A note on the restricted arc connectivity of oriented graphs of girth four

D. González-Moreno*
Departamento de Matemáticas Aplicadas y Sistemas
Universidad Autónoma Metropolitana UAM-Cuajimalpa
Ciudad de México
Mexico
dgonzalez@correo.cua.uam.mx
R. Hernández Ortiz
Facultad de Ciencias
Universidad Nacional Autónoma de México
Ciudad de México
Мехico
rangel@ciencias.unam.mx

Abstract

Let D be a strongly connected digraph. An arc set S of D is a restricted arc-cut of D if $D-S$ has a non-trivial strong component D_{1} such that $D-V\left(D_{1}\right)$ contains an arc. The restricted arc-connectivity $\lambda^{\prime}(D)$ of a digraph D is the minimum cardinality over all restricted arc-cuts of D. A strongly connected digraph D is λ^{\prime}-connected when $\lambda^{\prime}(D)$ exists. This paper presents a family \mathcal{F} of strong digraphs of girth four that are not λ^{\prime}-connected and for every strong digraph $D \notin \mathcal{F}$ with girth four it follows that it is λ^{\prime}-connected. Also, an upper and lower bound for $\lambda^{\prime}(D)$ are given.

1 Terminology and introduction

All the digraphs considered in this work are finite oriented graphs; that is, they are digraphs with no symmetric arcs or loops. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. If v is a vertex of D, the sets of out-neighbors and in-neighbors of v are denoted by $N^{+}(v)$ and $N^{-}(v)$, respectively. If (u, v) is an arc of D, then it is said that u dominates v (or v is dominated by u) and this is denoted by $u \rightarrow v$. Two vertices u and v of a digraph are adjacent if $u \rightarrow v$ or $v \rightarrow u$. The numbers

[^0]$d^{+}(v)=\left|N^{+}(v)\right|$ and $d^{-}(u)=\left|N^{-}(u)\right|$ are the out-degree and the in-degree of the vertex v. By a cycle of a digraph we mean a directed cycle. A p-cycle is a cycle of length p. The minimum integer p for which D has a p-cycle is the girth of D, denoted by $g(D)$. Given a digraph D, the subdigraph of D induced by a set of vertices X is denoted by $D[X]$. For any subset S of $A(D)$, the subdigraph obtained by deleting all the arcs of S is denoted by $D-S$. A digraph D is strongly connected or simply strong if for every pair u, v of vertices there exists a directed path from u to v in D. A strong component of a digraph D is a maximal induced subdigraph of D which is strong. A digraph D is called k-arc-connected if for any set S of at most $k-1$ arcs the subdigraph $D-S$ is strong. The arc-connectivity $\lambda(D)$ of a digraph D is the largest value of k such that D is k-arc-connected. For a pair X, Y of vertex sets of a digraph D, we define $(X, Y)=\{x \rightarrow y \in A(D): x \in X, y \in Y\}$. Let X^{c} be the complement of X. If $Y=X^{c}$ we write $\left(X, X^{c}\right)$ as $\partial^{+}(X)$ or $\partial^{-}(Y)$. Let D be a digraph with girth g. If $C=\left(v_{1}, v_{2}, \ldots, v_{g}\right)$ is a g-cycle of D, then let
$$
\xi(C)=\min \left\{\sum_{i=1}^{g} d^{+}\left(v_{i}\right)-g, \sum_{i=1}^{g} d^{-}\left(v_{i}\right)-g\right\}
$$
and
$$
\xi(D)=\min \{\xi(C): C \text { is a } g \text {-cycle of } D\} .
$$

We follow the book of Bang-Jensen and Gutin [4] for terminology and definitions not given here.

As is well known, a digraph is a mathematical object modeling networks. An important parameter in the study of networks is the fault tolerance: it is desirable that if some nodes (respectively links) are unable to work, the message can still be always transmitted. There are measures that indicate the fault tolerance of a network (modeled by a digraph D); for instance, the arc-connectivity of D measures how easily and reliably a packet sent by a vertex can reach another vertex. Since digraphs with the same arc-connectivity can have large differences in the fault tolerance of the corresponding networks, one might be interested in defining more refined reliability parameters in order to provide a more accurate measure of fault tolerance in networks than the arc-connectivity (see [6]). In this context, Volkmann [11] introduced the concept of restricted arc-connectivity of a digraph, which is closely related to the similar concept of restricted edge-connectivity in graphs proposed by Esfahanian and Hakimi [7].

Definition 1 (Volkmann [11]) Let D be a strongly connected digraph. An arc set S of D is a restricted arc-cut of D if $D-S$ has a non-trivial strong component D_{1} such that $D-V\left(D_{1}\right)$ contains an arc. The restricted arc-connectivity $\lambda^{\prime}(D)$ of D is the miminum cardinality over all restricted arc-cuts. A strongly connected digraph D is said to be λ^{\prime}-connected if $\lambda^{\prime}(D)$ exists.

Observe that $\lambda^{\prime}(D)$ does not exist for every digraph with fewer than $g(D)+2$ vertices. Volkmann [11] proved that each strong digraph D of order $n \geq 4$ and girth $g(D)=$ 2 or $g(D)=3$ except for some families of digraphs is λ^{\prime}-conncected and satisfies $\lambda(D) \leq \lambda^{\prime}(D) \leq \xi(D)$. Moreover, he proved the following characterization.

Theorem 1 [11] A strongly connected digraph D with girth g is λ^{\prime}-connected if and only if D has a cycle of length g such that $D-V(C)$ contains an arc.

Concerning the arc-restricted connectivity of digraphs, Meierling, Volkmann and Winzen [10] studied the restricted arc-connectivity of generalizations of tournaments. Balbuena, García-Vázquez, Hansberg and Montejano [1, 2] studied the restricted arc connectivity for some families of digraphs and introduced the concept of superλ^{\prime} digraphs. Results on restricted arc-connectivity of digraphs can be found in, e.g. Balbuena and García-Vázquez [3], Chen, Liu and Meng [5], Grüter, Guo and Holtkamp [8], Grüter, Guo, Holtkamp and Ulmer [9] and Wang and Lin [12].

In this paper we present a family \mathcal{F} of strong digraphs of girth four that are not λ^{\prime}-connected and for every strong digraph $D \notin \mathcal{F}$ with girth four it follows that it is λ^{\prime}-connected and $\lambda(D) \leq \lambda^{\prime}(D) \leq \xi(D)$.

2 Main result

Let D be a strong digraph of girth 4 . In this section it is proved that D is λ^{\prime} connected with the exception of the case that D is a member of the following seven families (see Figure 1).

Let H_{1} be the digraphs having the 4 -cycle (u, v, w, z, u) and the following vertex sets: $A=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}, C=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ and $D=$ $\left\{d_{1}, d_{2}, \ldots, d_{s}\right\}$ such that $u \rightarrow a_{i} \rightarrow v$ for $1 \leq i \leq p, v \rightarrow b_{i} \rightarrow w$ for $1 \leq i \leq q$, $w \rightarrow c_{i} \rightarrow z$ for $i \leq i \leq r$ and $z \rightarrow d_{i} \rightarrow u$ for $1 \leq i \leq s$. The cases that A, B, C or D are empty sets are also allowed.

Let H_{2} be the digraphs having the 4-cycles (u, v, w, z, u) and (u, v, w, x, u), and the vertex sets $A=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}$ such that $w \rightarrow a_{i} \rightarrow u$ for $1 \leq i \leq p$ and $u \rightarrow b_{i} \rightarrow w$ for $1 \leq i \leq q$. The cases that A or B are empty sets are also allowed.

Let H_{3} be the digraphs having the 4-cycles (u, v, w, z, u) and (u, v, w, x, u) and the vertex sets $A=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ such that $u \rightarrow a_{i} \rightarrow v$, for $1 \leq i \leq p, v \rightarrow b_{i} \rightarrow w$ for $1 \leq i \leq q$ and $w \rightarrow c_{i} \rightarrow u$ for $1 \leq i \leq r$. The cases that A, B or C are empty sets are also allowed.

Let H_{4} be the digraphs having the 4 -cycles (u, v, w, z, u) and (u, v, w, x, u), a vertex y such that $u \rightarrow y \rightarrow w$ and y is adjacent to v, and the vertex set $A=$ $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $w \rightarrow a_{i} \rightarrow u$ for $1 \leq i \leq p$. The case that A is an empty set is also admissible.

Let H_{5} be the digraphs having the 4-cycles (u, v, w, z, u) and (u, v, w, x, u) such that x is adjacent to z, and the vertex set $A=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ such that $u \rightarrow a_{i} \rightarrow w$ for $1 \leq i \leq p$.

Let H_{6} be the digraphs having the 4-cycles (u, v, w, z, u) and (u, v, w, x, u) such that x is adjacent to z, and the vertex sets $A=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$, and $B=\left\{b_{1}, b_{2}, \ldots\right.$, $\left.b_{q}\right\}$ such that $u \rightarrow a_{i} \rightarrow v$ for $1 \leq i \leq p$ and $v \rightarrow b_{i} \rightarrow w$ for $1 \leq i \leq q$. The cases that A and B are empty sets are also allowed.

Let H_{7} be the digraphs having the 4-cycles (u, v, w, z, u) and (u, v, w, x, u) such that x is adjacent to z, and a vertex y adjacent to v such that $u \rightarrow y \rightarrow w$.

Figure 1: Families of digraphs that are not λ^{\prime}-connected. Dotted line indicates adjacency.

Observe that by Theorem 1, the digraphs of $H_{1}, H_{2}, \ldots, H_{7}$ are not λ^{\prime}-connected.
Theorem 2 Let D be a strong digraph of girth 4 and $|V(D)| \geq 6$. If D is not isomorphic to a member of the families $H_{1}, H_{2}, \ldots, H_{7}$, then D is λ^{\prime}-connected and

$$
\lambda(D) \leq \lambda^{\prime}(D) \leq \xi(D)
$$

Proof. To prove the left inequality, since every restricted cut is a cut, it follows that $\lambda(D) \leq \lambda^{\prime}(D)$.

Next, we prove the right hand inequality. Let $C=(u, v, w, z, u)$ be a 4 -cycle of D such that $\xi(D)=\xi(C)$. Suppose without loss of generality that $\xi(C)=$ $d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4$. If $D-\{u, v, w, z\}$ contains an arc, then D is λ^{\prime}-connected and $\lambda^{\prime}(D) \leq \xi(D)$. Hence suppose that $D-\{u, v, w, z\}$ consists of a set of isolated vertices. Since D is not isomorphic to a member of H_{1}, D has to contain a 4-cycle C^{\prime} containing two arcs of C. Let $C^{\prime}=(u, v, w, x, u)$. We continue the proof by distinguishing three cases.

Case 1 Assume that $d^{+}(x)=d^{-}(x)=1$.
Subcase 1.1 If $d^{+}(z)=d^{-}(z)=1$. Since D is not isomorphic to any member of H_{2}, H_{3} and H_{4}, it follows that $|V(D)| \geq 7$ impliying that there exists a set of vertices $a_{1}, a_{2}, \ldots, a_{m}, m \geq 2$, such that $a_{i} \notin\{u, v, w, x, z\}$ for $1 \leq i \leq m$. If $d^{+}(v)=d^{-}(v)=1$. Since D is strong, it follows that $d^{+}\left(a_{i}\right)=d^{-}\left(a_{i}\right)=1$ for every $1 \leq i \leq m$ impliying that D is isomorphic to a member of H_{2}, a contradiction. Therefore, either $d^{+}(v) \geq 2$ or $d^{-}(v) \geq 2$. Suppose that $d^{+}(v) \geq 2$ and $d^{-}(v)=1$, then there exists a vertex a_{1} such that $v \rightarrow a_{1}$. Since D is strong and has girth 4, it follows that $a_{1} \rightarrow w$. Moreover, since D is not a member of the families H_{3} and H_{4}, there exists a vertex $a_{2}, a_{2} \neq a_{1}$ such that $u \rightarrow a_{2} \rightarrow w$. Also, as $d^{-}(v)=1$, it follows that $d^{+}\left(a_{2}\right)=1$. Consider the 4 -cycle $C_{1}=\left(u, a_{2}, w, z, u\right)$, therefore

$$
\begin{aligned}
\xi\left(C_{1}\right) & \leq d^{+}(u)+d^{+}\left(a_{2}\right)+d^{+}(w)+d^{+}(z)-4 \\
& <d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
\end{aligned}
$$

giving a contradiction. Hence $d^{+}(v)=1$ and $d^{-}(v) \geq 2$ or $d^{+}(v) \geq 2$ and $d^{-}(v) \geq 2$.
First suppose that $d^{+}(v)=1$ and $d^{-}(v) \geq 2$, then there exists a vertex a_{1} such that $a_{1} \rightarrow v$. Further, since D is strong and has girth 4 , it follows that $u \rightarrow a_{1}$. As D is not isomorphic to any member of families H_{3} and H_{4}, there exists a vertex a_{2}, $a_{2} \neq a_{1}$ such that $u \rightarrow a_{2} \rightarrow w$. Let $S=\left\{u a_{1}, v w, w x\right\} \subset A(D)$. The digraph $D-S$ has a strong component D_{1} containing the 4 -cycle (u, a_{2}, w, z, u) and $D-S$ contains the arc $a_{1} v$. Therefore D is λ^{\prime}-connected and

$$
\lambda^{\prime}(D) \leq|S| \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
$$

Now, suppose that $d^{+}(v) \geq 2$ and $d^{-}(v) \geq 2$, then there exist two vertices a_{1}, a_{2}, such that $a_{1} \rightarrow v$ and $v \rightarrow a_{2}$. Since D is strong and has girth $4, u \rightarrow a_{1}$ and $a_{2} \rightarrow w$. Since D is not isomorphic to any member of the family H_{3}, there exists a vertex a_{3} such that $u \rightarrow a_{3} \rightarrow w$. Let $S=\partial^{+}\left(\left\{u, a_{3}, w, z\right\}\right)$, then S is a restricted arc-cut of D and

$$
\begin{aligned}
\lambda^{\prime}(D) & \leq|S| \leq d^{+}(u)+d^{+}\left(a_{3}\right)+d^{+}(w)+d^{+}(z)-4 \\
& \leq d^{+}(u)+2+d^{+}(w)+d^{+}(z)-4 \\
& \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4 \\
& =\xi(D)
\end{aligned}
$$

Subcase 1.2 Assume that either $d^{+}(z) \geq 2$ or $d^{-}(z) \geq 2$. This implies that there exists a vertex a, different from u, v, w, x in $N^{+}(z) \cup N^{-}(z)$. Suppose first that $z \rightarrow a$. Therefore

$$
\begin{aligned}
\xi((u, v, w, x, u)) & \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(x)-4 \\
& <d^{+}(u)+d^{+}(v)+d^{+}(w)+2-4 \leq \xi(D),
\end{aligned}
$$

giving a contradiction. Now suppose that $a \rightarrow z$. Let $S=\partial^{+}(\{u, v, w, x\})$. Note that $D-S$ has a strong component D_{1} containing the 4-cycle (u, v, w, x, u) and $D-V\left(D_{1}\right)$ contains the arc $a z$. Hence S is a λ^{\prime}-restricted arc cut and

$$
\begin{aligned}
\lambda^{\prime}(D) \leq|S| & \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(x)-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+1-4 \\
& \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
\end{aligned}
$$

and the result follows.

Case 2 Assume that $d^{+}(x)=1$ and $d^{-}(x)=2$. This implies that $z \rightarrow x$ and therefore $d^{+}(z) \geq 2$. Since (u, v, w, x, u) is a 4 -cycle, it follows that

$$
\begin{aligned}
\xi((u, v, w, x, u)) & \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(x)-4 \\
& <d^{+}(u)+d^{+}(v)+d^{+}(w)+2-4 \\
& \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
\end{aligned}
$$

yielding a contradiction.
Case 3 Assume that $d^{+}(x)=2$ and $d^{-}(x)=1$. This implies that $x \rightarrow z$.

Subcase 3.1 If $d^{+}(z)=1$ and $d^{-}(z)=2$. Suppose first that $d^{+}(v)=d^{-}(v)=1$. Since D is not isomorphic to any member of the family H_{5}, it follows that there exists a vertex a_{1} such that $w \rightarrow a_{1} \rightarrow u$. Let $S=\partial^{+}\left(\left\{u, v, w, a_{1}\right\}\right)$. The digraph $D-S$ has a strong component D_{1} containing the 4 -cycle $\left(u, v, w, a_{1}, u\right)$ and $D-V\left(D_{1}\right)$ contains the arc $x z$. Hence D is λ^{\prime}-connected and

$$
\begin{aligned}
\lambda^{\prime}(D) & \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}\left(a_{1}\right)-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+1-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
\end{aligned}
$$

Now, suppose that either $d^{+}(v) \geq 2$ or $d^{-}(v) \geq 2$. If $d^{+}(v) \geq 2$ and $d^{-}(v)=1$, then there exists a vertex a_{1} such that $v \rightarrow a_{1}$. Further, as D is strong, it follows that $a_{1} \rightarrow w$. Since D is not isomorphic to any member of the families H_{6} and H_{7}, the order of D is at least 7 and there exists a vertex a_{2} adjacent to u and w. If $u \rightarrow a_{2} \rightarrow w$, then a_{2} is not adjacent to v and $d^{+}\left(a_{2}\right)=1$. Since $\left(u, a_{2}, w, z, u\right)$ is a 4-cycle, it follows that

$$
\begin{aligned}
\xi\left(\left(u, a_{2}, w, z, u\right)\right) & \leq d^{+}(u)+d^{+}\left(a_{2}\right)+d^{+}(w)+d^{+}(z)-4 \\
& =d^{+}(u)+1+d^{+}(w)+d^{+}(z)-4 \\
& <d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D),
\end{aligned}
$$

giving a contradiction.
If that $w \rightarrow a_{2} \rightarrow u$. Let $S=\partial^{+}\left(\left\{u, v, w, a_{2}\right\}\right)$. The digraph $D-S$ has a strong component D_{1} containing the 4 -cycle $\left(u, v, w, a_{2}, u\right)$ and $D-V\left(D_{1}\right)$ has the arc $x z$. Therefore D is λ^{\prime}-connected and

$$
\begin{aligned}
\lambda^{\prime}(D) & \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}\left(a_{2}\right)-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+1-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D) .
\end{aligned}
$$

Now, suppose that $d^{+}(v)=1$ and $d^{-}(v) \geq 2$, then there exists a vertex a_{1} such that $a_{1} \rightarrow v$, and since D is strong it follows that $u \rightarrow a_{1}$. Since D is not isomorphic to any member of the families H_{6} and H_{7}, then $|V(D)| \geq 7$ and there exists a vertex a_{2} such that a_{2} and w are adjacent. If $u \rightarrow a_{2} \rightarrow w$, let $S=\left\{u a_{1}, v w, w x\right\} \subset A(D)$, then $D-S$ has a strong compononent D_{1} containing the 4 -cycle (u, a_{2}, w, z, u) and $D-V\left(D_{1}\right)$ has the arc $a_{1} v$. Therefore D is λ^{\prime}-connected and

$$
\lambda^{\prime}(D) \leq 3 \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D) .
$$

If $w \rightarrow a_{2} \rightarrow u$, let $S=\partial^{+}\left(\left\{u, v, w, a_{2}\right\}\right) \subset A(D)$, then $D-S$ is a restricted arc cut of D such that $D-S$ has a strong component D_{1} containing the 4-cycle (u, v, w, a_{2}, u) and $D-V\left(D_{1}\right)$ has the arc $x z$. Therefore,

$$
\begin{aligned}
\lambda^{\prime}(D) & \leq|S|=d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}\left(a_{2}\right)-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+1-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D) .
\end{aligned}
$$

Now, suppose that $d^{+}(v) \geq 2$ and $d^{-}(v) \geq 2$, then there are two vertices a_{1} and a_{2} such that $a_{1} \rightarrow v$ and $v \rightarrow a_{2}$. Since D is strong and has girth 4 it follows that $u \rightarrow a_{1}$ and $a_{2} \rightarrow w$ (note that this may be the case where $a_{1} \rightarrow w$ or $u \rightarrow a_{2}$). Since D is not isomorphic to any member of the family H_{6} there exists a vertex a_{3} adjacent to u and w. If $u \rightarrow a_{3} \rightarrow w$ (note that this may be the case where $a_{3}=a_{1}$ or $a_{3}=a_{2}$ or a_{3} is adjacent to $\left.v\right)$. Let $S=\partial^{+}\left(\left\{u, a_{3}, w, z\right\}\right)$. Then the digraph $D-S$ has a strong component D_{1} containing de 4 -cycle $\left(u, a_{3}, w, z, u\right)$ and $D-V\left(D_{1}\right)$ has the arc $a_{1} v$ or $v a_{2}$, according to the case. Therefore D is λ^{\prime}-connected and

$$
\begin{aligned}
\lambda^{\prime}(D) & \leq|S|=d^{+}(u)+d^{+}\left(a_{3}\right)+d^{+}(w)+d^{+}(z)-4 \\
& \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4 \\
& \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
\end{aligned}
$$

If $w \rightarrow a_{3} \rightarrow u$. Let $S=\partial^{+}\left(\left\{u, v, w, a_{3}\right\}\right) \subset A(D)$, then the digraph $D-S$ has a strong component D_{1} containing de 4 -cycle $\left(u, v, w, a_{3}, u\right)$ and $D-V\left(D_{1}\right)$ has the arc $x z$. Therefore D is λ^{\prime}-connected and

$$
\begin{aligned}
\lambda^{\prime}(D) & \leq|S|=d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}\left(a_{3}\right)-4 \\
& =d^{+}(u)+2+d^{+}(w)+1-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D) .
\end{aligned}
$$

Subcase 3.2 If $d^{+}(z) \geq 2$ or $d^{-}(z) \geq 3$. Then there exists a vertex $a \notin\{u, v, w, x\}$ such that a and z are adjacent. Suppose first that $z \rightarrow a$, then consider the set of $\operatorname{arcs} S=\partial^{+}(\{u, v, w, x\})$. Therefore the digraph $D-S$ has a strong component D_{1} containing de 4-cycle (u, v, w, x, u) and $D-V\left(D_{1}\right)$ has the arc $a z$. Consequently, D is λ^{\prime}-connected and

$$
\begin{aligned}
\lambda^{\prime}(D) & \leq|S|=d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(x)-4 \\
& =d^{+}(u)+d^{+}(v)+d^{+}(w)+2-4 \\
& \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
\end{aligned}
$$

Now, suppose that $a \rightarrow z$. Since D is strong it follows that either $v \rightarrow a$ or $w \rightarrow a$. Suppose first that $v \rightarrow a$ and let $S=\partial^{+}(\{u, v, a, z\})$. Therefore $D-S$ has a strong component D_{1} containing de 4 -cycle (u, v, a, z, u) and $D-V\left(D_{1}\right)$ has the arc $w x$. Therefore D is λ^{\prime}-connected and

$$
\begin{aligned}
\lambda^{\prime}(D) & \leq|S|=d^{+}(u)+d^{+}(v)+d^{+}(a)+d^{+}(z)-4 \\
& \leq d^{+}(u)++d^{+}(v)+2+d^{+}(z)-4 \\
& \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
\end{aligned}
$$

Now, suppose that $w \rightarrow a$. If either $v \rightarrow a$ or there exists a vertex $a^{\prime} \neq a$ such that $z \rightarrow a^{\prime}$, then this case is reduced to one of the two previous subcases. Otherwise observe that the condition on the girth implies that neither $a \rightarrow v$ nor $u \rightarrow a$. Suppose that $a \rightarrow u$. Let $S=\{z u, a u\}$, then the digraph $D-S$ has a strong component D_{1} containing de 4 -cycle (u, v, w, x, u) and $D-V\left(D_{1}\right)$ has the arc $a z$.Therefore D is λ^{\prime}-connected and

$$
\lambda^{\prime}(D) \leq 2 \leq d^{+}(u)+d^{+}(v)+d^{+}(w)+d^{+}(z)-4=\xi(D)
$$

concluding the proof.

Acknowledgments

We would like to thank the referees whose many helpful suggestions have significantly improved this article. This research was supported by CONACyT-México, under project CB-222104.

References

[1] C. Balbuena, P. García-Vázquez, A. Hansberg and L. P. Montejano, Restricted arc-connectivity of generalized p-cycles, Discrete Appl. Math. 160 (2012), 13251332.
[2] C. Balbuena, P. García-Vázquez, A. Hansberg and L. P. Montejano, On the super-restricted arc-connectivity of s-geodetic digraphs, Networks 61 (2012), 20-28.
[3] C. Balbuena and P. García-Vázquez, On the restricted arc-connectivity of s geodetic digraphs, Acta Math. Sin., English Series 26 (2010), 1865-1876.
[4] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Ed., Springer Monographs in Mathematics, Springer-Verlag, 2009.
[5] X. Chen, J. Liu and J. Meng, The restricted arc connectivity of cartesian product digraphs, Inf. Process. Lett. 109 (2009), 1202-1205.
[6] A.H. Esfahanian, Generalized measures of fault-tolerance with application to n-cube networks, IEEE Trans. Comput. 38(11) (1988), 1586-1591.
[7] A.H. Esfahanian and S. L. Hakimi, On computing a conditional edge-connectivity of a graph, Inf. Process. Lett. 27 (1988), 195-199.
[8] S. Grüter, Y. Guo and A. Holtkamp, Restricted arc-connectivity of bipartite tournaments, Discrete Appl. Math. 161 (2013), 2008-2013.
[9] S. Grüter, Y. Guo and A. Holtkamp, E. Ulmer, Restricted arc-connectivity in tournaments, Discrete Appl. Maths. 161 (2013), 1467-1471.
[10] D. Meierling, L. Volkmann and S. Winzen, Restricted arc-connectivity of generalized tournaments, Australas. J. Combin. 40 (2008), 269-278.
[11] L. Volkmann, Restricted arc-connectivity of digraphs, Inf. Process. Lett. 103 (2007) 234-239.
[12] S. Wang and S. Lin, λ^{\prime}-optimal digraphs, Inf. Process. Lett. 108 (2008), 386-389.

[^0]: * This research was supported by CONACyT-México, under project CB-222104.

