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Abstract

In 1965, Vizing conjectured that the independence ratio of edge-chromatic
critical graphs is at most 1

2
. We prove that for every ε > 0 this conjecture

is equivalent to its restriction on a specific set of edge-chromatic critical
graphs with independence ratio smaller than 1

2
+ ε.

1 Introduction

All graphs in this article are simple. If G is a graph, then V (G) denotes its vertex set
and E(G) denotes its edge set. If e ∈ E(G) has end vertices v and w, then we also
use the term vw to denote e. If v is a vertex of G, then NG(v) denotes the set of its
neighbors, and |NG(v)| is the degree of v, which is denoted by dG(v). The maximum
degree and the minimum degree of a vertex of G are denoted by ∆(G) and δ(G),
respectively. For i ∈ {1, . . . ,∆(G)} let Vi(G) = {v : dG(v) = i}.

A k-edge-coloring of G is a function φ : E(G) −→ {1, . . . , k} such that φ(e) 6=
φ(f) for adjacent edges e and f . The chromatic index χ′(G) is the smallest number
k such that there is k-coloring of G. In 1965 Vizing proved the fundamental result
on the chromatic index of simple graphs.

Theorem 1.1 ([11]). If G is a graph, then χ′(G) ∈ {∆(G),∆(G) + 1}.

Theorem 1.1 leads to a natural classification of simple graphs into two classes,
namely Class 1 and Class 2 graphs depending upon whether their edge chromatic
number is ∆ and ∆+1. For k ≥ 2, a graph G is k-critical if ∆(G) = k, χ′(G) = k+1
and χ′(G− e) = k for every e ∈ E(G). Let C(k) be the set of k-critical graphs, and
C =

⋃∞
k=2 C(k) be the set of critical graphs.

If G is a graph, then α(G) denotes the maximum cardinality of an independent

set of vertices in G. The independence ratio of G is α(G)
|V (G)| and it is denoted by

ι(G). In 1965, Vizing [10] conjectured that the independence ratio of edge-chromatic
critical graphs is at most 1

2
.
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Conjecture 1.2 ([10]). If G ∈ C, then ι(G) ≤ 1
2
.

Clearly, Conjecture 1.2 can be reformulated as follows.

Conjecture 1.3 ([10]). For all k ≥ 2, if G ∈ C(k), then ι(G) ≤ 1
2
.

Since the 2-critical graphs are the odd circuits, it follows that Conjecture 1.3 is
true for k = 2. It is an open question whether it is true for k ≥ 3. It is easy to see,
that the bound 1/2 cannot be replaced by a smaller one. The first results on this
topic were obtained by Brinkmann et al. [1] who proved that the independence ratio
of critical graphs is smaller than 2

3
. In [3] Conjecture 1.2 is verified for overfull graphs,

i.e. graphs G with |E(G)| > ∆(G)b |V (G)|
2
c. In 2006, Luo and Zhao [4] proved that

the conjecture is true for critical graphs whose order is at most twice the maximum
degree of the graph. Later some improvements were achieved for specific values of
∆, see [4, 5, 6, 8, 9]. In 2011, Woodall [12] completed a major step in this research
by proving that the independence ratio of critical graphs is bounded by 3

5
.

The main result of this article is that for each ε > 0, Conjecture 1.2 is equivalent
to its restriction on a specific set Cε of critical graphs and ι(G) < 1

2
+ ε for each

G ∈ Cε. For the proof of this statement we will deduce similar results for C(k), for
each k ≥ 3.

2 k-critical graphs and Meredith extension

This section first studies k-critical graphs and Conjecture 1.3. One of the funda-
mental statements in the theory of edge-coloring of graphs is Vizing’s Adjacency
Lemma.

Lemma 2.1 (Vizing’s Adjacency Lemma [11]). Let G be a critical graph. If xy ∈
E(G), then at least ∆(G)− dG(y) + 1 vertices in NG(x) \ {y} have degree ∆(G).

Lemma 2.1 implies that if v is a vertex of a k-critical graph, then it is adjacent
to at least two vertices of degree k.

Definition 2.2. For k ≥ 2 and t ≥ 0 let C(k, t) be the set of k-critical graphs G with
the following properties:

1. δ(G) ≥ k − 1.

2. every v ∈ Vk−1(G) is the initial vertex of k − 1 distinguished paths pt1(v), . . . ,
ptk−1(v) such that for all i, j ∈ {1, . . . , k − 1}:

(a) V (pti(v)) ∩ Vk−1(G) = {v},
(b) |V (pti(v))| ≥ 2t(k − 1) + 2,

(c) if i 6= j, then V (pti(v)) ∩ V (ptj(v)) = {v}, and
(d) if w ∈ Vk−1(G) and w 6= v, then V (pti(v)) ∩ V (ptj(w)) = ∅.
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For k ≥ 0 and t ≥ 0, let ι(k) = sup{ι(G) : G ∈ C(k)} and ι(k, t) = sup{ι(G) :
G ∈ C(k, t)}. We will prove that for any k ≥ 3 and any t ≥ 0, Conjecture 1.3 for
C(k) is equivalent to its restriction on C(k, t). We prove upper bounds for ι(k, t)
and limt→∞ ι(k, t) = 1

2
. These statements are used to deduce the main result of this

article.
The 2-critical graphs are the odd circuits and for any k ≥ 2, there exists a

k-critical graph G with δ(G) = 2. Hence, the following lemma is an obvious conse-
quence of Lemma 2.1 and Definition 2.2.

Proposition 2.3. 1. C(3, 0) = C(3) and C(2, t) = C(2) for all t ≥ 0.

2. If k ≥ 2 and t ≥ 0, then C(k, t+ 1) ⊆ C(k, t) ⊆ C(k).

The following operation on graphs was first studied by Meredith [7].

Definition 2.4. Let k ≥ 2 and G be a graph with ∆(G) = k, v ∈ V (G) with
dG(v) = d, and let v1, . . . , vd be the neighbors of v. Let u1, . . . , uk be the vertices
of degree k − 1 in a complete bipartite graph Kk,k−1. The graph H is a Meredith
extension of G (applied on v) if it is obtained from G−v and Kk,k−1 by adding edges
viui for each i ∈ {1, ..., d}.

The following theorem is Theorem 2.1 in [2].

Theorem 2.5 ([2]). Let k ≥ 2, G be a graph with ∆(G) = k and M be a Meredith
extension of G. Then G is k-critical if and only if M is k-critical.

Lemma 2.6. Let k ≥ 2, G be a graph with ∆(G) = k and H be a Meredith extension
of G. Then ι(G) ≤ 1

2
if and only if ι(H) ≤ 1

2
.

Proof. We prove ι(G) > 1
2

if and only if ι(H) > 1
2
.

Let v ∈ V (G) and H be the Meredith extension of G applied on v. We have
|V (H)| = |V (G)|+ 2k − 2 and hence |V (H)| and |V (G)| have the same parity.

(⇒) Let IG be an independent set of G with more than 1
2
|V (G)| vertices.

If v ∈ IG, then all neighbors of v are not in IG. Hence, H has an independent set
IH of cardinality |IG| − 1 + k. Therefore, |IH | = |IG|+ k− 1 > 1

2
(|V (G)|+ 2k− 2) =

1
2
|V (H)|.

If v 6∈ IG, then H has an independent set IH of cardinality |IG|+(k−1), e.g. IG∪
Vk(Kk,k−1). We deduce |IH | > 1

2
|V (H)| as above.

(⇐) Let IH be an independent set of H with |IH | > 1
2
|V (H)|. We can assume

that IH is maximum. Let Kk,k−1 be the subgraph of H which was added to G − v
by applying Meredith extension on v.

If there is a vertex w ∈ Vk−1(Kk,k−1) which has a neighbor in (V (H)−V (Kk,k−1))∩
IH , then |V (Kk,k−1) ∩ IH | = k − 1. Hence, if we contract Kk,k−1 to a single vertex v
(to obtain G), then IG = IH − V (Kk,k−1) is an independent set in G which contains
|IH |− (k−1) vertices. Hence |IG| = |IH |− (k−1) > 1

2
(|V (H)|− (2k−2)) = 1

2
|V (G)|.

If for every vertex w ∈ Vk−1(Kk,k−1) all neighbors in H − V (Kk,k−1) are not in
IH , then |V (Kk,k−1) ∩ IH | = k. If we contract Kk,k−1 to a single vertex v, then
IG = (IH − V (Kk,k−1)) ∪ {v} is an independent set in G. As above, we deduce that
|IG| > 1

2
|V (G)|.
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Lemma 2.7. For every k ≥ 2 and every t ≥ 0: Every k-critical graph G can be
extended to a graph H ∈ C(k, t) by a sequence of Meredith extensions.

Proof. For k = 2 there is nothing to prove. Let k ≥ 3. We first show that G can
be extended to a graph of C(k, 0). If G ∈ C(k, 0), then we are done. Assume that
G ∈ C(k) \ C(k, 0). We proceed in three steps. For an example see Figures 1, 2 and
3 (without step 2).

(1) Repeated application of Meredith extension on all vertices of degree smaller
than k − 1, yields a graph G1 with dG1(v) ∈ {k − 1, k}, for all v ∈ V (G1).

(2) Repeated application of Meredith extension on vertices of degree k− 1 which
are adjacent to another vertex of degree k − 1, yields a graph G2, with dG2(v) ∈
{k − 1, k}, for all v ∈ V (G2), and Vk−1(G2) is an independent set.

(3) Repeated application of Meredith extension on vertices of degree k− 1 which
have a common neighbor yields a graph G3 with dG3(v) ∈ {k− 1, k}, Vk−1(G3) is an
independent set, and NG3(u) ∩NG3(w) = ∅ for any two vertices u,w ∈ Vk−1(G3).

Let H = G3. By Theorem 2.5, H is k-critical and it satisfies the conditions of
Definition 2.2 for t = 0. Hence, H ∈ C(k, 0).

Next we show that every graph G′ of C(k, s) (s ≥ 0) can be extended to a graph H ′

of C(k, s+1) by a sequence of Meredith extensions. Let v ∈ Vk−1(G′) and psj(v) be one
of the k− 1 distinguished paths which have v as initial vertex. Let z be the terminal
vertex of psj(v). Apply Meredith extension on z and extend psj(v)−z to a path ps+1

j (v)
that contains all vertices of the Kk,k−1 which is used in the Meredith extension. Then
|V (ps+1

j (v))| = |V (psj(v))|+ 2k− 2 ≥ 2s(k− 1) + 2 + 2k− 2 = 2(s+ 1)(k− 1) + 2. If
we repeat this procedure on all terminal vertices of the distinguished paths of G′ we
obtain a graph H ′ ∈ C(k, s+ 1).

Figure 1: Graph H ∈ C(4)

The notation in Figures 1, 2 and 3 are used in the proof of Theorem 2.11. For
i ∈ {1, 2, 3}, the paths p0i (v) and p0i (w) are indicated by the bold edges. The following
lemma is obvious.

Lemma 2.8. Let k ≥ 2, t ≥ 0 and G ∈ C(k, t). If H is a Meredith extension of G,
then H ∈ C(k, t).

Theorem 2.9. For every k ≥ 2 and every t ≥ 0: ι(k) ≤ 1
2
if and only if ι(k, t) ≤ 1

2
.

Proof. By Proposition 2.3, C(k, t) ⊆ C(k) for all k ≥ 2 and t ≥ 0. Hence, if ι(k) ≤ 1
2

then ι(k, t) ≤ 1
2
.
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Figure 2: Graph H ′ ∈ C(4) (Step 1)

Figure 3: Graph H0 ∈ C(4, 0) (Step 3)

Let G ∈ C(k). If there is t′ ≥ t such that G ∈ C(k, t′), then we are done, since
C(k, t′) ⊆ C(k, t) by Proposition 2.3. If G 6∈ C(k, t′) for all t′ ≥ t, then it follows with
Lemma 2.7 that there exists H ∈ C(k, t) which is obtained from G by a sequence of
Meredith extensions. By our assumption, ι(H) ≤ 1

2
and hence, ι(G) ≤ 1

2
by Lemma

2.6. Therefore, ι(k) ≤ 1
2
.

Theorem 2.10. Let k ≥ 2, t ≥ 0 and ϕ(k, t) = t(k − 1)2 + k − 1. If G ∈ C(k, t),
then ι(G) < 1

2
+ 1

4kϕ(k,t)+2
.

Proof. If G ∈ C(2), then ι(G) < 1
2
. Let G ∈ C(k, t) (k ≥ 3, t ≥ 0) and I be an

independent set of G and Y = V (G) − I. Let Ik = I ∩ Vk(G), Ik−1 = I ∩ Vk−1(G),
Yk = Y ∩ Vk(G), Yk−1 = Y ∩ Vk−1(G).

Clearly, I contains vertices of Vk−1(G). Let v be such a vertex. By definition, there
are k− 1 distinguished paths pt1(v), . . . , ptk−1(v) such that for all i, j ∈ {1, . . . , k− 1}

(a) V (pti(v)) ∩ Vk−1(G) = {v},

(b) |V (pti(v))| ≥ 2t(k − 1) + 2,
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(c) if i 6= j, then V (pti(v)) ∩ V (ptj(v)) = {v}, and

(d) if w ∈ Vk−1(G) and w 6= v, then V (pti(v)) ∩ V (ptj(w)) = ∅.

Consequently, |Y ∩ V (pti(v))| ≥ t(k − 1) + 1 for each i ∈ {1, . . . , k − 1}, and
therefore ϕ(k, t)|Ik−1| ≤ |Y |. Let mY = |E(G[Y ])|. Since G is a critical graph it
follows that mY > 0. With |Ik−1| ≤ 1

ϕ(k,t)
|Y | we deduce

k|I| − 1

ϕ(k, t)
|Y | ≤ k|I| − |Ik−1| ≤ k|Y | − 2mY < k|Y |.

Since Y = V (G)− I, it follows that

|I| <
k + 1

ϕ(k,t)

2k + 1
ϕ(k,t)

|V (G)|.

Therefore, ι(G) < 1
2

+ 1
4kϕ(k,t)+2

We now deduce our main results.

Theorem 2.11. For each k ≥ 2: limt→∞ ι(k, t) = 1
2
.

Proof. The statement is trivial for k = 2. We will first prove the following claim.

Claim 2.11.1. For all k ≥ 3 and t ≥ 0: ι(k, t) ≥ 1
2
.

We show that for every ε > 0 and all k ≥ 3 and t ≥ 0 the set C(k, t) contains a
graph G with i(G) > 1

2
− ε.

Let H be the graph which is obtained from the complete bipartite graph Kk,k

by subdividing one edge. It is easy to see that H is k-critical. Let H ′ be the graph
obtained from H by applying Meredith extension on the divalent vertex of H and
let H0 be the graph obtained from H ′ by applying Meredith extension on all vertices
of Vk−1(H

′). Hence, H0 ∈ C(k, 0). To obtain a graph Ht of C(k, t) (t ≥ 1) apply
Meredith extension on the terminal vertices of the distinguished paths of Ht−1 as
described in the proof of Lemma 2.7. Starting with Ht = H0

t , construct an infinite
sequence H0

t , H
1
t . . . of graphs by Meredith extension. By Lemma 2.8, these graphs

are in C(k, t).
If H i

t is obtained from H by applying Meredith extension ni times, then |V (H i
t)| =

2(k + nik − ni) + 1 and it has an independent set of k + nik − ni vertices. Hence,
α(H) ≥ 1

2
− 1

2(2k+2ni(k−1)+1)
. Choose ni such that 2k + 2ni(k − 1) + 1 > 1

2ε
and the

claim is proved.
By Theorem 2.10, we have ι(k, t) ≤ 1

2
+ 1

4kϕ(k,t)+2
, where ϕ(k, t) = t(k−1)2+k−1.

Since ϕ(k, t+1) > ϕ(k, t) it follows with the Claim 2.11.1 that limt→∞ ι(k, t) = 1
2
.

Theorem 2.12. For every ε > 0, there is a set Cε of critical graphs such that

1. ι(G) ≤ 1
2
for every G ∈ C if and only if ι(G) ≤ 1

2
for every G ∈ Cε.

2. If G ∈ Cε, then ι(G) < 1
2

+ ε.
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Proof. Let ε > 0 be given. We first construct Cε. Let ϕ(k, t) = t(k− 1)2 + k− 1 and
for k = 3 choose t3 ≥ 0 such that 1

4kϕ(k,t3)+2
= 1

12ϕ(3,t3)+2
< ε. Let Cε =

⋃∞
k=2 C(k, t3).

We have C =
⋃∞
k=2 C(k). For k ≥ 2 it follows with Theorem 2.9 that ι(G) ≤ 1

2
for

every G ∈ C(k) if and only if ι(G) ≤ 1
2

for every G ∈ C(k, t3). Therefore, ι(G) ≤ 1
2

for every G ∈ C if and only if ι(G) ≤ 1
2

for every G ∈ Cε.
It remains to prove statement 2. Let G ∈ Cε. If G ∈ C(2), then ι(G) < 1

2
.

Let k ≥ 3 and G ∈ C(k, t3). We have ϕ(k + 1, t) > ϕ(k, t) and thus, 1
4kϕ(k,t3)+2

≤
1

12ϕ(3,t3)+2
< ε. It follows with Theorem 2.10 that ι(G) < 1

2
+ 1

4kϕ(k,t3)+2
< 1

2
+ ε.

Therefore, if G ∈ Cε, then ι(G) < 1
2

+ ε.

Concluding remark

Let s ∈ {1, . . . , k − 1}. The main results (Theorems 2.11 and 2.12) can also be
deduced if we ask for the existence of s distinguished paths in Definition 2.2, say
to define Cs(k, t). If we change ϕ(k, t) in Theorem 2.10 to ϕs(k, t) = st(k − 1) + s,
then we similarly can deduce that if G ∈ Cs(k, t), then ι(G) < 1

2
+ 1

4kϕs(k,t)+2
. The

two natural choices for s are 1 and k − 1. We took k − 1 since then the structural
properties of 3-critical graphs which are implied by Vizing’s Adjacency Lemma are
generalized to graphs of C(k, 0).
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