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Abstract

We prove that if G is a graph of order at least 5k with k£ > 2 and the
minimum degree of G is at least 3k then G contains k disjoint cycles of
length at least 5. This supports the conjecture by Wang [Australas. J.
Combin. 54 (2012), 59-84]: if G is a graph of order at least (2d+ 1)k and
the minimum degree of G is at least (d+ 1)k with & > 2 then G contains
k disjoint cycles of length at least 2d + 1.

1 Introduction

A set of graphs is said to be disjoint if no two of them have any common vertex.
Corradi and Hajnal [2] investigated the maximum number of disjoint cycles in a
graph. They proved that if G is a graph of order at least 3k with minimum degree
at least 2k, then G contains k disjoint cycles. Erdds and Faudree [4] conjectured
that if G is a graph of order 4k with minimum degree at least 2k, then G contains
k disjoint cycles of length 4. To solve this conjecture, partial results were obtained
in [5] and [6]. We finally confirmed this conjecture in [7]. In [8], we proposed the
following two conjectures:

Conjecture 1 [8] Let d and k be two positive integers with k > 2. If G is a graph
of order at least (2d + 1)k and the minimum degree of G is at least (d + 1)k then G
contains k disjoint cycles of length at least 2d + 1.

Conjecture 2 [8] Let d and k be two positive integers with k > 2 and d > 3. Let
G be a graph of order n > 2dk with minimum degree at least dk. Then G contains
k disjoint cycles of length at least 2d, unless k is odd and n = 2dk + r for some
1<r<2d—2.

The above two conjectures are related with El-Zahar’s conjcture [3]. El-Zahar
conjectured that if G is a graph of order n = ny+ng+---+ng withn; > 3 (1 <i <k)
and the minimum degree of G is at least [ny/2] + [ng/2] + -+ + [ng/2], then G
contains k disjoint cycles of lengths ny,no, ..., ng, respectively. In Conjecture 1, if
G has order (2d + 1)k then the conjecture reduces to the special case of El-Zahar’s
conjecture where n; = 2d + 1 for all 1 < ¢ < k. Similarly, if G has order 2dk in
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Conjecture 2, then the conjecture reduces to the special case of El-Zahar’s conjecture
where n; = 2d for all 1 <3 < k.

With [7], we showed in [8] that if a graph G of order n > 4k with k > 2 has
minimum degree at least 2k then with three easily recognized exceptions, G' contains
k disjoint cycles of length at least 4. When d = 1, Conjecture 1 holds by Corradi and
Hajnal [2]. Comparing the proof of Conjecture 1 in the case d = 1 with our work in
[7] and [8], the work in [7] and [8] is significantly more complicated and involved. It
would be sound to make some progress on Conjecture 1 which includes Corradi and
Hajnal Theorem as a special case. As said so, our purpose in this paper is to show
Conjecture 1 in the case d = 2.

Another motivation for us to consider Conjecture 1 in the case d = 2 is the result
we proved in [9]:
Theorem 1 [9] Let k and n be two integers with k > 1. If G is a graph of order
n = 5k and the minimum degree of G is at least 3k, then G contains k disjoint cycles
of length of 5.

In this paper, we prove the following:

Theorem 2 Let k and n be two integers with k > 2 and n > 5. If G is a graph of
order n > bk and the minimum degree of G is at least 3k, then G contains k disjoint
cycles of length at least 5.

This extends Theorem 1 and also further supports Conjecture 1.
1.1 Terminology and Notation

We use [1] for standard terminology and notation except as indicated. Let G
be a graph. We use |G| to denote the order of G, i.e., |G| = |V(G)|. Let H be
a subgraph of G or a subset of V(G) or a sequence of distinct vertices of G. Let
u € V(G). We define N(u, H) to be the set of neighbors of u contained in H, and
let e(u, H) = |N(u, H)|. Clearly, N(u,G) = N(u) and e(u,G) is the degree of u
in G. Let v € V(G). We define I(uv, H) = N(u,H) N N(v, H) and let i(uv, H) =
|1 (uv, H)|.

If X is a subgraph of G or a subset of V(G) or a sequence of distinct vertices of
G, we define N(X,H) = U,N(u,H) and e(X,H) = X, e(u, H) where u runs over
all the vertices in X. Let each of X7, Xs,..., X, be a subgraph of G or a subset of
V(G) or a sequence of distinct vertices of G. We use [X7, Xs, ..., X,] to denote the
subgraph of GG induced by the set of all the vertices that belong to at least one of
X1, Xo, .., X,

For each integer k > 3, a k-cycle is a cycle of length k and a (> k)-cycle is a cycle
of length at least k. A feasible cycle is a (> 5)-cycle. For each integer i > 3, we use
C; to denote a cycle of length ¢ and Cs; to denote a cycle of length at least i. Use
P; to denote a path of order j for all integers j > 1. For a cycle or path L of G, a
chord of L is an edge of G — E(L) which joins two vertices of L, and we use 7(L) to
denote the number of chords of L in G. For each z € V(L), use 7(z, L) to denote
the number of chords of L that are incident with z. The length of L is denoted by
I(L).
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If S'is a set of subgraphs of G, we write G O S. For an integer £ > 1 and a graph
G', we use kG’ to denote a set of k disjoint graphs isomorphic to G’. If G; and G, are
two graphs, we use G1 WG4 to denote a set of two disjoint graphs, one isomorphic to G
and the other isomorphic to G5. For two graphs H; and Hs, the union of H; and H, is
still denoted by HyUH, as usual, that is, H1UHy = (V(H,)UV (H,), E(H,)UE(H,)).
Let each of Y and Z be a subgraph of G, or a subset of V(G), or a sequence of distinct
vertices of G. If Y and Z do not have any common vertices, we define E(Y, Z) to
be the set of all the edges of G between Y and Z. Clearly, e(Y,Z) = |E(Y, Z)|. If
C = 2125 ... 2,21 is a cycle, then the operations on the subscripts of the x;’s will be
taken by modulo 7 in {1,2,...,r}.

If we write a graph G as a sequence xjxs...x; of its vertices, it means that
V(G) = {z1,29,...,2;} and E(G) = {z;x;41]1 <i <1 —1}. Note that the sequence
may have repeated vertices. We use R! to denote a graph of order ¢ such that
Ri = 21Ty ... T With 3 <7 < t. We use B to denote a graph of order 5 such
that B = z3z12923140523. Let P be a path of G. We use r(P) to denote the order
of a largest cycle in P + f where f runs over all the chords f of P that are incident
with an endvertex of P. If P does not have such a chord, then r(P) = 0. Clearly, if
R! is a subgraph of G then r(R!) > 1.

Let C be a 5-cycle of G and u € V(C). Let x € V(G) — V(C). We write

= (Cou) if [C—u+2] D2C"=C5. If v — (C,u) for all uw € V(C') then we write
x— C.

2 Lemmas

Let G = (V,E) be a graph. We will use the following lemmas. Lemma 2.1 and
Lemma 2.2 are two easy observations.

Lemma 2.1 If P is a path of order 3 and u and v are two vertices in G — V (P)
such that e(uv, P) > 5, then [P 4+ u + v] contains a cycle of order 5.

Lemma 2.2 The following four statements hold:

(a) If L is a cycle of order p > 6 and v € V(G) — V(L) such that e(v,L) > 3,
then either [L + v| contains a feasible cycle C' with l(C) p, ore(v,L) =3 and v is
adjacent to three consecutive vertices of L, or e(v,L) = 3, p = 6 and v is adjacent
to every other vertex of L.

(b) If P is a path of order p > 5 and uw € V(G) — V(P) such that e(u, P)
then for some endvertex z of P, [P+u—z] contains a feasible cycle C with I(C)
Moreover, if p > 6, then [P + u] contains a feasible cycle of length less than p.

(¢) If P is a path of order p and uyus is an edge of G—V (P) such that e(ujug, P) >
4, then [P + uy 4 ug] contains a feasible cycle, or e(ujug, P) = 4 and P has an edge
xy such that N(ujug, P) = {x,y}, or e(ujus, P) =4 and P has a subpath xyz such
that N(w;, P) = {z,y, 2} and N(u;, P) = {y} for some {i,j} = {1,2}. Moreover, if
e(ujug, P) > 5 then [P + uj + us| contains a feasible cycle of order at most p + 1.

> 4,
<p
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Lemma 2.3 Let P and @ be two disjoint paths of G. Suppose that e(P,Q) > 5
and [P, Q] does not contain a feasible cycle of order at most |P| 4+ |Q| — 1. Then
e(P,Q) =5 and one of the following two statements holds:

(a) [P| =3, |Q[ =3 and [P,Q] = K33;
(b) P has a subpath uvw and Q has a subpath xyz such that N(v, Q) = {x,y, z}
and N(y, P) = {u,v,w}.

Proof. On the contrary, say the lemma fails. Let |P|+ |@| be minimal such that
the lemma fails for P and @. By Lemma 2.2, we see that |P| > 3 and |Q| > 3.
If |P|] = |Q| = 3, it is easy to check that one of (a) and (b) holds. So assume
that |P|+|Q| > 7. Say P = z1...25 and @ = y;...y;. By the minimality of
|P| +|Q|, we see that e(z;,Q) > 1 for i € {1,s} and e(y;, P) > 1 for j € {1,t}.
If {z1y1,zs9:} € FE or {1y, xs51} € E, then we readily see that [P, Q)] contains a
feasible cycle of order at most |P|+|Q| — 1. Therefore neither of these two situations
will occur. This implies that N(z1, Q) = N(xs, Q) = {yx} for some y; € V(Q) and
N(y1,P) = N(y;, P) = {xp} for some z;, € V(P). Thus s = t = 3 for otherwise
[P, Q] contains a feasible cycle of order at most |P| + |Q| — 1. Then one of (a) and
(b) holds. 1

Lemma 2.4 Let C be a 5-cycle of G. Let x and y be two vertices in G — V (C). If
e(xy,C) > 7, then there exists z € V(C') such that either yz € E and [C — z + ]
contains a 5-cycle C" with 7(C") > 7(C) — 1, or xz € E and [C — z + y] contains a
5-cycle C" with 7(C") > 7(C) — 1.

Proof. Say without loss of generality that e(x,C) > 4. For each u € V(C) with
r — (C,u), we see that [C'—u+z] D C' = Cy and 7(C") > 7(C)—1. Ase(zy,C) > 7,
yu € E for such a vertex u € V(C') with x — (C,u) and so the lemma holds. ]

Lemma 2.5 Let p and q be two integers with ¢ > p > 5 and ¢ > 6. Let C and L
be two disjoint cycles with I(C) = p and (L) = q. If e(L,C) > 3q + 1, then [C, L]
contains two disjoint feasible cycles C' and L' such that either [(C") < p orl(C") =p
and I(L") < q.

Proof. Say C = ajas...a,aq and L = x122...24.71. On the contrary, say the
lemma fails. We first claim that e(a;, L) < 5 and e(z;,C') <5 for all a; € V(C) and
z; € V(L). To see this, say e(a;, L) > 6 for some a; € V(C'). Then [L—z, —z,+1+a;]
contains a feasible cycle and so [C — a; + x, + 2,41] does not contain a feasible
cycle of order at most p for all r € {1,...,¢q}. By Lemma 2.2(c), this implies that
e(x,xry1,C — a;) < 4 and so e(z,x,41,C) < 6 for all r € {1,...,q}. Consequently,
e(C,L) < 3q, a contradiction. Hence e(a;, L) < 5 for all a; € V(C). Similarly,
e(x;,C) <5 forall x; € V(L).

Say e(x1,C) > e(x;,C) for all z; € V(L). As e(C,L) > 3q+ 1, e(x;,C) > 4. We

divide the proof into the following two cases.

Case 1. p=>5.
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As e(x1,C) > 4, 1 — (C,a;) for some a; € V(C). Thus [L — x1 + a;] does not
contain a feasible cycle of order < g—1. This implies that e(a;, L—z1) < 3 by Lemma
2.2(b). First, suppose that e(z1,C) = 5. Then x; — C and so e(aj, L —x1) < 3
for all 1 < j < 5. Thus e(C,L) = e(x;,C) +e(C, L —x1) < 5+5-3 =20. As
20 > e(C,L) > 3¢+ 1 > 19, it follows that ¢ = 6. We may assume without loss of
generality that e(aj, L —z;) =3 for 1 < j < 4. As [C,L] 2 2Cs, e(a,, xo75) < 1
and e(a,, r3z6) < 1 for all 1 <r < 5. It follows that e(a,, zoz5) = 1, e(a,, v376) = 1
and a,xqy € E for all 1 < r < 4. Assume for the moment that e(ai, xoxg) > 0.
Say without loss of generality that ajze € E. Then [rja4a5a125] O Cs and so
[z42526, azaz] 2 Cs. This implies that e(xg, asas) = 0 and so e(x3, asasz) = 2. Then
[a1a9a3x319] O Cs and [ayxix62524] 2 Cs, a contradiction. Therefore e(ay, zox6) = 0
and so e(ay, x3x5) = 2. Similarly, e(ay, z3x5) = 2. Thus [r3x4a1a5a4) 2 Cs and so
[r12625, asas] 2 Cs. This implies that e(rs, azaz) = 0. Similarly, [xsziaia5a4] D Cs
and so e(x3,asaz) = 0. Thus e(xsx6, azaz) = 4. Therefore [xox1760203] O Cy and so
[C, L] 2 2C5, a contradiction.

Hence e(z1,C) = 4 and so e(z;,C) < 4 for all z; € V(L). Say N(z1,C) =
{a1,as,a3,a4}. Then xy — (C,q;) and so e(a;, L — x1) < 3 for i € {2,3,5}. Then
10 > e(ajaq, L) > 3¢+ 1 — 3 -3 — 2. This implies that ¢ = 6 and e(ajaq, L) > 8.
We claim that e(a;, L) = e(aq, L) = 4. If this is not true, say without loss of
generality that e(a;, L) = 5. Label L = z202324252621 with e(a;, L — zg) = 5.
Then [a1, L — 2z — 2] 2 C5 and so e(z126,C — a1) < 4 by Lemma 2.2(c). Simi-
larly, e(2324,C — ay) < 4. It follows that e(z925,C) > 19 — 2.4 —3 = 8 and so
e(z2,C) = e(z5,C) = 4. Consequently, e(z126,C —ay) = 4 and e(z324,C — ay) = 4.
Similarly, we shall have that e(z526, C' — a1) = 4, €(2223,C —a1) = 4 and e(z;,C) =
e(z4,C) = 4. Consequently, e(z5,C — a1) = e(z3,C —ay) = 1. As [C,L] 2 2C5,
zi 7 (Cyay) and so e(z;, azas) < 1 for all i € {1,2,4,5}. Thus e(z;, aza5) = 1 and
e(z;, azaq) = 2 for all i € {1,2,4,5}. Then we see that [z, 25, as, ag, as, as] 2 Cs and
so e(zg,azas) = 0. Thus e(zg,azay) = 1, say zgaz € E. Then [ay, as, as, 26, 25] 2 Cs
and [ay, 21, 22, 23, 24] 2 Cs, a contradiction.

Hence e(ay, L) = e(aq, L) = 4. It follows that e(a;, L) = 4 for i € {1,2,3,4} and
e(as, L) = 3. We now go back to the labelling L = zyxox3x4250621. As [C, L] 2 2C5,
we see that e(a;, xox5) < 1 and e(a;, x3z6) < 1 for all i € {2,3,5}. It follows that
e(asagas, x4) = 3. Then for each i € {1,4}, 24 — (C,a;) and so [L—z4+a;] 2 Cs. By
Lemma 2.3(b), this implies that e(a;, L —x4) < 3 and so a;x4 € E for each i € {1,4}.
Thus e(x4,C) = 5, a contradiction.

Case 2. p > 6.

First, assume that e(x;,C) = 5. Say the five vertices in N(x1,C) are a,b,c,d
and ¢ in order along C' with |Clg, a]| > 3. Then z1Cla, d]x; and x,C[d, a]z, are two
feasible cycles. By Lemma 2.2(c) and Lemma 2.3, this yields that e(C(d, a), L—x1) <
4+ r and e(C(a,d),L — 1) < 4+ r with r € {0,1}. It follows that e(ad, L) >
3¢+1—-2-(4+47r)—3=3¢—10—2r. AsC—a+x, 2 Cs5 and C—d+x, 2O Cs5, we
have e(a, L —z1) < 3 and e(d, L —x1) < 3 by Lemma 2.2(b). Thus 8 > 3¢ — 10 — 2r-.
This yields ¢ = 6 and so p = 6. Thus by Lemma 2.2(c), we may choose r = 0. It
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follows that e(a, L) =4, e(d, L) = 4, e(C(d,a), L—x;) = 4 and e(C(a,d), L—x;) = 4.
We may assume that {a,b,c,d, g} = {a1,...,as}. Similarly, we shall have e(as, L) =
e(aq, L) = 4. It follows that e(as, L—x1) = e(ag, L—x1) = 1. Clearly, e(ay, zo16) < 1,
for otherwise [C, L] O C5 W Cy. Say ayxg € E. As e(ayas, L — x1) = 6, there exists
x;Tiy1 on L — a1 such that {a1x;, a5z} € E. Thus [z, 441, as, ag, a1] 2 Cs. Since
e(ag, L — x; — xi11) > 2 and e(aq, L — x; — x441) > 2, [agasaq, L — x; — xi11] 2 Css,
a contradiction. This proves that e(z1,C') = 4. Similarly, we shall have e(a;, L) < 4
for all a; € V(C). As p > 6, we see that there are two distinct vertices a, and
a; in N(z1,C) such that both z1Clas, a;]x; and x1Clay, as]x; are feasible cycles. By
Lemma 2.2(c) and Lemma 2.3, we have e(C(ay, as), L—z1) < 4+r and e(C/(as, a;), L—
x1) <4+r with r € {0,1}. Then 8 > e(asar, L) > 3¢+1—2- (44 1) —2. As above,
we must have ¢ = 6 and so p = 6. Then by Lemma 2.2(c), we may choose r = 0.
Thus 8 > e(asa;, L) >3¢+1—2-4—2>9, a contradiction. 1

Lemma 2.6 [Lemma 2.2, [9]] Let D and L be two disjoint subgraphs of G such that
D = B and L = C5. Say D = xoxix9m0r324%0. Suppose that e(D — xo, L) > 13.
Then [D, L] 2 2Cs.

Corollary 2.7 Let P = z1x5...2¢ be a path of order t > 5 and C' a 5-cycle in G
such that P and C are disjoint and {x1zp, v;xp} C E for some3 < h <k <t—2.
If e(x;z;,C) + e(xqx,,C) > 13 for some 1 <i < j<h—1landk+1<g<r<t
then [P, C] contains two disjoint feasible cycles.

3 Proof of Theorem 2

Let G be a graph of order n > 5k with k£ > 2 and §(G) > 3k. Suppose, for a
contradiction, that G does not contain k disjoint feasible cycles. By Theorem 1,
n > 5k + 1. Let kg be the largest integer such that GG contains kq disjoint feasible
cycles. A chain of G is a sequence (Lq, ..., Ly,) of kq disjoint feasible cycles.

We use lexicographic order to order chains with respect to the lengths of feasible
cycles in chains, that is, for two chains (L4, ..., Ly,) and (L}, ..., L} ) in G, we write
(L1,..., Lyy) < (LY, ..., Ly,) if there exists j € {1,...,ko} such that I(L;) = I(L])
fori = 1,...,5 and I(Ljy1) < I(L},,). We say that (Li,...,Ly,) is a minimal
chain if for any chain (L3,..., L} ), (L},...,L},) A (L1,...,Ly,). For any chain
o0 = (Ly,...,Ly,), we use V(o) to denote V(U L;). We now choose a minimal
chain ¢ = (Ly, ..., Ly,) such that

The length of a longest path of G — V(o) is maximal. (1)
Let H=UP L, and D =G — V(H). Let P = ...z, be a longest path of D. We

shall prove the following two claims.
Claim 1. t > 6.

Proof of Claim 1. Assume first that |D| < 5. Then |Ly,| > 6 and by Lemma 2.2(a)
and the minimality of o, e(D, Ly,) < 3|D|. By Lemma 2.2(b), e(z, Ly, — x) < 3 for
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each xz € V(Lko) Thus G(LkO,H—V(LkO)) Z 3k3|Lk0|—3|LkO|—3|D| Z 3(k3—2)|Lk0|+3
This implies that e(Ly,, L;) > 3|Lg,| + 1 for some 1 < i < k — 2. By Lemma 2.5,
[Li, Ly,] contains two disjoint feasible cycles C" and L’ such that either {(C") < I(L;)
or [(C") =1(L;) and (L") < I(Ly,). Replacing L; and Ly, with C' and L', we obtain
a chain ¢’ < o, a contradiction. Therefore |D| > 6.

For a contradiction, suppose that t < 5. Let @ be a longest path in D — V(P).
Subject to (1), we choose ¢ and P in D such that [(Q) is maximal. Say @ =
Y1Y2 - .. Ys. Let If D contains two distinct vertices = and y with e(xy, D) < 5, then
e(xy, L;) > 7 for some L; in H since e(xy,G) > 6k. Then by Lemma 2.2(a) and the
minimality of o, we see that |L;| = 5 and by Lemma 2.4, [L; +x +y] D Cs & P,. This
argument shows that ¢ > 2. If ¢t = 2, this argument allows us to see that we may
choose ¢ such that D contains two independent edges xu and yv. Then e(xy, D) = 2
and e(zy, L;) > 7 for some L; in H. As above, we see that |L;| = 5 and so by Lemma
2.4, [Li, x,u,y,v] O C5 W P3, a contradiction. Hence ¢t > 3.

First, suppose that s > 2. We claim that e(xiz91y5, D) < 11. To observe
this, we readily see that e(x;xy, P) < 6 and e(yiys, P) < 2 since D 2 Cs5 and
t < 5. Moreover, if e(yys, P) > 0 then t = 5, s = 2, N(y1y2, P) = {x3} and so
e(r1241ys, D) < 11. Suppose that e(xixy1ys, D) > 12. Then it is easy to see that
[P] = [Q] & Ky. As e(r1z4y1ys, G) > 12k, e(x124y1y4, L) > 12 for some L; in H.
Say without loss of generality e(zyz4, L;) > 6. By Lemma 2.2(a), |L;| < 6 and we
see that [L;, P] 2 Cs. Thus |L;| = 5 and so [P,u] 2 Cj for some u € V(L;). It
follows that e(Q, L; — u) = 0 by (1). Therefore e(x1x4, L;) = 10 and e(u, y1y4) = 2.
Consequently, [L;, P,Q] 2 2C5, a contradiction. Therefore e(x1z:y1ys, D) < 11. As
e(r1xy1ys, G) > 12k, e(x124y1ys, L;) > 13 for some L; in H. By Lemma 2.2(a), we
get |L;| = 5. Say L; = ujugugususuy. Assume for the moment that e(yyys, L;) > 7.
Say without loss of generality e(y;, L;) > 4 and {uy, us, us, us} € N(y1). By (1), we
see that e(zyxy, uguzus) = 0. Thus e(yyys, L;) > 13 —4 = 9. Thus e(y;, L;) = 5 or
e(ys, L;) = 5 and so e(xyx, L;) = 0, a contradiction. Therefore e(y1ys, L;) < 6 and
so e(xyxy, L) > 7. If t = 3, let u, € V(L;) be such that {u,x1,u, 123} C E. Then
by (1), e(y1Ys, Urrotristrrq) = 0. Thus e(y1ys, L;) < 4 and so e(xix3, L;) > 9. Thus
there exist four such vertices w, and so e(y1ys, L;) = 0, a contradiction. If t = 4,
let u, € I(x1x4, L;). By (1), e(v1ys, Li — u,) = 0 and so e(xyxy, L;) > 13 —2 = 11,
a contradiction. Hence t = 5. Say without loss of generality e(zq, L;) > e(xs, L;).
Then e(xy, L;) > 4. If e(zy, L;) = 5, then I(xsy1, L;) = 0 and so e(ys, L;) > 3. Thus
ys — (L;,u,) for some u, € V(L;) and P + u,z; is longer than P, a contradiction.
Hence e(xq, L;) = 4. Say N(z1, L;) = {u1,us, usg,us}. Then I(zsy1, L;) C {ug, uq}.
As e(y1ys, Li) > 13 —2-4 =5, say e(y1, L;) > 3. By (1), y1 # (Ls,u,) for all r €
{1,2,3,4} and this implies that N(y1, L;) = {w1,us,us}. Thus s < 4 and uszs € E
for otherwise [L;, P, Q] O C5W Ps. If s = 2, then we readily see that e(y,, L; —us) =0
for otherwise [L;, P,Q] 2 Cs W Py and so e(y1yq, L;) + e(x125,L;) < 4+ 8 =12, a
contradiction. If 3 < s <4, then e(ys, ujusuy) = 0 for otherwise [L;, P, Q] 2 C5 W P.
It follows that e(ys, uguz) = 2 and e(zy, ujuguguy) = 4. Thus [z1, uy, y1, us, ug) 2 Cs
and [P — 1, usug] 2 Pg, a contradiction.

Therefore s = 1. If D — V(P) contains two distinct vertices x and y, then we
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readily see that e(xy, D) < 6 and so e(zy, L;) > 7 for some L; in H. Consequently,
[Li,z,y] 2 C5 W Py by Lemma 2.2(a) and Lemma 2.4, contradicting the maximality
of Q. Hence |D — V(P)| = 1. Thus t = 5. In this case, we readily see as above that
for some L; in H, [L;,x1,11] 2 Cs W P,. Thus G has a minimal chain ¢’ such that
G—V(d') 2 PyW P, Say o' = (L}, Ly, ..., L} ). Let P' = 21252324 and Q' = v1vy
be two disjoint paths in G — V(¢'). As G —V(0') 2 Cs5 and G — V(0') 2 P, we
see that e(zyz4v1v9, P'U Q") < 8. Thus e(z124v1v9, L)) > 13 for some 1 < i < ky. By
Lemma 2.2(a), |L;| = 5. If there exists u € I(z124, L) then e(vive, u”u™) = 0 by the
maximality of P. Thus e(vivy, L}) < 6 and so e(z124, L) > 7. Then i(z124, L) > 2
and we see that e(vjve, w) = 0 for some w € V(L)) — {u",u"} for the same reason.
Thus e(v1vq, L)) < 4 and so e(z124, L) > 9. Consequently, e(vivg, L) = 0 for the
same reason, a contradiction. Hence (2124, L) = 0 and so e(v1vq, L) > 13 —5 = 8.
Let uwvw be a path on L] with {uvy,wve} C E. Then vyuvwugvy is a Cs in G and
so e(z124, V(L) — {u,v,w}) = 0 by the maximality of P. Thus e(z124,L;) < 3
and so e(vive, L) = 10. Then for the same reason, we see that e(z124, L)) = 0, a
contradiction. I

Claim 2. e(x, P) =1 or e(xy, P) = 1.
Proof of Claim 2. On the contrary, say e(z1,P) > 1 and e(z;, P) > 1. Let
h be maximal with =12, € E and s be minimal with z,x, € E. As D 2 Cs;p,
3 < h < s <t—2 Leta be the smallest integer and b be the largest integer
such that @ > 2, b <t — 1 and {z12411, 221} C E. Set R = {x1, x4, xp, 24} If
e(R, L;) > 13 for some L; in H, then |L;| = 5 by Lemma 2.2(a) and the minimality
of o, and consequently [L;, P] contains two disjoint feasible cycles by Corollary 2.7,
a contradiction. Therefore e(R, L;) < 12 for all L; in H. By the maximality of P,
e(R,D —V(P)) =0. Thus e(R, P) = e(R,D) > 12k — 12kg > 12. As D 2 Cs5;, it
follows that e(z;, P) = 3 for all z; € R and [xy, 22, x3, x4] = [T4_3, X420, 141, T4 = K.
Thus kg = k — 1 and e(R, L;) = 12 for all L; in H. By Lemma 2.2(a), we readily
see that |Ly_1| = 5. Say without loss of generality that e(xizo, Ly_1) > 6. Let
w € I(x129, Li—1). Then [z1, x9, x5, x4, u] D C5. Thus [Ly_1 —u, 242,11, 2] 2 Css.
Thus e(z;, L1 —u) < 3 for each i € {t — 1,t}. In addition, if e(x;, Ly_1 —u) > 0
for all i € {t — 1,t} then e(x;_ya, Ly—1 — u) = 2. Hence e(xy_124, L) < 5.
Similarly, if i(x;_12¢, Lr—1) # 0 then e(xixg, Ly—1) < 5 and so e(R, Ly_1) < 10,
a contradiction. Thus i(x;_12¢, Ly—1) = 0 and in particular, e(u,x;_12;) < 1 and
so e(xy_1x4, Lp—1) < 4. Thus e(xyxe, Lr—1) > 8. Say without loss of generality
e(ry, Lg—1) > e(xg, Lg_1). Then e(xy, Ly_1) > 4. It follows that x; — (Lx_1,v) for
some i € {t —1,t} and v € I(zax;, Lg_1), i.e., [Ly_1, P] D C5 W C>5, a contradiction.
1
For the proof of the theorem, we now choose, subject to (1), o and P = x; ...,
in D with descending priorities such that the following two conditions hold:

r(P) is maximal; (2)
ko
> 7(L;) is maximal. (3)

=1
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Let R = {x1,xg, 241, 2:}. Clearly, e(xyzs, D — V(P)) = 0. If zou € E for some
u € V(D) —V(P), then e(ziu, D) = e(xyu, P) < 4 as D 2 Cs;5. Consequently,
e(riu, H) > 6k —4 = 6(k — 1) + 2 and so e(zyu, L;) > 7 for some L, in H. By
Lemma 2.2(a) and the minimality of o, we see that |L;| = 5. By Lemma 2.4, we
see that [L;, P 4+ u] contains a 5-cycle and a path of order ¢ + 1 such that they are
disjoint, contradicting the maximality of P. Hence e(x2, D — V(P)) = 0. Similarly,
e(ry—1,D —V(P))=0.

As D 2 Css, it is easy to see that e(xo, P) < 4, e(x4—1, P) < 4, e(z122, P) < 6
and e(zy_124, P) < 6. If e(R, P) > 12, then we would have that e(z;, P) > 2 and
e(x, P) > 2, contradicting Claim 2. Therefore e(R,D) = e(R,P) < 12. Thus
e(R,L,) > 13 for some L, in H. By Lemma 2.2(a) and minimality of o, we see
that |L.| = 5. Say without loss of generality that L, = L; = ajasazasasa;. The
following six properties will be used to complete our proof. For convenience in the
following, we will resort to the definition of R} in the introduction. Since ¢ > 6 and
[L1, P] 2 2Cs5, we immediately have the following Property 1:

Property 1. For each v € V(Ly), if x1 — (L1,u) then e(u,zoxy 1) < 1 and
e(u, zoxy) < 1, and for each v € V(Ly), if x; — (Lq,v) then e(v,x12,-1) < 1 and
e(v, zoz—1) < 1. [

Property 2. Thereis noi € {1,2,3,4,5} such that N(x1x.xa, L1) C {a;, a;y2,ai13}
or N(ZL‘lfL‘tl't_l, Ll) Q {CLZ‘, (IH_Q, ai+3}.

Proof of Property 2. On the contrary, say without loss of generality that
N(zyzyx-1, L) C {a1,a3,a4}. Since e(R, L) > 13, we see that e(zy, L1) > 4
and 8 < e(zyxyxi_1,L1) < 9. It is easy to see that xo — (Lq,a;) for some a; €
I(zy2¢,{a1,as,a4}). Thus e(x;, P) = 1 for otherwise [P — x5 + a;] 2 Cs;5. It is
also clear that xy — (L1, a;) for some a; € I(x;_q1x¢, L1). As [P — x5 + a;] 2 Css,
this implies that r(P) < 3, i.e., vy, 3 € E. Clearly, [a1,as5, a4, z;1, 2] 2 C5 and
[a1, as, a3, x;1,2¢ 2 Cs. Then neither of [P —xy_1 — x4, asas] and [P —xy_1 — x4, agas]
contains R} by (2). This implies that e(z;7, asas) < 2 and e(x22, asas) < 2. Con-
sequently, e(R, L1) < 12, a contradiction. 1

Property 3. e(z1, L) <5 and e(zy, Ly) < 5.

Proof of Property 3. Say e(x1,L;) = 5. Then z; — L;. By Property 1,
i(xowy—1, L) = 0 and i(zozy, L) = 0. Thus e(xy_q,L;) > 13 — 5 — e(xoxy, L) > 3
and e(xy, L;) > 13 — 5 — e(wowy_1, L1) > 3. If e(xy, L1) > 4, then we readily see that
r; — (Ly1,0a;) and e(a;, x;_1x1) = 2 for some a; € V(Ly), a contradiction. Hence
e(xy, L) = 3. First, assume that N(xy, L1) = {a;, a;11,a;12} for some a; € V(Ly).
Say N(x, L) = {a1,a9,a3}. By Property 1, e(xs,ajasa3) = 0 and x;_jay € E,
and so e(zox;_1,L1) < 4. Consequently, e(R,L;) < 12, a contradiction. Hence
N(zy, Ly) = {a;, a;2,a;43} for some a; € V(Ly). Say N(xy, Ly) = {a1,a3,a4}. Then

e(xg,arazay) = 0 and e(x;_1,a2a;) = 0. This implies that e(zq,asas) = 2 and
e(xi—1,a1asaq) = 3. Then [Ly, P] D 2Cs; = {r105010404%1, T2 . . . T4_1030222}, &
contradiction. I

Property 4. e(z1, L) < 4 and e(zy, Ly) < 4.
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Proof of Property 4. Say e(xy,aia2aza4) = 4. Then x; — (Li,a;) for each
i € {2,3,5}. Thus i(xqzi_1,azaszas) = 0 and i(z2x¢, asagas) = 0. This implies that
e(rory_1, L) < 7 and e(xaty, L) < 7. Consequently, e(x;, Ly) > 2 and e(zy_1, L)
> 2.

First, assume that e(x;, L1) = 4. Then it is easy see that [L1 — a;,x1, 2] 2 Cj
for all a; € V(Ly), and so i(xew;_1,L1) = 0. It follows that e(xow;_1,L1) = 5
and so e(a;,xoxi—1) = 1 for all a; € V(Ly). Thus by Property 1, for all a; €
V(Ly), if e(a;, z12¢) = 2, then xy 4 (L1,a;) or z; # (L1,a;). This implies that
a,xy ¢ E for some r € {2,3}. Say a, = ap. Since z; — (Li,a2) and z; —
(L1, a3), it follows that {xeas,z:—1a3} C E. Consequently, [Ly,P] D 2Cs; =
{z10120050471, A5 . . . 2410302}, a contradiction.

Next, assume that e(z;, L1) = 3. Then e(xsxy_1,L1) > 6 and by Property 1,
I(xowy 1, L1) C {a1,a4} and so i(xexs 1,a1a4) > 1. Say e(ay, x9x, 1) = 2. Then

[a1, To, ..., x—1] 2 Cs5. Thus [z, ag, a3, a4, 2] 2 Cs and so e(xy, azazay) < 1. It
follows that e(x;, aiasa4) = 3 as [Ly — a1, x1, 2] 2 Cs. By Property 1, xqa5 & E.
As [21, 29, a1, a2,a3] 2 Cs, [x3,..., 2, a4,a5) 2 Cs5. As r(xs...xa4a5) > 3 and by

(2), r(P) > 3. Assume first e(z;, P) > 2. Then [z3,..., 74 a1,a5] 2 Cs5 and so
(1, X9, az, a3, a4] 2 Cs. This yields e(xs, asas) = 0 and so I(xex; 9, L1) C {ar}. As
e(razy_1, L) > 6, it follows that e(z;_1,asasas) = 3 and e(as, xox;—1) = 1. Thus
(T3, ..., 24, a4, a5] O Csp, a contradiction.

Therefore e(x;, P) = 1 and so e(z1,P) > 2. As [x,a4,a5,a1,2-1] 2 Cs,

[as, az,x1,...,2—2] 2 Cs5 and so e(xa,aza3) = 0. As [a1, a2, %1, ..., 23] O Css,
xi_1a3 € E. As e(xoxi_1, L1) > 6, it follows that zoay € F and e(z;_1, azaqas) = 3.
Thus [z;_1, x4, a5, a1, as) 2 Cs and [ag, a4, T1, . .., 2] 2 Css5, a contradiction.

Finally, e(z;, L;) = 2. In this situation, e(a;, zox;—1) = 1 for ¢ € {2,3,5} and
e(ayay, voxy—1) = 4. By Property 1, 1 4 Ly and this implies 7(as, L;) = 0. First,
suppose za5 € E. Then zqa5 ¢ E. By Property 1, e(zy,aza3) = 0. Say without
loss of generality z,a4 € E. Clearly, [z1, %2, a1, a9,a3] 2 Cs and r(x3...xa504) = 4.
By (2), r(P) = 4. If e(ay, P) > 2, then [z3,..., 24, a4,a5] 2 Cs5, a contradiction.
Hence e(z;, P) = 1 and so x1x4 € E. Then we see that a1, 27 ...2,2] 2 C5 and so
e(xi_1,asa3) = 0. Thus e(zy,azaz) = 2 and by(3), 7(L1) > 7(x129a0100a371) > 4 and
so 7(as, L1) > 0, a contradiction. Hence xa5 ¢ E.

Next, suppose e(zy, ara3) = 2 or e(xy,asay) = 2, say e(xy,asay) = 2. Then
azry_1 € F and asry ¢ E by Property 1. Thus asze € F and asr; 1 € E. As
[Ti1,xt, a4, a5,a1) D Cs, [21, ..., T—2,aza3] 2 Cs5. This implies that e(xy, P) = 1.

As r(xy_o...z100a3) = 4 and by (2), we obtain that 7(P) = 4, i.e., zya;_3 € E. Thus
[P — x1,a5] O C5 with 1 — (L1, az), a contradiction.

Next, suppose e(zy, a1a2) = 2 or e(xy,azay) = 2, say e(xy,azay) = 2. Then
xoa3 & E by Property 1 and so z; 1a3 € E. Since [z;_1, %4, a4,0a5,a1] 2 Cs and
r(zi—g...x100a3) > 3, we see that either e(xy, P) > 2 or e(x, P) > 2 by (2). If
e(xy, P) > 2 then [x3,...,x,a3,a4) 2 Csp and so [as, aq, a9, x1,22] 2 Cs. Con-
sequently, aszy ¢ E and so x;_ja5 € E. Then [x3,...,240a4,a5] 2 Cs5 and

[x1, a3, ag, a1, 9] 2 Cs, a contradiction. Hence e(z;, P) = 1 and e(xq, P) > 2. Then
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[Ti—a,...,x1,a1,a2) 2 Cs5 and so [x;_1, T4, ag, aq, a5] 2 Cs. Thus z;_1a5 ¢ E and so
zoas € E. Thus [z;_9,...,21,a4,a5] 2 Csp and [aq, ag, ag, 2, x:—1] 2 C5, a contra-
diction.

Next, suppose e(zy,azaz) = 2. Then e(xq,asa3) = 0 by Property 1 and so
e(xi—1,asa3) = 2. Since [z1,xa,a1,a5,a4] 2 Cs, we have [zs,..., Tt a2,a3] 2 Css.
Since r(x3...xaza3) = 4 and by (2), r(P) = 4, it follows that e(x;, P) = 1 and
rixry € E. Thus |ay, 21, 24, 3,22 D Cs and [zy_1, 24, az, a3, a4] 2 C5, a contradic-
tion.

Finally, suppose e(x;,ajaq) = 2. Since [x4_1, 2, a1, a5,a4] 2 Cs, it follows that
[T1, ..., Z_9,a0,a3) B Cs5. As (x4 ... x10203) > 3, we have r(P) > 3 by (2). As-
sume first that e(z1, P) > 2. By Claim 2, e(zy, P) = 1. Then e(z9, asaz) = 0 because
[T1, ..., %9, a9,a3) B Css. Thus e(z;_1, asa3) = 2. Consequently, [xi_1, zy, ayq, ag, as]
D C5 and [x4-9,...,21,a4,a5] 2 Css5, which implies aszy ¢ E. Thus z;_q1a5 € E.
This yields that r(zs...xa4a5) = 4. As [21, a3, a9, a1,23] 2 Cj, it follows by (2)
that 124 € E. Thus [21, x4, 23, 22,a1] 2 Cs, a contradiction. Hence e(x;, P) > 2

and e(z1, P) = 1. Since [z, %9, a1, a9, a3] 2 Cs, it follows that [zs, ...,z a4,a5] 2
Css. This implies that azx;; ¢ E and r(P) = 3. Thus aszo € E. Then
[T1, X9, a5,a1,as] 2 Cs and so [z3,..., 24 a3,a4] 2 Cs5. Thus x;_1a3 ¢ E and so
xoa3 € E. Then r(x;_o...z100a3) = 4. By (2), r(P) = 4, a contradiction. 1

Property 5. e(zy2¢, L) > 5.

Proof of Property 5. Say e(x1xy, L1) < 4. Since e(xox;_1, L1) > 13—e(x124, L1) >
9, we may assume without loss of generality that e(zs, L1) = 5 and e(zy_1, L1) > 4.
Say e(zy_1,a1asasay) = 4. We have xo — L;. We claim that e(z, P) = 1. If this
is false, say e(x1, P) > 2. Then [P — a9 + a;] 2 Cs5 for all a; € V(L;). This
implies i(xyx;, L1) = 0. Moreover, if i(xix;_1,L1) # 0, then ¢ = 6 and 2124 € E.
Assume for the moment that i(xix;_1,L1) # 0. As x5 — (L1, q;) for i € {2,3,5},
[P — x5,a;) 2 Cs5 for i € {2,3,5} and so e(xy,asazas) = 0. Thus e(x,a1a4) > 0.
Say mia; € E. Then [ay, 21,74, 73, 25] 2O Cs and so [x5,xg, ag, a3, as,a5] 2 Css.
Thus e(zg, asasas) = 0. It follows that e(zix6,L1) = 3 and e(x5, L) = 5 with
e(x1,a1aq) = 2 and zgaz € F and we readily see that [Lq, P] D 2Cj5, a contradiction.
Therefore i(z124-1,L1) = 0. As e(P,Ly) > 13, e(xy,L1) > 3. By Property 1,
we see that N(zy, L) = {a1,as,a4} and zy_q1a5 ¢ E. Thus i(z124-1,L1) # 0 or
i(x124, L1) # 0, a contradiction. Hence e(z, P) = 1.

Next, we claim that e(x;_1, L1) = 4. If this is false, say e(z;-1,L1) = 5. Then
we also have e(x;, P) = 1. By Property 1, 1 4 (L1,a;) and z; 4 (Ly,q;) for
a; € V (L), which implies that e(x1, L) < 2 and e(zy, L1) < 2. Say without loss
of generality z1a; € E. Then [z, a1, as,a3,22] 2 Cs. Then e(xy,aqas) = 0 for
otherwise [x3, ..., T, a4, a5] D R}, contradicting (2). Similarly, e(xy, asaz) = 0. Thus
e(x1,Ly) > 2. Then zya; € E for some j # 1. With a; in place of a; in the above,
we see that x;a; € E. a contradiction.

Therefore e(x;_1, L1) = 4 and so e(zyz, L1) = 4. Suppose that z1a; € E. Then
(21, as, a1, a2, 15] 2 Cs. If e(wy,azas) > 0 then [z3,..., 74 a3,a4) 2 RE By (2),
r(P) =4, i.e., zyxy—3 € E. Thus [z3,...,2¢, a3,a4] O Css5, a contradiction. Hence



HONG WANG / AUSTRALAS. J. COMBIN. 71(1) (2018), 54-67 65

e(xt, azaq) = 0. Similarly, e(x¢, ajaz) = 0. Thus asz; € E and e(z1,L;) = 3. By
Property 1, 1 /4 (L1, q;) for each i € {1,2,3,4} and so e(z1,ajas5a4) = 3. Thus
r1 — (L1,a5) and [P — x1,a5] 2 C;, a contradiction. Hence xjas ¢ E. Thus
e(x1, L1 —as) > 1 and so either [z, 29, a1, as, as] 2 Cs or [z1, x9, ag, az, as] 2 C5. Say
without loss of generality [z1, %2, a1, as,a3] 2 Cs. If xya5 € E, then r(xs. .. xas5a4) =
4. Consequently, (P) =4 by (2) and so [zs,..., %, a5, a4] 2 Cs5, a contradiction.
Hence xia5 € E. As x1 /4 (L1, a;) and 2y 4 (L1, a;) for each i € {1,2, 3,4}, it follows
that e(xq1, L1 —as) = e(xy, L1 —as) = 2. Assume for the moment that e(zq, a1aq) > 0.
Say without loss of generality that z1a; € E. Then [xq, %9, a4, a5,a1] 2 Cs. This
implies that e(x;, asaz) = 0 for otherwise [r3,..., 7, a9,a3] 2 R}, which implies
that z;2,-3 € E by (2) and so [x3,...,%,a9,a3] 2 Css5, a contradiction. Hence
e(xy, ajay) = 2. Thus [as, az, ag, 241, 7] 2 Cs and r(zy_oxs_3...x10105) = 4. By (2),
rxy_3 € E. Consequently, [ay, 2y, 243,24 9,24 1] 2 Cs and [, a1, az, az, v2] 2 Cs,
a contradiction. Hence e(z1,a1a4) = 0 and so e(xjasa3) = 2. As e(xy, L1 — as) =
2, say without loss of generality e(zy,azas) > 1. Then [v3...74 a3a4] 2 Rf. As
[x1, a9, a1, a5, k9] 2 Cs and by (2), r(P) =4, i.e., xx,_3 € E and so [z3 ... 2y, azay] 2
C>5, a contradiction. I

By the above properties, we may assume that e(x1, L) = 3 and 2 < e(wy, L1) < 3.
Then e(zyzy_1,L1) > 13 — e(zy24, L1) > 7.

Property 6. N(x1,L1) = {a;, a;12,a;,3} for some a; € V(Ly).

Proof of Property 6. On the contrary, say the property does not hold. Then
N(z1, L1) contains three consecutive vertices of Li. Say N(z1,L1) = {a,as,as}.
By Property 1, e(ag, xex;—1) < 1 and e(ag, xox;) < 1. Thus e(xox;_1,a4a5) > 7 —
e(xoxi_1,a1a0a3) > 2. As e(xy, L) > 2, either N(xy, L1) 2O {a;,a;12} for some
a; € V(Ly) or N(zy, L1) = {a;,a;41} for some a; € V(L;). We divide the proof into
the following cases.

Case 1. For some a; € V(Ly), {a;,air2} C N(xy).

First, assume that {a1, a3} C N(x;). Then z; — (L1, as) and [z1, a1, 24, az, as] 2
Cs5. Thus x;_1as ¢ E and either e(xs, asas) = 0 or e(xy_1, aqas) = 0. It follows that
e(razi_1,a1a3) = 4, xoas € E, e(xoxy_1,a4a5) = 2 and e(xy, L) = 3. Clearly,
xiay € E as xoas € E. Thus e(xy,a4a5) = 1. Say without loss of generality
that zyay € E. As [x41,a1,a5,a4,2;] 2 C5 and r(x;_o...2x10302) = 4 we have
r(P) = 4 by (2). This implies that x;x; 3 € E for otherwise [z1z42370a5] 2 Cs5. If
e(xq, asas) > 0, then [z1, a1, as, a4, T3, as] 2 Cs5 and [as, 4, T3, Ti—2, x1—1] 2 Cs, a
contradiction. Hence e(z3, asas) = 0 and so e(z;_1, asas) = 2 as e(xoxy_1, L1) > 7.
Then [ay, ¢, 43, %49, 4 1] 2 Cs and [z, T2, a1, as, az] 2 Cs, a contradiction.

Next, assume that {ay,a4} C N(zy) or {as,as} C N(z;). Say without loss of
generality {as,as} C N(x;). Then z; — (L1,a4) and so e(ay,zox;1) < 1. As
e(ag, xaxi—1) < 1, e(xazy_1,a1a3a5) > 7—2 = 5. Thus e(x;_1,aza5) > 1 and so
[T 1,4, a3, a4,a5] 2 Cs. Clearly, r(x;_ox; 3...2170;) > 3 for i € {1,2}. By (2),
r(P) > 3. For the moment, assume e(z1, P) > 2. Then e(z, a1as) = 0 for otherwise
[1,Xa, ..., X9, a1, a2) O Cs5. This yields that e(xq, asas) = 2, e(24-1, a1a2a3a;5) = 4
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and e(ayq, zox—1) = 1. Consequently, e(x, L) = 3. By Property 1, z; 4 (L1,a;)
for i € {1,2} and it follows that e(xy, ajas) = 0. As [ay,a5,21, 22, ..., T4 0] 2
Css, [ag, a3, a4, 21, 7;] 2 C5 and so xay € E. Thus e(xy, L1) = 2, a contradic-
tion. Therefore e(z, P) = 1 and so e(x, P) > 2. As e(xox_1,a1a3a5) > 5, we
see that either {x; jas,xz0a5} C E or {x; ja5,22a3} C E. In the former situa-
tion [z1,x9,as,a1,as] 2 Cs and in the latter [xq,x9,as,az,a;] 2 Cs. This means
that [as, ¢, x4-1,..., 23] 2 Css and |as, x, x4—1,...,23) 2 Css. It follows that
e(xy, P) = 2 and 2y o € E. As [x4 1,7, a3,a4,a5] 2 Cs and by (2), we must
have that r(x;_9x;_3...21a1a2) = 3. This yields that e(zq,a1a2) = 0. It follows
that e(xq,azas) = 2, e(x4_1,a1a2a3a5) = 4, e(aq, xoxy—1) = 1 and e(xy, L1) = 3. As
[1, X2, as, az,a1] 2 Cs, we see that [ay,as, x, 241,72 2 Cs and so ayx; 1 € E.
Thus zeay € E. Consequently, [z1, a1, as, aq, v2] 2O Cs and [ag, z4_1, 42, ¢, a3] 2 Cs,
a contradiction.

Finally, assume that {as,as} C N(x;) or {ag, a5} C N(x;). Say without loss of
generality {as,as} C N(x;). Then we readily see that xzqay ¢ E and z;_1a3 € E.
Thus e(xox;_1, L) < 8. As e(xox;_1,L1) > 7, it follows that either {xqas, z;_1a2} C
E or {zsa1,7; 1a5} C E. Then as above it is easy to see that [Li, P] D Cs & R}
By (2), r(P) = 4. Then in each of the two situations, we readily see that [L;, P] D
C5 W Csj5, a contradiction.

Case 2. N(xy, L) = {a;, a;41} for some a; € V(Ly).

In this case, e(xex; 1,L1) > 13 —3 —2 = 8. First, assume that N(x;, L) C
{a1,a2,a3}. Then [x1,z4,a1,a2,a3] 2 Cs. Since e(ag, x2x;-1) < 1, we see that
e(xq,asas) > 1 and e(x;_1, agas) > 1 and so [xg, ..., 241, a4,a5) 2 Cs5, a contradic-
tion.

Next, asssume that N(zy, L1) = {ay, a5} or N(xy, Lq)
loss of generality N(x;, L1) = {as,as}. As e(ag, xox; 1) 1, we see that either
{zaas5, 24103} C E or {x9a1, 2, 1a5} C E. Thus [Lq, P| Cs U R} with z; and
xy on the 5-cycle. Furthermore, we see that e(zy, P) = 1 as [P, Li] 2 Cs W Css.
By (2), 7(P) = 4 and so x4 € E. We also have either {za1,2;_1a5} C E or
{z2a3, x4_10:} C E. With xyz4 € E, we then readily see that [Li, P] D C5W Cs5, a
contradiction.

= {as,as}. Say without
<
>

Finally, assume that N(x;, L) = {a4,as5}. Clearly, e(zs,a1a3) > 1 and
e(xi_1,a4a5) > 1. Then we readily see that [z, 23,a1,a2,a3] 2 Cs and [z3, ...,

Ty, a4, as] 2 R} Moreover, we see that e(zy, P) = 1 as [x3,..., 2, a3,a4] 2 Cs5. By
(2), we obtains x1zy € E. We have either {xsa1,z; 1a3} C E or {zsa3, 2, 1a1} C E.
Then we see that [Li, P] O 2C5, a contradiction. |

We are ready to complete the proof of the theorem. By the above properties,
we see that e(xy, L) = {a;, ajy2,a;43} for some a; € V(L) and 2 < e(xy, L1) < 3.
Say without loss of generality that N(z1, L1) = {ai, a3, as}. Then e(xox; 1, L) > 7,
e(ag, rowy—1) < 1 and e(as, zory—1) < 1.

First, assume that e(zy, L1) = 3. With z; playing the role of x;, we see, by
Property 6, that N(x¢, L1) = {a;,a;+2,a,43} for some a; € V(Ly). If j = 1, then
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by Property 2, we see that e(xq,asas) > 1, e(x;_1,a0a5) > 1 and there are two
independent edges between {as, a5} and {xs, 2, 1}. Say {xsas,z; 1a5} C E. Then
[L1,P] 2 C5 UR{. By (2), r(P) = 4 and consequently, [Li,P] 2 C5 U Cs5, a
contradiction. If j € {2,5}, say without loss of generality that j = 2. Then
e(ay, xoxi—1) < 1 and e(as, xox;—1) < 1. Thus e(zozi_1,L1) = e(xowy_1,a0as5) +
e(xoxi_1,a1a3) + e(rax4-1,a4) < 242+ 2 =6, a contradiction.

Therefore j € {3,4}. Say without loss of generality that j = 3. Then e(ay, xox; 1)
< 1. It follows that e(xaz:_1,a1a3) = 4 and e(ay, vori—1) = 1 for p € {2,4,5}. Then
[ai, az, T, ..., x—1) 2 Cs5 and [x1, a3, x4, as, ag] 2 Cs, a contradiction.

Therefore e(zy, L1) = 2 and so e(xex;_1,a1a3a4) = 6, e(az, z2241) = 1 and
e(as, xax;—1) = 1. Assume for the moment that N(x;, L1) € {a1, a3, a4}. Say without
loss of generality that asz; € E. Then |21, 29, a4, a5, a;] 2 Cs and [3, ..., x4, a9, a3] 2
R}. By (2), r(P) = 4, and consequently, [L;, P] 2 C5 W Cs;5, a contradiction. Hence
e(xy, L) C{ay,as, a4} and so e(xy, azay) > 1. If e(x;_1, asas) = 2, we readily see that
[Ly, P] 2 C5 U R}. Consequently, 7(P) =4 and [L;, P] 2 Cs U Css5, a contradiction.
Therefore e(z;_1,asa5) < 1 and so e(xs, azas) > 1. We may assume without loss of
generality that asxy € E. As e(xy,asaq) > 1 and e(as, xox4—1) = 1, we readily see
that [Ly, P] 2 C5 U R} and so r(P) = 4. Again, we see that [Li, P] D C5 U Cs5, a
contradiction. This proves the theorem.
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