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Abstract

We prove a conjecture of Northshield by determining the maximal or-
der of his analogue of Stern’s sequence for Z[

√
2]. In particular, if b is

Northshield’s analogue, we prove that

lim sup
n→∞

2b(n)

(2n)log3(
√
2+1)

= 1.

1 Introduction

Stern’s diatomic sequence (commonly called Stern’s sequence) is given by a(0) = 0,
a(1) = 1, and when n � 1 by

a(2n) = a(n) and a(2n + 1) = a(n) + a(n + 1).

As an analogue of Stern’s sequence for the ring Z[
√
2], Northshield [10] introduced

the sequence defined by b(0) = 0, b(1) = 1, and in general by

b(3n) = b(n)

b(3n+ 1) =
√
2 · b(n) + b(n+ 1)

b(3n+ 2) = b(n) +
√
2 · b(n+ 1).

In joint work with Tyler [7], answering a question of Berlekamp, Conway, and Guy
[3, page 115] and improving on a result of Calkin and Wilf [4], we determined the
maximal order of Stern’s sequence; in particular, we proved that

lim sup
n→∞

a(n)

nlog2 ϕ
=

3log2 ϕ√
5

,
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where ϕ = (1 +
√
5)/2 is the golden mean. Here and throughout this paper, we

write logk c for the base-k logarithm of the real number c. Concerning his analogue,
Northshield [10, Cor. 5] showed that

lim sup
n→∞

2b(n)

(2n)log3(
√
2+1)

� 1, (1)

and he conjectured that equality holds.
In this paper, using the method developed by Coons and Tyler [7] (see also Coons

and Spiegelhofer [6]), we prove Northshield’s conjecture.

Theorem 1. Let {b(n)}n�0 denote Northshield’s analogue of Stern sequence as de-
fined above. Then

lim sup
n→∞

2b(n)

(2n)log3(
√
2+1)

= 1.

This paper is organised as follows. In Section 2, we define a piecewise linear
function and provide several lemmas comparing it to Northshield’s sequence. In
Section 3, we record a few additional lemmas and also prove Theorem 1. Finally,
in Section 4, we give some further comparisons with Stern’s sequence and related
values and functions.

2 Preliminaries

We proceed along the same lines as the arguments of Coons and Tyler [7] and Coons
and Spiegelhofer [6]. In particular, we will define a piecewise linear function h, which
will serve as an upper bound for the sequence b. The benefit in this situation is that
h is continuous and (except at a few points) differentiable. As well, the function
h will be close to the sequence b for the maximal values of b. This closeness will
allow us to use the asymptotic properties of h to determine the desired asymptotics
concerning b.

We start by formally defining the function h and a special sequence of points.

Definition 2. For n � 1, let xn := 3n/2, yn := (
√
2+1)n/2 and let h : R�0 → R�0 be

the piecewise linear function connecting the set of points {(0, 0)}∪{(xn, yn) : n � 1}.
Northshield proved that1

max{b(m) : m ∈ (3n−1, 3n]} =
(
√
2 + 1)n + (

√
2− 1)n

2
,

and, moreover, the first such maximum in this interval occurs at m = (3n + 1)/2.
The points {(xn, yn) : n � 1} were chosen to be very close to the points where b
achieves its maximal values.

Lemma 1. For m � 2, we have b(m) � h(m) + (
√
2 + 1)�log3(m)�.

1Our version corrects a small typo in [10].
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Proof. Throughout this proof, we use freely the fact that for m > 1,

(
√
2 + 1)�log3(m)� > �log3(m)�.

Also, note that in the interval [xn, xn+1], we have that

h(x) =
h(xn+1)− h(xn)

xn+1 − xn

(x− xn) + h(xn)

=

√
2

2

(√
2 + 1

3

)n

x+ (
√
2 + 1)n

(
2−√

2

4

)
. (2)

We will proceed by induction. Using (2), we now can check, as a base case, that
the result of the lemma holds in the interval (30, 32] = (1, 9]; see Table 1 for these
values.

Table 1: Values (showing only three decimal places) demonstrating that b(m) �
h(m) + �log3(m)� for m = 2, . . . , 9; that is, all m in the interval (30, 32] = (1, 9].

m 2 3 4 5 6 7 8 9
b(m) 1.414 1 2.828 3 1.414 3 2.828 1

h(m) + �log3(m)� 1.491 3.060 3.629 4.198 4.767 5.336 5.905 7.474

Suppose that the result holds in (3n−1, 3n] and consider (3n, 3n+1]. As mentioned
above, the first occurring maximum value of b in (3n, 3n+1] is

b

(
3n+1 + 1

2

)
=

(
√
2 + 1)n+1 + (

√
2− 1)n+1

2
.

As (3n+1 + 1)/2 ∈ (xn+1, xn+2], by (2), at this value we have

h

(
3n+1 + 1

2

)
+

⌊
log3

(
3n+1 + 1

2

)⌋
=

√
2

2

(√
2 + 1

3

)n+1(
3n+1 + 1

2

)

+ (
√
2 + 1)n+1

(
2−√

2

4

)
+ n

=

( √
2

4 · 3n+1
+

1

2

)
(
√
2 + 1)n+1 + n (3)

>
(
√
2 + 1)n+1 + (

√
2− 1)n+1

2

= b

(
3n+1 + 1

2

)
,

so the lemma holds for the value (3n+1 + 1)/2.
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Now if m ∈ [(3n+1+1)/2, 3n+1], since the lemma holds for the value (3n+1 +1)/2
and b takes its maximal value in (3n, 3n+1] at (3n+1 + 1)/2, we have

b(m) � b

(
3n+1 + 1

2

)
� h

(
3n+1 + 1

2

)
+

⌊
log3

(
3n+1 + 1

2

)⌋
� h(m) + �log3(m)�,

where the last inequality follows from the fact that h is monotonically increasing.
Thus the lemma holds in the interval [(3n+1 + 1)/2, 3n+1]. It remains to show that
the result holds for m ∈ (3n, (3n+1 − 1)/2].

If m = 3k ∈ (3n, (3n+1 − 1)/2], then k ∈ (3n−1, 3n]. By Northshield’s definition
and the induction hypothesis, we have

b(m) = b(3k) = b(k) � h(k) + �log3(k)� � h(m) + �log3(m)�,
where as above, the last inequality follows from the monotonicity of h.

If m = 3k + 1 ∈ (3n, (3n+1 − 1)/2], then k + 1 ∈ (3n−1, (3n + 1)/2]. Note that in
this case, using (2), we have

h(3k + 1)− (
√
2 + 1)h(k + 1)

=

√
2

2

(√
2 + 1

3

)n+1

(3k + 1)− 3
√
2

2

(√
2 + 1

3

)n+1

(k + 1)

= −
√
2

(√
2 + 1

3

)n+1

∈ (−1, 0). (4)

Now

b(m) = b(3k + 1) =
√
2 · b(k) + b(k + 1)

� (
√
2 + 1) ·max{b(k), b(k + 1)}

� (
√
2 + 1) (h(k + 1) + �log3(k + 1)�) ,

again appealing to the monotonicity of h. Combining this with (4) and using the
induction hypothesis, we have

b(m) = b(3k + 1) � h(3k + 1) + (
√
2 + 1)�log3(k + 1)�+ 1

� h(3k + 1) + (
√
2 + 1)�log3(3k + 1)�,

since here �log3(k + 1)� = n and �log3(3k + 1)� = n + 1. Thus the result holds for
m = 3k + 1 ∈ (3n, (3n+1 − 1)/2].

The remaining case is m = 3k + 2 ∈ (3n, (3n+1 − 1)/2]. But this follows easily
from the monotonicity of h, as again we have

b(m) = b(3k + 2) = b(k) +
√
2 · b(k + 1) � (

√
2 + 1) ·max{b(k), b(k + 1)}.

Thus the previous case along with the monotonicity of h gives

b(m) = b(3k + 2) � h(3k + 1) + (
√
2 + 1)�log3(3k + 1)�

� h(3k + 2) + (
√
2 + 1)�log3(3k + 2)�.

This finishes the proof of the lemma.
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3 Proof of Northshield’s conjecture

In this section, we provide two essential lemmas, and give the proof of Northshield’s
conjecture.

Lemma 2. We have

lim sup
m→∞

b(m)

h(m)
= 1.

Proof. Set mn := (3n+1+1)/2. Note that b(mn) ∼ (
√
2+ 1)n+1/2 and also, recalling

(3), that

h

(
3n+1 + 1

2

)
=

( √
2

4 · 3n+1
+

1

2

)
(
√
2 + 1)n+1 ∼ (

√
2 + 1)n+1

2
.

Thus

1 = lim
n→∞

b(mn)

h(mn)
� lim sup

m→∞

b(m)

h(m)
� lim sup

m→∞

h(m) + (
√
2 + 1)�log3m�
h(m)

= 1,

where the last inequality is given by Lemma 1 and the final equality follows since for
m ∈ [xn, xn+1], we have

(
√
2 + 1)�log3m�

h(m)
� 3�log3 xn+1�

h(xn)
� 6(n+ 1)

(
√
2 + 1)n

.

Lemma 3. For x > 3/2, we have 2 · h(x) � (2x)log3(
√
2+1).

Proof. Firstly, note that for the sequence xn as given in Definition 2 and n � 1, we
have log3 xn = n− log3 2, so that

2 · h(xn) = 2 · yn = (
√
2 + 1)n = (

√
2 + 1)log3 xn+log3 2 = (2xn)

log3(
√
2+1),

which shows the lemma holds for the values xn.
Write

H(x) := 2 · h(x)− (2x)log3(
√
2+1).

If H(x) > 0 for some x ∈ [xn, xn+1], then since H is differentiable in (xn, xn+1) there
is some w ∈ (xn, xn+1) where H attains a maximum value. But

d2

dx2
H(x) =

d2

dx2

{
−(2x)log3(

√
2+1)
}

= −2log3(
√
2+1) log3(

√
2 + 1)(log3(

√
2 + 1)− 1)xlog3(

√
2+1)−2,

which is positive for all x ∈ [xn, xn+1]. Thus H(x) � 0 for all x > x1 = 3/2 proving
the lemma.

Proof of Theorem 1. By Lemmas 2 and 3 we have

1 � lim sup
m→∞

2b(m)

(2m)log3(
√
2+1)

� lim sup
m→∞

b(m)

h(m)
= 1,

where the first inequality, recorded in (1), is due to Northshield.



M. COONS/AUSTRALAS. J. COMBIN. 71 (1) (2018), 113–120 118

4 Further remarks

Both Stern’s sequence and Northshield’s analogue are examples of k-regular se-
quences as defined by Allouche and Shallit in their seminal paper [1]; see also their
monograph, Automatic Sequences [2]. For an integer k � 2, an integer-valued se-
quence f is called k-regular provided there exist a positive integer d, a finite set of
matrices M = {M0, . . . ,Mk−1} ⊆ Z

d×d, and vectors v,w ∈ Z
d such that

f(n) = wTMwv,

where Mw = Mi0 · · ·Mis and w = i0 · · · is is the reversal of the base-k expansion
(n)k = is · · · i0; see [1, Lemma 4.1]. We call the tuple (w,M,v) the linear represen-
tation of the k-regular sequence f .

Stern’s sequence a is 2-regular and has linear representation(
[1 0], {A0,A1} =

{[
1 1
0 1

]
,

[
1 0
1 1

]}
, [1 0]

)
,

whereas Northshield’s sequence b is 3-regular (though not integer-valued) and has
linear representation(

[1 0], {B0,B1,B2} =

{[
1 0√
2 1

]
,

[√
2 1

1
√
2

]
,

[
1

√
2

0 1

]}
, [0 1]

)
.

This representation of k-regular sequences looks a lot like the matrix version of a lin-
ear recurrence (coefficients of rational power series), and indeed, k-regular sequences
are sometimes known as ‘radix-rational’ sequences.

The method used here can give analogous results for other k-regular sequences.
Essentially this can be done using the following recipe for a k-regular sequence f :

1. Determine the maximal values of f between consecutive powers of k and where
they first occur.

2. Find a piecewise linear function h that is both monotonically increasing and
close enough to the above determined maximal values of f so that one has
lim supn→∞ f(n)/h(n) = 1.

3. Show that the desired maximal order holds for h and deduce from Step 2 that
it also holds for f .

Compared to Step 1, in general, Steps 2 and 3 should be relatively easy. The difficulty
in Step 1 is related to questions surrounding the joint spectral radius of finite sets of
(in this case) integer matrices.

The joint spectral radius of a finite set of matrices M = {M0,M1, . . . ,Mk−1},
denoted ρ(M), is defined as the real number

ρ(M) = lim sup
n→∞

max
0�i0,i1,...,in−1�k−1

∥∥Mi0Mi1 · · ·Min−1

∥∥1/n ,
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where ‖ · ‖ is any (submultiplicative) matrix norm. It is quite clear that when all of
the Mi are equal, say to a matrix M, the joint spectral radius of M is equal to the
spectral radius of M. The joint spectral radius was introduced by Rota and Strang
[11] and has a wide range of applications. For an extensive treatment, see Jungers’s
monograph [8].

For the examples of Stern’s and Northshield’s sequences, the joint spectral radii
are the golden and silver means, respectively. That is,

ρ ({A0,A1}) = 1 +
√
5

2
and ρ ({B0,B1,B1}) = ρ (B1) =

√
2 + 1.

The result for the Stern sequence has been known for some decades already, and
for Northshield’s sequence, Theorem 1 provides proof; see Coons [5] for additional
details.

If one can find the joint spectral radius of the set M associated to f , then one
can probably find the maximal values of f , though in practice, this has been done
in the other direction within the research of this area.

Where these maximal values occur is related to an interesting and still-open
question due to Lagarias and Wang [9]. The finite set of integer matrices M is said to
satisfy the finiteness property provided there is a specific finite product Mi0 · · ·Mim−1

of matrices from M such that ρ(Mi0 · · ·Mim−1)
1/m = ρ(M). Currently, there is no

general way to determine if such a set M satisfies the finiteness property.
In the cases of Stern’s and Northshield’s sequences, both sets of matrices satisify

the finiteness property. For Stern’s sequence the finite product is A0A1, and for
Northshield’s sequence it is the single matrix B1.
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