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Abstract

In this paper we prove that, for any 2-connected graph G nonisomorphic
to K3, the set of contractible edges EC(G) cannot be covered by one
vertex. All 2-connected graphs whose contractible edges can be covered
by exactly two vertices are characterized. We also prove that if a vertex
subset S covers EC(G) such that |V (G)| ≥ 2|S| + 1, then G − S is not
connected. Finally, we provide tight upper bounds for the order, size and
number of non-trivial components ofG−S (components having more than
one vertex) in terms of |S|, and characterize all the extremal graphs.

1 Introduction

Covers for contractible edges in 3-connected graphs were first studied by Ota and
Saito [4] who proved that the set of contractible edges EC(G) in a 3-connected
graph G of order at least six cannot be covered by two vertices (see also Saito [5]).
Later, Hemminger and Yu [3] characterized all 3-connected graphs of order at least
ten whose contractible edges can be covered by three vertices. Yu [6] showed that
for any 3-connected graph G nonisomorphic to K4, if S covers EC(G) such that
|V (G)| ≥ 3|S| − 1, then G − S is not connected. Hemminger and Yu [2] provided
upper bounds for the order, size and number of non-c-components of G−S (refer to
the paper for the definition) in terms of |S|. Inspired by the above work, we prove
the corresponding results for 2-connected graphs.

All graphs considered in this paper are finite and simple. Standard graph-
theoretical terminology can be found in Diestel [1]. Consider any 2-connected graph
G. An edge is contractible if its contraction results in a 2-connected graph. Denote
the set of contractible edges of G by EC(G). Let S be a subset of V (G). A com-
ponent of G − S is trivial if its order is one. A fragment F of S is a union of at
least one but not all components of G− S. Define F := G− S − F which is also a
fragment of S. Denote the vertex set, edge set and component set of all non-trivial
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components of G− S by V N(G, S), EN(G, S) and CN(G, S) respectively. We say
S is a cover of EC(G) if every contractible edge in G is incident to a vertex in S.
For any two disjoint subsets A and B of V (G), denote EG(A,B) to be the set of all
edges between A and B in G. Consider the complete bipartite graph K2,k and let
{x, y} be the partition class of the two vertices. Define K+

2,k := K2,k + xy. Also, the
following construction of a new 2-connected graph based on G will be useful later.
For each edge e in a subset D of E(G), add a vertex xe together with two edges from
xe to V (e). Denote the resulting graph by G#D.

The paper is organized as follows. In Section 2, we will show that for any 2-
connected graph G nonisomorphic to K3, the set of contractible edges cannot be
covered by one vertex. All 2-connected graphs whose contractible edges can be
covered by exactly two vertices are characterized. We also prove that if a vertex
subset S covers EC(G) such that |V (G)| ≥ 2|S|+1, then G−S is not connected. In
Section 3, we provide tight upper bounds for the order, size and number of non-trivial
components of G− S in terms of |S|, and characterize all the extremal graphs.

2 Small vertex cover of contractible edges

We begin with two basic results concerning contractible and non-contractible edges
in any 2-connected graph G nonisomorphic to K3. Note that e is a non-contractible
edge in G if and only if G− V (e) is not connected.

Lemma 2.1. Let G be any 2-connected graph nonisomorphic to K3 and e be an edge
of G. Then G− e or G/e is 2-connected.

Proof. Let e = xy. Suppose G− e is not 2-connected. Let z be a cutvertex of G− e.
Then G− e− z has exactly two components, say C and D such that e joins C and
D. Obviously, z /∈ V (e) and every x-y path other than e passes through z. Suppose
G/e is not 2-connected. Then G− V (e) is not connected. Let B be the component
of G − V (e) containing z. Now, there exists an x-y path in G − B − e not passing
through z, a contradiction. �
Lemma 2.2. Let G be any 2-connected graph nonisomorphic to K3, and e and f be
two non-contractible edges of G. Then f is a non-contractible edge of G− e.

Proof. By Lemma 2.1, G − e is 2-connected. Since f is non-contractible in G,
G − V (f) is not connected. Therefore, G − e − V (f) is not connected and f is a
non-contractible edge of G− e. �

By the above two fundamental lemmas, every vertex of G is incident to at least
two contractible edges and hence |V (G)| ≤ |EC(G)|. Also, the subgraph induced by
all the contractible edges (V (G), EC(G)) is 2-connected.

Lemma 2.3. Consider any 2-connected graph G nonisomorphic to K3. Let x, y be
any two vertices of G and C be a component of G− x− y. Then EG(x, C) contains
a contractible edge and so does EG(y, C). Moreover, if |C| > 1, then there exist two
independent contractible edges in EG({x, y}, C).
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Proof. Suppose all edges in EG(x, C) are non-contractible. By Lemma 2.1 and 2.2,
we can delete all edges in EG(x, C) and the resulting graph H := G − EG(x, C) is
2-connected. However, either x is an isolated vertex of H or y is a cutvertex of H , a
contradiction.

Now, assume |C| > 1. Suppose there are no two independent contractible edges
in EG({x, y}, C). Then there exists a vertex z in C that covers EG({x, y}, C) ∩
EC(G), and xz and yz are the only contractible edges in EG({x, y}, C). By the
2-connectedness of G, there exists an edge joining {x, y} to a vertex w of C other
than z. Without loss of generality, assume w is adjacent to y. Obviously, yw is non-
contractible. Let D be a component of G−y−w not containing z. Then D � C and
from above, EG(y,D) contains a contractible edge not covered by z, a contradiction.

�

Lemma 2.4. Let G be any 2-connected graph nonisomorphic to K3 and S be a cover
of EC(G). Suppose G − S contains two vertices x and y. Let C be any component
of G− x− y. Then the following statements hold.

(a) C ∩ S �= ∅.
(b) If |C ∩ S| = 1, then |C| = 1.

(c) If |C∩S| >1,then there exist two independent contractible edges in EG({x, y}, C).

Proof. (a) follows from the first part of Lemma 2.3 while (b) and (c) follow directly
from the second part of Lemma 2.3. �

We now prove that for any 2-connected graph nonisomorphic toK3, a vertex cover
of the set of all contractible edges contains at least two vertices, and characterize all
graphs whose contractible edges can be covered by exactly two vertices.

Theorem 2.1. For any 2-connected graph G nonisomorphic to K3, EC(G) cannot
be covered by one vertex.

Proof. Suppose x is a vertex in G that covers EC(G). Obviously, there exists an edge
yz that is not incident to x. Therefore, yz is non-contractible. But this contradicts
Lemma 2.4(a) by considering a component of G− y − z not containing x. �

Theorem 2.2. Let G be any 2-connected graph nonisomorphic to K3. Then EC(G)
can be covered by two vertices if and only if G is isomorphic to K2,k or K+

2,k where
k ≥ 2.

Proof. (⇐) Easy.

(⇒) Let S := {u, v} be a cover of EC(G). Consider any component C of G− S.
If |C| > 1, then C contains a non-contractible edge, say xy. By Lemma 2.4, G−x−y
has exactly two components both of order one, namely u and v. We have G = K+

2,2.

Now, assume that every component of G−S consists of exactly one vertex. Then
G is isomorphic to K2,k or K+

2,k where k ≥ 2. �
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Next, we show that if a vertex cover S of the set of all contractible edges is small
enough, then G− S is not connected.

Lemma 2.5. Let G be any 2-connected graph nonisomorphic to K3 and S be a cover
of EC(G). Let xy be an edge in G− S and F be a fragment of G− x− y. Consider
G′ := (V (F )∪{x, y, z}, E(G[F ∪xy])∪{xz, yz}) and S ′ := (S ∩V (F ))∪ z. Then G′

is 2-connected, EC(G
′) = (EC(G) ∩ E(G[F ∪ xy]) ∪ {xz, yz} and S ′ covers EC(G

′).

Proof. Suppose G′ contains a cutvertex w. Then w ∈ F . But then w is a cutvertex
of G, a contradiction. Hence, G′ is 2-connected.

To prove S ′ covers EC(G
′), we will show that EC(G

′) = (EC(G) ∩ E(G[F ∪
xy]) ∪ {xz, yz}. Since both G′ − x− z and G′ − y − z are connected, xz and yz are
contractible edges in G′. Let uv ∈ EC(G

′) \ {xz, yz}. Note that uv �= xy. Then
G′ − u− v is connected and so is G′ − u− v− z. Hence, G− u− v is connected and
uv ∈ EC(G) ∩ E(G[F ∪ xy]).

Suppose st ∈ EC(G) ∩ E(G[F ∪ xy]). Then G − s − t is connected and so is
G− s− t− F . Therefore, G′ − s− t is connected and st ∈ EC(G

′). �

Theorem 2.3. Let G be any 2-connected graph nonisomorphic to K3 and S be a
cover of EC(G). If |V (G)| ≥ 2|S|+ 1, then G− S is not connected.

Proof. The proof is by induction on |V (G)|. The result is trivially true for |V (G)| = 4
by Theorem 2.1. Suppose the theorem is true for all 2-connected graphs with less
than k vertices. Consider any 2-connected graph G with k vertices. Let S be a cover
of EC(G) such that |S| ≤ k−1

2
. Suppose G − S is connected. Note that all edges in

G− S are non-contractible. Let xy be any edge in G− S and C1, C2, . . . , Cm be the
components of G − x − y. For each Ci, define Gi := (V (Ci) ∪ {x, y, xi}, E(G[Ci ∪
xy]) ∪ {xix, xiy}).

Suppose m ≥ 3, or m = 2 and both C1 and C2 contain at least two vertices.
Then |V (Gi)| < |V (G)|. By Lemma 2.5, Si := (S ∩ Ci) ∪ xi is a vertex cover of
all contractible edges of Gi. Since G − S is connected, Gi − Si is also connected.
By induction, |V (Gi)| ≤ 2|Si| = 2|S ∩ Ci| + 2. Now, |V (G)| = 2 +

∑
i |V (Ci)| =

2+
∑

i(|V (Gi)| − 3) ≤ 2+
∑

i(2|S ∩Ci| − 1) = 2−m+2|S| ≤ 2|S|, a contradiction.
Therefore, m = 2, and one of C1 and C2 contains exactly one vertex.

For each edge e in G−S, define xe to be the single vertex component of G−V (e).
Note that xe ∈ S, NG(xe) = V (e), and for any two distinct edges e, f in G − S,
xe �= xf . SinceG−S is connected, |S| ≥ |E(G−S)| ≥ |V (G−S)|−1 = |V (G)|−|S|−1
implying |V (G)| ≤ 2|S|+ 1. Consequently, |V (G)| = 2|S|+ 1, |S| = |E(G− S)| and
G− S is a tree. But then G is not 2-connected, a contradiction. �

The bound 2|S|+ 1 is best possible as demonstrated by K−
4 (K4 minus an edge)

for |S| = 2 and K3#E(K3) for |S| = 3. For |S| = k ≥ 4, let H be any 2-connected
outerplanar graph of order k. Note that |EC(H)| = |V (H)|. Consider H#EC(H)
and take S to be the set of verices not in H .
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3 Order, size and number of non-trivial components

In this section, we derive tight upper bounds for the order, size and number of non-
trivial components of G− S in terms of |S| where S is a vertex cover of EC(G), and
characterize all the extremal graphs. The first two theorems investigate the situation
when S has order three or four, and are needed for induction arguments later.

Theorem 3.1. Let G be any 2-connected graph nonisomorphic to K3. Suppose S
is a cover of EC(G) of order three. Then |V N(G, S)| ≤ 3, |EN(G, S)| ≤ 3 and
|CN(G, S)| ≤ 1.

Proof. Let S := {x, y, z}. If G−S is independent, then |V N(G, S)| = |EN(G, S)| =
|CN(G, S)| = 0. Suppose G − S contains an edge uv. Obviously, uv is non-
contractible. By Lemma 2.4(a), G−u−v contains exactly two or three components.
Suppose G−u− v consists of three components. By Lemma 2.4(b), the components
are precisely x, y and z, and G[u, v] is the only non-trivial component of G−S. Oth-
erwise, let C and D be the two components of G−u− v. Without loss of generality,
by Lemma 2.4(a) and (b), assume C = z and x, y ∈ D. Then uz and vz are con-
tractible edges. By Lemma 2.4(c), we can assume ux and vy are contractible edges.
Denote T := S ∪ {u, v}. Note that G[T ] is connected. Suppose G − T contains an
edge e. Obviously, e is non-contractible. By Lemma 2.3, there exists a contractible
edge not covered by S, a contradiction. Therefore, E(G− T ) = ∅.

Suppose V (G) = T . Then xy is an edge and G[u, v] is the only non-trivial
component of G− S. Now, let V (G)− T := {a1, a2, . . . , ak} where k ≥ 1. Then the
neighbors of ai belong to {u, v, x, y}. Since aiu and aiv, if exist, are non-contractible
edges, aix and aiy are contractible edges in G. Suppose k ≥ 2. Since G − ai − u
and G − ai − v are connected, none of aiu and aiv exist, and G[u, v] is the only
non-trivial component of G − S. Suppose k = 1. If both a1u and a1v are absent,
then G[u, v] is the only non-trivial component of G−S. Otherwise, G[u, v, a1] is the
only non-trivial component of G − S and |V N(G, S)| = 3. Now, |EN(G, S)| = 3 if
and only if both a1u and a1v are present. �

Theorem 3.2. Let G be any 2-connected graph nonisomorphic to K3. Suppose S
is a cover of EC(G) of order four. Then |V N(G, S)| ≤ 4, |EN(G, S)| ≤ 5 and
|CN(G, S)| ≤ 2.

Proof. Let S := {w, x, y, z}. If G−S is independent, then |V N(G, S)| = |EN(G, S)|
= |CN(G, S)| = 0. Suppose G − S contains an edge uv. Obviously, uv is non-
contractible. By Lemma 2.4(a), G− u − v contains exactly two, three or four com-
ponents.

Suppose G − u − v consists of four components. By Lemma 2.4, each compo-
nent is precisely one vertex of S. We have |V N(G, S)| = 2, |EN(G, S)| = 1 and
|CN(G, S)| = 1.

Suppose G − u − v consists of three components. Then by Lemma 2.4, two
components consist of one vertex of S while the third contains two vertices of S. By
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arguing as in the proof of Theorem 3.1, we have |V N(G, S)| ≤ 3, |EN(G, S)| ≤ 3
and |CN(G, S)| = 1.

Suppose G− u− v consists of two components, namely C and D. If |C ∩ S| = 2
and |D∩S| = 2, by arguing as in the proof of Theorem 3.1, we have |V N(G, S)| ≤ 4,
|EN(G, S)| ≤ 5 and |CN(G, S)| = 1. By Lemma 2.4(c), without loss of generality,
suppose uw, vx, uy and vz are contractible edges where w, x ∈ C and y, z ∈ D.
If |V N(G, S)| = 4 or |EN(G, S)| = 5, then both C and D contain exactly three
vertices. Let c be the vertex of C other than w and x, and d be the vertex of
D other than y and z. Note that cw, cx, dy, dz are contractible edges in G. Now,
|V N(G, S)| = 4 if and only if NG(c) ∩ {u, v} �= ∅ and NG(d) ∩ {u, v} �= ∅. Whereas
|EN(G, S)| = 5 if and only if c is adjacent to both u and v, and d is adjacent to
both u and v.

Suppose |C ∩S| = 1 and |D∩S| = 3. By Lemma 2.4(b), |C| = 1 and let C := w.
Also, from now on, we may assume that:

(∗) For each non-contractible edge u′v′ in G− S, G− u′ − v′ consists of exactly
two components, one of which is comprised of a single vertex from {w, x, y, z}.

By Lemma 2.4(c),there exist two independent contractible edges in EG({u, v}, D),
say ux and vy. Let T := {u, v, w, x, y}. Note that G[T ] is connected and z ∈ G− T .
Let V (G) − T := {a1, a2, . . . , am} where a1 = z. If m = 1, then |V N(G, S)| = 2,
|EN(G, S)| = 1 and |CN(G, S)| = 1. Therefore, assume m ≥ 2. Since every
vertex is incident to at least two contractible edges, NG(ai) ∩ {x, y} �= ∅ for all
1 < i ≤ m. Suppose G− T is independent. Every vertex ai other than z is adjacent
to both x and y, and aix and aiy are contractible edges in G. Since D is connected,
NG(z) ∩ {x, y} �= ∅. If m = 2, then by (∗), |V N(G, S)| ≤ 3, |EN(G, S)| ≤ 2
and |CN(G, S)| = 1. If m > 2, then both aiu and aiv are absent for all i > 1 as
G− ai − u and G− ai − v are connected. We have |V N(G, S)| = 2, |EN(G, S)| = 1
and |CN(G, S)| = 1.

Now, assume that G − T is not independent. Suppose G − T contains a non-
contractible edge ab. By Lemma 2.3, z ∩ {a, b} = ∅. By (∗), G − a − b consists of
exactly two components, one of which is z. Without loss of generality, by Lemma
2.4(c), assume ax and by are contractible edges. Note that by Lemma 2.3, every
non-contractible edge of G lies in G[u, v, x, y, a, b]. Consequently, every vertex in
H := G − S − u − v − a − b, if exists, is adjacent to x and y only. By (∗), ub
and va are absent. Therefore, |V N(G, S)| = 4 and |EN(G, S)| ≤ 4. We also have
|CN(G, S)| ≤ 2 with equality holds if and only if ua and vb are both absent.

Suppose all edges in G−T are contractible, and hence incident to z. In particular,
a2, . . . , am are independent in G. Let a2, . . . , al be all the neighbors of z in V (G)−T .
Note that l ≥ 2 since G − T is not independent. Suppose there exists a vertex in
G−T − z that is not adjacent to z (i.e. l < m). For every l+1 ≤ i ≤ m, aix and aiy
are contractible edges. Consider the case l+1 < m. By (∗), aiu and aiv are absent for
all l+1 ≤ i ≤ m. If none of aiu and aiv exist for all 1 < i ≤ l, then |V N(G, S)| = 2,
|EN(G, S)| = 1 and |CN(G, S)| = 1. Suppose a2u exists. By (∗), NG(z) = {a2, u}
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and l = 2. Also, a2v is absent by (∗). We have |V N(G, S)| = 3, |EN(G, S)| = 2 and
|CN(G, S)| = 1. Consider the case l + 1 = m. If none of aiu and aiv exist for all
1 < i ≤ l, then by the connectedness of D and (∗), |V N(G, S)| ≤ 3, |EN(G, S)| ≤ 2
and |CN(G, S)| = 1. Suppose a2u exists. By (∗), NG(z) = {a2, u} and l = 2. Now,
a2v is absent by (∗). Since D is connected, NG(a2) ∩ {x, y} �= ∅. Without loss of
generality, assume a2x exists. As ux is contractible, G − u − x is connected and
hence, a2y exists. By (∗), a3u and a3v are both absent. Hence, |V N(G, S)| ≤ 3,
|EN(G, S)| ≤ 2 and |CN(G, S)| = 1.

Suppose every vertex in G−T −z is adjacent to z. If none of aiu and aiv exist for
all i > 1, then |V N(G, S)| = 2, |EN(G, S)| = 1 and |CN(G, S)| = 1. Suppose a2u
exists. By (∗), either NG(x) = {a2, u} or NG(z) = {a2, u}. If NG(z) = {a2, u}, then
m = 2, |V N(G, S)| = 3, |EN(G, S)| ≤ 3 and |CN(G, S)| = 1. Suppose NG(x) =
{a2, u}. If m = 2, then |V N(G, S)| = 3, |EN(G, S)| ≤ 3 and |CN(G, S)| = 1.
Assume m ≥ 3. Then aiy is a contractible edge for all i ≥ 3. By (∗), aiu is absent
for all i ≥ 3 and a2v is absent as well. Therefore, {y, z} ⊆ NG(ai) ⊆ {v, y, z} for all
i ≥ 3. If aiv exists for some i ≥ 3, then by (∗), NG(y) = {ai, v} and m = 3. We have
|V N(G, S)| = 4, |EN(G, S)| ≤ 3 and |CN(G, S)| = 1. Otherwise, aiv are absent for
all i ≥ 3, and |V N(G, S)| = 3, |EN(G, S)| ≤ 2 and |CN(G, S)| = 1. �

Now, we are ready for the main results concerning the order, size and number of
non-trivial components of G− S.

Theorem 3.3. Let G be any 2-connected graph nonisomorphic to K3 and S be a
cover of EC(G). Then |V N(G, S)| ≤ 2|S| − 4 for |S| ≥ 4.

Proof. The statement is true for |S| = 4 by Theorem 3.2. All the extremal graphs
together with their corresponding S are given in the proof of Theorem 3.2. Suppose
the theorem holds for all |S| < k where k ≥ 5. Consider a 2-connected graph
G and a cover S of EC(G) such that |S| = k. If G − S is independent, then
|V N(G, S)| = 0 and the theorem is trivially true. Let xy be any edge in G − S.
Consider any fragment F of {x, y}. Define F1 := F and F2 := F . By Lemma 2.4,
|Fi ∩ S| ≥ 1 for i = 1, 2. Note that |F1 ∩ S| + |F2 ∩ S| = k ≥ 5. For each Fi, define
Gi := (V (Fi) ∪ {x, y, xi}, E(G[Fi ∪ xy]) ∪ {xix, xiy}) and Si := xi ∪ (S ∩ Fi). By
Lemma 2.5, Gi is 2-connected and Si covers EC(Gi).

(I) Suppose |F1 ∩ S| ≥ 3 and |F2 ∩ S| ≥ 3. Then |V N(G1, S1)| ≤ 2|S1| − 4 and
|V N(G2, S2)| ≤ 2|S2| − 4. By Lemma 2.5, we have |V N(G, S)| = |V N(G1, S1)| +
|V N(G2, S2)|−2 ≤ 2|S1|−4+2|S2|−4−2 = 2(|S1|+|S2|−2)−6 = 2|S|−6 < 2|S|−4.

(II) Suppose |F1∩S| = 2 and |F2∩S| ≥ 3. Then |V N(G1, S1)| ≤ 3 by Theorem 3.1
and |V N(G2, S2)| ≤ 2|S2|−4. By Lemma 2.5, we have |V N(G, S)| = |V N(G1, S1)|+
|V N(G2, S2)| − 2 ≤ 3 + 2|S2| − 4− 2 = 2(3 + |S2| − 2)− 5 = 2|S| − 5 < 2|S| − 4.

Suppose G−x−y has at least four components. By choosing F to be the union of
any two components or its complement, we have either (I) or (II). Suppose G−x−y
has exactly three components. If there exists a component C such that |C ∩ S| ≥ 3,
then by choosing F to be the union of the two components other than C, we have
either (I) or (II). Assume for each component C, |C ∩ S| ≤ 2. Then there are at
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least two components such that the equality holds. By taking F to be one such
component, we have (II). Suppose G− x− y has exactly two components C and D.
If |C ∩ S| ≥ 2 and |D ∩ S| ≥ 2, then by choosing F to be C or D, we have either (I)
or (II).

From now on, we can assume that for every edge e in G − S, G − V (e) has
exactly two components, one of which consists of exactly one vertex denoted by xe.
Note that xe ∈ S and xe �= xf for any two distinct edges in G − S. Therefore,
|S| ≥ |E(G− S)| = |EN(G, S)| and |V N(G, S)| ≤ 2|EN(G, S)|.

Suppose |CN(G, S)| = 1. Let B be the non-trivial component of G− S. If B is
a tree, then |V N(G, S)| = |EN(G, S)|+1. Since G[B ∪⋃

e∈E(B) xe] is connected but

not 2-connected, |S| ≥ |EN(G, S)|+ 1. We have |V N(G, S)| ≤ |S| < 2|S| − 4. If B
is not a tree, then |V N(G, S)| ≤ |EN(G, S)|. We have |V N(G, S)| ≤ |S| < 2|S|− 4.

Suppose |CN(G, S)| > 1. Let B be the union of all non-trivial components of
G − S. Obviously, B is not connected and so is G[B ∪ ⋃

e∈E(B) xe]. Since G is

2-connected, we need at least two vertices of S outside
⋃

e∈E(B) xe to connect B

together. Therefore, |S| ≥ |EN(G, S)| + 2. We have |V N(G, S)| ≤ 2|EN(G, S)| ≤
2|S| − 4. Equality holds if and only if all edges in G− S are independent and |S \⋃

e∈E(B) xe| = 2. Equivalently, V (G) := {x, y}∪⋃k−2
i=1 {xi, yi, zi}∪

⋃l
j=1{aj}, E(G) :=

⋃k−2
i=1 {zixi, ziyi, xiyi, xix, yiy} ∪

⋃l
j=1{ajx, ajy} ∪ F where F ⊆ xy ∪⋃k−2

i=1 {xiy, yix},
and S := {x, y} ∪⋃k−2

i=1 {zi}. �
Theorem 3.4. Let G be any 2-connected graph nonisomorphic to K3 and S be a
cover of EC(G). Then |EN(G, S)| ≤ 2|S| − 3 for |S| ≥ 2. Equality holds if and only
if G = K2#E(K2) for |S| = 2, G = K3#E(K3) for |S| = 3, and G = H#EC(H) for
|S| ≥ 4 where H is any 2-connected maximally outerplanar graph of order |S| with
S being the set of all degree two vertices.

Proof. The statement is true for |S| = 2 and |S| = 3 by Theorem 2.2 and Theorem
3.1. For |S| = 2, the extremal graph is K2#E(K2) with S being the set of all degree
two vertices. For |S| = 3, the extremal graph is K3#E(K3) with S being the set
of all degree two vertices. Suppose the theorem holds for all |S| < k where k ≥ 4.
Consider a 2-connected graph G and a cover S of EC(G) such that |S| = k. If G−S
is independent, then |EN(G, S)| = 0 and the theorem is trivially true. Let xy be any
edge in G−S. Consider any fragment F of {x, y}. Define F1 := F and F2 := F . By
Lemma 2.4, |Fi ∩S| ≥ 1 for i = 1, 2. Note that |F1 ∩S|+ |F2 ∩S| = k ≥ 4. For each
Fi, define Gi := (V (Fi)∪{x, y, xi}, E(G[Fi∪xy])∪{xix, xiy}) and Si := xi∪(S∩Fi).
By Lemma 2.5, Gi is 2-connected and Si covers EC(Gi).

For induction to proceed, we are interested in the condition (I) |F1 ∩ S| ≥ 2 and
|F2 ∩ S| ≥ 2. Suppose G − x − y has at least four components. By choosing F to
be the union of any two components, (I) holds. Suppose G− x− y has exactly three
components. Then there exists a component C such that |C ∩ S| ≥ 2. By choosing
F to be C, (I) holds. Suppose G− x − y has exactly two components C and D. If
|C ∩ S| ≥ 2 and |D ∩ S| ≥ 2, then by choosing F to be C, (I) holds.

Now, suppose for every edge e in G− S, G− V (e) has exactly two components,



TSZ LUNG CHAN/AUSTRALAS. J. COMBIN. 70 (3) (2018), 309–318 317

one of which consists of exactly one vertex denoted by xe. Note that xe ∈ S and
xe �= xf for any two distinct edges in G−S. Therefore, |EN(G, S)| ≤ |S| < 2|S|−3.

Finally, if |F1 ∩ S| ≥ 2 and |F2 ∩ S| ≥ 2, then |EN(G1, S1)| ≤ 2|S1| − 3 and
|EN(G2, S2)| ≤ 2|S2| − 3. By Lemma 2.5, we have |EN(G, S)| = |EN(G1, S1)| +
|EN(G2, S2)| − 1 ≤ 2|S1| − 3 + 2|S2| − 3 − 1 = 2(|S1| + |S2| − 2) − 3 = 2|S| − 3.
Equality holds if and only if for i = 1, 2, Gi = Hi#EC(Hi) where Hi is any 2-
connected maximally outerplanar graph of order |Si| with Si being the set of all
degree two vertices. Equivalently, G = H#EC(H) where H is any 2-connected
maximally outerplanar graph of order |S| with S being the set of all degree two
vertices. �

Theorem 3.5. Let G be any 2-connected graph nonisomorphic to K3 and S be a
cover of EC(G). Then |CN(G, S)| ≤ |S| − 2 for |S| ≥ 3.

Proof. The statement is true for |S| = 3 by Theorem 3.1. All the extremal graphs
together with their corresponding S are given in the proof of Theorem 3.1. Suppose
the theorem holds for all |S| < k where k ≥ 4. Consider a 2-connected graph
G and a cover S of EC(G) such that |S| = k. If G − S is independent, then
|CN(G, S)| = 0 and the theorem is trivially true. Let xy be any edge in G − S.
Consider any fragment F of {x, y}. Define F1 := F and F2 := F . By Lemma 2.4,
|Fi ∩ S| ≥ 1 for i = 1, 2. Note that |F1 ∩ S| + |F2 ∩ S| = k ≥ 4. For each Fi, define
Gi := (V (Fi) ∪ {x, y, xi}, E(G[Fi ∪ xy]) ∪ {xix, xiy}) and Si := xi ∪ (S ∩ Fi). By
Lemma 2.5, Gi is 2-connected and Si covers EC(Gi).

For induction to proceed, we are interested in the condition (I) |F1 ∩ S| ≥ 2
and |F2 ∩ S| ≥ 2. Then |CN(Gi, Si)| ≤ |Si| − 2 for i = 1, 2. By Lemma 2.5,
|CN(G, S)| = |CN(G1, S1)| + |CN(G2, S2)| − 1 ≤ |S1| − 2 + |S2| − 2 − 1 = (|S1| +
|S2| − 2)− 3 = |S| − 3 < |S| − 2.

Suppose G− x− y has at least four components. By choosing F to be the union
of any two components, (I) holds. Suppose G− x− y has exactly three components.
Then there exists a component C such that |C ∩S| ≥ 2. By choosing F to be C, (I)
holds. Suppose G− x− y has exactly two components C and D. If |C ∩ S| ≥ 2 and
|D ∩ S| ≥ 2, then by choosing F to be C, (I) holds.

From now on, we can assume that for every edge e in G − S, G − V (e) has
exactly two components, one of which consists of exactly one vertex denoted by xe.
Note that xe ∈ S and xe �= xf for any two distinct edges in G − S. Therefore,
|CN(G, S)| ≤ |EN(G, S)| ≤ |S|. If |CN(G, S)| = 1, then obviously, |CN(G, S)| <
|S| − 2. Suppose |CN(G, S)| > 1. Let B be the union of all non-trivial components
of G − S. Obviously, B is not connected and so is G[B ∪ ⋃

e∈E(B) xe]. Since G

is 2-connected, we need at least two vertices of S outside
⋃

e∈E(B) xe to connect B

together. Therefore, |S| ≥ |EN(G, S)| + 2. We have |CN(G, S)| ≤ |EN(G, S)| ≤
|S| − 2. Equality holds if and only if all edges in G − S are independent and |S \⋃

e∈E(B) xe| = 2. Equivalently, V (G) := {x, y}∪⋃k−2
i=1 {xi, yi, zi}∪

⋃l
j=1{aj}, E(G) :=

⋃k−2
i=1 {zixi, ziyi, xiyi, xix, yiy} ∪

⋃l
j=1{ajx, ajy} ∪ F where F ⊆ xy ∪⋃k−2

i=1 {xiy, yix},
and S := {x, y} ∪⋃k−2

i=1 {zi}. �
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