for all n ≥ 1.

Proof. First note that s ≤
⌊
n
2

⌋
−1 is equivalent to n ≥ 2s+2. We use this inequality

throughout the proof. We have

M∗
Ks,n−s

−M∗
Ks+1,n−s−1

=
ψ′s,n−s(1)

ψs,n−s(1)
−
ψ′s+1,n−s−1(1)

ψs+1,n−s−1(1)

=
ψ′s,n−s(1)ψs+1,n−s−1(1)− ψ′s+1,n−s−1(1)ψs,n−s(1)

ψs,n−s(1)ψs+1,n−s−1(1)
. (3)
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It suffices to show that the numerator of the expression in (3) is positive for
1 ≤ s ≤

⌊
n
2

⌋
− 1. Substituting the appropriate expressions from (1) and (2) into the

numerator of (3), and then simplifying, yields

22n−2s−2 − (n− s+ 1) · 2n−s−2 + (s− 1) · 22n−s−2 − (n− s− 2) · 2n+s−1

+ 3(n− 2s− 1) · 2n−2 − 22s + (s+ 2) · 2s−1.
(4)

The proof that (4) is strictly positive requires two cases:

Case 1: s = 1. Evaluating (4) at s = 1 and simplifying gives

22n−4 − (3n− 6)2n−3 − 1,

which is easily verified to be positive for n ≥ 4 by induction.
Case 2: 2 ≤ s ≤

⌊
n
2

⌋
− 1. Since n ≥ 2s + 2, we may assume that n ≥ 6. Grouping

the terms of (4), we claim that

22n−2s−2 − (n− s+ 1) · 2n−s−2 > 0, (5)

(s− 1) · 22n−s−2 − (n− s− 2) · 2n+s−1 ≥ 0, and (6)

3(n− 2s− 1) · 2n−2 − 22s ≥ 2n−1, (7)

which together imply that (4) is strictly positive. While we only need to show that
3(n − 2s − 1) · 2n−2 − 22s is nonnegative here, the stronger inequality (7) is used in
the proof of our next result.

For (5), we factor the left-hand side to obtain

2n−s−2 [2n−s − (n− s+ 1)
]
,

so it suffices to show that 2n−s − (n − s + 1) > 0. Let k = n − s, and note that
k ≥ s + 2 ≥ 4. The inequality 2k − (k + 1) > 0 is easily proven by induction,
completing the proof of (5).

For (6), factoring the left-hand side gives

2n+s−1 [(s− 1) · 2n−2s−1 − (n− s− 2)
]
.

So it suffices to show that (s− 1) · 2n−2s−1 − (n− s− 2) ≥ 0. For each fixed value of
s ≥ 2, we prove this inequality by induction on n. For the base case, we substitute
n = 2s+ 2, and we find

(s− 1) · 2− s = s− 2 ≥ 0.

Now suppose that the inequality holds for some natural number n ≥ 2s+ 2. Then

(s− 1) · 2n−2s − (n− s− 1) = (s− 1) · 2n−2s−1 − (n− s− 2) + (s− 1) · 2n−2s−1 − 1

≥ (s− 1) · 2n−2s−1 − 1

> 0,

completing the proof of (6).
Finally, for (7), we use the inequality n ≥ 2s+ 2 twice:

3(n− 2s− 1) · 2n−2 − 22s ≥ 3 · 2n−2 − 22s ≥ 3 · 2n−2 − 2n−2 = 2n−1.
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We now prove the first of the two statements from which our main result will
follow.

Theorem 2.2. For n ≥ 7,
MK1,n−1 > MK2,n−2 ,

and for n ≥ 6 and s ∈
{

2, . . . ,
⌊
n
2

⌋
− 1
}
,

MKs,n−s > MKs+1,n−s−1 .

In particular, among all complete bipartite graphs of order n ≥ 7, the star K1,n−1
uniquely maximizes the global mean.

Proof. For any n and any s ∈ {1, . . . , n− 1}, we have

ΦKs,n−s = nx+ ψs,n−s(x),

so that

MKs,n−s =
n+ ψ

′
s,n−s(1)

n+ ψs,n−s(1)

Hence, for any s ∈
{

1, . . . ,
⌊
n
2

⌋
− 1
}

,

MKs,n−s −MKs+1,n−s−1

=
[n+ ψ

′
s,n−s(1)][n+ ψs+1,n−s−1(1)]− [n+ ψs,n−s(1)][n+ ψ

′
s+1,n−s−1(1)]

[n+ ψs,n−s(1)][n+ ψs+1,n−s−1(1)]
.

Expanding the numerator gives

ψ
′

s,n−s(1)ψs+1,n−s−1(1)− ψs,n−s(1)ψ
′

s+1,n−s−1(1)

+ n
[
ψ
′

s,n−s(1) + ψs+1,n−s−1(1)− ψs,n−s(1)− ψ′s+1,n−s−1(1)
]
.

(8)

It suffices to show that this quantity is positive for the given values of n and s.
We first demonstrate that (8) is positive when s = 1 and n ≥ 7, proving the first

part of the Theorem. When s = 1, using (1) and (2), we find that (8) simplifies to

22n−4 − (n2 + n− 6) · 2n−3 + n− 1,

which is easily seen to be positive for n ≥ 7 by induction.
Now let n ≥ 6 and s ∈

{
2, . . . ,

⌊
n
2

⌋
− 1
}

. An expression for the first line of (8) is
given by (4). Applying inequalities (6) and (7), proven in Lemma 2.1, we obtain

ψ
′

s,n−s(1)ψs+1,n−s−1(1)− ψs,n−s(1)ψ
′

s+1,n−s−1(1)

≥ 22n−2s−2 − (n− s+ 1) · 2n−s−2 + 2n−1.
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For the expression on the second line of (8), employing (1) and (2) and then simpli-
fying, we find

ψ
′

s,n−s(1)+ψs+1,n−s−1(1)−ψs,n−s(1)−ψ′s+1,n−s−1(1) = s·2s−1 − (n− s− 1) · 2n−s−2

> −(n− s− 1) · 2n−s−2.

It follows that (8) is greater than

22n−2s−2 − (n− s+ 1) · 2n−s−2 + 2n−1 − n(n− s− 1) · 2n−s−2

= 2n−s−2 [2n−s − (n− s+ 1) + 2s+1 − n(n− s− 1)
]

= 2n−s−2 [2n−s + 2s+1 − (n2 − ns− s+ 1)
]
.

So it suffices to show that

2n−s + 2s+1 − (n2 − ns− s+ 1) > 0. (9)

For each fixed value of s ≥ 2, we proceed by induction on n. Since n ≥ 2s + 2, we
begin with the base case n = 2s+ 2. In this case, the left-hand side of (9) evaluates
to

2s+2 + 2s+1 − (2s2 + 5s+ 5) = 3 · 2s+1 − (2s2 + 5s+ 5),

which is positive for s ≥ 2 by induction. Now suppose that (9) holds for some
n ≥ 2s+ 2. Then

2n+1−s + 2s+1 −
[
(n+ 1)2 − (n+ 1)s− s+ 1

]
= 2n−s + [2n−s + 2s+1 − (n2 − ns− s+ 1)]− (2n+ 1) + s

> 2n−s − (2n+ 1) + s.

So it suffices to show that 2n−s− (2n+ 1) + s ≥ 0. We omit the details, but for each
fixed s ≥ 2, the inequality 2n−s − (2n+ 1) > 0 can be shown to hold for n ≥ 2s+ 2
by induction. This completes the proof.

To prove the second of our main two statements the following three lemmas on
M∗ means will be useful.

Lemma 2.3. M∗
K1,n−1

is strictly increasing for n ≥ 1. Moreover, n+1
2

< M∗
K1,n−1

≤
n+2
2

for all n ≥ 2.

Proof. First of all, note that M∗
K1,1

= 2 > 0 = M∗
K1,0

. Now, for n ≥ 2, we have

M∗
K1,n−1

=
2n−2(n+ 1)− 1

2n−1 − 1
=
n+ 1

2
+

n− 1

2(2n−1 − 1)
.

So it suffices to show that 0 < n−1
2(2n−1−1) ≤

1
2

for n ≥ 2. The first inequality is obvious,
while the second holds by a straightforward induction.

Lemma 2.4. Let G be a cograph (not necessarily connected) of order n ≥ 1. Then
M∗

G ≤M∗
K1,n−1

, with equality if and only if G ∼= K1,n−1.
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Proof. We proceed by induction on n. The statement is trivial for n = 1. Suppose
now that n ≥ 2 and that the statement holds for every integer k, 1 ≤ k < n. Since
G is a cograph, it is either the join of two cographs or the union of two cographs.
Case 1: G = G1 + G2, where G1 and G2 are cographs of orders s and n − s,
respectively.

In this case,

ΦG(x) = [ΦG1(x)− sx] + [ΦG2(x)− (n− s)x] + ΦKs,n−s(x),

and hence

ΦG(x)− nx = [ΦG1(x)− sx] + [ΦG2(x)− (n− s)x] +
[
ΦKs,n−s(x)− nx

]
.

Thus, by taking the logarithmic derivative of both sides, we obtain the following
expression:

M∗
G = c1M

∗
G1

+ c2M
∗
G2

+ c3M
∗
Ks,n−s

, (10)

for real numbers c1, c2, c3 ≥ 0 such that c1 + c2 + c3 = 1. By the induction hypothesis
and then Lemma 2.3,

M∗
G1
≤M∗

K1,s−1
< M∗

K1,n−1
and M∗

G2
≤M∗

K1,n−s−1
< M∗

K1,n−1
,

and by Lemma 2.1,

M∗
Ks,n−s

≤M∗
K1,n−1

.

Moreover, this inequality is strict unless s = 1 or s = n− 1. Therefore, since each of
the means on the right-hand side of (10) is at most M∗

K1,n−1
, we must have

M∗
G ≤M∗

K1,n−1
.

Since M∗
G1
< M∗

K1,n−1
and M∗

G2
< M∗

K1,n−1
, we have equality if and only if c1 = c2 = 0

and s = 1 or s = n− 1, or equivalently, G ∼= K1,n−1.
Case 2: G = G1 ∪ G2, where G1 and G2 are cographs of orders s and n − s,
respectively.

In this case,

ΦG(x)− nx = [ΦG1(x)− sx] + [ΦG2(x)− (n− s)x] .

Hence

M∗
G = c1M

∗
G1

+ c2M
∗
G2
,

for real numbers c1, c2 ≥ 0 such that c1 + c2 = 1. By the induction hypothesis and
Lemma 2.3,

M∗
G ≤ c1M

∗
K1,s−1

+ c2M
∗
K1,n−s−1

< c1M
∗
K1,n−1

+ c2M
∗
K1,n−1

= M∗
K1,n−1

.

Lemma 2.5. Let n ≥ 6 and s ∈ {1, . . . , n− 1}.
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(a) If G is a cograph on k ≤ n− 2 vertices, then M∗
G < MKs,n−s .

(b) If G is a cograph on n− 1 vertices, then M∗
G < MK1,n−1 .

Proof. Part (a): Without loss of generality we may assume that s ≤
⌊
n
2

⌋
, or equiva-

lently n ≥ 2s. By Lemma 2.4, M∗
G ≤ M∗

K1,k−1
. So it suffices to show that M∗

K1,k−1
<

MKs,n−s . From Lemma 2.3, we have

M∗
K1,k−1

≤ k+2
2
≤ n

2
.

So it suffices to show that MKs,n−s >
n
2
. Indeed, we have

MKs,n−s −
n

2
=
n2n−1 − s2s−1 − (n− s)2n−s−1 + n

2n − 2s − 2n−s + 1 + n
− n

2

=
(n− s)2s + s2n−s + n− n2

2 [2n − 2s − 2n−s + 1 + n]
. (11)

One can show, for fixed s ≥ 1 and by induction on n ≥ 2s, that the numerator in
(11) is positive.
Part (b): By Lemma 2.4, M∗

G ≤ M∗
K1,n−2

. So it suffices to show that M∗
K1,n−2

<
MK1,n−1 . We have

MK1,n−1 −M∗
K1,n−2

=
(n+ 1)2n−2 + (n− 1)

2n−1 + (n− 1)
− n2n−3 − 1

2n−2 − 1
.

The numerator of this expression over common denominator [2n−1+(n−1)] [2n−2−1]
is given by

(n+ 1)22n−4 + (n− 1)2n−2 − (n+ 1)2n−2 − (n− 1)

−
[
n22n−4 + n(n− 1)2n−3 − 2n−1 − (n− 1)

]
= 22n−4 + (n− 1)2n−2 + 2n−1 − (n+ 1)2n−2 − n(n− 1)2n−3

= 2n−3 [2n−1 − n(n− 1)
]
,

and 2n−1 > n(n− 1) holds for n ≥ 6 by induction.

We now prove the second of the two main intermediate results of this section.

Theorem 2.6. Let G be a connected cograph of order n ≥ 6, obtained from the join
of two cographs G1 and G2 of orders s and n− s, respectively. Then MG ≤MKs,n−s,
with equality if and only if G ∼= Ks,n−s.

Proof. Since G = G1 + G2, the generating polynomial for the connected induced
subgraphs of G is given by

ΦG(x) = [ΦG1(x)− sx] + [ΦG2(x)− (n− s)x] + ΦKs,n−s(x).

Thus,

MG = c1M
∗
G1

+ c2M
∗
G2

+ c3MKs,n−s
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for some real numbers c1, c2, c3 ≥ 0 such that c1 + c2 + c3 = 1. By Lemma 2.5,
M∗

G1
< MKs,n−s and M∗

G2
< MKs,n−s . Therefore, MG is a weighted average of means

of which MKs,n−s is the largest, from which we conclude that MG ≤ MKs,n−s . The
inequality is strict unless c1 = c2 = 0, i.e. G ∼= Ks,n−s.

Our main result now follows easily.

Corollary 2.7. If G is a connected cograph of order n ≥ 7, then

MG ≤
n+ 1

2
− (n− 1)2

2(2n−1 + n− 1)
,

with equality if and only if G ∼= K1,n−1. Generally, if G is a connected cograph of
order n ≥ 1, then MG ≤ n+1

2
, with equality if and only if n = 1.

Proof. The first statement follows immediately from Theorems 2.2 and 2.6. For
n ≥ 7, the second statement follows easily from the first. For n ≤ 6, we check the
second statement exhaustively using a computer algebra system. The cographs of
maximum global mean for n ≤ 6 and their means are given in Table 1. Decimal
expansions are provided for ease of verifying the second statement.

Order Cograph Global Mean Decimal Expansion
1 K1 1 1
2 K2 4/3 1.33 . . .
3 K3 12/7 1.71 . . .
4 K2,2 28/13 2.15 . . .
5 K2,3 69/26 2.65 . . .
6 K2,4 54/17 3.18 . . .

Table 1: The cographs of maximum global mean among all connected cographs of
order n ≤ 6.

Finally, we observe that our upper bound on the mean connected induced sub-
graph order of connected cographs generalizes nicely to all cographs, as described
below.

Corollary 2.8. Let G be a cograph and let s be the order of a largest component of
G. Then MG ≤ s+1

2
with equality if and only if s = 1.

Proof. Suppose G has components G1, . . . , Gk. Since ΦG(x) =
∑k

i=1 ΦGi
(x), the

mean MG is a convex combination of the MGi
. So the result follows immediately

from Corollary 2.7.
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3 Comparing local and global means

Recall that if v is a vertex of a graph G, then MG,v denotes the mean order of the
connected induced subgraphs of G that contain v. It was shown in [6], for any tree
T and any vertex v of T , that

MT,v ≥MT ,

with equality if and only if T ∼= K1. It is natural to ask whether this property extends
to the mean connected induced subgraph order of graphs in general. We provide an
infinite family of graphs with a vertex for which this inequality does not hold.

For each natural number n, let Hn be the family of graphs of order n with mean
greater than n+2

2
. From [9], there is a tree (in fact, a caterpillar) Tn of order n such

that MTn ≥ n−d2 log2 ne−1 for all n. It follows that Hn is nonempty for all n ≥ 25,
and further, there is a tree in Hn for all 13 ≤ n ≤ 24 by computational work. Define

Gn = {H +K1 : H ∈ Hn−1},

and note that Gn is nonempty for all n ≥ 14.
Let G ∈ Gn for some n ≥ 14. In particular, let G = H + v, where H ∈ Hn−1.

Then

ΦG(x) = ΦH(x) + ΦG,v(x). (12)

Since v is universal in G, we see that ΦG(x) = x(1 + x)n−1, and thus MG,v = n+1
2
.

Since H ∈ Hn−1, we have MH > (n−1)+2
2

= n+1
2

= MG,v. We conclude that MH >
MG > MG,v, since MG is a convex combination of MH and MG,v by (12). Therefore,
for each n ≥ 14, Gn is nonempty and every member of Gn has a vertex at which the
local mean is less than the global mean.

Using results from the previous section, we now demonstrate that MG,v ≥ MG

for any connected cograph G, and any vertex v ∈ V (G). Aside from being interesting
in its own right, this result will be used in the next section when we determine the
structure of connected cographs with minimum global mean.

Theorem 3.1. Let G be a connected cograph of order n ≥ 1 and v any vertex of G.
Then

MG,v ≥ n+1
2
.

Proof. We proceed by induction on n. The result holds for n = 1. Suppose n ≥ 2 and
that the result holds for every connected cograph of order less than n, and let G be a
connected cograph of order n. Since G is a connected cograph, G = G1 +G2, where
G1 is a cograph of order s (say), and G2 is a cograph of order n − s. Without loss
of generality, suppose that v ∈ V (G1). More specifically, since G1 is not necessarily
connected, v belongs to a component H of G1. Let k be the order of H (note that
1 ≤ k ≤ s).

Now the connected induced subgraphs of G containing v can be partitioned into
those containing no vertex of G2, and those containing at least one vertex of G2.
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Hence

ΦG,v(x) = ΦG1,v(x) + x

[
n−s∑
i=1

(
n−s
i

)
xi

][
s−1∑
j=0

(
s−1
j

)
xj

]
.

Thus,

ΦG,v(x) = ΦG1,v(x) + x
[
(1 + x)n−s − 1

]
(1 + x)s−1

= ΦG1,v(x) + x
[
(1 + x)n−1 − (1 + x)s−1

]
,

and

Φ
′

G,v(x) = Φ
′

G1,v
(x) +

[
(1 + x)n−1 − (1 + x)s−1

]
+ x

[
(n− 1)(1 + x)n−2 − (s− 1)(1 + x)s−2

]
.

Therefore,

MG,v =
Φ
′
G,v(1)

ΦG,v(1)
=

Φ
′
G1,v

(1) + 2n−2(n+ 1)− 2s−2(s+ 1)

ΦG1,v(1) + 2n−1 − 2s−1 .

Straightforward algebra gives

MG,v − n+1
2

=
2s−2(n− s) + ΦG1,v(1)

[
MG1,v −

(
n+1
2

)]
ΦG1,v(1) + 2n−1 − 2s−1 .

So it suffices to show that

2s−2(n− s) + ΦG1,v(1)
[
MG1,v − n+1

2

]
≥ 0.

By the induction hypothesis,

2s−2(n− s) + ΦG1,v(1)
[
MG1,v − n+1

2

]
≥ 2s−2(n− s) + ΦG1,v(1)

[
k+1
2
− n+1

2

]
= 2s−2(n− s)− ΦG1,v(1)

(
n−k
2

)
.

Moreover, ΦG1,v(1) ≤ 2k−1 with equality if and only if v is a universal vertex of H,
so we have

2s−2(n− s)− ΦG1,v(1)

(
n− k

2

)
≥ 2s−2(n− s)− 2k−1

(
n− k

2

)
= 2s−2(n− s)− 2k−2(n− k)

= 2k−2 [(n− s)2s−k − n+ k
]
.

Now it suffices to show that (n − s)2s−k − n + k ≥ 0. Regrouping and applying
the inequality n− s ≥ 1, we obtain

(n−s)2s−k−n+k = (n−s)
(
2s−k − 1

)
+n−s−n+k ≥ 2s−k−1−s+k = 2s−k−(s−k)−1.

The result follows by letting m = s− k, and observing that, by induction on m ≥ 0,
we have 2m −m− 1 ≥ 0.
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The fact that the local mean at any vertex of a connected cograph is at least as
large as the global mean now follows directly from Corollary 2.7 and Theorem 3.1.

Corollary 3.2. If G is a connected cograph with vertex v, then MG,v ≥ MG, with
equality if and only if G ∼= K1.

Proof. Let G be a connected cograph of order n, and v ∈ V (G). By Corollary 2.7
and then Theorem 3.1, we have

MG ≤ n+1
2
≤MG,v,

with equality at the first inequality if and only if n = 1.

4 Connected cographs with minimum mean

In this section we determine the structure of those connected cographs for which the
global mean is a minimum. Recall that we can write any connected cograph G as
the join of two cographs G1 and G2. If |V (G1)| = s and |V (G2)| = n − s, then we
can obtain G from Ks,n−s by adding edges in the bipartition sets. As mentioned
previously, we expect that the new connected induced subgraphs created by adding
the edges of G1 and G2 will have smaller order on average than those of Ks,n−s. Thus,
to minimize the mean connected induced subgraph order of G1 + G2, it stands to
reason that G1 and G2 should have many edges (so that they have many connected
induced subgraphs). Surprisingly, we will show that the extremal structures for the
minimum global mean are not complete graphs. In order to minimize the global
mean of G1 + G2, we want G1 and G2 to have many connected induced subgraphs,
but we also want them to have small mean order.

Recall that the n-skillet, denoted by Sn, is the cograph defined by Sn = K1 +
(K1 ∪ Kn−2), pictured in Fig. 1. We first demonstrate by direct proof that if G
is a connected cograph of order n with a cut vertex, then MG ≥ MSn . Then we
consider the general case where G is any connected cograph of order n; the proof is
by induction.

We begin by deriving expressions for MSn and MKn and showing that MSn < MKn

for all n ≥ 3.

Lemma 4.1. For any n ≥ 3,

(a) MSn = n
2

+ 1
3·2n−2 ,

(b) MKn = n
2

+ n
2n+1−2 , and

(c) MSn < MKn.

Proof. Parts (a) and (b) are easily obtained from the connected induced subgraph
polynomials for Sn and Kn, respectively:

ΦSn(x) = (1 + x)n−1 − 1 + x+ x2(1 + x)n−3

ΦKn(x) = (1 + x)n − 1.
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For part (c), we show that the difference MKn −MSn is positive for n ≥ 3. We
have

MKn −MSn =
n

2n+1 − 2
− 1

3 · 2n−2 =
2n−2(3n− 8) + 2

3 · 2n−2 · (2n+1 − 2)
> 0

where the last inequality follows easily from the fact that n ≥ 3.

The following three lemmas on M∗ means of cographs will be used to prove the
main result of this section.

Lemma 4.2. M∗
Ks,n−s

> n
2

for any n ≥ 2 and 1 ≤ s ≤ n− 1.

Proof. We have

M∗
Ks,n−s

− n

2
=
n2n−1 − s2s−1 − (n− s)2n−s−1

2n − 2s − 2n−s + 1
− n

2

=
(n− s)2s + s2n−s − n
2(2n − 2s − 2n−s + 1)

≥ 2(n− s) + 2s− n
2(2n − 2s − 2n−s + 1)

> 0.

Hence M∗
Ks,n−s

> n
2
.

Lemma 4.3. Let G = G1 +G2, where G1 and G2 are cographs of orders s and n− s
respectively, where n ≥ 4 and 2 ≤ s ≤ n − 2. Then M∗

G ≤ M∗
Ks,n−s

, with equality if
and only if G ∼= Ks,n−s.

Proof. Since G is a connected cograph, observe that

ΦG(x)− nx = [ΦG1(x)− sx] + [ΦG2(x)− (n− s)x] +
[
ΦKs,n−s(x)− nx

]
.

Hence,

M∗
G = c1M

∗
G1

+ c2M
∗
G2

+ c3M
∗
Ks,n−s

, (13)

for some nonnegative numbers c1, c2, c3, such that c1 + c2 + c3 = 1. By Lemma 2.4,
and then Lemma 2.3,

M∗
G1
≤M∗

K1,s−1
≤ s+2

2
≤ n

2
, and

M∗
G2
≤M∗

K1,n−s−1
≤ n−s+2

2
≤ n

2
.

Finally, by Lemma 4.2, M∗
Ks,n−s

> n
2
, and hence M∗

G < M∗
Ks,n−s

follows from (13).
Moreover, we have equality if and only if c1 = c2 = 0, that is, if and only if G ∼=
Ks,n−s.

Lemma 4.4. M∗
K2,n−3

≤MKn for n ≥ 6.



M.E. KROEKER ET AL. /AUSTRALAS. J. COMBIN. 71 (1) (2018), 161–183 176

Proof. Consider the difference

MKn −M∗
K2,n−3

=
n2n−1

2n − 1
− 2n−4(3n− 1)− 4

3 · 2n−3 − 3

=
n2n−1[3 · 2n−3 − 3]− (2n − 1)[2n−4(3n− 1)− 4]

(2n − 1)(3 · 2n−3 − 3)
.

Expanding and regrouping the numerator, we obtain

MKn −M∗
K2,n−3

=
2n−4 (2n − 21n+ 63)− 4

(2n − 1)(3 · 2n−3 − 3)
.

Thus it suffices to show that 2n − 21n+ 63 ≥ 1 for n ≥ 6, and this follows easily by
induction.

We now prove the first special case of the main result of this section, namely the
case where G is a connected cograph with a cut vertex. This case is further divided
into the subcases where G does or does not have a leaf. Let G be a connected cograph
of order n with a cut vertex. Then it is straightforward to show that G = K1 + H
where H is a disconnected cograph. We use this structure to show that MG > MSn .

Lemma 4.5. Let G be a connected cograph of order n. If G has a cut vertex, then
MG ≥MSn , with equality if and only if G ∼= Sn.

Proof. Write G = K1 + H, where H is a disconnected cograph of order n − 1. We
consider two cases, depending on whether or not H has an isolated vertex.

Suppose first that H has no isolated vertex. In this case, we must have n ≥ 5. If
n = 5, then H ∼= K2∪K2, and MG > MS5 can be verified directly. Now assume that
n ≥ 6. We will prove the stronger result that MG ≥ MKn , from which the desired
result follows by Lemma 4.1(c). We can write

ΦKn(x) = ΦG(x) + ΦG(x)− nx, (14)

since every nonempty subset of vertices induces a connected subgraph of Kn, while,
by Result 1.1(c), every subset of vertices of size at least 2 induces a connected
subgraph in either G or G, but not in both. The singleton subsets are counted
by both ΦG(x) and ΦG(x), which is why we subtract nx. Since G = K1 ∪ H, we
substitute ΦG(x) = ΦH(x) + x into (14) to obtain

ΦKn(x) = ΦG(x) + [ΦH(x)− (n− 1)x] .

Therefore, we can write MKn as a convex combination as follows:

MKn = c1MG + c2M
∗
H
. (15)

Since H is a connected cograph of order n − 1, and H has no isolated vertex, we
must have H = H1 + H2 with |V (H1)| ≥ 2 and |V (H2)| ≥ 2. Let |V (H1)| = s. By
Lemma 4.3, M∗

H
≤M∗

Ks,n−1−s
. Further, by Lemma 2.1, M∗

Ks,n−1−s
≤M∗

K2,n−3
. Finally,
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by Lemma 4.4, M∗
K2,n−3

≤ MKn for n ≥ 6. So M∗
H
≤ MKn , and we conclude from

(15) that MG ≥MKn .
Suppose otherwise that H has an isolated vertex. Then G = K1 + H contains a

leaf. So G is a spanning subgraph of Sn. Label the vertices of G and Sn with the
same labels such that v denotes a leaf in each graph and u denotes the cut vertex
of each graph. The sets of vertices that induce a connected subgraph in Sn can be
partitioned into two sets, namely (i) those that also induce a connected subgraph
of G and (ii) those that do not induce a connected subgraph of G. The latter are
precisely those sets of vertices that induce a disconnected subgraph of H−v and thus
the nontrivial sets of vertices that induce a connected subgraph in H − v. Hence

ΦSn(x) = ΦG(x) +
[
ΦH−v(x)− (n− 2)x

]
.

Thus we obtain the following convex combination:

MSn = c1MG + c2M
∗
H−v, (16)

where c2 > 0 unless G ∼= Sn. Since H − v is a cograph of order n − 2, Lemma 2.4
and Lemma 2.3 give

M∗
H−v ≤M∗

K1,n−3
≤ n

2
.

Finally, note that MSn = n
2

+ 1
3·2n−2 >

n
2
. Thus M∗

H−v < MSn , and we conclude from

(16) that MSn < MG.

We now focus on the case where G is a connected cograph without a cut vertex,
i.e. G is a 2-connected cograph. In this case, ΦG(x) can be expressed as the sum of a
local generating polynomial ΦG,v(x) and the generating polynomial ΦG−v(x) for the
connected cograph G − v. We require one more lemma in order to prove the main
result of this section.

Lemma 4.6. Let G be a 2-connected cograph of order n ≥ 4. There is some vertex
v ∈ V (G) such that ΦG−v(1) < ΦG,v(1).

Proof. Since G is 2-connected, there exist non-trivial cographs G1 and G2 such that
G = G1 + G2. Let v be a vertex of maximum degree in G. We may assume that
v ∈ V (G1). If v is a universal vertex, then the result follows, since, in this case, there
are 2n−1 connected induced subgraphs that contain v and at most 2n−1−1 connected
induced subgraphs in G− v.

Suppose now that v has k ≥ 1 non-neighbours. Let P1 be the set of connected
induced subgraphs of G − v that contain a neighbour of v and let P2 be the set of
connected induced subgraphs of G − v that do not contain a neighbour of v. If H
belongs to P1, then the vertices of H together with v induce a connected subgraph
that contains v. Let P1,v be the family of such connected induced subgraphs. If H
is in P2, then the vertices of H belong to V (G1) − N [v]. So P2 has at most 2k − 1
elements. Let u ∈ V (G2). Since deg(u) ≤ deg(v), u has at least k non-neighbours
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that necessarily belong to G2. Let S be the set of non-neighbours of u. Each non-
empty subset X of S together with u and v yields a connected induced subgraph
that contains v and does not belong to P1, since 〈X ∪{u}〉 is disconnected. Let P2,v

be the family of connected induced subgraphs of G containing v that are constructed
in this manner. Note that |Pi,v| ≥ |Pi| for i = 1, 2, and P1,v ∩ P2,v = ∅, which
gives ΦG−v(1) ≤ ΦG,v(1). Finally, the singleton set containing v induces a connected
subgraph of G containing v and is not contained in P1,v∪P2,v, which gives the desired
strict inequality.

Theorem 4.7. Let G be a connected cograph of order n ≥ 3. Then MG ≥ n
2

+ 1
3·2n−2 ,

with equality if and only if G ∼= Sn.

Proof. We begin by deriving a useful expression for MSn . Let u be a vertex of degree
n− 2 in Sn. First note that

ΦSn(x) = ΦSn,u(x) + ΦSn−1(x).

Taking the logarithmic derivative of both sides, we obtain

MSn =

[
ΦSn,u(1)

ΦSn,u(1) + ΦSn−1(1)

]
MSn,u +

[
ΦSn−1(1)

ΦSn,u(1) + ΦSn−1(1)

]
MSn−1 .

One easily verifies that ΦSn,u(1) = ΦSn−1(1) = 2n−2 + 2n−3 and MSn,u = n+1
2
, which

gives

MSn = 1
2
· n+1

2
+ 1

2
MSn−1 . (17)

We now proceed with the proof of the statement by induction on n. The result is
easily verified for n = 3 as MK3 > MS3 and K3 and S3 are the only distinct connected
cographs of order 3. Suppose now that n > 3 and that the statement holds for all
connected cographs of order k, 3 ≤ k < n. If G has a cut vertex, then we are done,
by Lemma 4.5. So we may assume that G is 2-connected.

By Lemma 4.6 there is a vertex v ∈ V (G) such that ΦG,v(1) > ΦG−v(1). We
express MG as follows:

MG =

[
ΦG,v(1)

ΦG,v(1) + ΦG−v(1)

]
MG,v +

[
ΦG−v(1)

ΦG,v(1) + ΦG−v(1)

]
MG−v.

From our choice of v, it follows that the coefficient of MG,v is greater than 1
2
, while

the coefficient of MG−v is less than 1
2
. Since MG,v ≥ n+1

2
, by Theorem 3.1, and

MG−v <
n
2
, by Corollary 2.7, we have MG,v > MG−v. Thus

MG >
1
2
MG,v + 1

2
MG−v ≥ 1

2
· n+1

2
+ 1

2
MG−v.

Applying the induction hypothesis to G− v gives

MG >
1
2
· n+1

2
+ 1

2
MSn−1 = MSn ,

where the last equality is due to (17).
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It follows easily from our results that the global means of connected cographs
increase with order.

Corollary 4.8. Let G1 be a connected cograph of order n1 ≥ 2, and let G2 be a
cograph (not necessarily connected) of order n2 < n1. Then MG1 > MG2.

Proof. The result is easily verified for n1 = 2, so we may assume that n1 ≥ 3. From
Theorem 4.7 and Corollary 2.8, we know that MG1 ≥ MSn1

> n1

2
, and MG2 ≤ n2+1

2
,

respectively. Since n1 > n2, it follows that MG1 >
n1

2
≥ n2+1

2
> MG2 .

5 Disconnected cographs

In this section we investigate extremal structures for the mean order of connected
induced subgraphs in disconnected cographs. For any order n, the edgeless cograph
Kn has minimum mean. We show that the maximum mean among all disconnected
cographs of order n ≥ 2 is obtained by the disjoint union of K1 and the cograph
of maximum mean among all connected cographs of order n − 1. In particular, for
n ≥ 8, the cograph K1∪K1,n−2 has maximum mean among all disconnected cographs
of order n.

We will refer to the expressions given below for various means, which are easily
verified.

Lemma 5.1. The following formulae hold.

(a) For n ≥ 3, MK1∪K1,n−2 = (n−1)+n2n−3

(n−1)+2n−2 = n
2

+
3n
2
−n2

2
−1

2n−2+(n−1) .

(b) For n ≥ 4, M∗
K1,n−3

= (n−1)2n−4−1
2n−3−1 = n

2
+

n
2
−2n−4−1
2n−3−1 .

(c) For n ≥ 4, MK2,n−3 = 3n2n−4−2n−4+n−5
3·2n−3+n−4 = n

2
+
−2n−4+3n−5−n2

2

n+3·2n−3−4 .

(d) For n ≥ 4, MK1,n−3 = (n−3)+(n−1)2n−4

(n−3)+2n−3 = n
2

+
5n
2
−n2

2
−3−2n−4

2n−3+n−3 .

In order to establish our main result we begin by proving some useful inequalities
between the means described in Lemma 5.1.

Lemma 5.2. The following inequalities hold.

(a) M∗
K1,n−3

< MK1∪K1,n−2 for n ≥ 8.

(b) MK2,n−3 < MK1∪K1,n−2 for n ≥ 9.

(c) MK1,n−3 < MK1∪K1,n−2 for n ≥ 4.

Proof. (a) From Lemma 5.1, M∗
K1,n−3

< MK1∪K1,n−2 if and only if

3n
2
− n2

2
− 1

2n−2 + (n− 1)
−

n
2
− 2n−4 − 1

2n−3 − 1
> 0.



M.E. KROEKER ET AL. /AUSTRALAS. J. COMBIN. 71 (1) (2018), 161–183 180

The numerator of this expression, given by(
3n

2
− n2

2
− 1

)(
2n−3 − 1

)
−
(n

2
− 2n−4 − 1

) (
2n−2 + n− 1

)
,

simplifies to 2n−4 [2n−2 − (n2 − 2n− 1)]. It follows readily by induction, that 2n−2 +
2n+ 1− n2 > 0 for n ≥ 8.
(b) From Lemma 5.1, MK2,n−3 < MK1∪K1,n−2 if and only if

3n
2
− n2

2
− 1

2n−2 + (n− 1)
−
−2n−4 + 3n− 5− n2

2

n+ 3 · 2n−3 − 4
> 0.

The numerator of this expression, given by(
3n

2
− n2

2
− 1

)(
n+ 3 · 2n−3 − 4

)
−
(
2n−2 + n− 1

)(
−2n−4 + 3n− 5− n2

2

)
,

simplifies to 2n−4 [2n−2 − 2n− n2 + 13 + n−1
2n−4

]
. It follows readily by induction on

n ≥ 9, that 2n−2 − 2n− n2 + 13 > 0.
(c) From Lemma 5.1, MK1,n−3 < MK1∪K1,n−2 if and only if

3n
2
− n2

2
− 1

2n−2 + (n− 1)
−

5n
2
− n2

2
− 3− 2n−4

2n−3 + n− 3
> 0.

The numerator of this expression, given by(
3n

2
− n2

2
− 1

)(
2n−3 + n− 3

)
−
(
2n−2 + n− 1

)(5n

2
− n2

2
− 3− 2n−4

)
,

simplifies to 2n−4 [2n−2 + n2 + 9− 6n] . Once again it is readily shown by induction
on n ≥ 4, that 2n−2 + n2 + 9− 6n > 0.

Now we are ready to prove the main result of this section.

Theorem 5.3. For each n ≥ 1, let Qn denote the cograph of maximum mean among
all connected cographs of order n. If G is a disconnected cograph of order n ≥ 2, then
MG ≤MK1∪Qn−1. Moreover, equality holds for n ≥ 8 if and only if G ∼= K1∪K1,n−2.

Proof. We refer the reader to Table 1 and Corollary 2.7 for an explicit description of
Qn for all n. Using a computer algebra system, we have verified the statement for
n ≤ 8.

We may now assume that n ≥ 9. Suppose G is a disconnected cograph of order
n ≥ 9, and we wish to show that MG ≤ MK1∪K1,n−2 . Let H1, ..., Hk denote the
components of G. Then

ΦG(x) = ΦH1(x) + ...+ ΦHk
(x).

Hence MG can be expressed as a convex combination as follows:

MG = c1MH1 + ...+ ckMHk
.
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Let M
′

= max{MHi
: i ∈ {1, ..., k}}. Then MG ≤ M

′
. Let Hi be such that

MHi
= M

′
. By Corollary 4.8, Hi is a component of G of largest order.

Case 1: Suppose G does not have a component of order n − 1. Then the largest
possible order of a component of G is n − 2, and by Corollary 2.7, it follows that
MG < MK1,n−3 . By Lemma 5.2(c), MK1,n−3 < MK1∪K1,n−2 . Hence MG < MK1∪K1,n−2

in this case.
Case 2: Suppose G has a component of order n− 1. It follows that G = K1 ∪H2,
where H2 is a connected cograph of order n− 1. In this case

ΦG(x) = x+ ΦH2(x).

Subcase 1: Suppose H2 has a universal vertex v. Then K1,n−2 is a spanning sub-
graph of H2. Thus

ΦG(x) = x+ ΦK1,n−2(x) + ΦH2−v(x)− (n− 2)x

= ΦK1∪K1,n−2(x) + ΦH2−v(x)− (n− 2)x.

Since H2 − v is a cograph of order n− 2, it follows that

MG = c1MK1∪K1,n−2 + c2M
∗
H2−v,

where c2 = 0 if and only if G ∼= K1 ∪K1,n−2. By Lemma 2.4, M∗
H2−v ≤M∗

K1,n−3
. By

Lemma 5.2(a), M∗
K1,n−3

< MK1∪K1,n−2 . Hence

MG ≤MK1∪K1,n−2 ,

with equality in this subcase if and only if G ∼= K1 ∪K1,n−2.
Subcase 2: Suppose H2 does not have a universal vertex. Since H2 is connected,
H2 = G1 +G2, where G1 and G2 are cographs of orders s and n− s− 1 respectively,
where 2 ≤ s ≤ bn

2
c. Thus

ΦG(x) = (x+ ΦKs,n−s−1(x)) + (ΦG1(x)− sx) + (ΦG2(x)− (n− s− 1)x).

Hence

MG = c1MK1∪Ks,n−s−1 + c2M
∗
G1

+ c3M
∗
G2
.

Since G1 and G2 are cographs of order at most n−3, it follows from Lemmas 2.3 and
2.4 that M∗

G1
,M∗

G2
< M∗

K1,n−4
< M∗

K1,n−3
. By Lemma 5.2(a), M∗

K1,n−3
< MK1∪K1,n−2 .

Further, MK1∪Ks,n−s−1 can itself be expressed as a convex combination of MK1 and
MKs,n−s−1 . From this and Theorem 2.2, it follows that MK1∪Ks,n−s−1 < MK2,n−3 . By
Lemma 5.2(b), MK2,n−3 < MK1∪K1,n−2 for n ≥ 9. Hence MG < MK1∪K1,n−2 in this
subcase.
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6 Conclusion

In this article we studied the extremal structures for the mean order of the connected
induced subgraphs of cographs, in both the connected and disconnected cases. For
a connected cograph G of order n ≥ 1, we proved that

n
2
< MG ≤ n+1

2
,

with equality on the right if and only if n = 1. This means that the density of G,
defined as MG

n
, is always close to 1

2
; to be precise, the density of any infinite sequence

of distinct connected cographs tends to 1
2
. This contrasts the situation for trees,

where the density lies between 1
3

and 1, and these bounds are asymptotically sharp
(see [6] for details).

In Section 3 we showed, for connected cographs, that the local mean at each vertex
is at least as large as the global mean, as was the case for trees. We demonstrated
that this property does not extend to all connected graphs, providing an infinite
family of counterexamples. It remains an interesting open problem to characterize
those graphs for which the local mean at each vertex is at least as large as the global
mean.

Finally, it remains an interesting open problem to determine the extremal struc-
tures for the mean connected induced subgraph order among all connected graphs of
order n. We conjecture that the minimum mean connected induced subgraph order
is obtained by the path Pn, as for trees, and we have verified this statement for
n ≤ 9. Determining the structure of graphs with maximum mean seems much more
difficult. Using a computer algebra system, we have determined that the maximum
is not obtained by a tree for 3 ≤ n ≤ 9, but instead by a 2-connected graph. The
connected graphs with maximum mean are given in Table 2. In the table, Θi,j,k

denotes the (i, j, k)-theta graph, obtained from the multigraph on two vertices with
three edges between them by subdividing the first edge i times, the second edge j
times, and the third edge k times, and G�H denotes the Cartesian product of graphs
G and H.

Order Graph Global Mean Decimal Expansion
3 K3 12/7 1.71 . . .
4 K2,2 28/13 2.15 . . .
5 Θ1,1,1 69/26 2.65 . . .
6 Θ2,1,1 67/21 3.19 . . .
7 Θ2,2,1 83/22 3.77 . . .
8 Θ2,2,2 22/5 4.4
9 P3�P3 996/197 5.05 . . .

Table 2: The graphs of maximum global mean among all connected graphs of small
order.
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