Approximating Vizing's independence number conjecture

ECKHARD STEFFEN

Institute of Mathematics Paderborn University Warburger Str. 100, 33098 Paderborn Germany es@upb.de

Abstract

In 1965, Vizing conjectured that the independence ratio of edge-chromatic critical graphs is at most $\frac{1}{2}$. We prove that for every $\epsilon > 0$ this conjecture is equivalent to its restriction on a specific set of edge-chromatic critical graphs with independence ratio smaller than $\frac{1}{2} + \epsilon$.

1 Introduction

All graphs in this article are simple. If G is a graph, then V(G) denotes its vertex set and E(G) denotes its edge set. If $e \in E(G)$ has end vertices v and w, then we also use the term vw to denote e. If v is a vertex of G, then $N_G(v)$ denotes the set of its neighbors, and $|N_G(v)|$ is the degree of v, which is denoted by $d_G(v)$. The maximum degree and the minimum degree of a vertex of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. For $i \in \{1, \ldots, \Delta(G)\}$ let $V_i(G) = \{v : d_G(v) = i\}$.

A k-edge-coloring of G is a function $\phi : E(G) \longrightarrow \{1, \ldots, k\}$ such that $\phi(e) \neq \phi(f)$ for adjacent edges e and f. The chromatic index $\chi'(G)$ is the smallest number k such that there is k-coloring of G. In 1965 Vizing proved the fundamental result on the chromatic index of simple graphs.

Theorem 1.1 ([11]). If G is a graph, then $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$.

Theorem 1.1 leads to a natural classification of simple graphs into two classes, namely Class 1 and Class 2 graphs depending upon whether their edge chromatic number is Δ and Δ +1. For $k \geq 2$, a graph G is k-critical if $\Delta(G) = k, \chi'(G) = k+1$ and $\chi'(G - e) = k$ for every $e \in E(G)$. Let $\mathcal{C}(k)$ be the set of k-critical graphs, and $\mathcal{C} = \bigcup_{k=2}^{\infty} \mathcal{C}(k)$ be the set of critical graphs.

If G is a graph, then $\alpha(G)$ denotes the maximum cardinality of an independent set of vertices in G. The independence ratio of G is $\frac{\alpha(G)}{|V(G)|}$ and it is denoted by $\iota(G)$. In 1965, Vizing [10] conjectured that the independence ratio of edge-chromatic critical graphs is at most $\frac{1}{2}$. Conjecture 1.2 ([10]). If $G \in \mathcal{C}$, then $\iota(G) \leq \frac{1}{2}$.

Clearly, Conjecture 1.2 can be reformulated as follows.

Conjecture 1.3 ([10]). For all $k \ge 2$, if $G \in \mathcal{C}(k)$, then $\iota(G) \le \frac{1}{2}$.

Since the 2-critical graphs are the odd circuits, it follows that Conjecture 1.3 is true for k = 2. It is an open question whether it is true for $k \ge 3$. It is easy to see, that the bound 1/2 cannot be replaced by a smaller one. The first results on this topic were obtained by Brinkmann et al. [1] who proved that the independence ratio of critical graphs is smaller than $\frac{2}{3}$. In [3] Conjecture 1.2 is verified for overfull graphs, i.e. graphs G with $|E(G)| > \Delta(G) \lfloor \frac{|V(G)|}{2} \rfloor$. In 2006, Luo and Zhao [4] proved that the conjecture is true for critical graphs whose order is at most twice the maximum degree of the graph. Later some improvements were achieved for specific values of Δ , see [4, 5, 6, 8, 9]. In 2011, Woodall [12] completed a major step in this research by proving that the independence ratio of critical graphs is bounded by $\frac{3}{5}$.

The main result of this article is that for each $\epsilon > 0$, Conjecture 1.2 is equivalent to its restriction on a specific set C_{ϵ} of critical graphs and $\iota(G) < \frac{1}{2} + \epsilon$ for each $G \in C_{\epsilon}$. For the proof of this statement we will deduce similar results for C(k), for each $k \geq 3$.

2 k-critical graphs and Meredith extension

This section first studies k-critical graphs and Conjecture 1.3. One of the fundamental statements in the theory of edge-coloring of graphs is Vizing's Adjacency Lemma.

Lemma 2.1 (Vizing's Adjacency Lemma [11]). Let G be a critical graph. If $xy \in E(G)$, then at least $\Delta(G) - d_G(y) + 1$ vertices in $N_G(x) \setminus \{y\}$ have degree $\Delta(G)$.

Lemma 2.1 implies that if v is a vertex of a k-critical graph, then it is adjacent to at least two vertices of degree k.

Definition 2.2. For $k \ge 2$ and $t \ge 0$ let C(k, t) be the set of k-critical graphs G with the following properties:

- 1. $\delta(G) \ge k 1$.
- 2. every $v \in V_{k-1}(G)$ is the initial vertex of k-1 distinguished paths $p_1^t(v), \ldots, p_{k-1}^t(v)$ such that for all $i, j \in \{1, \ldots, k-1\}$:
 - (a) $V(p_i^t(v)) \cap V_{k-1}(G) = \{v\},\$
 - (b) $|V(p_i^t(v))| \ge 2t(k-1)+2$,
 - (c) if $i \neq j$, then $V(p_i^t(v)) \cap V(p_i^t(v)) = \{v\}$, and
 - (d) if $w \in V_{k-1}(G)$ and $w \neq v$, then $V(p_i^t(v)) \cap V(p_i^t(w)) = \emptyset$.

For $k \ge 0$ and $t \ge 0$, let $\iota(k) = \sup\{\iota(G) : G \in \mathcal{C}(k)\}$ and $\iota(k,t) = \sup\{\iota(G) : G \in \mathcal{C}(k,t)\}$. We will prove that for any $k \ge 3$ and any $t \ge 0$, Conjecture 1.3 for $\mathcal{C}(k)$ is equivalent to its restriction on $\mathcal{C}(k,t)$. We prove upper bounds for $\iota(k,t)$ and $\lim_{t\to\infty} \iota(k,t) = \frac{1}{2}$. These statements are used to deduce the main result of this article.

The 2-critical graphs are the odd circuits and for any $k \ge 2$, there exists a k-critical graph G with $\delta(G) = 2$. Hence, the following lemma is an obvious consequence of Lemma 2.1 and Definition 2.2.

Proposition 2.3. 1. $\mathcal{C}(3,0) = \mathcal{C}(3)$ and $\mathcal{C}(2,t) = \mathcal{C}(2)$ for all $t \ge 0$.

2. If $k \geq 2$ and $t \geq 0$, then $\mathcal{C}(k, t+1) \subseteq \mathcal{C}(k, t) \subseteq \mathcal{C}(k)$.

The following operation on graphs was first studied by Meredith [7].

Definition 2.4. Let $k \geq 2$ and G be a graph with $\Delta(G) = k, v \in V(G)$ with $d_G(v) = d$, and let v_1, \ldots, v_d be the neighbors of v. Let u_1, \ldots, u_k be the vertices of degree k - 1 in a complete bipartite graph $K_{k,k-1}$. The graph H is a Meredith extension of G (applied on v) if it is obtained from G - v and $K_{k,k-1}$ by adding edges $v_i u_i$ for each $i \in \{1, ..., d\}$.

The following theorem is Theorem 2.1 in [2].

Theorem 2.5 ([2]). Let $k \ge 2$, G be a graph with $\Delta(G) = k$ and M be a Meredith extension of G. Then G is k-critical if and only if M is k-critical.

Lemma 2.6. Let $k \ge 2$, G be a graph with $\Delta(G) = k$ and H be a Meredith extension of G. Then $\iota(G) \le \frac{1}{2}$ if and only if $\iota(H) \le \frac{1}{2}$.

Proof. We prove $\iota(G) > \frac{1}{2}$ if and only if $\iota(H) > \frac{1}{2}$.

Let $v \in V(G)$ and H be the Meredith extension of G applied on v. We have |V(H)| = |V(G)| + 2k - 2 and hence |V(H)| and |V(G)| have the same parity.

 (\Rightarrow) Let I_G be an independent set of G with more than $\frac{1}{2}|V(G)|$ vertices.

If $v \in I_G$, then all neighbors of v are not in I_G . Hence, H has an independent set I_H of cardinality $|I_G| - 1 + k$. Therefore, $|I_H| = |I_G| + k - 1 > \frac{1}{2}(|V(G)| + 2k - 2) = \frac{1}{2}|V(H)|$.

If $v \notin I_G$, then *H* has an independent set I_H of cardinality $|I_G| + (k-1)$, e.g. $I_G \cup V_k(K_{k,k-1})$. We deduce $|I_H| > \frac{1}{2}|V(H)|$ as above.

(\Leftarrow) Let I_H be an independent set of H with $|I_H| > \frac{1}{2}|V(H)|$. We can assume that I_H is maximum. Let $K_{k,k-1}$ be the subgraph of H which was added to G - v by applying Meredith extension on v.

If there is a vertex $w \in V_{k-1}(K_{k,k-1})$ which has a neighbor in $(V(H)-V(K_{k,k-1}))\cap I_H$, then $|V(K_{k,k-1})\cap I_H| = k-1$. Hence, if we contract $K_{k,k-1}$ to a single vertex v (to obtain G), then $I_G = I_H - V(K_{k,k-1})$ is an independent set in G which contains $|I_H| - (k-1)$ vertices. Hence $|I_G| = |I_H| - (k-1) > \frac{1}{2}(|V(H)| - (2k-2)) = \frac{1}{2}|V(G)|$.

If for every vertex $w \in V_{k-1}(K_{k,k-1})$ all neighbors in $H - V(K_{k,k-1})$ are not in I_H , then $|V(K_{k,k-1}) \cap I_H| = k$. If we contract $K_{k,k-1}$ to a single vertex v, then $I_G = (I_H - V(K_{k,k-1})) \cup \{v\}$ is an independent set in G. As above, we deduce that $|I_G| > \frac{1}{2}|V(G)|$.

Lemma 2.7. For every $k \ge 2$ and every $t \ge 0$: Every k-critical graph G can be extended to a graph $H \in C(k,t)$ by a sequence of Meredith extensions.

Proof. For k = 2 there is nothing to prove. Let $k \ge 3$. We first show that G can be extended to a graph of $\mathcal{C}(k, 0)$. If $G \in \mathcal{C}(k, 0)$, then we are done. Assume that $G \in \mathcal{C}(k) \setminus \mathcal{C}(k, 0)$. We proceed in three steps. For an example see Figures 1, 2 and 3 (without step 2).

(1) Repeated application of Meredith extension on all vertices of degree smaller than k-1, yields a graph G_1 with $d_{G_1}(v) \in \{k-1,k\}$, for all $v \in V(G_1)$.

(2) Repeated application of Meredith extension on vertices of degree k-1 which are adjacent to another vertex of degree k-1, yields a graph G_2 , with $d_{G_2}(v) \in$ $\{k-1,k\}$, for all $v \in V(G_2)$, and $V_{k-1}(G_2)$ is an independent set.

(3) Repeated application of Meredith extension on vertices of degree k-1 which have a common neighbor yields a graph G_3 with $d_{G_3}(v) \in \{k-1,k\}, V_{k-1}(G_3)$ is an independent set, and $N_{G_3}(u) \cap N_{G_3}(w) = \emptyset$ for any two vertices $u, w \in V_{k-1}(G_3)$.

Let $H = G_3$. By Theorem 2.5, H is k-critical and it satisfies the conditions of Definition 2.2 for t = 0. Hence, $H \in \mathcal{C}(k, 0)$.

Next we show that every graph G' of $\mathcal{C}(k, s)$ $(s \ge 0)$ can be extended to a graph H'of $\mathcal{C}(k, s+1)$ by a sequence of Meredith extensions. Let $v \in V_{k-1}(G')$ and $p_j^s(v)$ be one of the k-1 distinguished paths which have v as initial vertex. Let z be the terminal vertex of $p_j^s(v)$. Apply Meredith extension on z and extend $p_j^s(v) - z$ to a path $p_j^{s+1}(v)$ that contains all vertices of the $K_{k,k-1}$ which is used in the Meredith extension. Then $|V(p_j^{s+1}(v))| = |V(p_j^s(v))| + 2k - 2 \ge 2s(k-1) + 2 + 2k - 2 = 2(s+1)(k-1) + 2$. If we repeat this procedure on all terminal vertices of the distinguished paths of G' we obtain a graph $H' \in \mathcal{C}(k, s+1)$.

Figure 1: Graph $H \in \mathcal{C}(4)$

The notation in Figures 1, 2 and 3 are used in the proof of Theorem 2.11. For $i \in \{1, 2, 3\}$, the paths $p_i^0(v)$ and $p_i^0(w)$ are indicated by the bold edges. The following lemma is obvious.

Lemma 2.8. Let $k \ge 2$, $t \ge 0$ and $G \in C(k, t)$. If H is a Meredith extension of G, then $H \in C(k, t)$.

Theorem 2.9. For every $k \ge 2$ and every $t \ge 0$: $\iota(k) \le \frac{1}{2}$ if and only if $\iota(k, t) \le \frac{1}{2}$.

Proof. By Proposition 2.3, $C(k,t) \subseteq C(k)$ for all $k \ge 2$ and $t \ge 0$. Hence, if $\iota(k) \le \frac{1}{2}$ then $\iota(k,t) \le \frac{1}{2}$.

Figure 2: Graph $H' \in \mathcal{C}(4)$ (Step 1)

Figure 3: Graph $H_0 \in \mathcal{C}(4,0)$ (Step 3)

Let $G \in \mathcal{C}(k)$. If there is $t' \geq t$ such that $G \in \mathcal{C}(k, t')$, then we are done, since $\mathcal{C}(k, t') \subseteq \mathcal{C}(k, t)$ by Proposition 2.3. If $G \notin \mathcal{C}(k, t')$ for all $t' \geq t$, then it follows with Lemma 2.7 that there exists $H \in \mathcal{C}(k, t)$ which is obtained from G by a sequence of Meredith extensions. By our assumption, $\iota(H) \leq \frac{1}{2}$ and hence, $\iota(G) \leq \frac{1}{2}$ by Lemma 2.6. Therefore, $\iota(k) \leq \frac{1}{2}$.

Theorem 2.10. Let $k \ge 2$, $t \ge 0$ and $\varphi(k,t) = t(k-1)^2 + k - 1$. If $G \in \mathcal{C}(k,t)$, then $\iota(G) < \frac{1}{2} + \frac{1}{4k\varphi(k,t)+2}$.

Proof. If $G \in \mathcal{C}(2)$, then $\iota(G) < \frac{1}{2}$. Let $G \in \mathcal{C}(k,t)$ $(k \geq 3, t \geq 0)$ and I be an independent set of G and Y = V(G) - I. Let $I_k = I \cap V_k(G)$, $I_{k-1} = I \cap V_{k-1}(G)$, $Y_k = Y \cap V_k(G)$, $Y_{k-1} = Y \cap V_{k-1}(G)$.

Clearly, *I* contains vertices of $V_{k-1}(G)$. Let *v* be such a vertex. By definition, there are k-1 distinguished paths $p_1^t(v), \ldots, p_{k-1}^t(v)$ such that for all $i, j \in \{1, \ldots, k-1\}$

- (a) $V(p_i^t(v)) \cap V_{k-1}(G) = \{v\},\$
- (b) $|V(p_i^t(v))| \ge 2t(k-1) + 2$,

- (c) if $i \neq j$, then $V(p_i^t(v)) \cap V(p_i^t(v)) = \{v\}$, and
- (d) if $w \in V_{k-1}(G)$ and $w \neq v$, then $V(p_i^t(v)) \cap V(p_j^t(w)) = \emptyset$.

Consequently, $|Y \cap V(p_i^t(v))| \ge t(k-1) + 1$ for each $i \in \{1, \ldots, k-1\}$, and therefore $\varphi(k,t)|I_{k-1}| \le |Y|$. Let $m_Y = |E(G[Y])|$. Since G is a critical graph it follows that $m_Y > 0$. With $|I_{k-1}| \le \frac{1}{\varphi(k,t)}|Y|$ we deduce

$$k|I| - \frac{1}{\varphi(k,t)}|Y| \le k|I| - |I_{k-1}| \le k|Y| - 2m_Y < k|Y|.$$

Since Y = V(G) - I, it follows that

$$|I| < \frac{k + \frac{1}{\varphi(k,t)}}{2k + \frac{1}{\varphi(k,t)}} |V(G)|.$$

Therefore, $\iota(G) < \frac{1}{2} + \frac{1}{4k\varphi(k,t)+2}$

We now deduce our main results.

Theorem 2.11. For each $k \ge 2$: $\lim_{t\to\infty} \iota(k,t) = \frac{1}{2}$.

Proof. The statement is trivial for k = 2. We will first prove the following claim.

Claim 2.11.1. For all $k \ge 3$ and $t \ge 0$: $\iota(k, t) \ge \frac{1}{2}$.

We show that for every $\epsilon > 0$ and all $k \ge 3$ and $t \ge 0$ the set $\mathcal{C}(k, t)$ contains a graph G with $i(G) > \frac{1}{2} - \epsilon$.

Let H be the graph which is obtained from the complete bipartite graph $K_{k,k}$ by subdividing one edge. It is easy to see that H is k-critical. Let H' be the graph obtained from H by applying Meredith extension on the divalent vertex of H and let H_0 be the graph obtained from H' by applying Meredith extension on all vertices of $V_{k-1}(H')$. Hence, $H_0 \in \mathcal{C}(k,0)$. To obtain a graph H_t of $\mathcal{C}(k,t)$ $(t \geq 1)$ apply Meredith extension on the terminal vertices of the distinguished paths of H_{t-1} as described in the proof of Lemma 2.7. Starting with $H_t = H_t^0$, construct an infinite sequence $H_t^0, H_t^1 \dots$ of graphs by Meredith extension. By Lemma 2.8, these graphs are in $\mathcal{C}(k, t)$.

If H_t^i is obtained from H by applying Meredith extension n_i times, then $|V(H_t^i)| = 2(k + n_ik - n_i) + 1$ and it has an independent set of $k + n_ik - n_i$ vertices. Hence, $\alpha(H) \geq \frac{1}{2} - \frac{1}{2(2k+2n_i(k-1)+1)}$. Choose n_i such that $2k + 2n_i(k-1) + 1 > \frac{1}{2\epsilon}$ and the claim is proved.

By Theorem 2.10, we have $\iota(k,t) \leq \frac{1}{2} + \frac{1}{4k\varphi(k,t)+2}$, where $\varphi(k,t) = t(k-1)^2 + k - 1$. Since $\varphi(k,t+1) > \varphi(k,t)$ it follows with the Claim 2.11.1 that $\lim_{t\to\infty} \iota(k,t) = \frac{1}{2}$. \Box

Theorem 2.12. For every $\epsilon > 0$, there is a set C_{ϵ} of critical graphs such that

- 1. $\iota(G) \leq \frac{1}{2}$ for every $G \in \mathcal{C}$ if and only if $\iota(G) \leq \frac{1}{2}$ for every $G \in \mathcal{C}_{\epsilon}$.
- 2. If $G \in \mathcal{C}_{\epsilon}$, then $\iota(G) < \frac{1}{2} + \epsilon$.

Proof. Let $\epsilon > 0$ be given. We first construct C_{ϵ} . Let $\varphi(k, t) = t(k-1)^2 + k - 1$ and for k = 3 choose $t_3 \ge 0$ such that $\frac{1}{4k\varphi(k,t_3)+2} = \frac{1}{12\varphi(3,t_3)+2} < \epsilon$. Let $C_{\epsilon} = \bigcup_{k=2}^{\infty} C(k,t_3)$.

We have $\mathcal{C} = \bigcup_{k=2}^{\infty} \mathcal{C}(k)$. For $k \geq 2$ it follows with Theorem 2.9 that $\iota(G) \leq \frac{1}{2}$ for every $G \in \mathcal{C}(k)$ if and only if $\iota(G) \leq \frac{1}{2}$ for every $G \in \mathcal{C}(k, t_3)$. Therefore, $\iota(G) \leq \frac{1}{2}$ for every $G \in \mathcal{C}$ if and only if $\iota(G) \leq \frac{1}{2}$ for every $G \in \mathcal{C}_{\epsilon}$.

It remains to prove statement 2. Let $G \in \mathcal{C}_{\epsilon}$. If $G \in \mathcal{C}(2)$, then $\iota(G) < \frac{1}{2}$. Let $k \geq 3$ and $G \in \mathcal{C}(k, t_3)$. We have $\varphi(k+1, t) > \varphi(k, t)$ and thus, $\frac{1}{4k\varphi(k, t_3)+2} \leq \frac{1}{12\varphi(3, t_3)+2} < \epsilon$. It follows with Theorem 2.10 that $\iota(G) < \frac{1}{2} + \frac{1}{4k\varphi(k, t_3)+2} < \frac{1}{2} + \epsilon$. Therefore, if $G \in \mathcal{C}_{\epsilon}$, then $\iota(G) < \frac{1}{2} + \epsilon$.

Concluding remark

Let $s \in \{1, \ldots, k-1\}$. The main results (Theorems 2.11 and 2.12) can also be deduced if we ask for the existence of s distinguished paths in Definition 2.2, say to define $C_s(k,t)$. If we change $\varphi(k,t)$ in Theorem 2.10 to $\varphi_s(k,t) = st(k-1) + s$, then we similarly can deduce that if $G \in C_s(k,t)$, then $\iota(G) < \frac{1}{2} + \frac{1}{4k\varphi_s(k,t)+2}$. The two natural choices for s are 1 and k-1. We took k-1 since then the structural properties of 3-critical graphs which are implied by Vizing's Adjacency Lemma are generalized to graphs of C(k, 0).

References

- G. BRINKMANN, S. A. CHOUDUM, S. GRÜNEWALD AND E. STEFFEN, Bounds for the independence number of critical graphs, *Bull. London Math. Soc.* 32 (2) (2000), 137–140.
- [2] S. GRÜNEWALD AND E. STEFFEN, Chromatic-index-critical graphs of even order, J. Graph Theory 30 (1) (1999), 27–36.
- [3] S. GRÜNEWALD AND E. STEFFEN, Independent sets and 2-factors in edgechromatic-critical graphs, J. Graph Theory 45 (2) (2004), 113–118.
- [4] R. LUO AND Y. ZHAO, A note on Vizing's independence number conjecture of edge chromatic critical graphs, *Discrete Math.* 306 (15) (2006), 1788–1790.
- [5] R. LUO AND Y. ZHAO, An application of Vizing and Vizing-like adjacency lemmas to Vizing's independence number conjecture of edge chromatic critical graphs, *Discrete Math.* 309 (9) (2009), 2925–2929.
- [6] R. LUO AND Y. ZHAO, A new upper bound for the independence number of edge chromatic critical graphs, J. Graph Theory 68 (3) (2011), 202–212.
- [7] G. H. J. MEREDITH, Regular n-valent n-connected nonHamiltonian non-nedge-colorable graphs, J. Combin. Theory Ser. B 14 (1973), 55–60.

- [8] L. MIAO, On the independence number of edge chromatic critical graphs, Ars Combin. 98 (2011), 471–481.
- [9] L. M. QI, L. Y. MIAO AND W. Q. LI, The independence number of edge chromatic critical graphs, J. East China Norm. Univ. Natur. Sci. Ed. 1 (1) (2015), 114–119.
- [10] V. G. VIZING, The chromatic class of a multigraph, *Kibernetika (Kiev)* 1965 (3) (1965), 29–39. (English translation in: Cybernetics and Systems Analysis 1 (Vol. 3) 32–41.)
- [11] V. G. VIZING, Critical graphs with given chromatic class, *Diskret. Analiz* 5 (1965), 9–17.
- [12] D. R. WOODALL, The independence number of an edge-chromatic critical graph, J. Graph Theory 66 (2) (2011), 98–103.

(Received 29 Sep 2017; revised 22 Jan 2018)