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Abstract

Lexicographic products of graphs have been studied by many authors due
to their useful properties involving independent sets and cliques. In this
article, we show that analogues of such properties can be extended to lex-
icographic products of r-uniform hypergraphs and we use them to prove
a generalization of Abbott’s Theorem and a new multicolor inequality for
hypergraph Ramsey numbers, which generalizes a theorem by Xiaodong,
Zheng, Exoo and Radziszowski. We conclude by showing that our results,
along with a construction due to Exoo, imply the following lower bounds
for t-colored 3-uniform Ramsey numbers: Rt(5; 3) ≥ 812t−2

+ 1.

1 Introduction

The lexicographic product of graphs stands out among other products because of the
predictable nature in which its clique numbers and independence numbers behave.
For graphs G1 and G2 (having vertex sets V (G1) and V (G2) and edge sets E(G1)
and E(G2), respectively), the lexicographic product G1[G2] is defined to have vertex
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set V (G1)× V (G2) and edge set

{(a1, b1)(a2, b2) | a1a2 ∈ E(G1) or (a1 = a2 and b1b2 ∈ E(G2))}.

It is clear that G1[G2] is not commutative, hence the unusual product notation.

For example, consider the following graphs G1 and G2.

a

b

c

d

G1
1

2 3

G2

Figure 1 shows the lexicographic product G1[G2]. Observe that the product may be
viewed as replacing the vertices of G1 with copies of G2.
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Figure 1: The lexicographic product G1[G2].

As usual, we denote the complement of a graph G by G (i.e., the graph with vertex
set V (G) = V (G) and edge set E(G) = {ab | ab 6∈ G}). One can easily check that
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the complement G1[G2] contains the edges

{(a, i)(c, j), (b, i)(d, j) | i, j = 1, 2, 3}

and
{(a, 2)(a, 3), (b, 2)(b, 3), (c, 2)(c, 3), (d, 2)(d, 3)},

from which it can be confirmed that

G1[G2] = G1[G2].

For any graph G, let β(G) and ω(G) denote the independence number and clique
number of G, respectively. In 1974, Geller and Stahl [6] proved that

β(G1[G2]) = β(G1)β(G2). (1)

From Property (1) and the observation that G1[G2] = G1[G2], it follows that

ω(G1[G2]) = ω(G1)ω(G2). (2)

Properties (1) and (2) elucidate the utility of lexicographic products in Ramsey
theory.

Define the t-color Ramsey number R(k1, k2, . . . , kt) to be the least natural number
n such that every arbitrary coloring of the edges of Kn (the complete graph of order
n) using t colors results in a subgraph isomorphic to Kki in some color i (1 ≤ i ≤ t).
In the case where k1 = k2 = · · · = kt, we write Rt(k1) for the corresponding t-color
Ramsey number. In 1965, Abbott (Theorem 2.3.2, [1]) proved that

Rt(pq + 1) > (Rt(p+ 1)− 1)(Rt(q + 1)− 1).

In fact, the 2-color version of this result,

R(pq + 1, pq + 1) > (R(p+ 1, p+ 1)− 1)(R(q + 1, q + 1)− 1),

is easily seen to follow directly from properties (1) and (2) of the lexicographic
product.

In this article, we will consider lexicographic products for r-uniform hypergraphs
and show that they satisfy many similar properties to that of their 2-uniform counter-
parts (ie., graphs). Recall that an r-uniform hypergraph H consists of a nonempty set
V (H) of vertices and a set E(H) of different unordered r-tuples of distinct vertices,
called hyperedges. For an overview of hypergraph products and some of their basic
properties, the reader is referred to [8]. Let H1 and H2 be r-uniform hypergraphs.
Then the lexicographic product of H1 and H2, denoted H1[H2], is the r-uniform
hypergraph with vertex set V (H1)× V (H2) and hyperedge set{

(a1, b1)(a2, b2) . . . (ar, br)

∣∣∣∣ a1a2 . . . ar ∈ E(H1) or
a1 = a2 = · · · = ar and b1b2 . . . br ∈ E(H2)

}
.
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It should be noted that whenever we consider a hyperedge a1a2 . . . ar, in any r-
uniform hypergraph, it is assumed that the ai’s are distinct. As with the case of
graphs, it is easily confirmed that the lexicographic product for r-uniform hyper-
graphs is not commutative.

In Section 2, we consider the independence and clique numbers for lexicographic
products in the setting of r-uniform hypergraphs. The primary hurdle when r ≥ 3 is
the fact that a clique in an r-uniform hypergraph may not correspond to a (strong)
independent set in the hypergraph’s complement. So, Properties (1) and (2) do not
readily extend to this setting. Theorems 1-4 in Section 2 are analogues of well-known
results on graphs, extended to r-uniform hypergraphs. In particular, we address
the issue of determining clique numbers and apply these results in to proving a
generalization of Abbott’s Theorem in Section 3. We then conclude with several
consequences of this result, including a new multicolor inequality for hypergraph
Ramsey numbers (generalizing a result of Xiaodong, Zheng, Exoo, and Radziszowski
[10]) and a proof that

Rt(5; 3) ≥ 812t−2

+ 1,

where
Rt(5; 3) := R(5, 5, . . . , 5︸ ︷︷ ︸

t copies

; 3)

is the t-colored 3-uniform Ramsey number. Our motivation for focusing on 3-uniform
Ramsey numbers stems from the “Stepping-up” Lemma, usually attributed to Erdős
and Hajnal (see [7]). This theorem gives powerful lower bounds for Ramsey numbers
of arbitrary uniformity given 3-uniform bounds. However, the search for these bounds
has been extremely difficult (cf. [3]).

2 Independent Sets and Cliques

For an r-uniform hypergraph H, a clique is a subset K ⊆ V (H) of vertices such
that the subhypergraph induced by K contains all possible hyperedges of H, i.e., all
r-element subsets of K. Using this definition, every collection of r − 1 (or fewer)
vertices of K forms a clique. Equivalently, a subset of n vertices {x1, x2, . . . , xn}
forms a clique if the induced subhypergraph contains

(
n
r

)
hyperedges. Since i

(
n
r

)
= 0

whenever n < r, no hyperedges are needed to form a clique on r − 1 (or fewer)
vertices. The clique number ω(H) is then defined to be the cardinality of a maximal
clique in H.

A (strong) independent set of vertices in an r-uniform hypergraph is a subset of
nonadjacent vertices (no two vertices are included in a common hyperedge). Note
that in Chapter 2, Section 4 of [2], such sets are called strongly stable sets. We
denote the cardinality of a maximal independent set of vertices in H by β(H). In
the case of graphs, one has that β(G) = ω(G), but this property does not extend to
higher values of r. Observe that for r ≥ 3, an independent set of cardinality n ≥ r
in H forms a clique in the complement H, but the converse is not necessarily true.
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Here, H has vertex set V (H) = V (H) and hyperedge set

E(H) = {a1a2 . . . ar | a1a2 . . . ar 6∈ E(H)}.

For example, consider the 4-uniform hypergraph K
(4)
5 −e formed by removing a single

hyperedge from the complete 4-uniform hypergraph K
(4)
5 of order 5. In this case,

β(K
(4)
5 − e) = 1 since every pair of vertices are adjacent. However, ω(K

(4)
5 − e) = 4,

corresponding to the single hyperedge. In general,

β(H) ≤ ω(H)

is the strongest general statement we can make for hypergraphs.

For each vertex a ∈ V (H1), define the set

a[H2] = {(a, b1)(a, b2) . . . (a, br) | b1b2 . . . br ∈ E(H2)},

which is isomorphic to H2. Similarly, for b ∈ V (H2), define the set

H1[b] = {(a1, b)(a2, b) . . . (ar, b) | a1a2 . . . ar ∈ E(H1)},

which is isomorphic to H1. For i = 1, 2, the projection mappings

proji : H1[H2] −→ Hi

are defined by

proji(a, b) =

{
a if i = 1
b if i = 2.

For (a1, b1), (a2, b2) ∈ V (H1[H2]), one can define the relation (a1, b1) ≡ (a2, b2) if and
only if

proj1(a1, b1) = a1 = a2 = proj1(a2, b2).

Using these notations, we prove the following property of independence numbers for
H1[H2], generalizing Theorem 1 from Geller and Stahl’s paper [6].

Theorem 1. For r ≥ 2 and r-uniform hypergraphs H1 and H2,

β(H1[H2]) = β(H1)β(H2).

Proof. Let S1 be an independent set of H1, S2 be an independent set of H2, and
consider the Cartesian product S1 × S2. From the definition of the lexicographic
product, it is easily confirmed that S1 × S2 is an independent set in H1[H2] as the
existence of a hyperedge (a1, b1)(a2, b2) . . . (ar, br) using vertices from S1 × S2 would
require that either a1a2 . . . ar is a hyperedge in H1 or b1b2 . . . br is a hyperedge in H2.
Thus, H1[H2] contains an independent set with cardinality β(H1)β(H2):

β(H1[H2]) ≥ β(H1)β(H2).
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Now, let S be an independent set in H1[H2]. The relation ≡ defines a partition

S = S1 ∪ S2 ∪ · · · ∪ Sn,

where each Si is an independent set of vertices all having the same projection under
proj1. So, |Si| ≤ β(H2) for each i. If we let ai be the first common coordinate of
the vertices in Si, then {a1, a2, . . . , an} must be an independent set in H1. Hence,
n ≤ β(H1). It follows that

β(H1[H2]) ≤ β(H1)β(H2),

from which equality holds.

Geller and Stahl [6] also used their result on independence numbers to imply
an analogous result for vertex covers. For r-uniform hypergraphs with r ≥ 3, the
connection between the independence number and the vertex covering number is not
as clear, leading us to consider a new definition. For 1 ≤ k ≤ r − 1, define a k-fold
vertex cover of an r-uniform hypergraph H to be a set of vertices S ⊆ V (H) such
that every hyperedge in H includes at least k vertices from S. The k-fold vertex
covering number αk(H) is the minimal cardinality of a k-fold vertex cover. Note
that α1 is the usual vertex covering number. We obtain the following relationship
between β and αr−1.

Theorem 2. If H is an r-uniform hypergraph and I ⊆ V (H) is an independent
set, then V (H) − I is an (r − 1)-fold vertex cover. Conversely, if C ⊆ V (H) is an
(r − 1)-fold vertex cover, then V (H)− C is an independent set.

Proof. Let I ⊆ V (H) be an independent set. Then every hyperedge in H contains
at most one vertex from I. It follows that every hyperedge in H must contain at
least r−1 vertices from V (H)− I. Conversely, suppose that C ⊆ V (H). Then every
hyperedge in H contains at least r− 1 vertices from C. Thus, every hyperedge in H
contains at most one vertex from V (H)− C.

From this theorem, we see that for all r-uniform hypergraphs of order n,

β(H) = n− αr−1(H).

Thus, Theorem 1 implies that if n1 and n2 are the orders of H1 and H2, respectively,
then

αr−1(H1[H2]) = n1n2 − β(H1[H2])

= n1n2 − β(H1)β(H2)

= n1n2 − (n1 − αr−1(H1))(n2 − αr−1(H2))

= n1αr−1(H2) + n2αr−1(H1)− αr−1(H1)αr−1(H2).

Now we turn our attention to clique numbers.
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Theorem 3. For r ≥ 3, and r-uniform hypergraphs H1 and H2,

ω(H1[H2]) = max(ω(H1), ω(H2)).

Proof. If {a1, a2, . . . , am} is a clique in H1, then

{(a1, y), (a2, y), . . . , (am, y)}

is a clique in H1[H2] for any y ∈ V (H2). Similarly, if {b1, b2, . . . , bn} is a clique in
H2, then

{(x, b1), (x, b2), . . . , (x, bn)}

is a clique in H1[H2] for any x ∈ V (H1). Thus,

ω(H1[H2]) ≥ max(ω(H1), ω(H2)).

To prove the other direction, suppose that

K = {(a1, b1), (a2, b2), . . . , (ak, bk)}

is a clique in H1[H2]. If all of the ai are distinct, then ai1ai2 . . . air ∈ E(H1) for all
distinct i1, i2, . . . ir ∈ {1, 2, . . . , k}. In this case, we find that H1 has a clique with
cardinality k. Now consider the case in which at least two elements in K have the
same projections under proj1. If some other element K has a different projection,
then there will have to be a hyperedge in H1[H2] that contains these three elements,
which cannot occur by the definition of the lexicographic product. Hence, all elements
in K must have the same projection under proj1 if any two do. Then {b1, b2, . . . , bk}
must form a clique in H2, from which the inequality

ω(H1[H2]) ≤ max(ω(H1), ω(H2))

follows.

If we wish to make use of the clique numbers of lexicographic products of hyper-
graphs to prove Ramsey number results analogous to Abbott’s work [1], we must
also consider the clique number for H1[H2]. From the definition, we find that the
hyperedges

(a1, b1)(a2, b2) . . . (ar, br) ∈ E(H1[H2])

can be partitioned into three classes:

(A) r-edges such that a1a2 . . . ar ∈ E(H1) and any bj’s, which may not be distinct;

(B) r-edges such that a1 = a2 = · · · = ar and b1b2 . . . br ∈ E(H2);

(C) r-edges such that at least two ai values are equal, but not all are equal, and
any bj’s.
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The r-edges in (A) and (B) are precisely those in E(H1[H2]). From this description
of E(H1[H2]), we obtain the following theorem.

Theorem 4. For r ≥ 3 and r-uniform hypergraphs H1 and H2,

ω(H1[H2]) = ω(H1)ω(H2).

Proof. Let S1 be a clique in H1 and S2 be a clique in H2. From the three classes of
hyperedges in H1[H2] listed above, one can verify that S1 × S2 is a clique in H1[H2].
Note that this observation is true even if S1 or S2 (or both) have cardinalities less
than r. Hence,

ω(H1[H2]) ≥ ω(H1)ω(H2).

Now suppose S is a clique in H1[H2]. Partition the elements in S into subsets based
on the distinct values of their projections proj2:

S = S1 ∪ S2 ∪ · · · ∪ Sm.

A fixed Si has the form

Si = {(a1, bi), (a2, bi), . . . , (an, bi)},

where a1, a2, . . . an are distinct. In order for any r-tuple of elements in Si to form a
hyperedge in H1[H2], they must be r-edges in class (A) listed above. Thus, |Si| ≤
ω(H1) for all 1 ≤ i ≤ m. Also, since S is a clique in H1[H2], we find that

(a1, bi1)(a1, bi2) . . . (a1, bir) ∈ E(H2),

for any distinct i1, i2, . . . , ir ∈ {1, 2, . . . ,m}. So, S2 forms a clique in H2. Thus, we
have

ω(H1[H2]) ≤ ω(H1)ω(H2),

from which the theorem follows.

As an example, consider the 3-uniform hypergraphs H1 and H2 given below.

a

b

c

d

H1

1

2

3

4

H2
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The hyperedges contained in H1[H2] fall into two subsets:

E1 = {(a1, b1)(a2, b2)(a3, b3) | a1a2a3 ∈ E(H1) and b1, b2, b3 ∈ V (H2)}

and
E2 = {(a, b1)(a, b2)(a, b3) | a ∈ V (H1) and b1b2b3 ∈ E(H2)}.

Hence, |E1| = 192 and |E2| = 8. We saw in the proof of Theorem 3 that if

K = {(a1, b1), (a2, b2), . . . , (ar, br)}

is a clique in H1[H2], then either all of the ai are distinct (in which case, K ⊆ E1) or
a1 = a2 = · · · = ar (in which case, K ⊆ E2). In this example, we find that E1 and
E2 both have clique number 3, and hence, ω(H1[H2]) = 3.

This example becomes more interesting when we consider the complement H1[H2].
As we saw before Theorem 4, the hyperedges in H1[H2] fall into three classes. The
hyperedges that fall into classes (A), (B), and (C) form the sets

E(A) = {(a, y1)(c, y2)(d, y3) | y1, y2, y3 ∈ {1, 2, 3, 4}}

E(B) = {(x, 1)(x, 2)(x, 3), (x, 1)(x, 2)(x, 4) | x ∈ {a, b, c, d}},
and

E(C) = {(x, z1)(x, z2)(y, z3) | x 6= y and z1 6= z2},
respectively. The cardinalities of these three disjoint sets are

|E(A)| = 64, |E(B)| = 8, and |E(C)| = 288.

The hyperedges in E(A)∪E(B) are precisely those contained in H1[H2]. Here, we find

that ω(H1) = 3 = ω(H2) and one example of a maximal clique in H1[H2] is given by

{(b, 2), (b, 3), (b, 4), (c, 2), (c, 3), (c, 4), (d, 2), (d, 3), (d, 4)}.

3 Applications to Ramsey Numbers

Using Theorems 3 and 4, we obtain the following generalization of Abbott’s Theorem
for r-uniform hypergraphs. Note that there is no reason to restrict ourselves to
“diagonal” multicolor Ramsey numbers as Abbott did. Analogous to the definition
of a Ramsey number for graphs, define the r-uniform t-color hypergraph Ramsey
number R(k1, k2, . . . , kt; r) to be the least natural number n such that every t-coloring

of the r-edges in K
(r)
n results in a monochromatic K

(r)
ki

-subhypergraph in color i for
some color i ∈ {1, 2, . . . , t}.

Theorem 5. If r ≥ 3, then

R(max(p1, q1) + 1,max(p2, q2) + 1, . . . ,max(pt−1, qt−1) + 1, ptqt + 1; r) ≥

(R(p1 + 1, p2 + 1, . . . , pt + 1; r)− 1)(R(q1 + 1, q2 + 1, . . . , qt + 1; r)− 1) + 1,

where each pi and qi is ≥ r − 1.
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Proof. Let m = R(p1 + 1, p2 + 1 . . . , pt + 1; r) and n = R(q1 + 1, q2 + 1, . . . , qt + 1; r).

Then there exists a t-coloring C1 of the hyperedges in K
(r)
m−1 that has a maximum

clique of order pi in color i for every i ∈ {1, 2, . . . , t}. Similarly, there exists a t-

coloring C2 of the hyperedges in K
(r)
n−1 that has a maximum clique of order qi in color

i for every i ∈ {1, 2, . . . , t}. Identify the vertices in K
(r)
(m−1)(n−1) with the Cartesian

product V (K
(r)
m−1)× V (K

(r)
n−1). We will construct a t-coloring C of the hyperedges in

K
(r)
(m−1)(n−1) as follows. For any j ∈ {1, 2, . . . , t− 1}, if either a1a2 . . . ar ∈ E(K

(r)
m−1)

has color j in C1 or if a1 = a2 = · · · = ar and b1b2 . . . br ∈ E(K
(r)
n−1) has color j in C2,

then we assign the hyperedge

(a1, b1)(a2, b2) . . . (ar, br)

color j. If neither of these two conditions are satisfied, then assign it color t. For
each j ∈ {1, 2, . . . , t − 1}, define Hj to be the subhypergraph of K

(r)
m−1 spanned by

the hyperedges of color j in C1 and define H ′j to be the subhypergraph of K
(r)
n−1

spanned by the hyperedges of color j in C2. Then by definition, the subhypergraph
of K

(r)
(m−1)(n−1) spanned by the hyperedges of color j in C is isomorphic to Hj[H

′
j],

and hence, has a maximum clique of order max(pj, qj) by Theorem 3. Now define

H =
⋃
j∈S

Hj and H ′ =
⋃
j∈S

H ′j,

where S = {1, 2, . . . , t− 1}. By our construction, the subhypergraph of K
(r)
(m−1)(n−1)

spanned by the hyperedges using colors in S is isomorphic to H[H ′]. It follows

that the subhypergraph of K
(r)
(m−1)(n−1) spanned by the hyperedges of color t in C is

isomorphic to H[H ′] and has a maximum clique of order ptqt by Theorem 4. Thus,
it follows that

R(max(p1, q1)+1,max(p2, q2)+1, . . . ,max(pt−1, qt−1)+1, ptqt+1; r) > (m−1)(n−1),

resulting in the statement of the theorem.

Using the observation that

R(k1, k2, . . . , ki; r) = R(k1, k2, . . . , ki, r, r, . . . , r︸ ︷︷ ︸
t−i copies

; r)

and
R(ki+1, ki+2, . . . , kt; r) = R(r, r, . . . , r,︸ ︷︷ ︸

i copies

ki+1, ki+2, . . . , kt; r),

one obtains the following corollary.

Corollary 6. If r ≥ 3 and each kj ≥ r, then R(k1, k2, . . . , (kt − 1)(r − 1) + 1; r) ≥
(R(k1, k2, . . . , ki; r)− 1)(R(ki+1, ki+2, . . . , kt; r)− 1) + 1.
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This corollary can be viewed as a generalization of the multicolor Ramsey inequality
for graphs proved by Xiaodong, Zheng, Exoo, and Radziszowski in Theorem 2 of
[10]. Note that this generalization is different than the one given in Theorem 3.7 of
[4] and it also differs from the conjectured generalization described in the conclusion
of [4].

In the special case where t = 2, p = p1 + 1 = q1 + 1, and r = p2 + 1 = q2 + 1, and
using the observation that R(p, r; r) = p, Theorem 5 implies the following corollary
to Theorem 5.

Corollary 7. If r ≥ 3 and p ≥ r, then

R(p, (r − 1)2 + 1; r) ≥ (p− 1)2 + 1.

As another application of Theorem 5, we prove the following lower bounds for diag-
onal t-colored hypergraph Ramsey numbers:

Rt(n; r) := R(n, n, . . . , n︸ ︷︷ ︸
t colors

; r).

Theorem 8. Let r ≥ 3, t ≥ 2, and n = (r − 1)2 + 1. If R(n, n; r) ≥ m, then

Rt(n; r) ≥ (m− 1)2
t−2

+ 1.

Proof. When t = 2, the theorem is trivial. Now we proceed by induction on t ≥ 2.
Assume the theorem is true for t = k:

R(n, n; r) ≥ m =⇒ Rk(n; r) ≥ (m− 1)2
k−2

+ 1.

Then the assumption that n = (r − 1)2 + 1 along with Theorem 5 implies that

Rk+1(n; r) ≥ (R(n, n, . . . , n︸ ︷︷ ︸
k copies

, r; r)− 1)2 + 1

≥ (Rk(n; r)− 1)2 + 1

≥ ((m− 1)2
k−2

+ 1− 1)2 + 1

≥ (m− 1)2
(k+1)−2

+ 1,

completing the proof of the theorem.

For example, it is known that R(5, 5; 3) ≥ 82 (Exoo [5]), from which Corollary 8
implies that

R3(5; 3) ≥ 812 + 1 = 6, 562.

This improves the previous best known lower bound for this Ramsey number from
163, as was proven in [4]. In fact, this one lower bound offered by Exoo results in all
of the following bounds:
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R4(5; 3) ≥ 43, 046, 722

R5(5; 3) ≥ 1, 853, 020, 188, 851, 842

R6(5; 3) ≥ 3, 433, 683, 820, 292, 512, 484, 657, 849, 089, 282

...

Rt(5; 3) ≥ 812t−2

+ 1.

These bounds offer a significant improvement over the bounds given in Proposition
3.8 of [4].
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