Disjoint cycles of order at least 5

Hong Wang
Department of Mathematics
The University of Idaho
Moscow, Idaho 83844
U.S.A.

Abstract

We prove that if G is a graph of order at least $5 k$ with $k \geq 2$ and the minimum degree of G is at least $3 k$ then G contains k disjoint cycles of length at least 5 . This supports the conjecture by Wang [Australas. J. Combin. 54 (2012), 59-84]: if G is a graph of order at least $(2 d+1) k$ and the minimum degree of G is at least $(d+1) k$ with $k \geq 2$ then G contains k disjoint cycles of length at least $2 d+1$.

1 Introduction

A set of graphs is said to be disjoint if no two of them have any common vertex. Corrádi and Hajnal [2] investigated the maximum number of disjoint cycles in a graph. They proved that if G is a graph of order at least $3 k$ with minimum degree at least $2 k$, then G contains k disjoint cycles. Erdős and Faudree [4] conjectured that if G is a graph of order $4 k$ with minimum degree at least $2 k$, then G contains k disjoint cycles of length 4 . To solve this conjecture, partial results were obtained in [5] and [6]. We finally confirmed this conjecture in [7]. In [8], we proposed the following two conjectures:
Conjecture 1 [8] Let d and k be two positive integers with $k \geq 2$. If G is a graph of order at least $(2 d+1) k$ and the minimum degree of G is at least $(d+1) k$ then G contains k disjoint cycles of length at least $2 d+1$.
Conjecture 2 [8] Let d and k be two positive integers with $k \geq 2$ and $d \geq 3$. Let G be a graph of order $n \geq 2 d k$ with minimum degree at least $d k$. Then G contains k disjoint cycles of length at least $2 d$, unless k is odd and $n=2 d k+r$ for some $1 \leq r \leq 2 d-2$.

The above two conjectures are related with El-Zahar's conjcture [3]. El-Zahar conjectured that if G is a graph of order $n=n_{1}+n_{2}+\cdots+n_{k}$ with $n_{i} \geq 3(1 \leq i \leq k)$ and the minimum degree of G is at least $\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil+\cdots+\left\lceil n_{k} / 2\right\rceil$, then G contains k disjoint cycles of lengths $n_{1}, n_{2}, \ldots, n_{k}$, respectively. In Conjecture 1, if G has order $(2 d+1) k$ then the conjecture reduces to the special case of El-Zahar's conjecture where $n_{i}=2 d+1$ for all $1 \leq i \leq k$. Similarly, if G has order $2 d k$ in

Conjecture 2, then the conjecture reduces to the special case of El-Zahar's conjecture where $n_{i}=2 d$ for all $1 \leq i \leq k$.

With [7], we showed in [8] that if a graph G of order $n \geq 4 k$ with $k \geq 2$ has minimum degree at least $2 k$ then with three easily recognized exceptions, G contains k disjoint cycles of length at least 4 . When $d=1$, Conjecture 1 holds by Corrádi and Hajnal [2]. Comparing the proof of Conjecture 1 in the case $d=1$ with our work in [7] and [8], the work in [7] and [8] is significantly more complicated and involved. It would be sound to make some progress on Conjecture 1 which includes Corrádi and Hajnal Theorem as a special case. As said so, our purpose in this paper is to show Conjecture 1 in the case $d=2$.

Another motivation for us to consider Conjecture 1 in the case $d=2$ is the result we proved in [9]:
Theorem 1 [9] Let k and n be two integers with $k \geq 1$. If G is a graph of order $n=5 k$ and the minimum degree of G is at least $3 k$, then G contains k disjoint cycles of length of 5 .

In this paper, we prove the following:
Theorem 2 Let k and n be two integers with $k \geq 2$ and $n \geq 5$. If G is a graph of order $n \geq 5 k$ and the minimum degree of G is at least $3 k$, then G contains k disjoint cycles of length at least 5 .

This extends Theorem 1 and also further supports Conjecture 1.

1.1 Terminology and Notation

We use [1] for standard terminology and notation except as indicated. Let G be a graph. We use $|G|$ to denote the order of G, i.e., $|G|=|V(G)|$. Let H be a subgraph of G or a subset of $V(G)$ or a sequence of distinct vertices of G. Let $u \in V(G)$. We define $N(u, H)$ to be the set of neighbors of u contained in H, and let $e(u, H)=|N(u, H)|$. Clearly, $N(u, G)=N(u)$ and $e(u, G)$ is the degree of u in G. Let $v \in V(G)$. We define $I(u v, H)=N(u, H) \cap N(v, H)$ and let $i(u v, H)=$ $|I(u v, H)|$.

If X is a subgraph of G or a subset of $V(G)$ or a sequence of distinct vertices of G, we define $N(X, H)=\cup_{u} N(u, H)$ and $e(X, H)=\sum_{u} e(u, H)$ where u runs over all the vertices in X. Let each of $X_{1}, X_{2}, \ldots, X_{r}$ be a subgraph of G or a subset of $V(G)$ or a sequence of distinct vertices of G. We use $\left[X_{1}, X_{2}, \ldots, X_{r}\right]$ to denote the subgraph of G induced by the set of all the vertices that belong to at least one of $X_{1}, X_{2}, \ldots, X_{r}$.

For each integer $k \geq 3$, a k-cycle is a cycle of length k and a $(\geq k)$-cycle is a cycle of length at least k. A feasible cycle is a (≥ 5)-cycle. For each integer $i \geq 3$, we use C_{i} to denote a cycle of length i and $C_{\geq i}$ to denote a cycle of length at least i. Use P_{j} to denote a path of order j for all integers $j \geq 1$. For a cycle or path L of G, a chord of L is an edge of $G-E(L)$ which joins two vertices of L, and we use $\tau(L)$ to denote the number of chords of L in G. For each $x \in V(L)$, use $\tau(x, L)$ to denote the number of chords of L that are incident with x. The length of L is denoted by $l(L)$.

If S is a set of subgraphs of G, we write $G \supseteq S$. For an integer $k \geq 1$ and a graph G^{\prime}, we use $k G^{\prime}$ to denote a set of k disjoint graphs isomorphic to G^{\prime}. If G_{1} and G_{2} are two graphs, we use $G_{1} \uplus G_{2}$ to denote a set of two disjoint graphs, one isomorphic to G_{1} and the other isomorphic to G_{2}. For two graphs H_{1} and H_{2}, the union of H_{1} and H_{2} is still denoted by $H_{1} \cup H_{2}$ as usual, that is, $H_{1} \cup H_{2}=\left(V\left(H_{1}\right) \cup V\left(H_{2}\right), E\left(H_{1}\right) \cup E\left(H_{2}\right)\right)$. Let each of Y and Z be a subgraph of G, or a subset of $V(G)$, or a sequence of distinct vertices of G. If Y and Z do not have any common vertices, we define $E(Y, Z)$ to be the set of all the edges of G between Y and Z. Clearly, $e(Y, Z)=|E(Y, Z)|$. If $C=x_{1} x_{2} \ldots x_{r} x_{1}$ is a cycle, then the operations on the subscripts of the x_{i} 's will be taken by modulo r in $\{1,2, \ldots, r\}$.

If we write a graph G as a sequence $x_{1} x_{2} \ldots x_{l}$ of its vertices, it means that $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$ and $E(G)=\left\{x_{i} x_{i+1} \mid 1 \leq i \leq l-1\right\}$. Note that the sequence may have repeated vertices. We use R_{t}^{i} to denote a graph of order t such that $R_{t}^{i}=x_{1} x_{2} \ldots x_{t} x_{t-i+1}$ with $3 \leq i \leq t$. We use B to denote a graph of order 5 such that $B=x_{3} x_{1} x_{2} x_{3} x_{4} x_{5} x_{3}$. Let P be a path of G. We use $r(P)$ to denote the order of a largest cycle in $P+f$ where f runs over all the chords f of P that are incident with an endvertex of P. If P does not have such a chord, then $r(P)=0$. Clearly, if R_{t}^{i} is a subgraph of G then $r\left(R_{t}^{i}\right) \geq i$.

Let C be a 5 -cycle of G and $u \in V(C)$. Let $x \in V(G)-V(C)$. We write $x \rightarrow(C, u)$ if $[C-u+x] \supseteq C^{\prime} \cong C_{5}$. If $x \rightarrow(C, u)$ for all $u \in V(C)$ then we write $x \rightarrow C$.

2 Lemmas

Let $G=(V, E)$ be a graph. We will use the following lemmas. Lemma 2.1 and Lemma 2.2 are two easy observations.

Lemma 2.1 If P is a path of order 3 and u and v are two vertices in $G-V(P)$ such that $e(u v, P) \geq 5$, then $[P+u+v]$ contains a cycle of order 5 .

Lemma 2.2 The following four statements hold:
(a) If L is a cycle of order $p \geq 6$ and $v \in V(G)-V(L)$ such that $e(v, L) \geq 3$, then either $[L+v]$ contains a feasible cycle C with $l(C)<p$, or $e(v, L)=3$ and v is adjacent to three consecutive vertices of L, or $e(v, L)=3, p=6$ and v is adjacent to every other vertex of L.
(b) If P is a path of order $p \geq 5$ and $u \in V(G)-V(P)$ such that $e(u, P) \geq 4$, then for some endvertex z of $P,[P+u-z]$ contains a feasible cycle C with $l(C) \leq p$. Moreover, if $p \geq 6$, then $[P+u]$ contains a feasible cycle of length less than p.
(c) If P is a path of order p and $u_{1} u_{2}$ is an edge of $G-V(P)$ such that $e\left(u_{1} u_{2}, P\right) \geq$ 4, then $\left[P+u_{1}+u_{2}\right]$ contains a feasible cycle, or $e\left(u_{1} u_{2}, P\right)=4$ and P has an edge xy such that $N\left(u_{1} u_{2}, P\right)=\{x, y\}$, or $e\left(u_{1} u_{2}, P\right)=4$ and P has a subpath $x y z$ such that $N\left(u_{i}, P\right)=\{x, y, z\}$ and $N\left(u_{j}, P\right)=\{y\}$ for some $\{i, j\}=\{1,2\}$. Moreover, if $e\left(u_{1} u_{2}, P\right) \geq 5$ then $\left[P+u_{1}+u_{2}\right]$ contains a feasible cycle of order at most $p+1$.

Lemma 2.3 Let P and Q be two disjoint paths of G. Suppose that $e(P, Q) \geq 5$ and $[P, Q]$ does not contain a feasible cycle of order at most $|P|+|Q|-1$. Then $e(P, Q)=5$ and one of the following two statements holds:
(a) $|P|=3,|Q|=3$ and $[P, Q] \cong K_{3,3}$;
(b) P has a subpath uvw and Q has a subpath $x y z$ such that $N(v, Q)=\{x, y, z\}$ and $N(y, P)=\{u, v, w\}$.

Proof. On the contrary, say the lemma fails. Let $|P|+|Q|$ be minimal such that the lemma fails for P and Q. By Lemma 2.2, we see that $|P| \geq 3$ and $|Q| \geq 3$. If $|P|=|Q|=3$, it is easy to check that one of (a) and (b) holds. So assume that $|P|+|Q| \geq 7$. Say $P=x_{1} \ldots x_{s}$ and $Q=y_{1} \ldots y_{t}$. By the minimality of $|P|+|Q|$, we see that $e\left(x_{i}, Q\right) \geq 1$ for $i \in\{1, s\}$ and $e\left(y_{j}, P\right) \geq 1$ for $j \in\{1, t\}$. If $\left\{x_{1} y_{1}, x_{s} y_{t}\right\} \subseteq E$ or $\left\{x_{1} y_{t}, x_{s} y_{1}\right\} \subseteq E$, then we readily see that $[P, Q]$ contains a feasible cycle of order at most $|P|+|Q|-1$. Therefore neither of these two situations will occur. This implies that $N\left(x_{1}, Q\right)=N\left(x_{s}, Q\right)=\left\{y_{k}\right\}$ for some $y_{k} \in V(Q)$ and $N\left(y_{1}, P\right)=N\left(y_{t}, P\right)=\left\{x_{h}\right\}$ for some $x_{h} \in V(P)$. Thus $s=t=3$ for otherwise $[P, Q]$ contains a feasible cycle of order at most $|P|+|Q|-1$. Then one of (a) and (b) holds.

Lemma 2.4 Let C be a 5-cycle of G. Let x and y be two vertices in $G-V(C)$. If $e(x y, C) \geq 7$, then there exists $z \in V(C)$ such that either $y z \in E$ and $[C-z+x]$ contains a 5-cycle C^{\prime} with $\tau\left(C^{\prime}\right) \geq \tau(C)-1$, or $x z \in E$ and $[C-z+y]$ contains a 5-cycle $C^{\prime \prime}$ with $\tau\left(C^{\prime \prime}\right) \geq \tau(C)-1$.

Proof. Say without loss of generality that $e(x, C) \geq 4$. For each $u \in V(C)$ with $x \rightarrow(C, u)$, we see that $[C-u+x] \supseteq C^{\prime} \cong C_{5}$ and $\tau\left(C^{\prime}\right) \geq \tau(C)-1$. As $e(x y, C) \geq 7$, $y u \in E$ for such a vertex $u \in V(C)$ with $x \rightarrow(C, u)$ and so the lemma holds.

Lemma 2.5 Let p and q be two integers with $q \geq p \geq 5$ and $q \geq 6$. Let C and L be two disjoint cycles with $l(C)=p$ and $l(L)=q$. If $e(L, C) \geq 3 q+1$, then $[C, L]$ contains two disjoint feasible cycles C^{\prime} and L^{\prime} such that either $l\left(C^{\prime}\right)<p$ or $l\left(C^{\prime}\right)=p$ and $l\left(L^{\prime}\right)<q$.

Proof. Say $C=a_{1} a_{2} \ldots a_{p} a_{1}$ and $L=x_{1} x_{2} \ldots x_{q} x_{1}$. On the contrary, say the lemma fails. We first claim that $e\left(a_{i}, L\right) \leq 5$ and $e\left(x_{j}, C\right) \leq 5$ for all $a_{i} \in V(C)$ and $x_{j} \in V(L)$. To see this, say $e\left(a_{i}, L\right) \geq 6$ for some $a_{i} \in V(C)$. Then $\left[L-x_{r}-x_{r+1}+a_{i}\right]$ contains a feasible cycle and so $\left[C-a_{i}+x_{r}+x_{r+1}\right]$ does not contain a feasible cycle of order at most p for all $r \in\{1, \ldots, q\}$. By Lemma 2.2(c), this implies that $e\left(x_{r} x_{r+1}, C-a_{i}\right) \leq 4$ and so $e\left(x_{r} x_{r+1}, C\right) \leq 6$ for all $r \in\{1, \ldots, q\}$. Consequently, $e(C, L) \leq 3 q$, a contradiction. Hence $e\left(a_{i}, L\right) \leq 5$ for all $a_{i} \in V(C)$. Similarly, $e\left(x_{j}, C\right) \leq 5$ for all $x_{j} \in V(L)$.

Say $e\left(x_{1}, C\right) \geq e\left(x_{i}, C\right)$ for all $x_{i} \in V(L)$. As $e(C, L) \geq 3 q+1, e\left(x_{1}, C\right) \geq 4$. We divide the proof into the following two cases.

Case 1. $p=5$.

As $e\left(x_{1}, C\right) \geq 4, x_{1} \rightarrow\left(C, a_{i}\right)$ for some $a_{i} \in V(C)$. Thus $\left[L-x_{1}+a_{i}\right]$ does not contain a feasible cycle of order $\leq q-1$. This implies that $e\left(a_{i}, L-x_{1}\right) \leq 3$ by Lemma 2.2(b). First, suppose that $e\left(x_{1}, C\right)=5$. Then $x_{1} \rightarrow C$ and so $e\left(a_{j}, L-x_{1}\right) \leq 3$ for all $1 \leq j \leq 5$. Thus $e(C, L)=e\left(x_{1}, C\right)+e\left(C, L-x_{1}\right) \leq 5+5 \cdot 3=20$. As $20 \geq e(C, L) \geq 3 q+1 \geq 19$, it follows that $q=6$. We may assume without loss of generality that $e\left(a_{j}, L-x_{1}\right)=3$ for $1 \leq j \leq 4$. As $[C, L] \nsupseteq 2 C_{5}, e\left(a_{r}, x_{2} x_{5}\right) \leq 1$ and $e\left(a_{r}, x_{3} x_{6}\right) \leq 1$ for all $1 \leq r \leq 5$. It follows that $e\left(a_{r}, x_{2} x_{5}\right)=1, e\left(a_{r}, x_{3} x_{6}\right)=1$ and $a_{r} x_{4} \in E$ for all $1 \leq r \leq 4$. Assume for the moment that $e\left(a_{1}, x_{2} x_{6}\right)>0$. Say without loss of generality that $a_{1} x_{2} \in E$. Then $\left[x_{1} a_{4} a_{5} a_{1} x_{2}\right] \supseteq C_{5}$ and so $\left[x_{4} x_{5} x_{6}, a_{2} a_{3}\right] \nsupseteq C_{5}$. This implies that $e\left(x_{6}, a_{2} a_{3}\right)=0$ and so $e\left(x_{3}, a_{2} a_{3}\right)=2$. Then $\left[a_{1} a_{2} a_{3} x_{3} x_{2}\right] \supseteq C_{5}$ and $\left[a_{4} x_{1} x_{6} x_{5} x_{4}\right] \supseteq C_{5}$, a contradiction. Therefore $e\left(a_{1}, x_{2} x_{6}\right)=0$ and so $e\left(a_{1}, x_{3} x_{5}\right)=2$. Similarly, $e\left(a_{4}, x_{3} x_{5}\right)=2$. Thus $\left[x_{3} x_{4} a_{1} a_{5} a_{4}\right] \supseteq C_{5}$ and so $\left[x_{1} x_{6} x_{5}, a_{2} a_{3}\right] \nsupseteq C_{5}$. This implies that $e\left(x_{5}, a_{2} a_{3}\right)=0$. Similarly, $\left[x_{5} x_{4} a_{1} a_{5} a_{4}\right] \supseteq C_{5}$ and so $e\left(x_{3}, a_{2} a_{3}\right)=0$. Thus $e\left(x_{2} x_{6}, a_{2} a_{3}\right)=4$. Therefore $\left[x_{2} x_{1} x_{6} a_{2} a_{3}\right] \supseteq C_{5}$ and so $[C, L] \supseteq 2 C_{5}$, a contradiction.

Hence $e\left(x_{1}, C\right)=4$ and so $e\left(x_{i}, C\right) \leq 4$ for all $x_{i} \in V(L)$. Say $N\left(x_{1}, C\right)=$ $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Then $x_{1} \rightarrow\left(C, a_{i}\right)$ and so $e\left(a_{i}, L-x_{1}\right) \leq 3$ for $i \in\{2,3,5\}$. Then $10 \geq e\left(a_{1} a_{4}, L\right) \geq 3 q+1-3 \cdot 3-2$. This implies that $q=6$ and $e\left(a_{1} a_{4}, L\right) \geq 8$. We claim that $e\left(a_{1}, L\right)=e\left(a_{4}, L\right)=4$. If this is not true, say without loss of generality that $e\left(a_{1}, L\right)=5$. Label $L=z_{1} z_{2} z_{3} z_{4} z_{5} z_{6} z_{1}$ with $e\left(a_{1}, L-z_{6}\right)=5$. Then $\left[a_{1}, L-z_{1}-z_{6}\right] \supseteq C_{5}$ and so $e\left(z_{1} z_{6}, C-a_{1}\right) \leq 4$ by Lemma 2.2(c). Similarly, $e\left(z_{3} z_{4}, C-a_{1}\right) \leq 4$. It follows that $e\left(z_{2} z_{5}, C\right) \geq 19-2 \cdot 4-3=8$ and so $e\left(z_{2}, C\right)=e\left(z_{5}, C\right)=4$. Consequently, $e\left(z_{1} z_{6}, C-a_{1}\right)=4$ and $e\left(z_{3} z_{4}, C-a_{1}\right)=4$. Similarly, we shall have that $e\left(z_{5} z_{6}, C-a_{1}\right)=4, e\left(z_{2} z_{3}, C-a_{1}\right)=4$ and $e\left(z_{1}, C\right)=$ $e\left(z_{4}, C\right)=4$. Consequently, $e\left(z_{6}, C-a_{1}\right)=e\left(z_{3}, C-a_{1}\right)=1$. As $[C, L] \nsupseteq 2 C_{5}$, $z_{i} \nrightarrow\left(C, a_{1}\right)$ and so $e\left(z_{i}, a_{2} a_{5}\right) \leq 1$ for all $i \in\{1,2,4,5\}$. Thus $e\left(z_{i}, a_{2} a_{5}\right)=1$ and $e\left(z_{i}, a_{3} a_{4}\right)=2$ for all $i \in\{1,2,4,5\}$. Then we see that $\left[z_{6}, z_{5}, a_{2}, a_{3}, a_{4}, a_{5}\right] \nsupseteq C_{5}$ and so $e\left(z_{6}, a_{2} a_{5}\right)=0$. Thus $e\left(z_{6}, a_{3} a_{4}\right)=1$, say $z_{6} a_{3} \in E$. Then $\left[a_{1}, a_{2}, a_{3}, z_{6}, z_{5}\right] \supseteq C_{5}$ and $\left[a_{4}, z_{1}, z_{2}, z_{3}, z_{4}\right] \supseteq C_{5}$, a contradiction.

Hence $e\left(a_{1}, L\right)=e\left(a_{4}, L\right)=4$. It follows that $e\left(a_{i}, L\right)=4$ for $i \in\{1,2,3,4\}$ and $e\left(a_{5}, L\right)=3$. We now go back to the labelling $L=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{1}$. As $[C, L] \nsupseteq 2 C_{5}$, we see that $e\left(a_{i}, x_{2} x_{5}\right) \leq 1$ and $e\left(a_{i}, x_{3} x_{6}\right) \leq 1$ for all $i \in\{2,3,5\}$. It follows that $e\left(a_{2} a_{3} a_{5}, x_{4}\right)=3$. Then for each $i \in\{1,4\}, x_{4} \rightarrow\left(C, a_{i}\right)$ and so $\left[L-x_{4}+a_{i}\right] \nsupseteq C_{5}$. By Lemma 2.3(b), this implies that $e\left(a_{i}, L-x_{4}\right) \leq 3$ and so $a_{i} x_{4} \in E$ for each $i \in\{1,4\}$. Thus $e\left(x_{4}, C\right)=5$, a contradiction.

Case 2. $p \geq 6$.
First, assume that $e\left(x_{1}, C\right)=5$. Say the five vertices in $N\left(x_{1}, C\right)$ are a, b, c, d and g in order along C with $|C[g, a]| \geq 3$. Then $x_{1} C[a, d] x_{1}$ and $x_{1} C[d, a] x_{1}$ are two feasible cycles. By Lemma 2.2(c) and Lemma 2.3, this yields that $e\left(C(d, a), L-x_{1}\right) \leq$ $4+r$ and $e\left(C(a, d), L-x_{1}\right) \leq 4+r$ with $r \in\{0,1\}$. It follows that $e(a d, L) \geq$ $3 q+1-2 \cdot(4+r)-3=3 q-10-2 r$. As $C-a+x_{1} \supseteq C_{\geq 5}$ and $C-d+x_{1} \supseteq C_{\geq 5}$, we have $e\left(a, L-x_{1}\right) \leq 3$ and $e\left(d, L-x_{1}\right) \leq 3$ by Lemma $2.2(\mathrm{~b})$. Thus $8 \geq 3 q-10-2 r$. This yields $q=6$ and so $p=6$. Thus by Lemma $2.2(\mathrm{c})$, we may choose $r=0$. It
follows that $e(a, L)=4, e(d, L)=4, e\left(C(d, a), L-x_{1}\right)=4$ and $e\left(C(a, d), L-x_{1}\right)=4$. We may assume that $\{a, b, c, d, g\}=\left\{a_{1}, \ldots, a_{5}\right\}$. Similarly, we shall have $e\left(a_{5}, L\right)=$ $e\left(a_{2}, L\right)=4$. It follows that $e\left(a_{3}, L-x_{1}\right)=e\left(a_{6}, L-x_{1}\right)=1$. Clearly, $e\left(a_{1}, x_{2} x_{6}\right) \leq 1$, for otherwise $[C, L] \supseteq C_{5} \uplus C_{6}$. Say $a_{1} x_{6} \notin E$. As $e\left(a_{1} a_{5}, L-x_{1}\right)=6$, there exists $x_{i} x_{i+1}$ on $L-x_{1}$ such that $\left\{a_{1} x_{i}, a_{5} x_{i+1}\right\} \subseteq E$. Thus $\left[x_{i}, x_{i+1}, a_{5}, a_{6}, a_{1}\right] \supseteq C_{5}$. Since $e\left(a_{2}, L-x_{i}-x_{i+1}\right) \geq 2$ and $e\left(a_{4}, L-x_{i}-x_{i+1}\right) \geq 2,\left[a_{2} a_{3} a_{4}, L-x_{i}-x_{i+1}\right] \supseteq C_{\geq 5}$, a contradiction. This proves that $e\left(x_{1}, C\right)=4$. Similarly, we shall have $e\left(a_{i}, L\right) \leq 4$ for all $a_{i} \in V(C)$. As $p \geq 6$, we see that there are two distinct vertices a_{s} and a_{t} in $N\left(x_{1}, C\right)$ such that both $x_{1} C\left[a_{s}, a_{t}\right] x_{1}$ and $x_{1} C\left[a_{t}, a_{s}\right] x_{1}$ are feasible cycles. By Lemma 2.2(c) and Lemma 2.3, we have $e\left(C\left(a_{t}, a_{s}\right), L-x_{1}\right) \leq 4+r$ and $e\left(C\left(a_{s}, a_{t}\right), L-\right.$ $\left.x_{1}\right) \leq 4+r$ with $r \in\{0,1\}$. Then $8 \geq e\left(a_{s} a_{t}, L\right) \geq 3 q+1-2 \cdot(4+r)-2$. As above, we must have $q=6$ and so $p=6$. Then by Lemma 2.2(c), we may choose $r=0$. Thus $8 \geq e\left(a_{s} a_{t}, L\right) \geq 3 q+1-2 \cdot 4-2 \geq 9$, a contradiction.

Lemma 2.6 [Lemma 2.2, [9]] Let D and L be two disjoint subgraphs of G such that $D \cong B$ and $L \cong C_{5}$. Say $D=x_{0} x_{1} x_{2} x_{0} x_{3} x_{4} x_{0}$. Suppose that $e\left(D-x_{0}, L\right) \geq 13$. Then $[D, L] \supseteq 2 C_{5}$.

Corollary 2.7 Let $P=x_{1} x_{2} \ldots x_{t}$ be a path of order $t \geq 5$ and C a 5-cycle in G such that P and C are disjoint and $\left\{x_{1} x_{h}, x_{t} x_{k}\right\} \subseteq E$ for some $3 \leq h \leq k \leq t-2$. If $e\left(x_{i} x_{j}, C\right)+e\left(x_{q} x_{r}, C\right) \geq 13$ for some $1 \leq i<j \leq h-1$ and $k+1 \leq q<r \leq t$ then $[P, C]$ contains two disjoint feasible cycles.

3 Proof of Theorem 2

Let G be a graph of order $n \geq 5 k$ with $k \geq 2$ and $\delta(G) \geq 3 k$. Suppose, for a contradiction, that G does not contain k disjoint feasible cycles. By Theorem 1, $n \geq 5 k+1$. Let k_{0} be the largest integer such that G contains k_{0} disjoint feasible cycles. A chain of G is a sequence $\left(L_{1}, \ldots, L_{k_{0}}\right)$ of k_{0} disjoint feasible cycles.

We use lexicographic order to order chains with respect to the lengths of feasible cycles in chains, that is, for two chains $\left(L_{1}, \ldots, L_{k_{0}}\right)$ and $\left(L_{1}^{\prime}, \ldots, L_{k_{0}}^{\prime}\right)$ in G, we write $\left(L_{1}, \ldots, L_{k_{0}}\right) \prec\left(L_{1}^{\prime}, \ldots, L_{k_{0}}^{\prime}\right)$ if there exists $j \in\left\{1, \ldots, k_{0}\right\}$ such that $l\left(L_{i}\right)=l\left(L_{i}^{\prime}\right)$ for $i=1, \ldots, j$ and $l\left(L_{j+1}\right)<l\left(L_{j+1}^{\prime}\right)$. We say that $\left(L_{1}, \ldots, L_{k_{0}}\right)$ is a minimal chain if for any chain $\left(L_{1}^{\prime}, \ldots, L_{k_{0}}^{\prime}\right),\left(L_{1}^{\prime}, \ldots, L_{k_{0}}^{\prime}\right) \nprec\left(L_{1}, \ldots, L_{k_{0}}\right)$. For any chain $\sigma=\left(L_{1}, \ldots, L_{k_{0}}\right)$, we use $V(\sigma)$ to denote $V\left(\cup_{i=1}^{k_{0}} L_{i}\right)$. We now choose a minimal chain $\sigma=\left(L_{1}, \ldots, L_{k_{0}}\right)$ such that

$$
\begin{equation*}
\text { The length of a longest path of } G-V(\sigma) \text { is maximal. } \tag{1}
\end{equation*}
$$

Let $H=\cup_{i=1}^{k_{0}} L_{i}$ and $D=G-V(H)$. Let $P=x_{1} \ldots x_{t}$ be a longest path of D. We shall prove the following two claims.

Claim 1. $t \geq 6$.
Proof of Claim 1. Assume first that $|D| \leq 5$. Then $\left|L_{k_{0}}\right| \geq 6$ and by Lemma 2.2(a) and the minimality of $\sigma, e\left(D, L_{k_{0}}\right) \leq 3|D|$. By Lemma 2.2(b), $e\left(x, L_{k_{0}}-x\right) \leq 3$ for
each $x \in V\left(L_{k_{0}}\right)$. Thus $e\left(L_{k_{0}}, H-V\left(L_{k_{0}}\right)\right) \geq 3 k\left|L_{k_{0}}\right|-3\left|L_{k_{0}}\right|-3|D| \geq 3(k-2)\left|L_{k_{0}}\right|+3$. This implies that $e\left(L_{k_{0}}, L_{i}\right) \geq 3\left|L_{k_{0}}\right|+1$ for some $1 \leq i \leq k-2$. By Lemma 2.5, [$L_{i}, L_{k_{0}}$] contains two disjoint feasible cycles C^{\prime} and L^{\prime} such that either $l\left(C^{\prime}\right)<l\left(L_{i}\right)$ or $l\left(C^{\prime}\right)=l\left(L_{i}\right)$ and $l\left(L^{\prime}\right)<l\left(L_{k_{0}}\right)$. Replacing L_{i} and $L_{k_{0}}$ with C^{\prime} and L^{\prime}, we obtain a chain $\sigma^{\prime} \prec \sigma$, a contradiction. Therefore $|D| \geq 6$.

For a contradiction, suppose that $t \leq 5$. Let Q be a longest path in $D-V(P)$. Subject to (1), we choose σ and P in D such that $l(Q)$ is maximal. Say $Q=$ $y_{1} y_{2} \ldots y_{s}$. Let If D contains two distinct vertices x and y with $e(x y, D) \leq 5$, then $e\left(x y, L_{i}\right) \geq 7$ for some L_{i} in H since $e(x y, G) \geq 6 k$. Then by Lemma $2.2(a)$ and the minimality of σ, we see that $\left|L_{i}\right|=5$ and by Lemma 2.4, $\left[L_{i}+x+y\right] \supseteq C_{5} \uplus P_{2}$. This argument shows that $t \geq 2$. If $t=2$, this argument allows us to see that we may choose σ such that D contains two independent edges $x u$ and $y v$. Then $e(x y, D)=2$ and $e\left(x y, L_{i}\right) \geq 7$ for some L_{i} in H. As above, we see that $\left|L_{i}\right|=5$ and so by Lemma 2.4, $\left[L_{i}, x, u, y, v\right] \supseteq C_{5} \uplus P_{3}$, a contradiction. Hence $t \geq 3$.

First, suppose that $s \geq 2$. We claim that $e\left(x_{1} x_{t} y_{1} y_{s}, D\right) \leq 11$. To observe this, we readily see that $e\left(x_{1} x_{t}, P\right) \leq 6$ and $e\left(y_{1} y_{s}, P\right) \leq 2$ since $D \nsupseteq C_{\geq 5}$ and $t \leq 5$. Moreover, if $e\left(y_{1} y_{s}, P\right)>0$ then $t=5, s=2, N\left(y_{1} y_{2}, P\right)=\left\{x_{3}\right\}$ and so $e\left(x_{1} x_{t} y_{1} y_{s}, D\right)<11$. Suppose that $e\left(x_{1} x_{t} y_{1} y_{s}, D\right) \geq 12$. Then it is easy to see that $[P] \cong[Q] \cong K_{4}$. As $e\left(x_{1} x_{4} y_{1} y_{4}, G\right) \geq 12 k, e\left(x_{1} x_{4} y_{1} y_{4}, L_{i}\right) \geq 12$ for some L_{i} in H. Say without loss of generality $e\left(x_{1} x_{4}, L_{i}\right) \geq 6$. By Lemma $2.2(a),\left|L_{i}\right| \leq 6$ and we see that $\left[L_{i}, P\right] \supseteq C_{5}$. Thus $\left|L_{i}\right|=5$ and so $[P, u] \supseteq C_{5}$ for some $u \in V\left(L_{i}\right)$. It follows that $e\left(Q, L_{i}-u\right)=0$ by (1). Therefore $e\left(x_{1} x_{4}, L_{i}\right)=10$ and $e\left(u, y_{1} y_{4}\right)=2$. Consequently, $\left[L_{i}, P, Q\right] \supseteq 2 C_{5}$, a contradiction. Therefore $e\left(x_{1} x_{t} y_{1} y_{s}, D\right) \leq 11$. As $e\left(x_{1} x_{t} y_{1} y_{s}, G\right) \geq 12 k, e\left(x_{1} x_{t} y_{1} y_{s}, L_{i}\right) \geq 13$ for some L_{i} in H. By Lemma 2.2(a), we get $\left|L_{i}\right|=5$. Say $L_{i}=u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$. Assume for the moment that $e\left(y_{1} y_{s}, L_{i}\right) \geq 7$. Say without loss of generality $e\left(y_{1}, L_{i}\right) \geq 4$ and $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \subseteq N\left(y_{1}\right)$. By (1), we see that $e\left(x_{1} x_{t}, u_{2} u_{3} u_{5}\right)=0$. Thus $e\left(y_{1} y_{s}, L_{i}\right) \geq 13-4=9$. Thus $e\left(y_{1}, L_{i}\right)=5$ or $e\left(y_{s}, L_{i}\right)=5$ and so $e\left(x_{1} x_{t}, L_{i}\right)=0$, a contradiction. Therefore $e\left(y_{1} y_{s}, L_{i}\right) \leq 6$ and so $e\left(x_{1} x_{t}, L_{i}\right) \geq 7$. If $t=3$, let $u_{r} \in V\left(L_{i}\right)$ be such that $\left\{u_{r} x_{1}, u_{r+1} x_{3}\right\} \subseteq E$. Then by (1), $e\left(y_{1} y_{s}, u_{r+2} u_{r+3} u_{r+4}\right)=0$. Thus $e\left(y_{1} y_{s}, L_{i}\right) \leq 4$ and so $e\left(x_{1} x_{3}, L_{i}\right) \geq 9$. Thus there exist four such vertices u_{r} and so $e\left(y_{1} y_{s}, L_{i}\right)=0$, a contradiction. If $t=4$, let $u_{r} \in I\left(x_{1} x_{4}, L_{i}\right)$. By (1), e $\left(y_{1} y_{s}, L_{i}-u_{r}\right)=0$ and so $e\left(x_{1} x_{4}, L_{i}\right) \geq 13-2=11$, a contradiction. Hence $t=5$. Say without loss of generality $e\left(x_{1}, L_{i}\right) \geq e\left(x_{5}, L_{i}\right)$. Then $e\left(x_{1}, L_{i}\right) \geq 4$. If $e\left(x_{1}, L_{i}\right)=5$, then $I\left(x_{5} y_{1}, L_{i}\right)=\emptyset$ and so $e\left(y_{s}, L_{i}\right) \geq 3$. Thus $y_{s} \rightarrow\left(L_{i}, u_{a}\right)$ for some $u_{a} \in V\left(L_{i}\right)$ and $P+u_{a} x_{1}$ is longer than P, a contradiction. Hence $e\left(x_{1}, L_{i}\right)=4$. Say $N\left(x_{1}, L_{i}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Then $I\left(x_{5} y_{1}, L_{i}\right) \subseteq\left\{u_{1}, u_{4}\right\}$. As $e\left(y_{1} y_{s}, L_{i}\right) \geq 13-2 \cdot 4=5$, say $e\left(y_{1}, L_{i}\right) \geq 3$. By (1), $y_{1} \nrightarrow\left(L_{i}, u_{r}\right)$ for all $r \in$ $\{1,2,3,4\}$ and this implies that $N\left(y_{1}, L_{i}\right)=\left\{u_{1}, u_{5}, u_{4}\right\}$. Thus $s \leq 4$ and $u_{5} x_{5} \notin E$ for otherwise $\left[L_{i}, P, Q\right] \supseteq C_{5} \uplus P_{6}$. If $s=2$, then we readily see that $e\left(y_{2}, L_{i}-u_{5}\right)=0$ for otherwise $\left[L_{i}, P, Q\right] \supseteq C_{5} \uplus P_{6}$ and so $e\left(y_{1} y_{2}, L_{i}\right)+e\left(x_{1} x_{5}, L_{i}\right) \leq 4+8=12$, a contradiction. If $3 \leq s \leq 4$, then $e\left(y_{s}, u_{1} u_{5} u_{4}\right)=0$ for otherwise $\left[L_{i}, P, Q\right] \supseteq C_{5} \uplus P_{6}$. It follows that $e\left(y_{s}, u_{2} u_{3}\right)=2$ and $e\left(x_{t}, u_{1} u_{2} u_{3} u_{4}\right)=4$. Thus $\left[x_{1}, u_{1}, y_{1}, u_{5}, u_{4}\right] \supseteq C_{5}$ and $\left[P-x_{1}, u_{2} u_{3}\right] \supseteq P_{6}$, a contradiction.

Therefore $s=1$. If $D-V(P)$ contains two distinct vertices x and y, then we
readily see that $e(x y, D)<6$ and so $e\left(x y, L_{i}\right) \geq 7$ for some L_{i} in H. Consequently, $\left[L_{i}, x, y\right] \supseteq C_{5} \uplus P_{2}$ by Lemma 2.2(a) and Lemma 2.4, contradicting the maximality of Q. Hence $|D-V(P)|=1$. Thus $t=5$. In this case, we readily see as above that for some L_{i} in $H,\left[L_{i}, x_{1}, y_{1}\right] \supseteq C_{5} \uplus P_{2}$. Thus G has a minimal chain σ^{\prime} such that $G-V\left(\sigma^{\prime}\right) \supseteq P_{4} \uplus P_{2}$. Say $\sigma^{\prime}=\left(L_{1}^{\prime}, L_{2}^{\prime}, \ldots, L_{k_{0}}^{\prime}\right)$. Let $P^{\prime}=z_{1} z_{2} z_{3} z_{4}$ and $Q^{\prime}=v_{1} v_{2}$ be two disjoint paths in $G-V\left(\sigma^{\prime}\right)$. As $G-V\left(\sigma^{\prime}\right) \nsupseteq C_{\geq 5}$ and $G-V\left(\sigma^{\prime}\right) \nsupseteq P_{6}$, we see that $e\left(z_{1} z_{4} v_{1} v_{2}, P^{\prime} \cup Q^{\prime}\right) \leq 8$. Thus $e\left(z_{1} z_{4} v_{1} v_{2}, L_{i}^{\prime}\right) \geq 13$ for some $1 \leq i \leq k_{0}$. By Lemma 2.2(a), $\left|L_{i}^{\prime}\right|=5$. If there exists $u \in I\left(z_{1} z_{4}, L_{i}^{\prime}\right)$ then $e\left(v_{1} v_{2}, u^{-} u^{+}\right)=0$ by the maximality of P. Thus $e\left(v_{1} v_{2}, L_{i}^{\prime}\right) \leq 6$ and so $e\left(z_{1} z_{4}, L_{i}^{\prime}\right) \geq 7$. Then $i\left(z_{1} z_{4}, L_{i}^{\prime}\right) \geq 2$ and we see that $e\left(v_{1} v_{2}, w\right)=0$ for some $w \in V\left(L_{i}^{\prime}\right)-\left\{u^{-}, u^{+}\right\}$for the same reason. Thus $e\left(v_{1} v_{2}, L_{i}^{\prime}\right) \leq 4$ and so $e\left(z_{1} z_{4}, L_{i}^{\prime}\right) \geq 9$. Consequently, $e\left(v_{1} v_{2}, L_{i}^{\prime}\right)=0$ for the same reason, a contradiction. Hence $i\left(z_{1} z_{4}, L_{i}^{\prime}\right)=0$ and so $e\left(v_{1} v_{2}, L_{i}^{\prime}\right) \geq 13-5=8$. Let $u v w$ be a path on L_{i}^{\prime} with $\left\{u v_{1}, w v_{2}\right\} \subseteq E$. Then $v_{1} u v w v_{2} v_{1}$ is a C_{5} in G and so $e\left(z_{1} z_{4}, V\left(L_{i}^{\prime}\right)-\{u, v, w\}\right)=0$ by the maximality of P. Thus $e\left(z_{1} z_{4}, L_{i}^{\prime}\right) \leq 3$ and so $e\left(v_{1} v_{2}, L_{i}^{\prime}\right)=10$. Then for the same reason, we see that $e\left(z_{1} z_{4}, L_{i}^{\prime}\right)=0$, a contradiction.

Claim 2. $e\left(x_{1}, P\right)=1$ or $e\left(x_{t}, P\right)=1$.
Proof of Claim 2. On the contrary, say $e\left(x_{1}, P\right)>1$ and $e\left(x_{t}, P\right)>1$. Let h be maximal with $x_{1} x_{h} \in E$ and s be minimal with $x_{t} x_{s} \in E$. As $D \nsupseteq C_{\geq 5}$, $3 \leq h \leq s \leq t-2$. Let a be the smallest integer and b be the largest integer such that $a \geq 2, b \leq t-1$ and $\left\{x_{1} x_{a+1}, x_{t} x_{b-1}\right\} \subseteq E$. Set $R=\left\{x_{1}, x_{a}, x_{b}, x_{t}\right\}$. If $e\left(R, L_{i}\right) \geq 13$ for some L_{i} in H, then $\left|L_{i}\right|=5$ by Lemma 2.2(a) and the minimality of σ, and consequently $\left[L_{i}, P\right]$ contains two disjoint feasible cycles by Corollary 2.7, a contradiction. Therefore $e\left(R, L_{i}\right) \leq 12$ for all L_{i} in H. By the maximality of P, $e(R, D-V(P))=0$. Thus $e(R, P)=e(R, D) \geq 12 k-12 k_{0} \geq 12$. As $D \nsupseteq C_{\geq 5}$, it follows that $e\left(x_{i}, P\right)=3$ for all $x_{i} \in R$ and $\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \cong\left[x_{t-3}, x_{t-2}, x_{t-1}, x_{t}\right] \cong K_{4}$. Thus $k_{0}=k-1$ and $e\left(R, L_{j}\right)=12$ for all L_{j} in H. By Lemma 2.2(a), we readily see that $\left|L_{k-1}\right|=5$. Say without loss of generality that $e\left(x_{1} x_{2}, L_{k-1}\right) \geq 6$. Let $u \in I\left(x_{1} x_{2}, L_{k-1}\right)$. Then $\left[x_{1}, x_{2}, x_{3}, x_{4}, u\right] \supseteq C_{5}$. Thus $\left[L_{k-1}-u, x_{t-2}, x_{t-1}, x_{t}\right] \nsupseteq C_{\geq 5}$. Thus $e\left(x_{i}, L_{k-1}-u\right) \leq 3$ for each $i \in\{t-1, t\}$. In addition, if $e\left(x_{i}, L_{k-1}-u\right)>0$ for all $i \in\{t-1, t\}$ then $e\left(x_{t-1} x_{t}, L_{k-1}-u\right)=2$. Hence $e\left(x_{t-1} x_{t}, L_{k-1}\right) \leq 5$. Similarly, if $i\left(x_{t-1} x_{t}, L_{k-1}\right) \neq 0$ then $e\left(x_{1} x_{2}, L_{k-1}\right) \leq 5$ and so $e\left(R, L_{k-1}\right) \leq 10$, a contradiction. Thus $i\left(x_{t-1} x_{t}, L_{k-1}\right)=0$ and in particular, $e\left(u, x_{t-1} x_{t}\right) \leq 1$ and so $e\left(x_{t-1} x_{t}, L_{k-1}\right) \leq 4$. Thus $e\left(x_{1} x_{2}, L_{k-1}\right) \geq 8$. Say without loss of generality $e\left(x_{1}, L_{k-1}\right) \geq e\left(x_{2}, L_{k-1}\right)$. Then $e\left(x_{1}, L_{k-1}\right) \geq 4$. It follows that $x_{1} \rightarrow\left(L_{k-1}, v\right)$ for some $i \in\{t-1, t\}$ and $v \in I\left(x_{2} x_{i}, L_{k-1}\right)$, i.e., $\left[L_{k-1}, P\right] \supseteq C_{5} \uplus C_{\geq 5}$, a contradiction.

For the proof of the theorem, we now choose, subject to (1), σ and $P=x_{1} \ldots x_{t}$ in D with descending priorities such that the following two conditions hold:

$$
\begin{align*}
& r(P) \text { is maximal; } \tag{2}\\
& \sum_{i=1}^{k_{0}} \tau\left(L_{i}\right) \text { is maximal. } \tag{3}
\end{align*}
$$

Let $R=\left\{x_{1}, x_{2}, x_{t-1}, x_{t}\right\}$. Clearly, $e\left(x_{1} x_{t}, D-V(P)\right)=0$. If $x_{2} u \in E$ for some $u \in V(D)-V(P)$, then $e\left(x_{1} u, D\right)=e\left(x_{1} u, P\right) \leq 4$ as $D \nsupseteq C_{\geq 5}$. Consequently, $e\left(x_{1} u, H\right) \geq 6 k-4=6(k-1)+2$ and so $e\left(x_{1} u, L_{i}\right) \geq 7$ for some L_{i} in H. By Lemma 2.2(a) and the minimality of σ, we see that $\left|L_{i}\right|=5$. By Lemma 2.4, we see that $\left[L_{i}, P+u\right]$ contains a 5 -cycle and a path of order $t+1$ such that they are disjoint, contradicting the maximality of P. Hence $e\left(x_{2}, D-V(P)\right)=0$. Similarly, $e\left(x_{t-1}, D-V(P)\right)=0$.

As $D \nsupseteq C_{\geq 5}$, it is easy to see that $e\left(x_{2}, P\right) \leq 4, e\left(x_{t-1}, P\right) \leq 4, e\left(x_{1} x_{2}, P\right) \leq 6$ and $e\left(x_{t-1} x_{t}, P\right) \leq 6$. If $e(R, P) \geq 12$, then we would have that $e\left(x_{1}, P\right) \geq 2$ and $e\left(x_{t}, P\right) \geq 2$, contradicting Claim 2. Therefore $e(R, D)=e(R, P)<12$. Thus $e\left(R, L_{r}\right) \geq 13$ for some L_{r} in H. By Lemma 2.2(a) and minimality of σ, we see that $\left|L_{r}\right|=5$. Say without loss of generality that $L_{r}=L_{1}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{1}$. The following six properties will be used to complete our proof. For convenience in the following, we will resort to the definition of R_{t}^{i} in the introduction. Since $t \geq 6$ and $\left[L_{1}, P\right] \nsupseteq 2 C_{\geq 5}$, we immediately have the following Property 1:

Property 1. For each $u \in V\left(L_{1}\right)$, if $x_{1} \rightarrow\left(L_{1}, u\right)$ then $e\left(u, x_{2} x_{t-1}\right) \leq 1$ and $e\left(u, x_{2} x_{t}\right) \leq 1$, and for each $v \in V\left(L_{1}\right)$, if $x_{t} \rightarrow\left(L_{1}, v\right)$ then $e\left(v, x_{1} x_{t-1}\right) \leq 1$ and $e\left(v, x_{2} x_{t-1}\right) \leq 1$.

Property 2. There is no $i \in\{1,2,3,4,5\}$ such that $N\left(x_{1} x_{t} x_{2}, L_{1}\right) \subseteq\left\{a_{i}, a_{i+2}, a_{i+3}\right\}$ or $N\left(x_{1} x_{t} x_{t-1}, L_{1}\right) \subseteq\left\{a_{i}, a_{i+2}, a_{i+3}\right\}$.

Proof of Property 2. On the contrary, say without loss of generality that $N\left(x_{1} x_{t} x_{t-1}, L_{1}\right) \subseteq\left\{a_{1}, a_{3}, a_{4}\right\}$. Since $e\left(R, L_{1}\right) \geq 13$, we see that $e\left(x_{2}, L_{1}\right) \geq 4$ and $8 \leq e\left(x_{1} x_{t} x_{t-1}, L_{1}\right) \leq 9$. It is easy to see that $x_{2} \rightarrow\left(L_{1}, a_{i}\right)$ for some $a_{i} \in$ $I\left(x_{1} x_{t},\left\{a_{1}, a_{3}, a_{4}\right\}\right)$. Thus $e\left(x_{1}, P\right)=1$ for otherwise $\left[P-x_{2}+a_{i}\right] \supseteq C_{\geq 5}$. It is also clear that $x_{2} \rightarrow\left(L_{1}, a_{j}\right)$ for some $a_{j} \in I\left(x_{t-1} x_{t}, L_{1}\right)$. As $\left[P-x_{2}+a_{j}\right] \nsupseteq C_{\geq 5}$, this implies that $r(P) \leq 3$, i.e., $x_{t} x_{t-3} \notin E$. Clearly, $\left[a_{1}, a_{5}, a_{4}, x_{t-1}, x_{t}\right] \supseteq C_{5}$ and $\left[a_{1}, a_{2}, a_{3}, x_{t-1}, x_{t}\right] \supseteq C_{5}$. Then neither of $\left[P-x_{t-1}-x_{t}, a_{2} a_{3}\right]$ and $\left[P-x_{t-1}-x_{t}, a_{4} a_{5}\right]$ contains R_{t}^{4} by (2). This implies that $e\left(x_{1} x_{2}, a_{2} a_{3}\right) \leq 2$ and $e\left(x_{1} x_{2}, a_{4} a_{5}\right) \leq 2$. Consequently, $e\left(R, L_{1}\right) \leq 12$, a contradiction.

Property 3. $e\left(x_{1}, L_{1}\right)<5$ and $e\left(x_{t}, L_{1}\right)<5$.
Proof of Property 3. Say $e\left(x_{1}, L_{1}\right)=5$. Then $x_{1} \rightarrow L_{1}$. By Property 1, $i\left(x_{2} x_{t-1}, L_{1}\right)=0$ and $i\left(x_{2} x_{t}, L_{1}\right)=0$. Thus $e\left(x_{t-1}, L_{i}\right) \geq 13-5-e\left(x_{2} x_{t}, L_{1}\right) \geq 3$ and $e\left(x_{t}, L_{i}\right) \geq 13-5-e\left(x_{2} x_{t-1}, L_{1}\right) \geq 3$. If $e\left(x_{t}, L_{1}\right) \geq 4$, then we readily see that $x_{t} \rightarrow\left(L_{1}, a_{i}\right)$ and $e\left(a_{i}, x_{t-1} x_{1}\right)=2$ for some $a_{i} \in V\left(L_{1}\right)$, a contradiction. Hence $e\left(x_{t}, L_{1}\right)=3$. First, assume that $N\left(x_{t}, L_{1}\right)=\left\{a_{i}, a_{i+1}, a_{i+2}\right\}$ for some $a_{i} \in V\left(L_{1}\right)$. Say $N\left(x_{t}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. By Property $1, e\left(x_{2}, a_{1} a_{2} a_{3}\right)=0$ and $x_{t-1} a_{2} \notin E$, and so $e\left(x_{2} x_{t-1}, L_{1}\right) \leq 4$. Consequently, $e\left(R, L_{1}\right) \leq 12$, a contradiction. Hence $N\left(x_{t}, L_{1}\right)=\left\{a_{i}, a_{i+2}, a_{i+3}\right\}$ for some $a_{i} \in V\left(L_{1}\right)$. Say $N\left(x_{t}, L_{1}\right)=\left\{a_{1}, a_{3}, a_{4}\right\}$. Then $e\left(x_{2}, a_{1} a_{3} a_{4}\right)=0$ and $e\left(x_{t-1}, a_{2} a_{5}\right)=0$. This implies that $e\left(x_{2}, a_{2} a_{5}\right)=2$ and $e\left(x_{t-1}, a_{1} a_{3} a_{4}\right)=3$. Then $\left[L_{1}, P\right] \supseteq 2 C_{\geq 5}=\left\{x_{1} a_{5} a_{1} x_{t} a_{4} x_{1}, x_{2} \ldots x_{t-1} a_{3} a_{2} x_{2}\right\}$, a contradiction.

Property 4. $e\left(x_{1}, L_{1}\right)<4$ and $e\left(x_{t}, L_{1}\right)<4$.

Proof of Property 4. Say $e\left(x_{1}, a_{1} a_{2} a_{3} a_{4}\right)=4$. Then $x_{1} \rightarrow\left(L_{1}, a_{i}\right)$ for each $i \in\{2,3,5\}$. Thus $i\left(x_{2} x_{t-1}, a_{2} a_{3} a_{5}\right)=0$ and $i\left(x_{2} x_{t}, a_{2} a_{3} a_{5}\right)=0$. This implies that $e\left(x_{2} x_{t-1}, L_{1}\right) \leq 7$ and $e\left(x_{2} t_{t}, L_{1}\right) \leq 7$. Consequently, $e\left(x_{t}, L_{1}\right) \geq 2$ and $e\left(x_{t-1}, L_{1}\right)$ ≥ 2.

First, assume that $e\left(x_{t}, L_{1}\right)=4$. Then it is easy see that $\left[L_{1}-a_{i}, x_{1}, x_{t}\right] \supseteq C_{5}$ for all $a_{i} \in V\left(L_{1}\right)$, and so $i\left(x_{2} x_{t-1}, L_{1}\right)=0$. It follows that $e\left(x_{2} x_{t-1}, L_{1}\right)=5$ and so $e\left(a_{i}, x_{2} x_{t-1}\right)=1$ for all $a_{i} \in V\left(L_{1}\right)$. Thus by Property 1 , for all $a_{i} \in$ $V\left(L_{1}\right)$, if $e\left(a_{i}, x_{1} x_{t}\right)=2$, then $x_{1} \nrightarrow\left(L_{1}, a_{i}\right)$ or $x_{t} \nrightarrow\left(L_{1}, a_{i}\right)$. This implies that $a_{r} x_{t} \notin E$ for some $r \in\{2,3\}$. Say $a_{r}=a_{2}$. Since $x_{t} \rightarrow\left(L_{1}, a_{2}\right)$ and $x_{1} \rightarrow$ $\left(L_{1}, a_{3}\right)$, it follows that $\left\{x_{2} a_{2}, x_{t-1} a_{3}\right\} \subseteq E$. Consequently, $\left[L_{1}, P\right] \supseteq 2 C_{\geq 5}=$ $\left\{x_{1} a_{1} x_{t} a_{5} a_{4} x_{1}, a_{2} x_{2} \ldots x_{t-1} a_{3} a_{2}\right\}$, a contradiction.

Next, assume that $e\left(x_{t}, L_{1}\right)=3$. Then $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 6$ and by Property 1 , $I\left(x_{2} x_{t-1}, L_{1}\right) \subseteq\left\{a_{1}, a_{4}\right\}$ and so $i\left(x_{2} x_{t-1}, a_{1} a_{4}\right) \geq 1$. Say $e\left(a_{1}, x_{2} x_{t-1}\right)=2$. Then $\left[a_{1}, x_{2}, \ldots, x_{t-1}\right] \supseteq C_{\geq 5}$. Thus $\left[x_{1}, a_{2}, a_{3}, a_{4}, x_{t}\right] \nsupseteq C_{5}$ and so $e\left(x_{t}, a_{2} a_{3} a_{4}\right) \leq 1$. It follows that $e\left(x_{t}, a_{1} a_{5} a_{4}\right)=3$ as $\left[L_{1}-a_{1}, x_{1}, x_{t}\right] \nsupseteq C_{5}$. By Property $1, x_{2} a_{5} \notin E$. As $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5},\left[x_{3}, \ldots, x_{t}, a_{4}, a_{5}\right] \nsupseteq C_{\geq 5}$. As $r\left(x_{3} \ldots x_{t} a_{4} a_{5}\right) \geq 3$ and by (2), $r(P) \geq 3$. Assume first $e\left(x_{t}, P\right) \geq 2$. Then $\left[x_{3}, \ldots, x_{t}, a_{1}, a_{5}\right] \supseteq C_{\geq 5}$ and so $\left[x_{1}, x_{2}, a_{2}, a_{3}, a_{4}\right] \nsupseteq C_{5}$. This yields $e\left(x_{2}, a_{2} a_{4}\right)=0$ and so $I\left(x_{2} x_{t-2}, L_{1}\right) \subseteq\left\{a_{1}\right\}$. As $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 6$, it follows that $e\left(x_{t-1}, a_{2} a_{4} a_{5}\right)=3$ and $e\left(a_{3}, x_{2} x_{t-1}\right)=1$. Thus $\left[x_{3}, \ldots, x_{t}, a_{4}, a_{5}\right] \supseteq C_{\geq 5}$, a contradiction.

Therefore $e\left(x_{t}, P\right)=1$ and so $e\left(x_{1}, P\right) \geq 2$. As $\left[x_{t}, a_{4}, a_{5}, a_{1}, x_{t-1}\right] \supseteq C_{5}$, $\left[a_{3}, a_{2}, x_{1}, \ldots, x_{t-2}\right] \nsupseteq C_{\geq 5}$ and so $e\left(x_{2}, a_{2} a_{3}\right)=0$. As $\left[a_{1}, a_{2}, x_{1}, \ldots, x_{t-2}\right] \supseteq C_{\geq 5}$, $x_{t-1} a_{3} \notin E$. As $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 6$, it follows that $x_{2} a_{4} \in E$ and $e\left(x_{t-1}, a_{2} a_{4} a_{5}\right)=3$. Thus $\left[x_{t-1}, x_{t}, a_{5}, a_{1}, a_{2}\right] \supseteq C_{5}$ and $\left[a_{3}, a_{4}, x_{1}, \ldots, x_{t-2}\right] \supseteq C_{\geq 5}$, a contradiction.

Finally, $e\left(x_{t}, L_{1}\right)=2$. In this situation, $e\left(a_{i}, x_{2} x_{t-1}\right)=1$ for $i \in\{2,3,5\}$ and $e\left(a_{1} a_{4}, x_{2} x_{t-1}\right)=4$. By Property $1, x_{1} \nrightarrow L_{1}$ and this implies $\tau\left(a_{5}, L_{1}\right)=0$. First, suppose $x_{t} a_{5} \in E$. Then $x_{2} a_{5} \notin E$. By Property $1, e\left(x_{t}, a_{2} a_{3}\right)=0$. Say without loss of generality $x_{t} a_{4} \in E$. Clearly, $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ and $r\left(x_{3} \ldots x_{t} a_{5} a_{4}\right)=4$. By (2), $r(P)=4$. If $e\left(x_{t}, P\right) \geq 2$, then $\left[x_{3}, \ldots, x_{t}, a_{4}, a_{5}\right] \supseteq C_{\geq 5}$, a contradiction. Hence $e\left(x_{t}, P\right)=1$ and so $x_{1} x_{4} \in E$. Then we see that $\left[a_{1}, x_{1} \ldots x_{t-2}\right] \supseteq C_{5}$ and so $e\left(x_{t-1}, a_{2} a_{3}\right)=0$. Thus $e\left(x_{2}, a_{2} a_{3}\right)=2$ and by $(3), \tau\left(L_{1}\right) \geq \tau\left(x_{1} x_{2} a_{1} a_{2} a_{3} x_{1}\right) \geq 4$ and so $\tau\left(a_{5}, L_{1}\right)>0$, a contradiction. Hence $x_{t} a_{5} \notin E$.

Next, suppose $e\left(x_{t}, a_{1} a_{3}\right)=2$ or $e\left(x_{t}, a_{2} a_{4}\right)=2$, say $e\left(x_{t}, a_{2} a_{4}\right)=2$. Then $a_{3} x_{t-1} \notin E$ and $a_{2} x_{2} \notin E$ by Property 1. Thus $a_{3} x_{2} \in E$ and $a_{2} x_{t-1} \in E$. As $\left[x_{t-1}, x_{t}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5},\left[x_{1}, \ldots, x_{t-2}, a_{2} a_{3}\right] \nsupseteq C_{\geq 5}$. This implies that $e\left(x_{1}, P\right)=1$. As $r\left(x_{t-2} \ldots x_{1} a_{2} a_{3}\right)=4$ and by (2), we obtain that $r(P)=4$, i.e., $x_{t} x_{t-3} \in E$. Thus [$P-x_{1}, a_{2}$] $\supseteq C_{5}$ with $x_{1} \rightarrow\left(L_{1}, a_{2}\right)$, a contradiction.

Next, suppose $e\left(x_{t}, a_{1} a_{2}\right)=2$ or $e\left(x_{t}, a_{3} a_{4}\right)=2$, say $e\left(x_{t}, a_{3} a_{4}\right)=2$. Then $x_{2} a_{3} \notin E$ by Property 1 and so $x_{t-1} a_{3} \in E$. Since $\left[x_{t-1}, x_{t}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$ and $r\left(x_{t-2} \ldots x_{1} a_{2} a_{3}\right) \geq 3$, we see that either $e\left(x_{1}, P\right) \geq 2$ or $e\left(x_{t}, P\right) \geq 2$ by (2). If $e\left(x_{t}, P\right) \geq 2$ then $\left[x_{3}, \ldots, x_{t}, a_{3}, a_{4}\right] \supseteq C_{\geq 5}$ and so $\left[a_{5}, a_{1}, a_{2}, x_{1}, x_{2}\right] \nsupseteq C_{5}$. Consequently, $a_{5} x_{2} \notin E$ and so $x_{t-1} a_{5} \in E$. Then $\left[x_{3}, \ldots, x_{t}, a_{4}, a_{5}\right] \supseteq C_{\geq 5}$ and $\left[x_{1}, a_{3}, a_{2}, a_{1}, x_{2}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{t}, P\right)=1$ and $e\left(x_{1}, P\right) \geq 2$. Then
$\left[x_{t-2}, \ldots, x_{1}, a_{1}, a_{2}\right] \supseteq C_{\geq 5}$ and so $\left[x_{t-1}, x_{t}, a_{3}, a_{4}, a_{5}\right] \nsupseteq C_{5}$. Thus $x_{t-1} a_{5} \notin E$ and so $x_{2} a_{5} \in E$. Thus $\left[x_{t-2}, \ldots, x_{1}, a_{4}, a_{5}\right] \supseteq C_{\geq 5}$ and $\left[a_{1}, a_{2}, a_{3}, x_{t}, x_{t-1}\right] \supseteq C_{5}$, a contradiction.

Next, suppose $e\left(x_{t}, a_{2} a_{3}\right)=2$. Then $e\left(x_{2}, a_{2} a_{3}\right)=0$ by Property 1 and so $e\left(x_{t-1}, a_{2} a_{3}\right)=2$. Since $\left[x_{1}, x_{2}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$, we have $\left[x_{3}, \ldots, x_{t}, a_{2}, a_{3}\right] \nsupseteq C_{\geq 5}$. Since $r\left(x_{3} \ldots x_{t} a_{2} a_{3}\right)=4$ and by (2), $r(P)=4$, it follows that $e\left(x_{t}, P\right)=1$ and $x_{1} x_{4} \in E$. Thus $\left[a_{1}, x_{1}, x_{4}, x_{3}, x_{2}\right] \supseteq C_{5}$ and $\left[x_{t-1}, x_{t}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$, a contradiction.

Finally, suppose $e\left(x_{t}, a_{1} a_{4}\right)=2$. Since $\left[x_{t-1}, x_{t}, a_{1}, a_{5}, a_{4}\right] \supseteq C_{5}$, it follows that $\left[x_{1}, \ldots, x_{t-2}, a_{2}, a_{3}\right] \nsupseteq C_{\geq 5}$. As $r\left(x_{t-2} \ldots x_{1} a_{2} a_{3}\right) \geq 3$, we have $r(P) \geq 3$ by (2). Assume first that $e\left(x_{1}, P\right) \geq 2$. By Claim 2, $e\left(x_{t}, P\right)=1$. Then $e\left(x_{2}, a_{2} a_{3}\right)=0$ because $\left[x_{1}, \ldots, x_{t-2}, a_{2}, a_{3}\right] \nsupseteq C_{\geq 5}$. Thus $e\left(x_{t-1}, a_{2} a_{3}\right)=2$. Consequently, $\left[x_{t-1}, x_{t}, a_{4}, a_{3}, a_{2}\right]$ $\supseteq C_{5}$ and $\left[x_{t-2}, \ldots, x_{1}, a_{4}, a_{5}\right] \nsupseteq C_{\geq 5}$, which implies $a_{5} x_{2} \notin E$. Thus $x_{t-1} a_{5} \in E$. This yields that $r\left(x_{3} \ldots x_{t} a_{4} a_{5}\right)=4$. As $\left[x_{1}, a_{3}, a_{2}, a_{1}, x_{2}\right] \supseteq C_{5}$, it follows by (2) that $x_{1} x_{4} \in E$. Thus $\left[x_{1}, x_{4}, x_{3}, x_{2}, a_{1}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{t}, P\right) \geq 2$ and $e\left(x_{1}, P\right)=1$. Since $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$, it follows that $\left[x_{3}, \ldots, x_{t}, a_{4}, a_{5}\right] \nsupseteq$ $C_{\geq 5}$. This implies that $a_{5} x_{t-1} \notin E$ and $r(P)=3$. Thus $a_{5} x_{2} \in E$. Then $\left[x_{1}, x_{2}, a_{5}, a_{1}, a_{2}\right] \supseteq C_{5}$ and so $\left[x_{3}, \ldots, x_{t}, a_{3}, a_{4}\right] \nsupseteq C_{\geq_{5}}$. Thus $x_{t-1} a_{3} \notin E$ and so $x_{2} a_{3} \in E$. Then $r\left(x_{t-2} \ldots x_{1} a_{2} a_{3}\right)=4$. By $(2), r(P)=4$, a contradiction.

Property 5. $e\left(x_{1} x_{t}, L_{1}\right) \geq 5$.
Proof of Property 5. Say $e\left(x_{1} x_{t}, L_{1}\right) \leq 4$. Since $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 13-e\left(x_{1} x_{t}, L_{1}\right) \geq$ 9, we may assume without loss of generality that $e\left(x_{2}, L_{1}\right)=5$ and $e\left(x_{t-1}, L_{1}\right) \geq 4$. Say $e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{4}\right)=4$. We have $x_{2} \rightarrow L_{1}$. We claim that $e\left(x_{1}, P\right)=1$. If this is false, say $e\left(x_{1}, P\right) \geq 2$. Then $\left[P-x_{2}+a_{i}\right] \nsupseteq C_{\geq 5}$ for all $a_{i} \in V\left(L_{1}\right)$. This implies $i\left(x_{1} x_{t}, L_{1}\right)=0$. Moreover, if $i\left(x_{1} x_{t-1}, L_{1}\right) \neq 0$, then $t=6$ and $x_{1} x_{4} \in E$. Assume for the moment that $i\left(x_{1} x_{t-1}, L_{1}\right) \neq 0$. As $x_{5} \rightarrow\left(L_{1}, a_{i}\right)$ for $i \in\{2,3,5\}$, $\left[P-x_{5}, a_{i}\right] \nsupseteq C_{\geq 5}$ for $i \in\{2,3,5\}$ and so $e\left(x_{1}, a_{2} a_{3} a_{5}\right)=0$. Thus $e\left(x_{1}, a_{1} a_{4}\right)>0$. Say $x_{1} a_{1} \in E$. Then $\left[a_{1}, x_{1}, x_{4}, x_{3}, x_{2}\right] \supseteq C_{5}$ and so $\left[x_{5}, x_{6}, a_{2}, a_{3}, a_{4}, a_{5}\right] \nsupseteq C_{\geq 5}$. Thus $e\left(x_{6}, a_{2} a_{4} a_{5}\right)=0$. It follows that $e\left(x_{1} x_{6}, L_{1}\right)=3$ and $e\left(x_{5}, L_{1}\right)=5$ with $e\left(x_{1}, a_{1} a_{4}\right)=2$ and $x_{6} a_{3} \in E$ and we readily see that $\left[L_{1}, P\right] \supseteq 2 C_{5}$, a contradiction. Therefore $i\left(x_{1} x_{t-1}, L_{1}\right)=0$. As $e\left(P, L_{1}\right) \geq 13, e\left(x_{t}, L_{1}\right) \geq 3$. By Property 1, we see that $N\left(x_{t}, L_{1}\right)=\left\{a_{1}, a_{5}, a_{4}\right\}$ and $x_{t-1} a_{5} \notin E$. Thus $i\left(x_{1} x_{t-1}, L_{1}\right) \neq 0$ or $i\left(x_{1} x_{t}, L_{1}\right) \neq 0$, a contradiction. Hence $e\left(x_{1}, P\right)=1$.

Next, we claim that $e\left(x_{t-1}, L_{1}\right)=4$. If this is false, say $e\left(x_{t-1}, L_{1}\right)=5$. Then we also have $e\left(x_{t}, P\right)=1$. By Property $1, x_{1} \nrightarrow\left(L_{1}, a_{i}\right)$ and $x_{t} \nrightarrow\left(L_{1}, a_{i}\right)$ for $a_{i} \in V\left(L_{1}\right)$, which implies that $e\left(x_{1}, L_{1}\right) \leq 2$ and $e\left(x_{t}, L_{1}\right) \leq 2$. Say without loss of generality $x_{1} a_{1} \in E$. Then $\left[x_{1}, a_{1}, a_{2}, a_{3}, x_{2}\right] \supseteq C_{5}$. Then $e\left(x_{t}, a_{4} a_{5}\right)=0$ for otherwise $\left[x_{3}, \ldots, x_{t}, a_{4}, a_{5}\right] \supseteq R_{t}^{4}$, contradicting (2). Similarly, $e\left(x_{t}, a_{2} a_{3}\right)=0$. Thus $e\left(x_{1}, L_{1}\right) \geq 2$. Then $x_{1} a_{j} \in E$ for some $j \neq 1$. With a_{j} in place of a_{1} in the above, we see that $x_{t} a_{1} \notin E$. a contradiction.

Therefore $e\left(x_{t-1}, L_{1}\right)=4$ and so $e\left(x_{1} x_{t}, L_{1}\right)=4$. Suppose that $x_{1} a_{5} \in E$. Then $\left[x_{1}, a_{5}, a_{1}, a_{2}, x_{2}\right] \supseteq C_{5}$. If $e\left(x_{t}, a_{3} a_{4}\right)>0$ then $\left[x_{3}, \ldots, x_{t}, a_{3}, a_{4}\right] \supseteq R_{t}^{4}$. By (2), $r(P)=4$, i.e., $x_{t} x_{t-3} \in E$. Thus $\left[x_{3}, \ldots, x_{t}, a_{3}, a_{4}\right] \supseteq C_{\geq 5}$, a contradiction. Hence
$e\left(x_{t}, a_{3} a_{4}\right)=0$. Similarly, $e\left(x_{t}, a_{1} a_{2}\right)=0$. Thus $a_{5} x_{t} \in E$ and $e\left(x_{1}, L_{1}\right)=3$. By Property $1, x_{1} \nrightarrow\left(L_{1}, a_{i}\right)$ for each $i \in\{1,2,3,4\}$ and so $e\left(x_{1}, a_{1} a_{5} a_{4}\right)=3$. Thus $x_{1} \rightarrow\left(L_{1}, a_{5}\right)$ and $\left[P-x_{1}, a_{5}\right] \supseteq C_{t}$, a contradiction. Hence $x_{1} a_{5} \notin E$. Thus $e\left(x_{1}, L_{1}-a_{5}\right) \geq 1$ and so either $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ or $\left[x_{1}, x_{2}, a_{2}, a_{3}, a_{4}\right] \supseteq C_{5}$. Say without loss of generality $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$. If $x_{t} a_{5} \in E$, then $r\left(x_{3} \ldots x_{t} a_{5} a_{4}\right)=$ 4. Consequently, $r(P)=4$ by (2) and so $\left[x_{3}, \ldots, x_{t}, a_{5}, a_{4}\right] \supseteq C_{\geq 5}$, a contradiction. Hence $x_{t} a_{5} \notin E$. As $x_{1} \nrightarrow\left(L_{1}, a_{i}\right)$ and $x_{t} \nrightarrow\left(L_{1}, a_{i}\right)$ for each $i \in\{1,2,3,4\}$, it follows that $e\left(x_{1}, L_{1}-a_{5}\right)=e\left(x_{t}, L_{1}-a_{5}\right)=2$. Assume for the moment that $e\left(x_{1}, a_{1} a_{4}\right)>0$. Say without loss of generality that $x_{1} a_{1} \in E$. Then $\left[x_{1}, x_{2}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$. This implies that $e\left(x_{t}, a_{2} a_{3}\right)=0$ for otherwise $\left[x_{3}, \ldots, x_{t}, a_{2}, a_{3}\right] \supseteq R_{t}^{4}$, which implies that $x_{t} x_{t-3} \in E$ by (2) and so $\left[x_{3}, \ldots, x_{t}, a_{2}, a_{3}\right] \supseteq C_{\geq 5}$, a contradiction. Hence $e\left(x_{t}, a_{1} a_{4}\right)=2$. Thus $\left[a_{2}, a_{3}, a_{4}, x_{t-1}, x_{t}\right] \supseteq C_{5}$ and $r\left(x_{t-2} x_{t-3} \ldots x_{1} a_{1} a_{5}\right)=4$. By (2), $x_{t} x_{t-3} \in E$. Consequently, $\left[a_{4}, x_{t}, x_{t-3}, x_{t-2}, x_{t-1}\right] \supseteq C_{5}$ and $\left[x_{1}, a_{1}, a_{2}, a_{3}, x_{2}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{1}, a_{1} a_{4}\right)=0$ and so $e\left(x_{1} a_{2} a_{3}\right)=2$. As $e\left(x_{t}, L_{1}-a_{5}\right)=$ 2 , say without loss of generality $e\left(x_{t}, a_{3} a_{4}\right) \geq 1$. Then $\left[x_{3} \ldots x_{t}, a_{3} a_{4}\right] \supseteq R_{t}^{4}$. As $\left[x_{1}, a_{2}, a_{1}, a_{5}, x_{2}\right] \supseteq C_{5}$ and by (2), $r(P)=4$, i.e., $x_{t} x_{t-3} \in E$ and so $\left[x_{3} \ldots x_{t}, a_{3} a_{4}\right] \supseteq$ $C_{\geq 5}$, a contradiction.

By the above properties, we may assume that $e\left(x_{1}, L_{1}\right)=3$ and $2 \leq e\left(x_{t}, L_{1}\right) \leq 3$. Then $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 13-e\left(x_{1} x_{t}, L_{1}\right) \geq 7$.

Property 6. $N\left(x_{1}, L_{1}\right)=\left\{a_{i}, a_{i+2}, a_{i+3}\right\}$ for some $a_{i} \in V\left(L_{1}\right)$.
Proof of Property 6. On the contrary, say the property does not hold. Then $N\left(x_{1}, L_{1}\right)$ contains three consecutive vertices of L_{1}. Say $N\left(x_{1}, L_{1}\right)=\left\{a_{1}, a_{2}, a_{3}\right\}$. By Property $1, e\left(a_{2}, x_{2} x_{t-1}\right) \leq 1$ and $e\left(a_{2}, x_{2} x_{t}\right) \leq 1$. Thus $e\left(x_{2} x_{t-1}, a_{4} a_{5}\right) \geq 7-$ $e\left(x_{2} x_{t-1}, a_{1} a_{2} a_{3}\right) \geq 2$. As $e\left(x_{t}, L_{1}\right) \geq 2$, either $N\left(x_{t}, L_{1}\right) \supseteq\left\{a_{i}, a_{i+2}\right\}$ for some $a_{i} \in V\left(L_{1}\right)$ or $N\left(x_{t}, L_{1}\right)=\left\{a_{i}, a_{i+1}\right\}$ for some $a_{i} \in V\left(L_{1}\right)$. We divide the proof into the following cases.

Case 1. For some $a_{i} \in V\left(L_{1}\right),\left\{a_{i}, a_{i+2}\right\} \subseteq N\left(x_{t}\right)$.
First, assume that $\left\{a_{1}, a_{3}\right\} \subseteq N\left(x_{t}\right)$. Then $x_{t} \rightarrow\left(L_{1}, a_{2}\right)$ and $\left[x_{1}, a_{1}, x_{t}, a_{3}, a_{2}\right] \supseteq$ C_{5}. Thus $x_{t-1} a_{2} \notin E$ and either $e\left(x_{2}, a_{4} a_{5}\right)=0$ or $e\left(x_{t-1}, a_{4} a_{5}\right)=0$. It follows that $e\left(x_{2} x_{t-1}, a_{1} a_{3}\right)=4, x_{2} a_{2} \in E, e\left(x_{2} x_{t-1}, a_{4} a_{5}\right)=2$ and $e\left(x_{t}, L_{1}\right)=3$. Clearly, $x_{t} a_{2} \notin E$ as $x_{2} a_{2} \in E$. Thus $e\left(x_{t}, a_{4} a_{5}\right)=1$. Say without loss of generality that $x_{t} a_{4} \in E$. As $\left[x_{t-1}, a_{1}, a_{5}, a_{4}, x_{t}\right] \supseteq C_{5}$ and $r\left(x_{t-2} \ldots x_{1} a_{3} a_{2}\right)=4$ we have $r(P)=4$ by (2). This implies that $x_{t} x_{t-3} \in E$ for otherwise $\left[x_{1} x_{4} x_{3} x_{2} a_{2}\right] \supseteq C_{5}$. If $e\left(x_{2}, a_{4} a_{5}\right)>0$, then $\left[x_{1}, a_{1}, a_{5}, a_{4}, x_{2}, a_{2}\right] \supseteq C_{\geq 5}$ and $\left[a_{3}, x_{t}, x_{t-3}, x_{t-2}, x_{t-1}\right] \supseteq C_{5}$, a contradiction. Hence $e\left(x_{2}, a_{4} a_{5}\right)=0$ and so $e\left(x_{t-1}, a_{4} a_{5}\right)=2$ as $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 7$. Then $\left[a_{4}, x_{t}, x_{t-3}, x_{t-2}, x_{t-1}\right] \supseteq C_{5}$ and $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$, a contradiction.

Next, assume that $\left\{a_{1}, a_{4}\right\} \subseteq N\left(x_{t}\right)$ or $\left\{a_{3}, a_{5}\right\} \subseteq N\left(x_{t}\right)$. Say without loss of generality $\left\{a_{3}, a_{5}\right\} \subseteq N\left(x_{t}\right)$. Then $x_{t} \rightarrow\left(L_{1}, a_{4}\right)$ and so $e\left(a_{4}, x_{2} x_{t-1}\right) \leq 1$. As $e\left(a_{2}, x_{2} x_{t-1}\right) \leq 1, e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{5}\right) \geq 7-2=5$. Thus $e\left(x_{t-1}, a_{3} a_{5}\right) \geq 1$ and so $\left[x_{t-1}, x_{t}, a_{3}, a_{4}, a_{5}\right] \supseteq C_{5}$. Clearly, $r\left(x_{t-2} x_{t-3} \ldots x_{1} a_{i}\right) \geq 3$ for $i \in\{1,2\}$. By (2), $r(P) \geq 3$. For the moment, assume $e\left(x_{1}, P\right) \geq 2$. Then $e\left(x_{2}, a_{1} a_{2}\right)=0$ for otherwise $\left[x_{1}, x_{2}, \ldots, x_{t-2}, a_{1}, a_{2}\right] \supseteq C_{\geq 5}$. This yields that $e\left(x_{2}, a_{3} a_{5}\right)=2, e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{5}\right)=4$
and $e\left(a_{4}, x_{2} x_{t-1}\right)=1$. Consequently, $e\left(x_{t}, L_{1}\right)=3$. By Property $1, x_{t} \nrightarrow\left(L_{1}, a_{i}\right)$ for $i \in\{1,2\}$ and it follows that $e\left(x_{t}, a_{1} a_{2}\right)=0$. As $\left[a_{1}, a_{5}, x_{1}, x_{2}, \ldots, x_{t-2}\right] \supseteq$ $C_{\geq 5},\left[a_{2}, a_{3}, a_{4}, x_{t-1}, x_{t}\right] \nsupseteq C_{5}$ and so $x_{t} a_{4} \notin E$. Thus $e\left(x_{t}, L_{1}\right)=2$, a contradiction. Therefore $e\left(x_{1}, P\right)=1$ and so $e\left(x_{t}, P\right) \geq 2$. As $e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{5}\right) \geq 5$, we see that either $\left\{x_{t-1} a_{3}, x_{2} a_{5}\right\} \subseteq E$ or $\left\{x_{t-1} a_{5}, x_{2} a_{3}\right\} \subseteq E$. In the former situation $\left[x_{1}, x_{2}, a_{5}, a_{1}, a_{2}\right] \supseteq C_{5}$ and in the latter $\left[x_{1}, x_{2}, a_{3}, a_{2}, a_{1}\right] \supseteq C_{5}$. This means that $\left[a_{3}, x_{t}, x_{t-1}, \ldots, x_{3}\right] \nsupseteq C_{\geq 5}$ and $\left[a_{5}, x_{t}, x_{t-1}, \ldots, x_{3}\right] \nsupseteq C_{\geq 5}$. It follows that $e\left(x_{t}, P\right)=2$ and $x_{t} x_{t-2} \in E$. As $\left[x_{t-1}, x_{t}, a_{3}, a_{4}, a_{5}\right] \supseteq C_{5}$ and by (2), we must have that $r\left(x_{t-2} x_{t-3} \ldots x_{1} a_{1} a_{2}\right)=3$. This yields that $e\left(x_{2}, a_{1} a_{2}\right)=0$. It follows that $e\left(x_{2}, a_{3} a_{5}\right)=2, e\left(x_{t-1}, a_{1} a_{2} a_{3} a_{5}\right)=4, e\left(a_{4}, x_{2} x_{t-1}\right)=1$ and $e\left(x_{t}, L_{1}\right)=3$. As $\left[x_{1}, x_{2}, a_{3}, a_{2}, a_{1}\right] \supseteq C_{5}$, we see that $\left[a_{4}, a_{5}, x_{t}, x_{t-1}, x_{t-2}\right] \nsupseteq C_{5}$ and so $a_{4} x_{t-1} \notin E$. Thus $x_{2} a_{4} \in E$. Consequently, $\left[x_{1}, a_{1}, a_{5}, a_{4}, x_{2}\right] \supseteq C_{5}$ and $\left[a_{2}, x_{t-1}, x_{t-2}, x_{t}, a_{3}\right] \supseteq C_{5}$, a contradiction.

Finally, assume that $\left\{a_{2}, a_{4}\right\} \subseteq N\left(x_{t}\right)$ or $\left\{a_{2}, a_{5}\right\} \subseteq N\left(x_{t}\right)$. Say without loss of generality $\left\{a_{2}, a_{4}\right\} \subseteq N\left(x_{t}\right)$. Then we readily see that $x_{2} a_{2} \notin E$ and $x_{t-1} a_{3} \notin E$. Thus $e\left(x_{2} x_{t-1}, L_{1}\right) \leq 8$. As $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 7$, it follows that either $\left\{x_{2} a_{5}, x_{t-1} a_{2}\right\} \subseteq$ E or $\left\{x_{2} a_{1}, x_{t-1} a_{5}\right\} \subseteq E$. Then as above it is easy to see that $\left[L_{1}, P\right] \supseteq C_{5} \uplus R_{t}^{4}$. By (2), $r(P)=4$. Then in each of the two situations, we readily see that $\left[L_{1}, P\right] \supseteq$ $C_{5} \uplus C_{\geq 5}$, a contradiction.

Case 2. $N\left(x_{t}, L_{1}\right)=\left\{a_{i}, a_{i+1}\right\}$ for some $a_{i} \in V\left(L_{1}\right)$.
In this case, $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 13-3-2=8$. First, assume that $N\left(x_{t}, L_{1}\right) \subseteq$ $\left\{a_{1}, a_{2}, a_{3}\right\}$. Then $\left[x_{1}, x_{t}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$. Since $e\left(a_{2}, x_{2} x_{t-1}\right) \leq 1$, we see that $e\left(x_{2}, a_{4} a_{5}\right) \geq 1$ and $e\left(x_{t-1}, a_{4} a_{5}\right) \geq 1$ and so $\left[x_{2}, \ldots, x_{t-1}, a_{4}, a_{5}\right] \supseteq C_{\geq 5}$, a contradiction.

Next, asssume that $N\left(x_{t}, L_{1}\right)=\left\{a_{1}, a_{5}\right\}$ or $N\left(x_{t}, L_{1}\right)=\left\{a_{3}, a_{4}\right\}$. Say without loss of generality $N\left(x_{t}, L_{1}\right)=\left\{a_{3}, a_{4}\right\}$. As $e\left(a_{2}, x_{2} x_{t-1}\right) \leq 1$, we see that either $\left\{x_{2} a_{5}, x_{t-1} a_{3}\right\} \subseteq E$ or $\left\{x_{2} a_{1}, x_{t-1} a_{5}\right\} \subseteq E$. Thus $\left[L_{1}, P\right] \supseteq C_{5} \cup R_{t}^{4}$ with x_{1} and x_{2} on the 5 -cycle. Furthermore, we see that $e\left(x_{t}, P\right)=1$ as $\left[P, L_{1}\right] \nsupseteq C_{5} \uplus C_{\geq 5}$. By (2), $r(P)=4$ and so $x_{1} x_{4} \in E$. We also have either $\left\{x_{2} a_{1}, x_{t-1} a_{5}\right\} \subseteq E$ or $\left\{x_{2} a_{3}, x_{t-1} a_{1}\right\} \subseteq E$. With $x_{1} x_{4} \in E$, we then readily see that $\left[L_{1}, P\right] \supseteq C_{5} \uplus C_{\geq 5}$, a contradiction.

Finally, assume that $N\left(x_{t}, L_{1}\right)=\left\{a_{4}, a_{5}\right\}$. Clearly, $e\left(x_{2}, a_{1} a_{3}\right) \geq 1$ and $e\left(x_{t-1}, a_{4} a_{5}\right) \geq 1$. Then we readily see that $\left[x_{1}, x_{2}, a_{1}, a_{2}, a_{3}\right] \supseteq C_{5}$ and $\left[x_{3}, \ldots\right.$, $\left.x_{t}, a_{4}, a_{5}\right] \supseteq R_{t}^{4}$. Moreover, we see that $e\left(x_{t}, P\right)=1$ as $\left[x_{3}, \ldots, x_{t}, a_{3}, a_{4}\right] \nsupseteq C_{\geq 5}$. By (2), we obtains $x_{1} x_{4} \in E$. We have either $\left\{x_{2} a_{1}, x_{t-1} a_{3}\right\} \subseteq E$ or $\left\{x_{2} a_{3}, x_{t-1} a_{1}\right\} \subseteq E$. Then we see that $\left[L_{1}, P\right] \supseteq 2 C_{5}$, a contradiction.

We are ready to complete the proof of the theorem. By the above properties, we see that $e\left(x_{1}, L_{1}\right)=\left\{a_{i}, a_{i+2}, a_{i+3}\right\}$ for some $a_{i} \in V\left(L_{1}\right)$ and $2 \leq e\left(x_{t}, L_{1}\right) \leq 3$. Say without loss of generality that $N\left(x_{1}, L_{1}\right)=\left\{a_{1}, a_{3}, a_{4}\right\}$. Then $e\left(x_{2} x_{t-1}, L_{1}\right) \geq 7$, $e\left(a_{2}, x_{2} x_{t-1}\right) \leq 1$ and $e\left(a_{5}, x_{2} x_{t-1}\right) \leq 1$.

First, assume that $e\left(x_{t}, L_{1}\right)=3$. With x_{t} playing the role of x_{1}, we see, by Property 6, that $N\left(x_{t}, L_{1}\right)=\left\{a_{j}, a_{j+2}, a_{j+3}\right\}$ for some $a_{j} \in V\left(L_{1}\right)$. If $j=1$, then
by Property 2 , we see that $e\left(x_{2}, a_{2} a_{5}\right) \geq 1, e\left(x_{t-1}, a_{2} a_{5}\right) \geq 1$ and there are two independent edges between $\left\{a_{2}, a_{5}\right\}$ and $\left\{x_{2}, x_{t-1}\right\}$. Say $\left\{x_{2} a_{2}, x_{t-1} a_{5}\right\} \subseteq E$. Then $\left[L_{1}, P\right] \supseteq C_{5} \cup R_{t}^{4}$. By (2), $r(P)=4$ and consequently, $\left[L_{1}, P\right] \supseteq C_{5} \cup C_{\geq 5}$, a contradiction. If $j \in\{2,5\}$, say without loss of generality that $j=2$. Then $e\left(a_{1}, x_{2} x_{t-1}\right) \leq 1$ and $e\left(a_{3}, x_{2} x_{t-1}\right) \leq 1$. Thus $e\left(x_{2} x_{t-1}, L_{1}\right)=e\left(x_{2} x_{t-1}, a_{2} a_{5}\right)+$ $e\left(x_{2} x_{t-1}, a_{1} a_{3}\right)+e\left(x_{2} x_{t-1}, a_{4}\right) \leq 2+2+2=6$, a contradiction.

Therefore $j \in\{3,4\}$. Say without loss of generality that $j=3$. Then $e\left(a_{4}, x_{2} x_{t-1}\right)$ ≤ 1. It follows that $e\left(x_{2} x_{t-1}, a_{1} a_{3}\right)=4$ and $e\left(a_{p}, x_{2} x_{t-1}\right)=1$ for $p \in\{2,4,5\}$. Then $\left[a_{1}, a_{2}, x_{2}, \ldots, x_{t-1}\right] \supseteq C_{\geq 5}$ and $\left[x_{1}, a_{3}, x_{t}, a_{5}, a_{4}\right] \supseteq C_{5}$, a contradiction.

Therefore $e\left(x_{t}, L_{1}\right)=2$ and so $e\left(x_{2} x_{t-1}, a_{1} a_{3} a_{4}\right)=6, e\left(a_{2}, x_{2} x_{t-1}\right)=1$ and $e\left(a_{5}, x_{2} x_{t-1}\right)=1$. Assume for the moment that $N\left(x_{t}, L_{1}\right) \nsubseteq\left\{a_{1}, a_{3}, a_{4}\right\}$. Say without loss of generality that $a_{2} x_{t} \in E$. Then $\left[x_{1}, x_{2}, a_{4}, a_{5}, a_{1}\right] \supseteq C_{5}$ and $\left[x_{3}, \ldots, x_{t}, a_{2}, a_{3}\right] \supseteq$ R_{t}^{4}. By (2), $r(P)=4$, and consequently, $\left[L_{1}, P\right] \supseteq C_{5} \uplus C_{\geq 5}$, a contradiction. Hence $e\left(x_{t}, L_{1}\right) \subseteq\left\{a_{1}, a_{3}, a_{4}\right\}$ and so $e\left(x_{t}, a_{3} a_{4}\right) \geq 1$. If $e\left(x_{t-1}, a_{2} a_{5}\right)=2$, we readily see that $\left[L_{1}, P\right] \supseteq C_{5} \cup R_{t}^{4}$. Consequently, $r(P)=4$ and $\left[L_{1}, P\right] \supseteq C_{5} \cup C_{\geq 5}$, a contradiction. Therefore $e\left(x_{t-1}, a_{2} a_{5}\right) \leq 1$ and so $e\left(x_{2}, a_{2} a_{5}\right) \geq 1$. We may assume without loss of generality that $a_{2} x_{2} \in E$. As $e\left(x_{t}, a_{3} a_{4}\right) \geq 1$ and $e\left(a_{5}, x_{2} x_{t-1}\right)=1$, we readily see that $\left[L_{1}, P\right] \supseteq C_{5} \cup R_{t}^{4}$ and so $r(P)=4$. Again, we see that $\left[L_{1}, P\right] \supseteq C_{5} \cup C_{\geq 5}$, a contradiction. This proves the theorem.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
[2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
[3] M. H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984), 227-230.
[4] P. Erdős, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.
[5] B. Randerath, I. Schiermeyer and H. Wang, On quadrilaterals in a graph, Discrete Math. 203 (1999), 229-237.
[6] H. Wang, Vertex-disjoint quadrilaterals in graphs, Discrete Math. 288 (2004), 149-166.
[7] H. Wang, Proof of the Erdős-Faudree Conjecture on quadrilaterals, Graphs Combin. 26 (2010), 833-877.
[8] H. Wang, An Extension of the Corradi-Hajnal Theorem, Australas. J. Combin. 54 (2012), 59-84.
[9] H. Wang, Disjoint 5-cycles in a graph, Discuss. Math. Graph Theory 32 (2012), 221-242.

