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Abstract

We prove that if G is a graph of order at least 5k with k ≥ 2 and the
minimum degree of G is at least 3k then G contains k disjoint cycles of
length at least 5. This supports the conjecture by Wang [Australas. J.
Combin. 54 (2012), 59–84]: if G is a graph of order at least (2d+1)k and
the minimum degree of G is at least (d+1)k with k ≥ 2 then G contains
k disjoint cycles of length at least 2d+ 1.

1 Introduction

A set of graphs is said to be disjoint if no two of them have any common vertex.
Corrádi and Hajnal [2] investigated the maximum number of disjoint cycles in a
graph. They proved that if G is a graph of order at least 3k with minimum degree
at least 2k, then G contains k disjoint cycles. Erdős and Faudree [4] conjectured
that if G is a graph of order 4k with minimum degree at least 2k, then G contains
k disjoint cycles of length 4. To solve this conjecture, partial results were obtained
in [5] and [6]. We finally confirmed this conjecture in [7]. In [8], we proposed the
following two conjectures:

Conjecture 1 [8] Let d and k be two positive integers with k ≥ 2. If G is a graph
of order at least (2d+ 1)k and the minimum degree of G is at least (d+ 1)k then G
contains k disjoint cycles of length at least 2d+ 1.

Conjecture 2 [8] Let d and k be two positive integers with k ≥ 2 and d ≥ 3. Let
G be a graph of order n ≥ 2dk with minimum degree at least dk. Then G contains
k disjoint cycles of length at least 2d, unless k is odd and n = 2dk + r for some
1 ≤ r ≤ 2d− 2.

The above two conjectures are related with El-Zahar’s conjcture [3]. El-Zahar
conjectured that if G is a graph of order n = n1+n2+· · ·+nk with ni ≥ 3 (1 ≤ i ≤ k)
and the minimum degree of G is at least �n1/2� + �n2/2� + · · · + �nk/2�, then G
contains k disjoint cycles of lengths n1, n2, . . . , nk, respectively. In Conjecture 1, if
G has order (2d + 1)k then the conjecture reduces to the special case of El-Zahar’s
conjecture where ni = 2d + 1 for all 1 ≤ i ≤ k. Similarly, if G has order 2dk in
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Conjecture 2, then the conjecture reduces to the special case of El-Zahar’s conjecture
where ni = 2d for all 1 ≤ i ≤ k.

With [7], we showed in [8] that if a graph G of order n ≥ 4k with k ≥ 2 has
minimum degree at least 2k then with three easily recognized exceptions, G contains
k disjoint cycles of length at least 4. When d = 1, Conjecture 1 holds by Corrádi and
Hajnal [2]. Comparing the proof of Conjecture 1 in the case d = 1 with our work in
[7] and [8], the work in [7] and [8] is significantly more complicated and involved. It
would be sound to make some progress on Conjecture 1 which includes Corrádi and
Hajnal Theorem as a special case. As said so, our purpose in this paper is to show
Conjecture 1 in the case d = 2.

Another motivation for us to consider Conjecture 1 in the case d = 2 is the result
we proved in [9]:

Theorem 1 [9] Let k and n be two integers with k ≥ 1. If G is a graph of order
n = 5k and the minimum degree of G is at least 3k, then G contains k disjoint cycles
of length of 5.

In this paper, we prove the following:

Theorem 2 Let k and n be two integers with k ≥ 2 and n ≥ 5. If G is a graph of
order n ≥ 5k and the minimum degree of G is at least 3k, then G contains k disjoint
cycles of length at least 5.

This extends Theorem 1 and also further supports Conjecture 1.

1.1 Terminology and Notation

We use [1] for standard terminology and notation except as indicated. Let G
be a graph. We use |G| to denote the order of G, i.e., |G| = |V (G)|. Let H be
a subgraph of G or a subset of V (G) or a sequence of distinct vertices of G. Let
u ∈ V (G). We define N(u,H) to be the set of neighbors of u contained in H , and
let e(u,H) = |N(u,H)|. Clearly, N(u,G) = N(u) and e(u,G) is the degree of u
in G. Let v ∈ V (G). We define I(uv,H) = N(u,H) ∩ N(v,H) and let i(uv,H) =
|I(uv,H)|.

If X is a subgraph of G or a subset of V (G) or a sequence of distinct vertices of
G, we define N(X,H) = ∪uN(u,H) and e(X,H) =

∑
u e(u,H) where u runs over

all the vertices in X. Let each of X1, X2, . . . , Xr be a subgraph of G or a subset of
V (G) or a sequence of distinct vertices of G. We use [X1, X2, . . . , Xr] to denote the
subgraph of G induced by the set of all the vertices that belong to at least one of
X1, X2, . . . , Xr.

For each integer k ≥ 3, a k-cycle is a cycle of length k and a (≥ k)-cycle is a cycle
of length at least k. A feasible cycle is a (≥ 5)-cycle. For each integer i ≥ 3, we use
Ci to denote a cycle of length i and C≥i to denote a cycle of length at least i. Use
Pj to denote a path of order j for all integers j ≥ 1. For a cycle or path L of G, a
chord of L is an edge of G−E(L) which joins two vertices of L, and we use τ(L) to
denote the number of chords of L in G. For each x ∈ V (L), use τ(x, L) to denote
the number of chords of L that are incident with x. The length of L is denoted by
l(L).
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If S is a set of subgraphs of G, we write G ⊇ S. For an integer k ≥ 1 and a graph
G′, we use kG′ to denote a set of k disjoint graphs isomorphic to G′. If G1 and G2 are
two graphs, we useG1
G2 to denote a set of two disjoint graphs, one isomorphic toG1

and the other isomorphic to G2. For two graphsH1 andH2, the union ofH1 andH2 is
still denoted by H1∪H2 as usual, that is, H1∪H2 = (V (H1)∪V (H2), E(H1)∪E(H2)).
Let each of Y and Z be a subgraph of G, or a subset of V (G), or a sequence of distinct
vertices of G. If Y and Z do not have any common vertices, we define E(Y, Z) to
be the set of all the edges of G between Y and Z. Clearly, e(Y, Z) = |E(Y, Z)|. If
C = x1x2 . . . xrx1 is a cycle, then the operations on the subscripts of the xi’s will be
taken by modulo r in {1, 2, . . . , r}.

If we write a graph G as a sequence x1x2 . . . xl of its vertices, it means that
V (G) = {x1, x2, . . . , xl} and E(G) = {xixi+1|1 ≤ i ≤ l − 1}. Note that the sequence
may have repeated vertices. We use Ri

t to denote a graph of order t such that
Ri

t = x1x2 . . . xtxt−i+1 with 3 ≤ i ≤ t. We use B to denote a graph of order 5 such
that B = x3x1x2x3x4x5x3. Let P be a path of G. We use r(P ) to denote the order
of a largest cycle in P + f where f runs over all the chords f of P that are incident
with an endvertex of P . If P does not have such a chord, then r(P ) = 0. Clearly, if
Ri

t is a subgraph of G then r(Ri
t) ≥ i.

Let C be a 5-cycle of G and u ∈ V (C). Let x ∈ V (G) − V (C). We write
x → (C, u) if [C − u + x] ⊇ C ′ ∼= C5. If x → (C, u) for all u ∈ V (C) then we write
x → C.

2 Lemmas

Let G = (V,E) be a graph. We will use the following lemmas. Lemma 2.1 and
Lemma 2.2 are two easy observations.

Lemma 2.1 If P is a path of order 3 and u and v are two vertices in G − V (P )
such that e(uv, P ) ≥ 5, then [P + u+ v] contains a cycle of order 5.

Lemma 2.2 The following four statements hold:

(a) If L is a cycle of order p ≥ 6 and v ∈ V (G) − V (L) such that e(v, L) ≥ 3,
then either [L+ v] contains a feasible cycle C with l(C) < p, or e(v, L) = 3 and v is
adjacent to three consecutive vertices of L, or e(v, L) = 3, p = 6 and v is adjacent
to every other vertex of L.

(b) If P is a path of order p ≥ 5 and u ∈ V (G) − V (P ) such that e(u, P ) ≥ 4,
then for some endvertex z of P , [P +u−z] contains a feasible cycle C with l(C) ≤ p.
Moreover, if p ≥ 6, then [P + u] contains a feasible cycle of length less than p.

(c) If P is a path of order p and u1u2 is an edge of G−V (P ) such that e(u1u2, P ) ≥
4, then [P + u1 + u2] contains a feasible cycle, or e(u1u2, P ) = 4 and P has an edge
xy such that N(u1u2, P ) = {x, y}, or e(u1u2, P ) = 4 and P has a subpath xyz such
that N(ui, P ) = {x, y, z} and N(uj , P ) = {y} for some {i, j} = {1, 2}. Moreover, if
e(u1u2, P ) ≥ 5 then [P + u1 + u2] contains a feasible cycle of order at most p+ 1.
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Lemma 2.3 Let P and Q be two disjoint paths of G. Suppose that e(P,Q) ≥ 5
and [P,Q] does not contain a feasible cycle of order at most |P | + |Q| − 1. Then
e(P,Q) = 5 and one of the following two statements holds:

(a) |P | = 3, |Q| = 3 and [P,Q] ∼= K3,3;

(b) P has a subpath uvw and Q has a subpath xyz such that N(v,Q) = {x, y, z}
and N(y, P ) = {u, v, w}.

Proof. On the contrary, say the lemma fails. Let |P | + |Q| be minimal such that
the lemma fails for P and Q. By Lemma 2.2, we see that |P | ≥ 3 and |Q| ≥ 3.
If |P | = |Q| = 3, it is easy to check that one of (a) and (b) holds. So assume
that |P | + |Q| ≥ 7. Say P = x1 . . . xs and Q = y1 . . . yt. By the minimality of
|P | + |Q|, we see that e(xi, Q) ≥ 1 for i ∈ {1, s} and e(yj, P ) ≥ 1 for j ∈ {1, t}.
If {x1y1, xsyt} ⊆ E or {x1yt, xsy1} ⊆ E, then we readily see that [P,Q] contains a
feasible cycle of order at most |P |+ |Q|−1. Therefore neither of these two situations
will occur. This implies that N(x1, Q) = N(xs, Q) = {yk} for some yk ∈ V (Q) and
N(y1, P ) = N(yt, P ) = {xh} for some xh ∈ V (P ). Thus s = t = 3 for otherwise
[P,Q] contains a feasible cycle of order at most |P |+ |Q| − 1. Then one of (a) and
(b) holds.

Lemma 2.4 Let C be a 5-cycle of G. Let x and y be two vertices in G− V (C). If
e(xy, C) ≥ 7, then there exists z ∈ V (C) such that either yz ∈ E and [C − z + x]
contains a 5-cycle C ′ with τ(C ′) ≥ τ(C)− 1, or xz ∈ E and [C − z + y] contains a
5-cycle C ′′ with τ(C ′′) ≥ τ(C)− 1.

Proof. Say without loss of generality that e(x, C) ≥ 4. For each u ∈ V (C) with
x → (C, u), we see that [C−u+x] ⊇ C ′ ∼= C5 and τ(C ′) ≥ τ(C)−1. As e(xy, C) ≥ 7,
yu ∈ E for such a vertex u ∈ V (C) with x → (C, u) and so the lemma holds.

Lemma 2.5 Let p and q be two integers with q ≥ p ≥ 5 and q ≥ 6. Let C and L
be two disjoint cycles with l(C) = p and l(L) = q. If e(L,C) ≥ 3q + 1, then [C,L]
contains two disjoint feasible cycles C ′ and L′ such that either l(C ′) < p or l(C ′) = p
and l(L′) < q.

Proof. Say C = a1a2 . . . apa1 and L = x1x2 . . . xqx1. On the contrary, say the
lemma fails. We first claim that e(ai, L) ≤ 5 and e(xj , C) ≤ 5 for all ai ∈ V (C) and
xj ∈ V (L). To see this, say e(ai, L) ≥ 6 for some ai ∈ V (C). Then [L−xr−xr+1+ai]
contains a feasible cycle and so [C − ai + xr + xr+1] does not contain a feasible
cycle of order at most p for all r ∈ {1, . . . , q}. By Lemma 2.2(c), this implies that
e(xrxr+1, C − ai) ≤ 4 and so e(xrxr+1, C) ≤ 6 for all r ∈ {1, . . . , q}. Consequently,
e(C,L) ≤ 3q, a contradiction. Hence e(ai, L) ≤ 5 for all ai ∈ V (C). Similarly,
e(xj , C) ≤ 5 for all xj ∈ V (L).

Say e(x1, C) ≥ e(xi, C) for all xi ∈ V (L). As e(C,L) ≥ 3q + 1, e(x1, C) ≥ 4. We
divide the proof into the following two cases.

Case 1. p = 5.
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As e(x1, C) ≥ 4, x1 → (C, ai) for some ai ∈ V (C). Thus [L − x1 + ai] does not
contain a feasible cycle of order ≤ q−1. This implies that e(ai, L−x1) ≤ 3 by Lemma
2.2(b). First, suppose that e(x1, C) = 5. Then x1 → C and so e(aj , L − x1) ≤ 3
for all 1 ≤ j ≤ 5. Thus e(C,L) = e(x1, C) + e(C,L − x1) ≤ 5 + 5 · 3 = 20. As
20 ≥ e(C,L) ≥ 3q + 1 ≥ 19, it follows that q = 6. We may assume without loss of
generality that e(aj , L − x1) = 3 for 1 ≤ j ≤ 4. As [C,L] �⊇ 2C5, e(ar, x2x5) ≤ 1
and e(ar, x3x6) ≤ 1 for all 1 ≤ r ≤ 5. It follows that e(ar, x2x5) = 1, e(ar, x3x6) = 1
and arx4 ∈ E for all 1 ≤ r ≤ 4. Assume for the moment that e(a1, x2x6) > 0.
Say without loss of generality that a1x2 ∈ E. Then [x1a4a5a1x2] ⊇ C5 and so
[x4x5x6, a2a3] �⊇ C5. This implies that e(x6, a2a3) = 0 and so e(x3, a2a3) = 2. Then
[a1a2a3x3x2] ⊇ C5 and [a4x1x6x5x4] ⊇ C5, a contradiction. Therefore e(a1, x2x6) = 0
and so e(a1, x3x5) = 2. Similarly, e(a4, x3x5) = 2. Thus [x3x4a1a5a4] ⊇ C5 and so
[x1x6x5, a2a3] �⊇ C5. This implies that e(x5, a2a3) = 0. Similarly, [x5x4a1a5a4] ⊇ C5

and so e(x3, a2a3) = 0. Thus e(x2x6, a2a3) = 4. Therefore [x2x1x6a2a3] ⊇ C5 and so
[C,L] ⊇ 2C5, a contradiction.

Hence e(x1, C) = 4 and so e(xi, C) ≤ 4 for all xi ∈ V (L). Say N(x1, C) =
{a1, a2, a3, a4}. Then x1 → (C, ai) and so e(ai, L − x1) ≤ 3 for i ∈ {2, 3, 5}. Then
10 ≥ e(a1a4, L) ≥ 3q + 1 − 3 · 3 − 2. This implies that q = 6 and e(a1a4, L) ≥ 8.
We claim that e(a1, L) = e(a4, L) = 4. If this is not true, say without loss of
generality that e(a1, L) = 5. Label L = z1z2z3z4z5z6z1 with e(a1, L − z6) = 5.
Then [a1, L − z1 − z6] ⊇ C5 and so e(z1z6, C − a1) ≤ 4 by Lemma 2.2(c). Simi-
larly, e(z3z4, C − a1) ≤ 4. It follows that e(z2z5, C) ≥ 19 − 2 · 4 − 3 = 8 and so
e(z2, C) = e(z5, C) = 4. Consequently, e(z1z6, C − a1) = 4 and e(z3z4, C − a1) = 4.
Similarly, we shall have that e(z5z6, C − a1) = 4, e(z2z3, C − a1) = 4 and e(z1, C) =
e(z4, C) = 4. Consequently, e(z6, C − a1) = e(z3, C − a1) = 1. As [C,L] �⊇ 2C5,
zi �→ (C, a1) and so e(zi, a2a5) ≤ 1 for all i ∈ {1, 2, 4, 5}. Thus e(zi, a2a5) = 1 and
e(zi, a3a4) = 2 for all i ∈ {1, 2, 4, 5}. Then we see that [z6, z5, a2, a3, a4, a5] �⊇ C5 and
so e(z6, a2a5) = 0. Thus e(z6, a3a4) = 1, say z6a3 ∈ E. Then [a1, a2, a3, z6, z5] ⊇ C5

and [a4, z1, z2, z3, z4] ⊇ C5, a contradiction.

Hence e(a1, L) = e(a4, L) = 4. It follows that e(ai, L) = 4 for i ∈ {1, 2, 3, 4} and
e(a5, L) = 3. We now go back to the labelling L = x1x2x3x4x5x6x1. As [C,L] �⊇ 2C5,
we see that e(ai, x2x5) ≤ 1 and e(ai, x3x6) ≤ 1 for all i ∈ {2, 3, 5}. It follows that
e(a2a3a5, x4) = 3. Then for each i ∈ {1, 4}, x4 → (C, ai) and so [L−x4+ai] �⊇ C5. By
Lemma 2.3(b), this implies that e(ai, L−x4) ≤ 3 and so aix4 ∈ E for each i ∈ {1, 4}.
Thus e(x4, C) = 5, a contradiction.

Case 2. p ≥ 6.

First, assume that e(x1, C) = 5. Say the five vertices in N(x1, C) are a, b, c, d
and g in order along C with |C[g, a]| ≥ 3. Then x1C[a, d]x1 and x1C[d, a]x1 are two
feasible cycles. By Lemma 2.2(c) and Lemma 2.3, this yields that e(C(d, a), L−x1) ≤
4 + r and e(C(a, d), L − x1) ≤ 4 + r with r ∈ {0, 1}. It follows that e(ad, L) ≥
3q+1−2 · (4+ r)−3 = 3q−10−2r. As C−a+x1 ⊇ C≥5 and C−d+x1 ⊇ C≥5, we
have e(a, L−x1) ≤ 3 and e(d, L−x1) ≤ 3 by Lemma 2.2(b). Thus 8 ≥ 3q− 10− 2r.
This yields q = 6 and so p = 6. Thus by Lemma 2.2(c), we may choose r = 0. It
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follows that e(a, L) = 4, e(d, L) = 4, e(C(d, a), L−x1) = 4 and e(C(a, d), L−x1) = 4.
We may assume that {a, b, c, d, g} = {a1, . . . , a5}. Similarly, we shall have e(a5, L) =
e(a2, L) = 4. It follows that e(a3, L−x1) = e(a6, L−x1) = 1. Clearly, e(a1, x2x6) ≤ 1,
for otherwise [C,L] ⊇ C5 
 C6. Say a1x6 �∈ E. As e(a1a5, L − x1) = 6, there exists
xixi+1 on L− x1 such that {a1xi, a5xi+1} ⊆ E. Thus [xi, xi+1, a5, a6, a1] ⊇ C5. Since
e(a2, L− xi − xi+1) ≥ 2 and e(a4, L− xi − xi+1) ≥ 2, [a2a3a4, L− xi − xi+1] ⊇ C≥5,
a contradiction. This proves that e(x1, C) = 4. Similarly, we shall have e(ai, L) ≤ 4
for all ai ∈ V (C). As p ≥ 6, we see that there are two distinct vertices as and
at in N(x1, C) such that both x1C[as, at]x1 and x1C[at, as]x1 are feasible cycles. By
Lemma 2.2(c) and Lemma 2.3, we have e(C(at, as), L−x1) ≤ 4+r and e(C(as, at), L−
x1) ≤ 4+ r with r ∈ {0, 1}. Then 8 ≥ e(asat, L) ≥ 3q+1− 2 · (4+ r)− 2. As above,
we must have q = 6 and so p = 6. Then by Lemma 2.2(c), we may choose r = 0.
Thus 8 ≥ e(asat, L) ≥ 3q + 1− 2 · 4− 2 ≥ 9, a contradiction.

Lemma 2.6 [Lemma 2.2, [9]] Let D and L be two disjoint subgraphs of G such that
D ∼= B and L ∼= C5. Say D = x0x1x2x0x3x4x0. Suppose that e(D − x0, L) ≥ 13.
Then [D,L] ⊇ 2C5.

Corollary 2.7 Let P = x1x2 . . . xt be a path of order t ≥ 5 and C a 5-cycle in G
such that P and C are disjoint and {x1xh, xtxk} ⊆ E for some 3 ≤ h ≤ k ≤ t − 2.
If e(xixj , C) + e(xqxr, C) ≥ 13 for some 1 ≤ i < j ≤ h − 1 and k + 1 ≤ q < r ≤ t
then [P,C] contains two disjoint feasible cycles.

3 Proof of Theorem 2

Let G be a graph of order n ≥ 5k with k ≥ 2 and δ(G) ≥ 3k. Suppose, for a
contradiction, that G does not contain k disjoint feasible cycles. By Theorem 1,
n ≥ 5k + 1. Let k0 be the largest integer such that G contains k0 disjoint feasible
cycles. A chain of G is a sequence (L1, . . . , Lk0) of k0 disjoint feasible cycles.

We use lexicographic order to order chains with respect to the lengths of feasible
cycles in chains, that is, for two chains (L1, . . . , Lk0) and (L′

1, . . . , L
′
k0) in G, we write

(L1, . . . , Lk0) ≺ (L′
1, . . . , L

′
k0
) if there exists j ∈ {1, . . . , k0} such that l(Li) = l(L′

i)
for i = 1, . . . , j and l(Lj+1) < l(L′

j+1). We say that (L1, . . . , Lk0) is a minimal
chain if for any chain (L′

1, . . . , L
′
k0
), (L′

1, . . . , L
′
k0
) �≺ (L1, . . . , Lk0). For any chain

σ = (L1, . . . , Lk0), we use V (σ) to denote V (∪k0
i=1Li). We now choose a minimal

chain σ = (L1, . . . , Lk0) such that

The length of a longest path of G− V (σ) is maximal. (1)

Let H = ∪k0
i=1Li and D = G− V (H). Let P = x1 . . . xt be a longest path of D. We

shall prove the following two claims.

Claim 1. t ≥ 6.

Proof of Claim 1. Assume first that |D| ≤ 5. Then |Lk0| ≥ 6 and by Lemma 2.2(a)
and the minimality of σ, e(D,Lk0) ≤ 3|D|. By Lemma 2.2(b), e(x, Lk0 − x) ≤ 3 for
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each x ∈ V (Lk0). Thus e(Lk0 , H−V (Lk0)) ≥ 3k|Lk0|−3|Lk0|−3|D| ≥ 3(k−2)|Lk0|+3.
This implies that e(Lk0 , Li) ≥ 3|Lk0| + 1 for some 1 ≤ i ≤ k − 2. By Lemma 2.5,
[Li, Lk0 ] contains two disjoint feasible cycles C ′ and L′ such that either l(C ′) < l(Li)
or l(C ′) = l(Li) and l(L′) < l(Lk0). Replacing Li and Lk0 with C ′ and L′, we obtain
a chain σ′ ≺ σ, a contradiction. Therefore |D| ≥ 6.

For a contradiction, suppose that t ≤ 5. Let Q be a longest path in D − V (P ).
Subject to (1), we choose σ and P in D such that l(Q) is maximal. Say Q =
y1y2 . . . ys. Let If D contains two distinct vertices x and y with e(xy,D) ≤ 5, then
e(xy, Li) ≥ 7 for some Li in H since e(xy,G) ≥ 6k. Then by Lemma 2.2(a) and the
minimality of σ, we see that |Li| = 5 and by Lemma 2.4, [Li+x+y] ⊇ C5
P2. This
argument shows that t ≥ 2. If t = 2, this argument allows us to see that we may
choose σ such that D contains two independent edges xu and yv. Then e(xy,D) = 2
and e(xy, Li) ≥ 7 for some Li in H . As above, we see that |Li| = 5 and so by Lemma
2.4, [Li, x, u, y, v] ⊇ C5 
 P3, a contradiction. Hence t ≥ 3.

First, suppose that s ≥ 2. We claim that e(x1xty1ys, D) ≤ 11. To observe
this, we readily see that e(x1xt, P ) ≤ 6 and e(y1ys, P ) ≤ 2 since D �⊇ C≥5 and
t ≤ 5. Moreover, if e(y1ys, P ) > 0 then t = 5, s = 2, N(y1y2, P ) = {x3} and so
e(x1xty1ys, D) < 11. Suppose that e(x1xty1ys, D) ≥ 12. Then it is easy to see that
[P ] ∼= [Q] ∼= K4. As e(x1x4y1y4, G) ≥ 12k, e(x1x4y1y4, Li) ≥ 12 for some Li in H .
Say without loss of generality e(x1x4, Li) ≥ 6. By Lemma 2.2(a), |Li| ≤ 6 and we
see that [Li, P ] ⊇ C5. Thus |Li| = 5 and so [P, u] ⊇ C5 for some u ∈ V (Li). It
follows that e(Q,Li − u) = 0 by (1). Therefore e(x1x4, Li) = 10 and e(u, y1y4) = 2.
Consequently, [Li, P, Q] ⊇ 2C5, a contradiction. Therefore e(x1xty1ys, D) ≤ 11. As
e(x1xty1ys, G) ≥ 12k, e(x1xty1ys, Li) ≥ 13 for some Li in H . By Lemma 2.2(a), we
get |Li| = 5. Say Li = u1u2u3u4u5u1. Assume for the moment that e(y1ys, Li) ≥ 7.
Say without loss of generality e(y1, Li) ≥ 4 and {u1, u2, u3, u4} ⊆ N(y1). By (1), we
see that e(x1xt, u2u3u5) = 0. Thus e(y1ys, Li) ≥ 13 − 4 = 9. Thus e(y1, Li) = 5 or
e(ys, Li) = 5 and so e(x1xt, Li) = 0, a contradiction. Therefore e(y1ys, Li) ≤ 6 and
so e(x1xt, Li) ≥ 7. If t = 3, let ur ∈ V (Li) be such that {urx1, ur+1x3} ⊆ E. Then
by (1), e(y1ys, ur+2ur+3ur+4) = 0. Thus e(y1ys, Li) ≤ 4 and so e(x1x3, Li) ≥ 9. Thus
there exist four such vertices ur and so e(y1ys, Li) = 0, a contradiction. If t = 4,
let ur ∈ I(x1x4, Li). By (1), e(y1ys, Li − ur) = 0 and so e(x1x4, Li) ≥ 13 − 2 = 11,
a contradiction. Hence t = 5. Say without loss of generality e(x1, Li) ≥ e(x5, Li).
Then e(x1, Li) ≥ 4. If e(x1, Li) = 5, then I(x5y1, Li) = ∅ and so e(ys, Li) ≥ 3. Thus
ys → (Li, ua) for some ua ∈ V (Li) and P + uax1 is longer than P , a contradiction.
Hence e(x1, Li) = 4. Say N(x1, Li) = {u1, u2, u3, u4}. Then I(x5y1, Li) ⊆ {u1, u4}.
As e(y1ys, Li) ≥ 13 − 2 · 4 = 5, say e(y1, Li) ≥ 3. By (1), y1 �→ (Li, ur) for all r ∈
{1, 2, 3, 4} and this implies that N(y1, Li) = {u1, u5, u4}. Thus s ≤ 4 and u5x5 �∈ E
for otherwise [Li, P, Q] ⊇ C5
P6. If s = 2, then we readily see that e(y2, Li−u5) = 0
for otherwise [Li, P, Q] ⊇ C5 
 P6 and so e(y1y2, Li) + e(x1x5, Li) ≤ 4 + 8 = 12, a
contradiction. If 3 ≤ s ≤ 4, then e(ys, u1u5u4) = 0 for otherwise [Li, P, Q] ⊇ C5
P6.
It follows that e(ys, u2u3) = 2 and e(xt, u1u2u3u4) = 4. Thus [x1, u1, y1, u5, u4] ⊇ C5

and [P − x1, u2u3] ⊇ P6, a contradiction.

Therefore s = 1. If D − V (P ) contains two distinct vertices x and y, then we
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readily see that e(xy,D) < 6 and so e(xy, Li) ≥ 7 for some Li in H . Consequently,
[Li, x, y] ⊇ C5 
 P2 by Lemma 2.2(a) and Lemma 2.4, contradicting the maximality
of Q. Hence |D − V (P )| = 1. Thus t = 5. In this case, we readily see as above that
for some Li in H , [Li, x1, y1] ⊇ C5 
 P2. Thus G has a minimal chain σ′ such that
G − V (σ′) ⊇ P4 
 P2. Say σ′ = (L′

1, L
′
2, . . . , L

′
k0
). Let P ′ = z1z2z3z4 and Q′ = v1v2

be two disjoint paths in G − V (σ′). As G − V (σ′) �⊇ C≥5 and G − V (σ′) �⊇ P6, we
see that e(z1z4v1v2, P

′ ∪Q′) ≤ 8. Thus e(z1z4v1v2, L
′
i) ≥ 13 for some 1 ≤ i ≤ k0. By

Lemma 2.2(a), |L′
i| = 5. If there exists u ∈ I(z1z4, L

′
i) then e(v1v2, u

−u+) = 0 by the
maximality of P . Thus e(v1v2, L

′
i) ≤ 6 and so e(z1z4, L

′
i) ≥ 7. Then i(z1z4, L

′
i) ≥ 2

and we see that e(v1v2, w) = 0 for some w ∈ V (L′
i)− {u−, u+} for the same reason.

Thus e(v1v2, L
′
i) ≤ 4 and so e(z1z4, L

′
i) ≥ 9. Consequently, e(v1v2, L

′
i) = 0 for the

same reason, a contradiction. Hence i(z1z4, L
′
i) = 0 and so e(v1v2, L

′
i) ≥ 13− 5 = 8.

Let uvw be a path on L′
i with {uv1, wv2} ⊆ E. Then v1uvwv2v1 is a C5 in G and

so e(z1z4, V (L′
i) − {u, v, w}) = 0 by the maximality of P . Thus e(z1z4, L

′
i) ≤ 3

and so e(v1v2, L
′
i) = 10. Then for the same reason, we see that e(z1z4, L

′
i) = 0, a

contradiction.

Claim 2. e(x1, P ) = 1 or e(xt, P ) = 1.

Proof of Claim 2. On the contrary, say e(x1, P ) > 1 and e(xt, P ) > 1. Let
h be maximal with x1xh ∈ E and s be minimal with xtxs ∈ E. As D �⊇ C≥5,
3 ≤ h ≤ s ≤ t − 2. Let a be the smallest integer and b be the largest integer
such that a ≥ 2, b ≤ t − 1 and {x1xa+1, xtxb−1} ⊆ E. Set R = {x1, xa, xb, xt}. If
e(R,Li) ≥ 13 for some Li in H , then |Li| = 5 by Lemma 2.2(a) and the minimality
of σ, and consequently [Li, P ] contains two disjoint feasible cycles by Corollary 2.7,
a contradiction. Therefore e(R,Li) ≤ 12 for all Li in H . By the maximality of P ,
e(R,D − V (P )) = 0. Thus e(R,P ) = e(R,D) ≥ 12k − 12k0 ≥ 12. As D �⊇ C≥5, it
follows that e(xi, P ) = 3 for all xi ∈ R and [x1, x2, x3, x4] ∼= [xt−3, xt−2, xt−1, xt] ∼= K4.
Thus k0 = k − 1 and e(R,Lj) = 12 for all Lj in H . By Lemma 2.2(a), we readily
see that |Lk−1| = 5. Say without loss of generality that e(x1x2, Lk−1) ≥ 6. Let
u ∈ I(x1x2, Lk−1). Then [x1, x2, x3, x4, u] ⊇ C5. Thus [Lk−1−u, xt−2, xt−1, xt] �⊇ C≥5.
Thus e(xi, Lk−1 − u) ≤ 3 for each i ∈ {t − 1, t}. In addition, if e(xi, Lk−1 − u) > 0
for all i ∈ {t − 1, t} then e(xt−1xt, Lk−1 − u) = 2. Hence e(xt−1xt, Lk−1) ≤ 5.
Similarly, if i(xt−1xt, Lk−1) �= 0 then e(x1x2, Lk−1) ≤ 5 and so e(R,Lk−1) ≤ 10,
a contradiction. Thus i(xt−1xt, Lk−1) = 0 and in particular, e(u, xt−1xt) ≤ 1 and
so e(xt−1xt, Lk−1) ≤ 4. Thus e(x1x2, Lk−1) ≥ 8. Say without loss of generality
e(x1, Lk−1) ≥ e(x2, Lk−1). Then e(x1, Lk−1) ≥ 4. It follows that x1 → (Lk−1, v) for
some i ∈ {t− 1, t} and v ∈ I(x2xi, Lk−1), i.e., [Lk−1, P ] ⊇ C5 
C≥5, a contradiction.

For the proof of the theorem, we now choose, subject to (1), σ and P = x1 . . . xt

in D with descending priorities such that the following two conditions hold:

r(P ) is maximal; (2)
k0∑

i=1

τ(Li) is maximal. (3)
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Let R = {x1, x2, xt−1, xt}. Clearly, e(x1xt, D − V (P )) = 0. If x2u ∈ E for some
u ∈ V (D) − V (P ), then e(x1u,D) = e(x1u, P ) ≤ 4 as D �⊇ C≥5. Consequently,
e(x1u,H) ≥ 6k − 4 = 6(k − 1) + 2 and so e(x1u, Li) ≥ 7 for some Li in H . By
Lemma 2.2(a) and the minimality of σ, we see that |Li| = 5. By Lemma 2.4, we
see that [Li, P + u] contains a 5-cycle and a path of order t + 1 such that they are
disjoint, contradicting the maximality of P . Hence e(x2, D − V (P )) = 0. Similarly,
e(xt−1, D − V (P )) = 0.

As D �⊇ C≥5, it is easy to see that e(x2, P ) ≤ 4, e(xt−1, P ) ≤ 4, e(x1x2, P ) ≤ 6
and e(xt−1xt, P ) ≤ 6. If e(R,P ) ≥ 12, then we would have that e(x1, P ) ≥ 2 and
e(xt, P ) ≥ 2, contradicting Claim 2. Therefore e(R,D) = e(R,P ) < 12. Thus
e(R,Lr) ≥ 13 for some Lr in H . By Lemma 2.2(a) and minimality of σ, we see
that |Lr| = 5. Say without loss of generality that Lr = L1 = a1a2a3a4a5a1. The
following six properties will be used to complete our proof. For convenience in the
following, we will resort to the definition of Ri

t in the introduction. Since t ≥ 6 and
[L1, P ] �⊇ 2C≥5, we immediately have the following Property 1:

Property 1. For each u ∈ V (L1), if x1 → (L1, u) then e(u, x2xt−1) ≤ 1 and
e(u, x2xt) ≤ 1, and for each v ∈ V (L1), if xt → (L1, v) then e(v, x1xt−1) ≤ 1 and
e(v, x2xt−1) ≤ 1.

Property 2. There is no i ∈ {1, 2, 3, 4, 5} such that N(x1xtx2, L1) ⊆ {ai, ai+2, ai+3}
or N(x1xtxt−1, L1) ⊆ {ai, ai+2, ai+3}.

Proof of Property 2. On the contrary, say without loss of generality that
N(x1xtxt−1, L1) ⊆ {a1, a3, a4}. Since e(R,L1) ≥ 13, we see that e(x2, L1) ≥ 4
and 8 ≤ e(x1xtxt−1, L1) ≤ 9. It is easy to see that x2 → (L1, ai) for some ai ∈
I(x1xt, {a1, a3, a4}). Thus e(x1, P ) = 1 for otherwise [P − x2 + ai] ⊇ C≥5. It is
also clear that x2 → (L1, aj) for some aj ∈ I(xt−1xt, L1). As [P − x2 + aj] �⊇ C≥5,
this implies that r(P ) ≤ 3, i.e., xtxt−3 �∈ E. Clearly, [a1, a5, a4, xt−1, xt] ⊇ C5 and
[a1, a2, a3, xt−1, xt] ⊇ C5. Then neither of [P−xt−1−xt, a2a3] and [P−xt−1−xt, a4a5]
contains R4

t by (2). This implies that e(x1x2, a2a3) ≤ 2 and e(x1x2, a4a5) ≤ 2. Con-
sequently, e(R,L1) ≤ 12, a contradiction.

Property 3. e(x1, L1) < 5 and e(xt, L1) < 5.

Proof of Property 3. Say e(x1, L1) = 5. Then x1 → L1. By Property 1,
i(x2xt−1, L1) = 0 and i(x2xt, L1) = 0. Thus e(xt−1, Li) ≥ 13 − 5 − e(x2xt, L1) ≥ 3
and e(xt, Li) ≥ 13− 5− e(x2xt−1, L1) ≥ 3. If e(xt, L1) ≥ 4, then we readily see that
xt → (L1, ai) and e(ai, xt−1x1) = 2 for some ai ∈ V (L1), a contradiction. Hence
e(xt, L1) = 3. First, assume that N(xt, L1) = {ai, ai+1, ai+2} for some ai ∈ V (L1).
Say N(xt, L1) = {a1, a2, a3}. By Property 1, e(x2, a1a2a3) = 0 and xt−1a2 �∈ E,
and so e(x2xt−1, L1) ≤ 4. Consequently, e(R,L1) ≤ 12, a contradiction. Hence
N(xt, L1) = {ai, ai+2, ai+3} for some ai ∈ V (L1). Say N(xt, L1) = {a1, a3, a4}. Then
e(x2, a1a3a4) = 0 and e(xt−1, a2a5) = 0. This implies that e(x2, a2a5) = 2 and
e(xt−1, a1a3a4) = 3. Then [L1, P ] ⊇ 2C≥5 = {x1a5a1xta4x1, x2 . . . xt−1a3a2x2}, a
contradiction.

Property 4. e(x1, L1) < 4 and e(xt, L1) < 4.
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Proof of Property 4. Say e(x1, a1a2a3a4) = 4. Then x1 → (L1, ai) for each
i ∈ {2, 3, 5}. Thus i(x2xt−1, a2a3a5) = 0 and i(x2xt, a2a3a5) = 0. This implies that
e(x2xt−1, L1) ≤ 7 and e(x2tt, L1) ≤ 7. Consequently, e(xt, L1) ≥ 2 and e(xt−1, L1)
≥ 2.

First, assume that e(xt, L1) = 4. Then it is easy see that [L1 − ai, x1, xt] ⊇ C5

for all ai ∈ V (L1), and so i(x2xt−1, L1) = 0. It follows that e(x2xt−1, L1) = 5
and so e(ai, x2xt−1) = 1 for all ai ∈ V (L1). Thus by Property 1, for all ai ∈
V (L1), if e(ai, x1xt) = 2, then x1 �→ (L1, ai) or xt �→ (L1, ai). This implies that
arxt �∈ E for some r ∈ {2, 3}. Say ar = a2. Since xt → (L1, a2) and x1 →
(L1, a3), it follows that {x2a2, xt−1a3} ⊆ E. Consequently, [L1, P ] ⊇ 2C≥5 =
{x1a1xta5a4x1, a2x2 . . . xt−1a3a2}, a contradiction.

Next, assume that e(xt, L1) = 3. Then e(x2xt−1, L1) ≥ 6 and by Property 1,
I(x2xt−1, L1) ⊆ {a1, a4} and so i(x2xt−1, a1a4) ≥ 1. Say e(a1, x2xt−1) = 2. Then
[a1, x2, . . . , xt−1] ⊇ C≥5. Thus [x1, a2, a3, a4, xt] �⊇ C5 and so e(xt, a2a3a4) ≤ 1. It
follows that e(xt, a1a5a4) = 3 as [L1 − a1, x1, xt] �⊇ C5. By Property 1, x2a5 �∈ E.
As [x1, x2, a1, a2, a3] ⊇ C5, [x3, . . . , xt, a4, a5] �⊇ C≥5. As r(x3 . . . xta4a5) ≥ 3 and by
(2), r(P ) ≥ 3. Assume first e(xt, P ) ≥ 2. Then [x3, . . . , xt, a1, a5] ⊇ C≥5 and so
[x1, x2, a2, a3, a4] �⊇ C5. This yields e(x2, a2a4) = 0 and so I(x2xt−2, L1) ⊆ {a1}. As
e(x2xt−1, L1) ≥ 6, it follows that e(xt−1, a2a4a5) = 3 and e(a3, x2xt−1) = 1. Thus
[x3, . . . , xt, a4, a5] ⊇ C≥5, a contradiction.

Therefore e(xt, P ) = 1 and so e(x1, P ) ≥ 2. As [xt, a4, a5, a1, xt−1] ⊇ C5,
[a3, a2, x1, . . . , xt−2] �⊇ C≥5 and so e(x2, a2a3) = 0. As [a1, a2, x1, . . . , xt−2] ⊇ C≥5,
xt−1a3 �∈ E. As e(x2xt−1, L1) ≥ 6, it follows that x2a4 ∈ E and e(xt−1, a2a4a5) = 3.
Thus [xt−1, xt, a5, a1, a2] ⊇ C5 and [a3, a4, x1, . . . , xt−2] ⊇ C≥5, a contradiction.

Finally, e(xt, L1) = 2. In this situation, e(ai, x2xt−1) = 1 for i ∈ {2, 3, 5} and
e(a1a4, x2xt−1) = 4. By Property 1, x1 �→ L1 and this implies τ(a5, L1) = 0. First,
suppose xta5 ∈ E. Then x2a5 �∈ E. By Property 1, e(xt, a2a3) = 0. Say without
loss of generality xta4 ∈ E. Clearly, [x1, x2, a1, a2, a3] ⊇ C5 and r(x3 . . . xta5a4) = 4.
By (2), r(P ) = 4. If e(xt, P ) ≥ 2, then [x3, . . . , xt, a4, a5] ⊇ C≥5, a contradiction.
Hence e(xt, P ) = 1 and so x1x4 ∈ E. Then we see that [a1, x1 . . . xt−2] ⊇ C5 and so
e(xt−1, a2a3) = 0. Thus e(x2, a2a3) = 2 and by(3), τ(L1) ≥ τ(x1x2a1a2a3x1) ≥ 4 and
so τ(a5, L1) > 0, a contradiction. Hence xta5 �∈ E.

Next, suppose e(xt, a1a3) = 2 or e(xt, a2a4) = 2, say e(xt, a2a4) = 2. Then
a3xt−1 �∈ E and a2x2 �∈ E by Property 1. Thus a3x2 ∈ E and a2xt−1 ∈ E. As
[xt−1, xt, a4, a5, a1] ⊇ C5, [x1, . . . , xt−2, a2a3] �⊇ C≥5. This implies that e(x1, P ) = 1.
As r(xt−2 . . . x1a2a3) = 4 and by (2), we obtain that r(P ) = 4, i.e., xtxt−3 ∈ E. Thus
[P − x1, a2] ⊇ C5 with x1 → (L1, a2), a contradiction.

Next, suppose e(xt, a1a2) = 2 or e(xt, a3a4) = 2, say e(xt, a3a4) = 2. Then
x2a3 �∈ E by Property 1 and so xt−1a3 ∈ E. Since [xt−1, xt, a4, a5, a1] ⊇ C5 and
r(xt−2 . . . x1a2a3) ≥ 3, we see that either e(x1, P ) ≥ 2 or e(xt, P ) ≥ 2 by (2). If
e(xt, P ) ≥ 2 then [x3, . . . , xt, a3, a4] ⊇ C≥5 and so [a5, a1, a2, x1, x2] �⊇ C5. Con-
sequently, a5x2 �∈ E and so xt−1a5 ∈ E. Then [x3, . . . , xt, a4, a5] ⊇ C≥5 and
[x1, a3, a2, a1, x2] ⊇ C5, a contradiction. Hence e(xt, P ) = 1 and e(x1, P ) ≥ 2. Then
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[xt−2, . . . , x1, a1, a2] ⊇ C≥5 and so [xt−1, xt, a3, a4, a5] �⊇ C5. Thus xt−1a5 �∈ E and so
x2a5 ∈ E. Thus [xt−2, . . . , x1, a4, a5] ⊇ C≥5 and [a1, a2, a3, xt, xt−1] ⊇ C5, a contra-
diction.

Next, suppose e(xt, a2a3) = 2. Then e(x2, a2a3) = 0 by Property 1 and so
e(xt−1, a2a3) = 2. Since [x1, x2, a1, a5, a4] ⊇ C5, we have [x3, . . . , xt, a2, a3] �⊇ C≥5.
Since r(x3 . . . xta2a3) = 4 and by (2), r(P ) = 4, it follows that e(xt, P ) = 1 and
x1x4 ∈ E. Thus [a1, x1, x4, x3, x2] ⊇ C5 and [xt−1, xt, a2, a3, a4] ⊇ C5, a contradic-
tion.

Finally, suppose e(xt, a1a4) = 2. Since [xt−1, xt, a1, a5, a4] ⊇ C5, it follows that
[x1, . . . , xt−2, a2, a3] �⊇ C≥5. As r(xt−2 . . . x1a2a3) ≥ 3, we have r(P ) ≥ 3 by (2). As-
sume first that e(x1, P ) ≥ 2. By Claim 2, e(xt, P ) = 1. Then e(x2, a2a3) = 0 because
[x1, . . . , xt−2, a2, a3] �⊇ C≥5. Thus e(xt−1, a2a3) = 2. Consequently, [xt−1, xt, a4, a3, a2]
⊇ C5 and [xt−2, . . . , x1, a4, a5] �⊇ C≥5, which implies a5x2 �∈ E. Thus xt−1a5 ∈ E.
This yields that r(x3 . . . xta4a5) = 4. As [x1, a3, a2, a1, x2] ⊇ C5, it follows by (2)
that x1x4 ∈ E. Thus [x1, x4, x3, x2, a1] ⊇ C5, a contradiction. Hence e(xt, P ) ≥ 2
and e(x1, P ) = 1. Since [x1, x2, a1, a2, a3] ⊇ C5, it follows that [x3, . . . , xt, a4, a5] �⊇
C≥5. This implies that a5xt−1 �∈ E and r(P ) = 3. Thus a5x2 ∈ E. Then
[x1, x2, a5, a1, a2] ⊇ C5 and so [x3, . . . , xt, a3, a4] �⊇ C≥5. Thus xt−1a3 �∈ E and so
x2a3 ∈ E. Then r(xt−2 . . . x1a2a3) = 4. By (2), r(P ) = 4, a contradiction.

Property 5. e(x1xt, L1) ≥ 5.

Proof of Property 5. Say e(x1xt, L1) ≤ 4. Since e(x2xt−1, L1) ≥ 13−e(x1xt, L1) ≥
9, we may assume without loss of generality that e(x2, L1) = 5 and e(xt−1, L1) ≥ 4.
Say e(xt−1, a1a2a3a4) = 4. We have x2 → L1. We claim that e(x1, P ) = 1. If this
is false, say e(x1, P ) ≥ 2. Then [P − x2 + ai] �⊇ C≥5 for all ai ∈ V (L1). This
implies i(x1xt, L1) = 0. Moreover, if i(x1xt−1, L1) �= 0, then t = 6 and x1x4 ∈ E.
Assume for the moment that i(x1xt−1, L1) �= 0. As x5 → (L1, ai) for i ∈ {2, 3, 5},
[P − x5, ai] �⊇ C≥5 for i ∈ {2, 3, 5} and so e(x1, a2a3a5) = 0. Thus e(x1, a1a4) > 0.
Say x1a1 ∈ E. Then [a1, x1, x4, x3, x2] ⊇ C5 and so [x5, x6, a2, a3, a4, a5] �⊇ C≥5.
Thus e(x6, a2a4a5) = 0. It follows that e(x1x6, L1) = 3 and e(x5, L1) = 5 with
e(x1, a1a4) = 2 and x6a3 ∈ E and we readily see that [L1, P ] ⊇ 2C5, a contradiction.
Therefore i(x1xt−1, L1) = 0. As e(P, L1) ≥ 13, e(xt, L1) ≥ 3. By Property 1,
we see that N(xt, L1) = {a1, a5, a4} and xt−1a5 �∈ E. Thus i(x1xt−1, L1) �= 0 or
i(x1xt, L1) �= 0, a contradiction. Hence e(x1, P ) = 1.

Next, we claim that e(xt−1, L1) = 4. If this is false, say e(xt−1, L1) = 5. Then
we also have e(xt, P ) = 1. By Property 1, x1 �→ (L1, ai) and xt �→ (L1, ai) for
ai ∈ V (L1), which implies that e(x1, L1) ≤ 2 and e(xt, L1) ≤ 2. Say without loss
of generality x1a1 ∈ E. Then [x1, a1, a2, a3, x2] ⊇ C5. Then e(xt, a4a5) = 0 for
otherwise [x3, . . . , xt, a4, a5] ⊇ R4

t , contradicting (2). Similarly, e(xt, a2a3) = 0. Thus
e(x1, L1) ≥ 2. Then x1aj ∈ E for some j �= 1. With aj in place of a1 in the above,
we see that xta1 �∈ E. a contradiction.

Therefore e(xt−1, L1) = 4 and so e(x1xt, L1) = 4. Suppose that x1a5 ∈ E. Then
[x1, a5, a1, a2, x2] ⊇ C5. If e(xt, a3a4) > 0 then [x3, . . . , xt, a3, a4] ⊇ R4

t . By (2),
r(P ) = 4, i.e., xtxt−3 ∈ E. Thus [x3, . . . , xt, a3, a4] ⊇ C≥5, a contradiction. Hence
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e(xt, a3a4) = 0. Similarly, e(xt, a1a2) = 0. Thus a5xt ∈ E and e(x1, L1) = 3. By
Property 1, x1 �→ (L1, ai) for each i ∈ {1, 2, 3, 4} and so e(x1, a1a5a4) = 3. Thus
x1 → (L1, a5) and [P − x1, a5] ⊇ Ct, a contradiction. Hence x1a5 �∈ E. Thus
e(x1, L1−a5) ≥ 1 and so either [x1, x2, a1, a2, a3] ⊇ C5 or [x1, x2, a2, a3, a4] ⊇ C5. Say
without loss of generality [x1, x2, a1, a2, a3] ⊇ C5. If xta5 ∈ E, then r(x3 . . . xta5a4) =
4. Consequently, r(P ) = 4 by (2) and so [x3, . . . , xt, a5, a4] ⊇ C≥5, a contradiction.
Hence xta5 �∈ E. As x1 �→ (L1, ai) and xt �→ (L1, ai) for each i ∈ {1, 2, 3, 4}, it follows
that e(x1, L1−a5) = e(xt, L1−a5) = 2. Assume for the moment that e(x1, a1a4) > 0.
Say without loss of generality that x1a1 ∈ E. Then [x1, x2, a4, a5, a1] ⊇ C5. This
implies that e(xt, a2a3) = 0 for otherwise [x3, . . . , xt, a2, a3] ⊇ R4

t , which implies
that xtxt−3 ∈ E by (2) and so [x3, . . . , xt, a2, a3] ⊇ C≥5, a contradiction. Hence
e(xt, a1a4) = 2. Thus [a2, a3, a4, xt−1, xt] ⊇ C5 and r(xt−2xt−3 . . . x1a1a5) = 4. By (2),
xtxt−3 ∈ E. Consequently, [a4, xt, xt−3, xt−2, xt−1] ⊇ C5 and [x1, a1, a2, a3, x2] ⊇ C5,
a contradiction. Hence e(x1, a1a4) = 0 and so e(x1a2a3) = 2. As e(xt, L1 − a5) =
2, say without loss of generality e(xt, a3a4) ≥ 1. Then [x3 . . . xt, a3a4] ⊇ R4

t . As
[x1, a2, a1, a5, x2] ⊇ C5 and by (2), r(P ) = 4, i.e., xtxt−3 ∈ E and so [x3 . . . xt, a3a4] ⊇
C≥5, a contradiction.

By the above properties, we may assume that e(x1, L1) = 3 and 2 ≤ e(xt, L1) ≤ 3.
Then e(x2xt−1, L1) ≥ 13− e(x1xt, L1) ≥ 7.

Property 6. N(x1, L1) = {ai, ai+2, ai+3} for some ai ∈ V (L1).

Proof of Property 6. On the contrary, say the property does not hold. Then
N(x1, L1) contains three consecutive vertices of L1. Say N(x1, L1) = {a1, a2, a3}.
By Property 1, e(a2, x2xt−1) ≤ 1 and e(a2, x2xt) ≤ 1. Thus e(x2xt−1, a4a5) ≥ 7 −
e(x2xt−1, a1a2a3) ≥ 2. As e(xt, L1) ≥ 2, either N(xt, L1) ⊇ {ai, ai+2} for some
ai ∈ V (L1) or N(xt, L1) = {ai, ai+1} for some ai ∈ V (L1). We divide the proof into
the following cases.

Case 1. For some ai ∈ V (L1), {ai, ai+2} ⊆ N(xt).

First, assume that {a1, a3} ⊆ N(xt). Then xt → (L1, a2) and [x1, a1, xt, a3, a2] ⊇
C5. Thus xt−1a2 �∈ E and either e(x2, a4a5) = 0 or e(xt−1, a4a5) = 0. It follows that
e(x2xt−1, a1a3) = 4, x2a2 ∈ E, e(x2xt−1, a4a5) = 2 and e(xt, L1) = 3. Clearly,
xta2 �∈ E as x2a2 ∈ E. Thus e(xt, a4a5) = 1. Say without loss of generality
that xta4 ∈ E. As [xt−1, a1, a5, a4, xt] ⊇ C5 and r(xt−2 . . . x1a3a2) = 4 we have
r(P ) = 4 by (2). This implies that xtxt−3 ∈ E for otherwise [x1x4x3x2a2] ⊇ C5. If
e(x2, a4a5) > 0, then [x1, a1, a5, a4, x2, a2] ⊇ C≥5 and [a3, xt, xt−3, xt−2, xt−1] ⊇ C5, a
contradiction. Hence e(x2, a4a5) = 0 and so e(xt−1, a4a5) = 2 as e(x2xt−1, L1) ≥ 7.
Then [a4, xt, xt−3, xt−2, xt−1] ⊇ C5 and [x1, x2, a1, a2, a3] ⊇ C5, a contradiction.

Next, assume that {a1, a4} ⊆ N(xt) or {a3, a5} ⊆ N(xt). Say without loss of
generality {a3, a5} ⊆ N(xt). Then xt → (L1, a4) and so e(a4, x2xt−1) ≤ 1. As
e(a2, x2xt−1) ≤ 1, e(x2xt−1, a1a3a5) ≥ 7 − 2 = 5. Thus e(xt−1, a3a5) ≥ 1 and so
[xt−1, xt, a3, a4, a5] ⊇ C5. Clearly, r(xt−2xt−3 . . . x1ai) ≥ 3 for i ∈ {1, 2}. By (2),
r(P ) ≥ 3. For the moment, assume e(x1, P ) ≥ 2. Then e(x2, a1a2) = 0 for otherwise
[x1, x2, . . . , xt−2, a1, a2] ⊇ C≥5. This yields that e(x2, a3a5) = 2, e(xt−1, a1a2a3a5) = 4
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and e(a4, x2xt−1) = 1. Consequently, e(xt, L1) = 3. By Property 1, xt �→ (L1, ai)
for i ∈ {1, 2} and it follows that e(xt, a1a2) = 0. As [a1, a5, x1, x2, . . . , xt−2] ⊇
C≥5, [a2, a3, a4, xt−1, xt] �⊇ C5 and so xta4 �∈ E. Thus e(xt, L1) = 2, a contradic-
tion. Therefore e(x1, P ) = 1 and so e(xt, P ) ≥ 2. As e(x2xt−1, a1a3a5) ≥ 5, we
see that either {xt−1a3, x2a5} ⊆ E or {xt−1a5, x2a3} ⊆ E. In the former situa-
tion [x1, x2, a5, a1, a2] ⊇ C5 and in the latter [x1, x2, a3, a2, a1] ⊇ C5. This means
that [a3, xt, xt−1, . . . , x3] �⊇ C≥5 and [a5, xt, xt−1, . . . , x3] �⊇ C≥5. It follows that
e(xt, P ) = 2 and xtxt−2 ∈ E. As [xt−1, xt, a3, a4, a5] ⊇ C5 and by (2), we must
have that r(xt−2xt−3 . . . x1a1a2) = 3. This yields that e(x2, a1a2) = 0. It follows
that e(x2, a3a5) = 2, e(xt−1, a1a2a3a5) = 4, e(a4, x2xt−1) = 1 and e(xt, L1) = 3. As
[x1, x2, a3, a2, a1] ⊇ C5, we see that [a4, a5, xt, xt−1, xt−2] �⊇ C5 and so a4xt−1 �∈ E.
Thus x2a4 ∈ E. Consequently, [x1, a1, a5, a4, x2] ⊇ C5 and [a2, xt−1, xt−2, xt, a3] ⊇ C5,
a contradiction.

Finally, assume that {a2, a4} ⊆ N(xt) or {a2, a5} ⊆ N(xt). Say without loss of
generality {a2, a4} ⊆ N(xt). Then we readily see that x2a2 �∈ E and xt−1a3 �∈ E.
Thus e(x2xt−1, L1) ≤ 8. As e(x2xt−1, L1) ≥ 7, it follows that either {x2a5, xt−1a2} ⊆
E or {x2a1, xt−1a5} ⊆ E. Then as above it is easy to see that [L1, P ] ⊇ C5 
 R4

t .
By (2), r(P ) = 4. Then in each of the two situations, we readily see that [L1, P ] ⊇
C5 
 C≥5, a contradiction.

Case 2. N(xt, L1) = {ai, ai+1} for some ai ∈ V (L1).

In this case, e(x2xt−1, L1) ≥ 13 − 3 − 2 = 8. First, assume that N(xt, L1) ⊆
{a1, a2, a3}. Then [x1, xt, a1, a2, a3] ⊇ C5. Since e(a2, x2xt−1) ≤ 1, we see that
e(x2, a4a5) ≥ 1 and e(xt−1, a4a5) ≥ 1 and so [x2, . . . , xt−1, a4, a5] ⊇ C≥5, a contradic-
tion.

Next, asssume that N(xt, L1) = {a1, a5} or N(xt, L1) = {a3, a4}. Say without
loss of generality N(xt, L1) = {a3, a4}. As e(a2, x2xt−1) ≤ 1, we see that either
{x2a5, xt−1a3} ⊆ E or {x2a1, xt−1a5} ⊆ E. Thus [L1, P ] ⊇ C5 ∪ R4

t with x1 and
x2 on the 5-cycle. Furthermore, we see that e(xt, P ) = 1 as [P, L1] �⊇ C5 
 C≥5.
By (2), r(P ) = 4 and so x1x4 ∈ E. We also have either {x2a1, xt−1a5} ⊆ E or
{x2a3, xt−1a1} ⊆ E. With x1x4 ∈ E, we then readily see that [L1, P ] ⊇ C5 
 C≥5, a
contradiction.

Finally, assume that N(xt, L1) = {a4, a5}. Clearly, e(x2, a1a3) ≥ 1 and
e(xt−1, a4a5) ≥ 1. Then we readily see that [x1, x2, a1, a2, a3] ⊇ C5 and [x3, . . . ,
xt, a4, a5] ⊇ R4

t . Moreover, we see that e(xt, P ) = 1 as [x3, . . . , xt, a3, a4] �⊇ C≥5. By
(2), we obtains x1x4 ∈ E. We have either {x2a1, xt−1a3} ⊆ E or {x2a3, xt−1a1} ⊆ E.
Then we see that [L1, P ] ⊇ 2C5, a contradiction.

We are ready to complete the proof of the theorem. By the above properties,
we see that e(x1, L1) = {ai, ai+2, ai+3} for some ai ∈ V (L1) and 2 ≤ e(xt, L1) ≤ 3.
Say without loss of generality that N(x1, L1) = {a1, a3, a4}. Then e(x2xt−1, L1) ≥ 7,
e(a2, x2xt−1) ≤ 1 and e(a5, x2xt−1) ≤ 1.

First, assume that e(xt, L1) = 3. With xt playing the role of x1, we see, by
Property 6, that N(xt, L1) = {aj, aj+2, aj+3} for some aj ∈ V (L1). If j = 1, then
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by Property 2, we see that e(x2, a2a5) ≥ 1, e(xt−1, a2a5) ≥ 1 and there are two
independent edges between {a2, a5} and {x2, xt−1}. Say {x2a2, xt−1a5} ⊆ E. Then
[L1, P ] ⊇ C5 ∪ R4

t . By (2), r(P ) = 4 and consequently, [L1, P ] ⊇ C5 ∪ C≥5, a
contradiction. If j ∈ {2, 5}, say without loss of generality that j = 2. Then
e(a1, x2xt−1) ≤ 1 and e(a3, x2xt−1) ≤ 1. Thus e(x2xt−1, L1) = e(x2xt−1, a2a5) +
e(x2xt−1, a1a3) + e(x2xt−1, a4) ≤ 2 + 2 + 2 = 6, a contradiction.

Therefore j ∈ {3, 4}. Say without loss of generality that j = 3. Then e(a4, x2xt−1)
≤ 1. It follows that e(x2xt−1, a1a3) = 4 and e(ap, x2xt−1) = 1 for p ∈ {2, 4, 5}. Then
[a1, a2, x2, . . . , xt−1] ⊇ C≥5 and [x1, a3, xt, a5, a4] ⊇ C5, a contradiction.

Therefore e(xt, L1) = 2 and so e(x2xt−1, a1a3a4) = 6, e(a2, x2xt−1) = 1 and
e(a5, x2xt−1) = 1. Assume for the moment that N(xt, L1) �⊆ {a1, a3, a4}. Say without
loss of generality that a2xt ∈ E. Then [x1, x2, a4, a5, a1] ⊇ C5 and [x3, . . . , xt, a2, a3] ⊇
R4

t . By (2), r(P ) = 4, and consequently, [L1, P ] ⊇ C5 
C≥5, a contradiction. Hence
e(xt, L1) ⊆ {a1, a3, a4} and so e(xt, a3a4) ≥ 1. If e(xt−1, a2a5) = 2, we readily see that
[L1, P ] ⊇ C5 ∪ R4

t . Consequently, r(P ) = 4 and [L1, P ] ⊇ C5 ∪ C≥5, a contradiction.
Therefore e(xt−1, a2a5) ≤ 1 and so e(x2, a2a5) ≥ 1. We may assume without loss of
generality that a2x2 ∈ E. As e(xt, a3a4) ≥ 1 and e(a5, x2xt−1) = 1, we readily see
that [L1, P ] ⊇ C5 ∪ R4

t and so r(P ) = 4. Again, we see that [L1, P ] ⊇ C5 ∪ C≥5, a
contradiction. This proves the theorem.
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