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Abstract

Let Γ be an additive abelian group and
−→
G = (V,A) a directed graph,

both of order n. A Γ labeling of
−→
G is a bijection � : V → Γ. Given such a

labeling �, for each x in V , define w(x) to be the sum of the labels on the
vertices of tails of arcs with head x minus the sum of the labels on the
vertices that are heads of arcs with tail x. If � is a constant function, then

� is said to be a directed Γ-distance magic labeling for
−→
G . A graph G

is said to be orientable Γ-distance magic if there exists a directed graph−→
G with underlying graph G and a directed Γ-distance magic labeling

for
−→
G . It has been conjectured that every 2r-regular graph G of order

n is orientable Zn-distance magic. In this paper we find orientable Zn-
distance magic labelings of some products of graphs, namely the strong
and lexicographic products. We provide orientable Zn-distance magic
labelings for some classes of regular and non-regular graphs which arise
via these products, and we identify some graphs which are not orientable
Zn-distance magic.
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1 Introduction

In this paper we study a generalization of distance magic graphs introduced recently
in [2]. Let G be a simple, undirected graph on n vertices, and let f be a bijection
f : V (G) → {1, 2, . . . , n}. For every vertex x ∈ V (G), define the weight of x to be
w(x) =

∑
y∈N(x)

f(y), where N(x) is the set of vertices adjacent to x. If the weight of

every vertex is equal to the same number k, then k is called the magic constant, and
we say that f is a distance magic labeling of G. If such a labeling can be found, we
say that G is distance magic. For a survey of distance magic graphs, see [1]. If one
uses group elements as labels, the following generalization of distance magic labeling
is possible.

Let Γ be an additive abelian group of order n, and let g be a bijection, g :
V (G) → Γ. If there exists μ ∈ Γ such that w(x) =

∑
y∈N(x)

g(y) = μ, for all vertices

x ∈ V (G), then we say G is Γ-distance magic. Clearly if G is distance magic, then
it is also Zn-distance magic, but the converse is not necessarily true.

An analogous labeling in the setting of directed graphs was first introduced in

[2]. Let
−→
G = (V,A) be a directed graph with underlying graph G. For a vertex

x, let N+(x) = {y ∈ V : −→yx ∈ A} and N−(x) = {z ∈ V : −→xz ∈ A}. Let indeg(x) =
|N+(x)| and outdeg(x) = |N−(x)|. Let � be a bijection � : V → Γ. For all x ∈ V ,
define the weight of x by

w(x) =
∑

y∈N+(x)

�(y)−
∑

y∈N−(x)

�(y),

where arithmetic takes place in Γ. If � is a constant function, we say � is a directed

Γ-distance magic labeling of
−→
G . A graph G is said to be orientable Γ-distance magic

if there exists a directed graph
−→
G with underlying graph G and a directed Γ-distance

magic labeling for
−→
G .

The existence of orientable Zn-distance magic labelings for complete graphs, com-
plete bipartite graphs (in combination with Theorem 5 from this paper), complete
tripartite graphs, circulant graphs, and some products of graphs is established in [2].
They also showed that some graphs are not orientable Zn-distance magic and made
a conjecture motivating our work.

Theorem 1. [2] Let G have order n ≡ 2 (mod 4) and all vertices of odd degree.
Then G is not orientable Zn-distance magic.

Conjecture 2. [2] If G is a 2r-regular graph of order n, then G is orientable Zn-
distance magic.

Determining whether an arbitrary graph is orientable Zn-distance magic is not
practical. One strategy for building classes of graphs that are more fruitful to study is
to combine common families of graphs via graph products. The four graph products
used in this paper are recalled in [3]. Each of the Cartesian product G�H , the direct
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product G×H , the strong product G�H , and the lexicographic product G ◦H , is a
graph with the vertex set V (G)×V (H). Two vertices (g, h) and (g′, h′) are adjacent
in:

• G�H if g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to g′

in G ;

• G×H if g is adjacent to g′ in G and h is adjacent to h′ in H ;

• G � H if either g = g′ and h is adjacent with h′ in H , or h = h′ and g is
adjacent with g′ in G, or g is adjacent with g′ in G and h is adjacent with h′

in H ;

• G◦H if and only if either g is adjacent with g′ in G or g = g′ and h is adjacent
with h′ in H .

If V (G) = {g0, g1, . . . , gm−1} and V (H) = {h0, h1, . . . , hn−1} for some m and n,
respectively, we use the notation (i, j) to denote the vertex (gi, hj) in any of the above
products. We also use (i, j) to refer to both the vertex and the label of the vertex.
Since the labelings considered in this paper are bijections, this should cause no am-
biguity. Observe that of the products defined above, only the lexicographic product
is not necessarily commutative. The lexicographic product G◦H is sometimes called
graph composition and denoted G [H ]. The notation G×H is also commonly used
to denote the Cartesian product, but we have reserved this notation for the direct
product. The local structure of the product of two cycles motivates our choice of
notation, as seen in Figure 1.

x

(a) Cartesian product

x

(b) Direct product

x

(c) Strong product

x

(d) Lexicographic product

Figure 1: Local structure of the product of two cycles

2 Lexicographic product

Our work stems from results in [2] on complete multipartite graphs.
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Theorem 3. [2] The complete graph Kn is orientable Zn-distance magic if and only
if n is odd.

Theorem 4. [2] Let G = Kn1,n2 and n1 + n2 = n. If n �≡ 2 (mod 4), then G is
orientable Zn-distance magic.

Combined with Theorem 4, the following theorem characterizes orientable Zn-
distance magic complete bipartite graphs and more.

Theorem 5. Let n1 + n2 + · · ·+ np = n. If n ≡ 2 (mod 4) and p = 1 or p is even,
then Kn1,n2,...,np is not orientable Zn-distance magic.

Proof. Let G = Kn1,n2,...,np. If p = 1, then G ∼= Kn is an odd regular graph on
n ≡ 2 (mod 4) vertices, so it is not orientable Zn-distance magic by Theorem 1.
So assume p is even. For the sake of contradiction, suppose n ≡ 2 (mod4) and

G is orientable Zn-distance magic with associated directed graph
−→
G and directed

Zn-distance magic labeling � : V (G) → Zn. Observe that Zn
∼= Z2 × Zn/2 by the

Fundamental Theorem of Finite Abelian Groups since gcd
(
2, n

2

)
= 1. Therefore,

there exists a labeling f : V (G) → Z2 ×Zn/2 and an element (a, b) ∈ Z2 ×Zn/2 such
that w(v) = (a, b) for all v ∈ V (G). For all v ∈ V (G), let f2(v) represent the Z2

component of f(v). Therefore

a =
∑

y∈N+(v)

f2(y)−
∑

y∈N−(v)

f2(y) =
∑

y∈N(v)

f2(y).

Since f is bijective, there exists an odd number of vertices v ∈ V (G) such that
f2(v) = 1. Since p is even, it follows that there exists an odd number of partite
sets A such that

∑
v∈A

f2(v) = 1 and an odd number of partite sets B such that∑
v∈B

f2(v) = 0. But this leads to a contradiction since, for x ∈ A and y ∈ B,

w(x) = (0, b) ��= (1, b) = w(y).

Corollary 6. Let G = Kn1,n2 be a complete bipartite graph such that n1 + n2 = n.
Then G is orientable Zn-distance magic if and only if n �≡ 2 (mod 4).

The next result serves as a cautionary tale for the lexicographic product. Let Jn

denote the empty graph on n vertices.

Corollary 7. Let n = n1 + n2 ≡ 1, 3 (mod 4) and k ≡ 2 (mod 4). Then Kn1,n2 is
orientable Zn-distance magic, but Kn1,n2 ◦ Jk is not orientable Znk-distance magic.

Proof. The proof is clear since Kn1,n2 ◦Jk
∼= Kkn1,kn2 and kn1+kn2 ≡ 2 (mod 4).

To conclude this section, we recall a theorem regarding distance magic labelings
in [4] and prove an analagous theorem in the setting of directed graphs.

Theorem 8. [4] If H is an r-regular graph, then G = H ◦ J2k is distance magic for
any k.
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(a) Directed Z4-distance magic labeling
of a graph H

0
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(b) Directed Z12-distance magic labeling of
the graph G = H ◦K3

Figure 2: Illustration of Theorem 9

Figure 2 illustrates the following theorem. In Figure 2b, each bold arc represents
the edges in a directed K3,3.

Theorem 9. If H is an orientable Zn-distance magic graph of order n, then the
lexicographic product G = H ◦ Jk is orientable Znk-distance magic except possibly
when k ≡ 2 (mod 4) and H contains a vertex x such that indeg(x) �≡ outdeg(x)
(mod 2).

Proof. Let
−→
H have directed Zn-distance magic labeling f : V (H) → Zn with magic

constant μ. Construct the graph G = H ◦ Jk with vertex set V (G) = {(i, j) :
i ∈ V (H), j = 1, 2, . . . , k} by replacing each vertex i of H with k isolated vertices
such that two of the new vertices are adjacent whenever their counterparts in H are
adjacent. We will orient the edges of G later. For all i ∈ V (H), let Bi represent the
set of k vertices which have replaced the vertex i. We will now label the vertices in
each set Bi. For i = 0, 1, . . . , n − 1, define cosets Ai = {i + 〈n〉} ⊆ Znk, where 〈n〉
is the subgroup generated by n. For all i = 0, 1, . . . , n − 1, let � : Ai → Bi be an
arbitrary bijection.

Case 1. k odd or indeg(x) �≡ outdeg(x) (mod 2) for all x ∈ V (H).

Orient the edges of G so that for (i, j) ∈ Bi and (p, q) ∈ Bp, each edge (i, j)(p, q)

has the same orientation as its counterpart ip in
−→
H . Let

Si =
∑
x∈Bi

�(x)

=
∑
a∈Ai

a

= i+ (n+ i) + · · ·+ ((k − 1)n+ i)

= k[2i+(k−1)n]
2

,

with all arithmetic performed modulo nk. Let x ∈ Bi and let N+
H(i) = {a1, . . . , ap}

and N−
H(i) = {b1, . . . , bq} where p = indeg(i) and q = outdeg(i). If

∑p
i=1 ai = a
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and
∑q

i=1 bi = b, then a − b = μ, (with all arithmetic performed in Zn) since H is
orientable Zn-distance magic. Recalling that k is odd or p ≡ q (mod 2), we have

w(x) =
∑p

i=1 Sai −
∑q

i=1 Sbi

= k[2(a1+···+ap)+p(k−1)n]
2

− k[2(b1+···+bq)+q(k−1)n]
2

= Sa1+···+ap +
k(k−1)(p−1)n

2
− Sb1+···+bq − k(k−1)(q−1)n

2

= Sa − Sb +
(k−1)(p−q)

2
nk

≡ Sa − Sb (modnk)
≡ k(a− b) (modnk)
≡ kμ (modnk),

which shows � is a directed Znk-distance magic labeling of G.

Case 2. k ≡ 0 (mod 4).

Notice that every vertex in Bi can be expressed uniquely as i + tn for some
t ∈ {0, 1, . . . , k − 1}. For every edge ij ∈ E(H), orient the edges in G between
Bi and Bj as follows. For all a, b ∈ [k], orient the edges between i + an ∈ Bi and
j + bn ∈ Bj such that, if a ≡ 0, 3 (mod 4), then

N+
G (i+ an) = {j + bn : b ≡ 0, 3 (mod 4)} ,

N−
G (i+ an) = {j + bn : b ≡ 1, 2 (mod 4)} ,

and, if a ≡ 1, 2 (mod 4), then

N+
G (i+ an) = {j + bn : b ≡ 1, 2 (mod 4)} ,

N−
G (i+ an) = {j + bn : b ≡ 0, 3 (mod 4)} .

Let i + an ∈ Bi for some a ∈ [k] and let ij ∈ E(H). Let wij(i + an) be the weight

of i+ an in
−→
G induced by the edge ij ∈ E(H). If a ≡ 0, 3 (mod 4), then

wij(i+ an) =
∑

b≡0,3 (mod 4)

(j + bn)− ∑
b≡1,2 (mod 4)

(j + bn)

= [(0n+ 3n)− (1n+ 2n)] + · · ·+ [(4n+ 7n)− (5n+ 6n)]
+ [((k − 4)n+ (k − 1)n)− ((k − 3)n+ (k − 2)n)]

= 0.

If a ≡ 1, 2 (mod 4), a similar calculation shows wij(i+an) = 0 . Therefore, each edge

ij in H induces 0 weight in
−→
G , so the graph G is orientable Znk-distance magic.

3 Strong product of cycles

Throughout this section, let m,n ≥ 3. Assume V (Cm) = {g0, g1, . . . , gm−1} and
V (Cn) = {h0, h1, . . . , hn−1}. The strong product of two cycles Cm � Cn is an 8-
regular graph on V = {(i, j) : i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . , n − 1}} which is
the union of the direct product Cm ×Cn and the Cartesian product Cm�Cn. Orient
Cm � Cn so that N+(i, j) = {(i + 1, j), (i + 1, j + 1), (i, j + 1), (i − 1, j + 1)} and
N−(i, j) = {(i− 1, j), (i− 1, j − 1), (i, j − 1), (i+ 1, j − 1)} where the arithmetic is
taken modulo m in the first coordinate and modulo n in the second coordinate.
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Theorem 10. If gcd(m,n) = 1, 2, or 4, then the strong product Cm�Cn is orientable
Zmn-distance magic.

Proof. Assumem ≤ n and let a diagonal of Cm�Cn be the sequence of lcm(m,n) ver-
tices (i, 0), (i+1, 1), . . . , (m−1, m−1), (0, m), (1, m+1), . . . , (i−1, n−1). The number
of diagonals is g = gcd(m,n). For i = 0, 1, . . . , g−1 let Di = (d(0,i), d(1,i), . . . , d(l−1,i))
be the ith diagonal. Similarly, a back diagonal is the sequence of vertices (i, 0), (i−
1, 1), . . . , (0, i), (m−1, i+1), . . . , (i+1, n−1) and denote the ith by Bi = (b(0,i), b(1,i),
. . . , b(l−1,i)).

Let H ∼= 〈g〉, the subgroup of Zmn generated by g. Define � : V (Cm � Cn) → Zmn

by labeling the vertices of the diagonal Di with the elements of the coset H + i in
increasing order for i = 0, 1, . . . , g − 1. Write n = km+ r for 0 ≤ r ≤ m− 1.

If g = 1 or 2 it must be the case that b(1,i) = d(h,i) for some h. Counting steps
through the lattice, it is not difficult to see that when g = 1, then h = c(km+ r)+ 1
where c is the unique number such that c ∈ {1, 2, . . . , m− 1} and cr ≡ −2 (mod m)

and when g = 2, h = (m−2)n
r

+1. Therefore the two sequences, (b(0,i), b(1,i), . . . , b(l−1,i))
and (d(0,i), d(h,i), d(2h,i), . . . ) are equal since |Bi| = |Di|. Notice that for any vertex
(i, j) = d(a,t) on Dt, we have N+(i, j) = {d(a+1,t), b(c+2,t), d(p+1,t+1), d(q+1,t+1)} and
N−(i, j) =

{
d(a−1,t), b(c,t), d(p,t+1), d(q,t+1)

}
for some numbers c, p, q, while t + 1 is

performed modulo g. Therefore

w(i, j) = (d(a+1,t) − d(a−1,t)) + (d(p+1,t+1) − d(p,t+1))
+ (d(q+1,t+1) − d(q,t+1)) + (b(c+2,t) − b(c,t))

= 2g + g + g + 2gh
= 2g(2g + h).

If g = 4, the graph contains exactly four diagonals, so b(2,i) = d(h,i) for some

h. Counting steps through the lattice, we obtain h = (m−4)n
r

+ 2. For any vertex
(i, j) = d(a,t) on Dt, we have N+(i, j) =

{
d(a+1,t), b(c+2,t′), d(p+1,t+1), d(q+1,t−1)

}
and

N−(i, j) =
{
d(a−1,t), b(c,t′), d(p,t+1), d(q,t−1)

}
for some numbers t′, c, p, q, and t + 1 and

t− 1 are performed modulo 4. Observing b(c,i) − b(c−2,i) = gh, we obtain

w(i, j) = (d(a+1,t) − d(a−1,t)) + (d(p+1,t+1) − d(p,t+1))
+ (d(q+1,t−1) − d(q,t−1)) + (b(c+2,t′) − b(c,t′))

= 2g + g + g + gh
= g(4 + h).

Since h is independent of i and j in all cases, we have proven the result.

Theorem 11. Let d = gcd(m,n) = 3, 5, or 6. If d2 � m and d2 � n, then Cm �Cn is
orientable Zmn-distance magic.

Proof. Let gcd(m,n) = d ∈ {3, 5, 6}, d2 � m, and d2 � n. Therefore gcd(m
d
, d) =

gcd(n
d
, d) = 1 which implies gcd(m

d
, n
d
) = gcd(m

d
, d2) = gcd(n

d
, d2) = 1 and Zmn

∼=
Zd2 ×Zm

d
×Zn

d
. Let r(i) and r(j) represent the unique elements of Zd2 congruent to

i and j, respectively, modulo d.
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Define � : V (Cm � Cn) → Zd2 × Zm
d
× Zn

d
by

�(i, j) = (αd, β, γ) ,

where 0 ≤ β < m
d
, β ≡ i (mod m

d
), 0 ≤ γ < n

d
, γ ≡ j (mod n

d
), and where αd is defined

as follows. If d = 3, let α3 = 3r(i) + r(j). If d = 5, let α5 = 5r(j) + r(i − 2j). If
d = 6, let

α6 =

{
6r(i) + 2r(j), i even
6r(i− 1) + 2r(j) + 1, i&odd

where the arithmetic is performed modulo d2.

To show that � is injective, we have �(i, j) = (αd, β, γ) = (α′
d, β

′, γ′) = �(i′, j′) if
and only if αd ≡ α′

d (mod d2) and β ≡ β ′ (mod m
d
) and γ ≡ γ′ (mod n

d
). Consequently,

i ≡ i′ (mod m
d
) and j ≡ j′ (mod n

d
). If d = 3, then α3 ≡ α′

3 (mod 32) implies r(j) =
r(j′) so j ≡ j′ (mod 3). Since gcd(3, n

3
) = 1 by assumption, we have j ≡ j′ (modn),

and hence j = j′. It follows easily that i = i′. Therefore � is injective, and hence
bijective when d = 3. A similar argument can be made to show � is bijective when
d = 5 or 6.

Let (i, j) ∈ V (Cm � Cn). We calculate w(i, j) component-wise. Let

w(i, j) = (w1, w2, w3) ,

where w1 ∈ Zd2 , w2 ∈ Zm
d
, and w3 ∈ Zn

d
. First we determine w1 for each d ∈ {3, 5, 6}.

Consequently, the arithmetic will be performed in Zd2 . The full computation is shown
only in the case of d = 3, where

w1 = [3r(i+ 1) + r(j)] + [3(r(i+ 1)) + (r(j + 1))]
+ [3r(i) + (r(j + 1))] + [3(r(i− 1)) + (r(j + 1))]
− [3(r(i− 1)) + r(j)]− [3(r(i+ 1)) + (r(j − 1))]
− [3r(i) + (r(j − 1))]− [3(r(i+ 1)) + (r(j − 1))]

= 3.

If d = 5, we obtain w1 = 5, and for d = 6, we have w1 = 24. Next we calculate
w2 ∈ Zm

d
and w3 ∈ Zn

d
. We have

w2 = 2(i− 1) + i+ (i+ 1)− 2(i+ 1)− i− i+ 1
= −2,

and
w3 = j + 3(j + 1)− j − 3(j − 1)

= 6.

Hence w(i, j) = (w1,−2, 6) , proving the theorem.
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Theorem 12. If mn ≡ 2 (mod 4), then Cm �Cn is orientable Zmn-distance magic.

Proof. If mn ≡ 2 (mod 4), then 2 divides exactly one of m or n. Without loss of
generality, we may assume 2 | m. By the Fundamental Theorem of Finite Abelian
Groups, we have Zmn

∼= Z2 × Zmn
2
. Define � : V (Cm � Cn) → Z2 × Zmn

2
by

� (i, j) =

{ (
0, i

2
n + j

)
, i even(

1, i−1
2
n + j

)
, i odd

.

Clearly � is a bijection. If i is even we have,

w(i, j) =
(
1, i

2
n+ j

)
+
(
1, i

2
n + j + 1

)
+
(
1, i

2
n+ j

)
+
(
1, i

2
n+ j + 1

)− (
1, i−2

2
n+ j

)− (
1, i−2

2
n+ j − 1

)
− (

0, i
2
n+ j − 1

)− (
1, i

2
n + j − 1

)
= (0, n+ 6).

If i is odd then,

w(i, j) =
(
0, i+1

2
n + j

)
+
(
0, i+1

2
n+ j + 1

)
+
(
1, i−1

2
n+ j + 1

)
+
(
1, i−1

2
n + j + 1

)− (
0, i−1

2
n + j

)− (
0, i−1

2
n + j − 1

)
− (

1, i−1
2
n+ j − 1

)− (
0, i+1

2
n+ j − 1

)
= (0, n+ 6).

Our final theorem is a partial result on what can be said of Cm � Cn if mn ≡
0 (mod 4).

Theorem 13. If m ≡ n ≡ 2 (mod 4), then Cm � Cn is orientable Zmn-distance
magic.

Proof. Since mn
4

is odd we have Zmn
∼= Z4×Zmn

4
. Define � : V (Cm � Cn) → Z4×Zmn

4

by

�(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

(0, in
4
+ j), i even, j even

(1, in
4
+ j), i even, j odd

(2, (i−1)n
4

+ j), i odd, j even

(3, (i−1)n
4

+ j), i odd, j odd

.

Clearly, � is a bijection and we proceed to determine the weights. For all (i, j) ∈
V (Cm �Cn), let w(i, j) = (w1, w2) where w1 ∈ Z4 and w2 ∈ Zmn

4
. It is easy to check

that w1 = 0. If i is even,

w2 =
(
i
2
n
2
+ j

)
+
(
i
2
n
2
+ j + 1

)
+
(
i
2
n
2
+ j + 1

)
+
(
i−2
2

n
2
+ j + 1

)
− [(

i−2
2

n
2
+ j

)
+
(
i−2
2

n
2
+ j − 1

)
+
(
i
2
n
2
+ j − 1

)
+
(
i
2
n
2
+ j − 1

)]
= n

2
+ 6.

If i is odd,

w2 =
(
i+1
2

n
2
+ j

)
+
(
i+1
2

n
2
+ j + 1

)
+
(
i−1
2

n
2
+ j + 1

)
+
(
i−1
2

n
2
+ j + 1

)
− [(

i−1
2

n
2
+ j

)
+
(
i−1
2

n
2
+ j − 1

)
+
(
i−1
2

n
2
+ j − 1

)
+
(
i+1
2

n
2
+ j − 1

)]
= n

2
+ 6.

Hence w(i, j) =
(
0, n

2
+ 6

)
, proving the theorem.
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