The product of the total restrained domination numbers of a graph and its complement

Johannes H. Hattingh* Ernst J. Joubert ${ }^{\dagger}$
Department of Mathematics
University of Johannesburg
Auckland Park, 2006
South Africa

Abstract

Let $G=(V, E)$ be a graph. A set $S \subseteq V$ is a total restrained dominating set if every vertex is adjacent to a vertex in S, and every vertex in $V-S$ is adjacent to a vertex in $V-S$. The total restrained domination number of G, denoted by $\gamma_{t r}(G)$, is the smallest cardinality of a total restrained dominating set of G. In this paper we show that if G is a graph of order $n \geq 4$, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4 n$. We also characterize the graphs achieving the upper bound.

1 Introduction

For notation and graph theory terminology, we generally follow [5]. Specifically, let $G=(V, E)$ be a graph of order n with vertex set V and edge set E. For a set $S \subseteq V$, the subgraph induced by S in G is denoted by $\langle S\rangle$. If H is a subgraph of G, then $G-H$ will denote the induced graph $\langle V(G)-V(H)\rangle$. The minimum degree (respectively, maximum degree) among the vertices of G is denoted by $\delta(G)$ (respectively, $\Delta(G)$).

If $v \in V$, then the open neighborhood of v in G is defined as $N_{G}(v)=\{x \in V-\{v\} \mid x$ is adjacent to v in $G\}$, while the closed neighborhood of v in G is given by $N_{G}[v]=$ $N_{G}(v) \cup\{v\}$. A degree one vertex of a graph G will be referred to as a leaf, while a degree zero vertex of G will be referred to as an isolate.

A set $S \subseteq V$ is a dominating set of G, denoted by DS, if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a DS. The concept of domination in graphs, with its many

[^0]variations, is now well studied in graph theory. A thorough study of domination appears in $[5,6]$.
A set $S \subseteq V$ is a restrained set if every vertex in $V-S$ is adjacent to a vertex in $V-S$. A DS $S \subseteq V$ is a restrained dominating set, denoted by RDS, if S is also a restrained set. Every graph has a restrained dominating set, since $S=V$ is such a set. The restrained domination number of G, denoted by $\gamma_{r}(G)$, is the minimum cardinality of a RDS of G.
A DS $S \subseteq V$ is a total dominating set, denoted by TDS, if every vertex in S is adjacent to a vertex in S. Every graph without isolated vertices has a total dominating set, since $S=V$ is such a set. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TDS of G.
A RDS $S \subseteq V$ is a total restrained dominating set, denoted by TRDS, if S is a TDS. Every graph without isolated vertices has a total restrained dominating set, since $S=V$ is such a set. The total restrained domination number of G, denoted by $\gamma_{t r}(G)$, is the minimum cardinality of a TRDS of G. Total restrained domination was introduced by Telle and Proskurowski [11], although indirectly, as a vertex partitioning problem and further studied, for example, in $[3,2,7,12]$.
Nordhaus and Gaddum presented best possible bounds on the sum and product of the chromatic number of a graph and its complement in [10]. Bounding the sum and product of the domination number of a graph and its complement were investigated by Jaeger and Payan, in [8]: If G is a graph of order $n \geq 2$, then $\gamma(G)+\gamma(\bar{G}) \leq n+1$ and $\gamma(G) \gamma(\bar{G}) \leq n$. Furthermore, these problems were also examined for the restrained domination number, and these results appear in [1, 3, 4].

Define K as the graph obtained by joining an isolated vertex to the vertices of degree two of a P_{4}. It is shown in [3] that if G is a graph of order $n \geq 2$ such that neither G nor \bar{G} contains isolated vertices or is isomorphic to K, then $4 \leq \gamma_{t r}(G)+\gamma_{t r}(\bar{G}) \leq n+4$. Extremal graphs G of order n achieving these two bounds are also characterized.
The aim of this paper is to bound the product of the total restrained domination numbers of a graph and its complement. We show that if $n \geq 4$, and neither G nor \bar{G} contains isolated vertices or is isomorphic to K, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4 n$. We also characterize the graphs achieving the upper bound.

The following two results will prove to be useful in the proof of our main result.

Theorem 1.1 [7] Let G be a connected graph with $\delta \geq 2$ and order $n \geq 4$. Then $\gamma_{t r}(G) \leq n-\frac{\Delta}{2}-1$.

Theorem 1.2 [2] Let G be a connected graph with $3 \leq \delta \leq n-2$. Then $\gamma_{t r}(G) \leq$ $n-\delta$.

2 Preliminary Results

Let \mathcal{L} be the class of all graphs constructed in the following way: Let u and v be two distinct isolates and consider the complete graph K_{n}, where $n=2$ or $n \geq 4$. Let u^{\prime} and v^{\prime} be two distinct vertices of K_{n}. Join u to u^{\prime}, and join v to v^{\prime}. Recall the definition of the graph K. In order to prove our main result, we will first prove a sequence of necessary lemmas.

Lemma 2.1 If $G \in \mathcal{L}$, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G})=4 n$.

Proof. Let $G \in \mathcal{L}$ and let S be any TRDS of G of cardinality $\gamma_{t r}(G)$. Then, as u and v are leaves of G, adjacent to u^{\prime} and v^{\prime}, respectively, $\left\{u, v, u^{\prime}, v^{\prime}\right\} \subseteq S$, whence $\gamma_{t r}(G)=|S| \geq 4$. Moreover, $\left\{u, v, u^{\prime}, v^{\prime}\right\}$ is a TRDS of G, whence $\gamma_{t r}(G)=4$.
Let S be any TRDS of \bar{G} of cardinality $\gamma_{t r}(\bar{G})$. Then, as u^{\prime} and v^{\prime} are leaves of \bar{G}, adjacent to v^{\prime} and u^{\prime}, respectively, we have $\left\{u, v, u^{\prime}, v^{\prime}\right\} \subseteq S$. Moreover, $\left\langle V(G)-\left\{u, v, u^{\prime}, v^{\prime}\right\}\right\rangle_{\bar{G}}$ only contains isolated vertices, whence $V(G)-\left\{u, v, u^{\prime}, v^{\prime}\right\} \subseteq$ S, and so $|S| \geq n$. It now follows that $\gamma_{t r}(\bar{G})=n$, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G})=4 n$.

Lemma 2.2 Suppose $n \geq 4$ and neither G nor \bar{G} contains isolated vertices. If $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$.

Proof. Suppose $n \geq 4$, neither G nor \bar{G} contains isolated vertices and $\operatorname{diam}(G)=$ $\operatorname{diam}(\bar{G})=2$. Let $\delta^{*}=\min \{\delta(G), \delta(\bar{G})\}$ and $\delta^{* *}=\max \{\delta(G), \delta(\bar{G})\}$. As $\operatorname{diam}(G)=$ $\operatorname{diam}(\bar{G})=2$, both G and \bar{G} are connected, and $n \geq 5$.
Let $u\left(u^{\prime}\right.$, respectively) be a vertex of $G\left(\bar{G}\right.$, respectively) such that $\operatorname{deg}_{G}(u)=\delta(G)$ $\left(\operatorname{deg}_{\bar{G}}\left(u^{\prime}\right)=\delta(\bar{G})\right.$, respectively). Suppose $\delta^{*}=1$. Without loss of generality, assume $\delta(G)=1$, and let v be adjacent to u in G. As $\operatorname{diam}(G)=2$, we have $N_{G}(v)=V-\{v\}$, and so v is isolated in \bar{G}, which is a contradiction. Thus, $\delta^{*} \geq 2$.
Let $X=V-N_{G}[u], X^{\prime}=V-N_{\bar{G}}\left[u^{\prime}\right], T_{0}=N_{G}(u)$ and $T_{0}^{\prime}=N_{\bar{G}}\left(u^{\prime}\right)$. If $X=\emptyset$, then u is isolated in \bar{G}, which is a contradiction. We conclude that $X \neq \emptyset$. Similarly, $X^{\prime} \neq \emptyset$. As $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$, sets T_{0} and T_{0}^{\prime} dominate X and X^{\prime} respectively.
To complete the proof of Lemma 2.2, we will prove a sequence of claims. We will eventually show that there exists an integer $k \geq 1$, such that $n \geq k^{2}+2 k+3$, whence $4 n \geq 4 k^{2}+8 k+12$. Then we will show that $\gamma_{t r}(G)+\gamma_{t r}(\bar{G}) \leq 2(2 k+1)=4 k+2$. Since the sum is then bounded, we can, using calculus, bound the product $\gamma_{t r}(G) \gamma_{t r}(\bar{G})$, and deduce that $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4 k^{2}+4 k+1<4 n$.

Claim 2.1 If $\delta^{*} \leq 3$, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$.

Proof. Assume that $\delta^{*} \leq 3$. Without loss of generality, assume that $\delta^{*}=\delta(G)$. Hence, $\Delta(\bar{G})=n-\delta(G)-1 \geq n-4$. So, by Theorem 1.1, $\gamma_{t r}(\bar{G}) \leq n-\frac{\Delta(\bar{G})}{2}-1 \leq \frac{n}{2}+1$.

Let $U=\left\{x \in X \mid N_{G}(x)=N_{G}(u)\right\}$. If $U=\emptyset$, then $N_{G}[u]$ is a TRDS of G and so $\gamma_{t r}(G) \leq 4$. As $\Delta(\bar{G}) \geq \delta(\bar{G}) \geq 2$, we have, by Theorem 1.1, $\gamma_{t r}(\bar{G}) \leq n-2$, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$. Hence, $U \neq \emptyset$.
Claim A. If $\gamma_{t r}(G) \leq 6$, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$.
Proof. Suppose $\gamma_{t r}(G) \leq 6$. Then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 6\left(\frac{n}{2}+1\right)=3 n+6$. If $n \geq 7$, then $3 n+6<4 n$, and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$. We therefore assume that $n=5$ or $n=6$.
First consider the case when $\delta(G)=3$. It follows easily that $1 \leq|U| \leq 2$, whence $\gamma_{t r}(G)=2$, and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 2\left(\frac{n}{2}+1\right)=n+2<4 n$.
Next consider the case when $\delta(G)=2$. If $|U| \geq 2$, then it is clear that $\gamma_{t r}(G)=2$, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 2\left(\frac{n}{2}+1\right)=n+2<4 n$. It follows that $|U|=1$. As $\delta(G) \geq 2$, we have that $|X-U| \geq 2$, and so $n=6$. Let $X-U=\{x, y\}$. Note that x and y cannot be adjacent to a common neighbor in G that lies in $N_{G}(u)$. Let $x^{\prime} \in N_{G}(u)$ be adjacent to x. The set $\left\{y, x^{\prime}, x\right\}$ is a TRDS of G, hence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$.

If $|U| \leq 2$, then $U \cup N_{G}[u]$ is a TRDS of G of cardinality at most 6 , and the result follows from Claim A. Hence $|U| \geq 3$.
Let x be an arbitrary vertex in $N_{G}(u)$. If the set $S=N_{G}[u]-\{x\}$ is a $\mathbf{D S}$ of G, then S is a TRDS of G, whence $\gamma_{t r}(G) \leq 3$, a contradiction. It follows that there exists a vertex $y \in X-U$, such that y and x are adjacent in G and $N_{G}(u) \cap N_{G}(y)=\{x\}$.
If x dominates X in G, then $\{x, u\}$ is a TRDS of G, and so $\gamma_{t r}(G)=2$, a contradiction. Thus x does not dominate X in G, and so there exists a vertex $z \in X-U-\{y\}$, such that x is not adjacent to z in G.
Let $y^{\prime} \in U$. The set $S=\left\{y, z, y^{\prime}\right\}$ is a TDS of \bar{G}. If S is a TRDS of \bar{G}, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$. Note that if $t \in U-\left\{y^{\prime}\right\}$, then every vertex of $X \cup\{u\}-$ $S-\{t\}$ is adjacent to t in \bar{G}. Thus, there exists a vertex $x^{\prime} \in N_{G}(u)$ such that x^{\prime} is adjacent in G to every vertex of $V-S$. The set $S^{\prime}=S \cup\left\{x^{\prime}\right\}$ is a TDS of \bar{G}. If S^{\prime} is a TRDS of \bar{G}, then, by Theorem 1.1, $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4(n-2)<4 n$. Hence, there exists a vertex $x^{\prime \prime} \in N_{G}(u)-\left\{x^{\prime}\right\}$ such that $x^{\prime \prime}$ is adjacent in G to every vertex of $V-S-\left\{x^{\prime}\right\}$.
Suppose first that $x=x^{\prime \prime}$. Since $\operatorname{deg}(u)=\delta(G)$, vertex z is adjacent to a vertex $z^{\prime} \in X-U-\{z\}$ in G. As x^{\prime} is adjacent to every vertex of $V-\left\{x^{\prime}, x, y, z, y^{\prime}\right\}$, the set $\left\{x, y, z, z^{\prime}\right\}$ is a TRDS of G, and the result follows from Claim A. Hence $x \neq x^{\prime \prime}$, and by a similar argument, $x \neq x^{\prime}$. It immediately now follows that $\delta(G)=3$.
If y is adjacent to z in G, then $\left\{x, x^{\prime}, y\right\}$ is a TRDS of G, and the result follows from Claim A. As $\delta(G) \geq 3$, the vertex z is adjacent to a vertex $z^{\prime} \in X-U-\{z, y\}$. If z is adjacent to x^{\prime} in G, then $\left\{x, x^{\prime}\right\}$ is a TRDS of G and the result follows as before. If z is not adjacent to x^{\prime} in G, then $\left\{x, x^{\prime}, z^{\prime}\right\}$ is a TRDS of G, and the result follows as before. This completes the proof of our claim.
By Claim 2.1, $\delta^{*} \geq 4$.

As in [9], for an arbitrary graph G, let S_{0} be the largest subset of T_{0} that does not dominate X. Let $T_{1}=T_{0}-S_{0}$. By the maximality of S_{0}, every vertex of T_{1} dominates $X-N\left(S_{0}\right)$, but T_{1} may or may not dominate X. Note that if $S_{0}=\emptyset$, then $\gamma_{t r}(G) \leq 2$ and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 2 n<4 n$. We continue, constructing sets $T_{0}, T_{1}, \ldots, T_{k}$ with $T_{0} \supset T_{1} \supset \ldots \supset T_{k}$ (where $k \geq 1$) and sets S_{0}, \ldots, S_{k-1} such that

1. for $i<k$, the set T_{i} dominates X.
2. for $i<k$, the set S_{i} is the largest subset of T_{i} that does not dominate X, and $T_{i+1}=T_{i}-S_{i}$.
3. T_{k} does not dominate X.

Since T_{i} dominates X but S_{i} does not (when $i<k$), all of T_{0}, \ldots, T_{k} (and S_{0}, \ldots, S_{k-1}) are nonempty.

Analogously, for the graph \bar{G}, construct sets $T_{0}^{\prime}, T_{1}^{\prime}, \ldots, T_{\ell}^{\prime}$ with $T_{0}^{\prime} \supset T_{1}^{\prime} \supset \ldots \supset T_{\ell}^{\prime}$ (where $\ell \geq 1$) and sets $S_{0}^{\prime}, \ldots, S_{\ell-1}^{\prime}$ such that

1. for $i<\ell$, the set T_{i}^{\prime} dominates X^{\prime}.
2. for $i<\ell$, the set S_{i}^{\prime} is the largest subset of T_{i}^{\prime} that does not dominate X^{\prime}, and $T_{i+1}^{\prime}=T_{i}^{\prime}-S_{i}^{\prime}$.
3. T_{ℓ}^{\prime} does not dominate X^{\prime}.

Again, $T_{i}^{\prime} \neq \emptyset$ for $i=0, \ldots, \ell$, while $S_{i}^{\prime} \neq \emptyset$ for $i=0, \ldots, \ell-1$.
Claim $2.2 \gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$ or for $i<k\left(i<\ell\right.$, respectively) we have $\gamma_{t r}(G) \leq$ $\left|S_{i}\right|+2\left(\gamma_{t r}(\bar{G}) \leq\left|S_{i}^{\prime}\right|+2\right.$, respectively $)$.

Proof. Without loss of generality, consider the graph G and the set S_{i} and recall that every vertex in T_{i+1} dominates $U=X-N_{G}\left(S_{i}\right)$. Let $W=N_{G}(u)-S_{i}$, let $y \in T_{i+1}$, and let $S=\{u, y\} \cup S_{i}$. Obviously S is a TDS of G and has cardinality $\left|S_{i}\right|+2$. Observe that if y dominates X, then, since $\delta^{*} \geq 4$, we have that $\{y, u\}$ is a TRDS of G, and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 2 n<4 n$. We may therefore assume that y does not dominate X.

Case 1. $|W| \geq 3$.
Then $3 \leq|W|=\delta(G)-\left|S_{i}\right|$, and so $|S|=\left|S_{i}\right|+2 \leq \delta(G)-1$. Every vertex in X has at most $\delta(G)-2$ neighbors in S, while every vertex in W has at most $\delta(G)-1$ neighbors in S. It follows that S is a TRDS of G and so $\gamma_{t r}(G) \leq\left|S_{i}\right|+2$.
Case 2. $|W|=2$.
We show that S is a restrained set of G, since then the conclusion will follow. Suppose, to the contrary, that S is not restrained. As $\left|S_{i}\right|=\delta(G)-2$, each vertex in X
has at most $\delta(G)-1$ neighbors in S, and so there exists a vertex in $x \in W-\{y\}$ such that $N_{G}(x)=\{y, u\} \cup S_{i}$.
Consider the set $S^{\prime}=S_{i} \cup\{x\}$. Note that S^{\prime} is a restrained set. If S^{\prime} is a DS of G, then S^{\prime} is a TRDS of G, and so $\gamma_{t r}(G) \leq\left|S_{i}\right|+1$. So, suppose S^{\prime} is not a DS of G, and let $z \in X$ be a vertex which is not adjacent to any of the vertices in $S_{i} \cup\{x\}$. As $\operatorname{diam}(G)=2, z$ is adjacent to y in G. Since y does not dominate X, there is a vertex $z^{\prime} \in X-\{z\}$ that is not adjacent to y in G. As $\delta(\bar{G}) \geq 4$, the set $\left\{z^{\prime}, z, u\right\}$ is a TRDS of \bar{G}, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$.
Case 3. $W=\{y\}$.
We show that S is a restrained set of G, since then the conclusion will follow. Suppose, to the contrary, that S is not restrained. Thus there exists a vertex x in X such that $N_{G}(x)=N_{G}(u)$. Let $z \in X-N_{G}\left(S_{i}\right)$. Then y is adjacent to z in G, and z dominates S_{i} in \bar{G}. Let $z^{\prime} \in X-\{z, x\}$, such that z^{\prime} is not adjacent to y in G. As $\delta(\bar{G}) \geq \delta^{*} \geq 4$, the set $\left\{x, z^{\prime}, z\right\}$ is a TRDS of \bar{G}, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$. व For $i=0,1, \ldots, k-1$, let x_{i} be a vertex of X that is not dominated by S_{i}, and let x_{k} be a vertex that is not dominated by T_{k}.
Let $0<i \leq k-1$ and let $0 \leq j<i$. We show that $x_{i} \neq x_{j}$. Note that x_{j} is adjacent to every vertex of T_{j+1}. As $S_{i} \subseteq T_{j+1}$, vertex x_{j} is adjacent to every vertex of S_{i}. But x_{i} is non-adjacent to every vertex of S_{i}, and so $x_{i} \neq x_{j}$. A similar argument shows that $x_{i} \neq x_{k}$ for $i=0, \ldots, k-1$. Let $U=\cup_{i=0}^{k}\left\{x_{i}\right\}$. Then $|U|=k+1$.
Similarly, for $i=0,1, \ldots, \ell-1$, let x_{i}^{\prime} be a vertex of X that is not dominated by S_{i}^{\prime}, let x_{ℓ}^{\prime} be a vertex that is not dominated by T_{ℓ}^{\prime}, and let $U^{\prime}=\cup_{i=0}^{\ell}\left\{x_{i}^{\prime}\right\}$. Then $\left|U^{\prime}\right|=\ell+1$.
We say that a vertex $v \in N_{G}(u) \cup(X-U)$ has Property P if either $v \in N_{G}(u)$ and $N_{G}(v) \supseteq N_{G}[u] \cup(X-U)-\{v\}$ or $v \in X-U$ and $N_{G}(v) \supseteq N_{G}(u) \cup(X-U)-\{v\}$. A similar property is described for a vertex $v \in N_{\bar{G}}\left(u^{\prime}\right) \cup\left(X^{\prime}-U^{\prime}\right)$.

Claim 2.3 If $G\left(\bar{G}\right.$, respectively) has no vertices with Property \boldsymbol{P}, then $\gamma_{t r}(\bar{G}) \leq$ $k+2\left(\gamma_{t r}(G) \leq \ell+2\right.$, respectively $)$.

Proof. Suppose G has no vertices with Property P. Given the non-existence of vertices with Property P, the set $S=U \cup\{u\}$ is a TRDS of \bar{G}, whence $\gamma_{t r}(\bar{G}) \leq$ $k+2$

Claim 2.4 If G or \bar{G} has no vertices with Property P, then $\gamma_{t r}(G)+\gamma_{t r}(\bar{G}) \leq$ $\delta^{* *}-\left(\gamma_{t r}(G)-3\right)\left(\gamma_{t r}(\bar{G})-3\right)+4$.

Proof. Assume, without loss of generality, that G has no vertices with Property P. Observe that $\left|S_{0}\right|=\delta(G)-\left|T_{k}\right|-\sum_{i=1}^{k-1}\left|S_{i}\right|$. By Claims 2.2 and 2.3, we have

$$
\gamma_{t r}(G)+\gamma_{t r}(\bar{G}) \leq\left(\left|S_{0}\right|+2\right)+(k+2)
$$

$$
\begin{align*}
& =\delta(G)-\left|T_{k}\right|-\sum_{i=1}^{k-1}\left|S_{i}\right|+k+4 \\
& \leq \delta(G)-1-\sum_{i=1}^{k-1}\left(\gamma_{t r}(G)-2\right)+k+4 \\
& =\delta(G)+(k-1)-(k-1)\left(\gamma_{t r}(G)-2\right)+4 \\
& =\delta(G)-(k-1)\left(\gamma_{t r}(G)-3\right)+4 \\
& \leq \delta^{* *}-\left(\gamma_{t r}(G)-3\right)\left(\gamma_{t r}(\bar{G})-3\right)+4 . \tag{ㅁ}
\end{align*}
$$

Assume G does not have any vertices with Property P. By Claim 2.4, we have that $\gamma_{t r}(G)+\gamma_{t r}(\bar{G}) \leq \delta^{* *}+4-\left(\gamma_{t r}(G)-3\right)\left(\gamma_{t r}(\bar{G})-3\right)$ and it follows that $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq$ $\delta^{* *}+2\left(\gamma_{t r}(G)+\gamma_{t r}(\bar{G})\right)-5$. Hence, as $\delta^{*} \geq 4$, we have (cf. Theorem 1.2) that

$$
\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq \delta^{* *}+4 n-2(\delta(G)+\delta(\bar{G}))-5<4 n
$$

We may assume, henceforth, that both G and \bar{G} must have vertices with Property P.

Claim 2.5 If $\gamma_{t r}(\bar{G}) \leq \ell+2\left(\gamma_{t r}(G) \leq k+2\right.$, respectively), then $2 \gamma_{t r}(\bar{G}) \leq \delta(\bar{G})+$ $4-\left(\gamma_{t r}(\bar{G})-3\right)^{2}\left(2 \gamma_{t r}(G) \leq \delta(G)+4-\left(\gamma_{t r}(G)-3\right)^{2}\right.$, respectively).

Proof. Consider the graph G and assume $\gamma_{t r}(G) \leq k+2$. By Claim 2.2 we have that $\gamma_{t r}(G) \leq\left|S_{0}\right|+2$. Observe that $\left|S_{0}\right|=\delta(G)-\left|T_{k}\right|-\sum_{i=1}^{k-1}\left|S_{i}\right|$. Following the proof of Claim 2.4, we obtain $2 \gamma_{t r}(G) \leq \delta(G)+4-\left(\gamma_{t r}(G)-3\right)^{2}$. Similarly, one establishes that $2 \gamma_{t r}(\bar{G}) \leq \delta(\bar{G})+4-\left(\gamma_{t r}(\bar{G})-3\right)^{2}$.
Without loss of generality, we may assume that $\gamma_{t r}(\bar{G}) \leq \gamma_{t r}(G)$.
Claim 2.6 For all $i<k,\left|S_{i}\right| \geq k+1$.
Proof. Assume that for some $i<k$, we have that $\left|S_{i}\right| \leq k$. By Claim 2.2, $\gamma_{t r}(G) \leq$ $\left|S_{i}\right|+2 \leq k+2$. Applying Theorem 1.2 and Claim 2.5, we obtain

$$
\begin{aligned}
\gamma_{t r}(G) \gamma_{t r}(\bar{G}) & \leq \gamma_{t r}(G)^{2} \\
& \leq \delta(G)-5+4 \gamma_{t r}(G) \\
& \leq \delta(G)+4(n-\delta(G))-5<4 n
\end{aligned}
$$

By Claim 2.6, we have that $\delta(G)=\left|T_{k}\right|+\sum_{i=0}^{k-1}\left|S_{i}\right| \geq k(k+1)+1$, whence $n=$ $\left|N_{G}[u]\right|+|U|+|X-U| \geq k(k+1)+2+k+1$.

Claim 2.7 The graph G has a $\boldsymbol{T R D S}$ of cardinality at most $2 k+1$.

Proof. Let x be the vertex of G that has Property \mathbf{P} and observe that either $x \in N_{G}(u)$ or $x \in X-U$. Consider the vertices x_{0} and x_{1}. For each vertex x_{i}, where $2 \leq i \leq k$, consider a neighbor of x_{i} in G, say y_{i}. Let $W=\cup_{i=2}^{k}\left\{x_{i}, y_{i}\right\}$.
Assume first that x_{0} and x_{1} are adjacent. As $\operatorname{diam}(G)=2, x_{0}$ and u have a common neighbor in G, say y. Since the vertex x dominates $N_{G}(u) \cup X-U$, we have that if $y \neq x$, then x is adjacent to y. Let $S=W \cup\left\{x, x_{0}, y\right\}$, and observe that $|S| \leq$ $|W|+3=2 k+1$. It is clear that S is a TDS of G. If $k=1$ then $|S|=3$, and so, since $\delta^{*} \geq 4, S$ is a TRDS of G. If $k \geq 2$ then $\delta(G) \geq k(k+1)+1>2 k+1$, whence S is a TRDS of G.

We may assume, without loss of generality, that the set U is independent in G. As $\operatorname{diam}(G)=2, x_{0}$ and x_{1} have a common neighbor in G, say y, and $y \in N_{G}(u) \cup X-U$. Since x dominates $N_{G}(u) \cup X-U$, recall that if $y \neq x$, then x is adjacent to y. Let $x^{\prime} \in N_{G}(u)-\{x\}$ be a vertex adjacent to x in G, and let $S=W \cup\left\{y, x, x^{\prime}\right\}$. Note that $|S| \leq|W|+3=2 k+1$. It is clear that S is a TDS of G. If $k=1$, then, since $\delta^{*} \geq 4, S$ is a TRDS of G. If $k \geq 2$, then $\delta(G) \geq k(k+1)+1>2 k+1$, and so S is a TRDS of G.

Claim 2.8 If $\gamma_{t r}(G)+\gamma_{t r}(\bar{G}) \leq 4 k+2$, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4 k^{2}+4 k+1$.
Proof. This follows from the fact that $a b \leq \frac{(a+b)^{2}}{4}$, where a and b are non-negative real numbers.

To complete the proof of Lemma 2.2, recall that $n \geq k^{2}+2 k+3$, whence $4 n \geq 4 k^{2}+$ $8 k+12$. By Claim 2.7, we have $\gamma_{t r}(G)+\gamma_{t r}(\bar{G}) \leq \gamma_{t r}(G)+\gamma_{t r}(G) \leq 2(2 k+1)=4 k+2$, and so (cf. Claim 2.8) $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4 k^{2}+4 k+1<4 n$.

Lemma 2.3 Let G be a graph of order $n \geq 4$ and assume that neither G nor \bar{G} has any isolates. If G or \bar{G} is disconnected, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$.

Proof. Assume G is disconnected, $n \geq 4$ and neither G nor \bar{G} has any isolates. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of G, and observe that each component has order at least two. Let $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. The set $\{x, y\}$ is a TRDS of \bar{G}, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 2 n<4 n$.

Lemma 2.4 Let G be a graph of order $n \geq 4$ such that G and \bar{G} are both connected, and neither G nor \bar{G} has isolates or is isomorphic to K. If $\delta(G)=1$ or $\delta(\bar{G})=1$, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$, or, either $G \in \mathcal{L}$ or $\bar{G} \in \mathcal{L}$.

Proof. Let G be a graph of order $n \geq 4$ such that G and \bar{G} are both connected, and neither G nor \bar{G} has isolates or is isomorphic to K.
Case A. G has at least two leaves.

Let u and v be leaves of G and let $u^{\prime}\left(v^{\prime}\right.$, respectively) be the neighbor of $u(v$, respectively) in G. Let us assume first that $u^{\prime}=v^{\prime}$. Since \bar{G} has no isolates, there exists a vertex $x \in V(G)-N_{G}\left[u^{\prime}\right]$. The set $\left\{x, u, u^{\prime}\right\}$ is a TRDS of \bar{G}, and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$.
We therefore assume that $u^{\prime} \neq v^{\prime}$. If $V(G)-\left\{u, u^{\prime}, v, v^{\prime}\right\}=\emptyset$, then $G \cong P_{4} \in \mathcal{L}$ for which $\gamma_{t r}(G) \gamma_{t r}(\bar{G})=4 n$. We henceforth assume that $V(G)-\left\{u, u^{\prime}, v, v^{\prime}\right\} \neq \emptyset$, and so $n \geq 5$.
If u^{\prime} and v^{\prime} are not adjacent, then the set $\left\{u, v^{\prime}\right\}$ is a TRDS of \bar{G}, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G})$ $\leq 2 n<4 n$. We may assume that u^{\prime} and v^{\prime} are adjacent.

Assume that there exists a vertex $x \in V(G)-\left\{u, v, u^{\prime}, v^{\prime}\right\}$ such that x and u^{\prime} are not adjacent in G. The set $\left\{u, v^{\prime}, x\right\}$ is a TRDS of \bar{G} and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$. Hence, in G, u^{\prime} is adjacent to every vertex in $V(G)-\left\{u, v, u^{\prime}, v^{\prime}\right\}$, and, by symmetry, in G, v^{\prime} is adjacent to every vertex in $V(G)-\left\{u, v, u^{\prime}, v^{\prime}\right\}$.
Observe that $\operatorname{deg}_{\bar{G}}\left(u^{\prime}\right)=\operatorname{deg}_{\bar{G}}\left(v^{\prime}\right)=1$, so every TRDS of \bar{G} must contain u, u^{\prime}, v and v^{\prime}. Also note that u is adjacent to v in \bar{G}.
Consider the set $S=\left\{u, u^{\prime}, v^{\prime}, v\right\}$. As $G \not \approx K,|V-S| \geq 2$. Suppose S is a TRDS of G. Then $\gamma_{t r}(G)=4$ and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4 n$. If $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$, we are done. So suppose $\gamma_{t r}(G) \gamma_{t r}(\bar{G})=4 n$, whence $\gamma_{t r}(\bar{G})=n$. If two distinct vertices x and y in $V-S$ are non-adjacent in G, then $V-\{x, y\}$ is a TRDS of \bar{G}, and so $\gamma_{t r}(\bar{G}) \leq n-2$, which is a contradiction. Thus, $V-S$ forms a clique in G, and so $G \in \mathcal{L}$.

Thus, we may assume that S is not a TRDS of G, and, similarly, that S is not a TRDS of \bar{G}. As S is a TDS of both G and \bar{G}, there exist vertices x and y in $V-S$ such that in G, x is not adjacent to every vertex of $V-S-\{x\}$ and y is adjacent to every vertex of $V-S-\{y\}$. We conclude that $x \neq y$ and that x and y are both adjacent and non-adjacent in G, which is a contradiction.

Case B. G has exactly one leaf.
We may therefore assume that G has exactly one leaf, say u. Consider a path $u, u_{1}, \ldots, u_{\operatorname{ecc}(u)}$ of G. Define $V_{i}, i=0, \ldots, \operatorname{ecc}(u)$, as the set of vertices at distance i from u. If $\operatorname{ecc}(u)=2$, then \bar{G} is disconnected, which is a contradiction. So assume that $\operatorname{ecc}(u) \geq 3$. If $\operatorname{ecc}(u) \geq 5$, then $\left\{u, u_{\operatorname{ecc}(u)}\right\}$ is a TRDS of \bar{G}, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 2 n<4 n$. For convenience, set $x=u_{1}$ and $z=u_{3}$. Observe that the set $V(G)-\{x, z\}$ is a TRDS of \bar{G}, and so $\gamma_{t r}(\bar{G}) \leq n-2$.
First consider the case when $\operatorname{ecc}(u)=4$. If $S=\{u, x, z\}$ is a TRDS of \bar{G}, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$. We therefore assume that S is not a TRDS of \bar{G}. As S is a TDS of \bar{G} and every vertex of V_{2} is non-adjacent to every vertex of V_{4} in \bar{G}, there exists a vertex $y \in V_{3}-\{z\}$ which is adjacent to every vertex of $V_{2} \cup V_{3}-\{z\} \cup V_{4}$ in G. If $\{x, u, y\}$ is a TRDS of \bar{G}, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$. So assume $\{x, u, y\}$ is not a TRDS of \bar{G}, and, as before, there exists a vertex $y^{\prime} \in V_{3}-\{y\}$ which is adjacent to every vertex of $V_{2} \cup V_{3}-\{y\} \cup V_{4}$ in G. If $y^{\prime} \neq z$, let $S^{\prime}=\left\{u, x, y^{\prime}, z\right\}$, while if $y^{\prime}=z$, let $S^{\prime}=\left\{u, x, u_{2}, z\right\}$. Then S^{\prime} is a TRDS of G and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4(n-2)<4 n$.

Next consider the case when $\operatorname{ecc}(u)=3$. Suppose $V_{3}=\{z\}$. Then, as before, $S=\{u, x, z\}$ is not a TRDS of \bar{G}, and there exists a vertex $y \in V_{2}$ which is adjacent to every vertex of $V_{2}-\{y\}$ in G. Since u is the only leaf of G, we can pick a vertex $y^{\prime} \in N_{G}(z)-\{y\}$. The set $\left\{u, y^{\prime}, x\right\}$ is a TRDS of G and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$. It follows that $\left|V_{3}\right| \geq 2$.
As S is not a TRDS of \bar{G}, there exists a vertex $y \in V_{2} \cup V_{3}$ which is adjacent to every vertex of $V_{2} \cup V_{3}-\{y, z\}$ in G.
Subcase i. $y \in V_{3}$.
If $\{x, u, y\}$ is a TRDS of \bar{G}, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$. Thus, $\{x, u, y\}$ is not a TRDS of \bar{G}, and so there exists a vertex $y^{\prime} \in V_{2} \cup V_{3}$ which is adjacent to every vertex of $V_{2} \cup V_{3}-\left\{y, y^{\prime}\right\}$ in G. If $y^{\prime} \in V_{3}-\{z, y\}$, then $\left\{u, x, y^{\prime}, z\right\}$ is a TRDS of G and we have that $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4(n-2)<4 n$. If $y^{\prime} \in V_{2}$, then $\left\{u, x, y^{\prime}\right\}$ is a TRDS of G, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$. We may assume that $y^{\prime}=z$, and let $y^{\prime \prime} \in V_{2}$. Let $S^{\prime}=\left\{u, x, y^{\prime \prime}, y^{\prime}\right\}$. If $V_{3}-\{z, y\} \neq \emptyset$, then S^{\prime} is a TRDS of G. If $V_{3}-\{z, y\}=\emptyset$, then $\left\{u, x, y^{\prime \prime}\right\}$ is a TRDS of G. Hence, in both cases, $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$.
Subcase ii. $y \in V_{2}$.
Assume first that y is adjacent to z. The set $\{u, x, y\}$ is a TDS of G and if it is a TRDS of G, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$. Hence, as u is the only leaf of G, we have that every vertex in V_{3} must have degree at least two in G, and so there is a vertex $y^{\prime} \in V_{2}$ such that $N_{G}\left(y^{\prime}\right)=\{x, y\}$. The set $\{z, y, u\}$ is a TRDS of \bar{G}, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$.
We may assume that y is not adjacent to z. Let $z^{\prime} \in V_{3}-\{z\}$. By considering the set $\left\{u, x, z^{\prime}\right\}$, there is a vertex $y^{\prime} \in V_{2} \cup V_{3}$ such that $N_{G}\left(y^{\prime}\right) \supseteq V_{2} \cup V_{3}-\left\{y^{\prime}, z^{\prime}\right\}$. Similar to what have been shown for the set $\{u, x, z\}$ above, we have $y^{\prime} \in V_{2}$ with y^{\prime} not adjacent to z^{\prime} in G. The facts that $z^{\prime} \neq z$ and y^{\prime} is adjacent to z imply that $y \neq y^{\prime}$. The set $S=\left\{u, x, y, y^{\prime}\right\}$ is a TDS of G, and if it is a TRDS of G, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4(n-2)<4 n$.
We may assume that S is not a TRDS of G. Hence, there exists a vertex $v \notin S$ such that either $v \in V_{2}$ and $N_{G}(v) \subseteq\left\{x, y, y^{\prime}\right\}$ or $v \in V_{3}$ and $N_{G}(v) \subseteq\left\{y, y^{\prime}\right\}$. If $v \in V_{3}$, then as u is the only leaf of G, we have $N_{G}(v)=\left\{y, y^{\prime}\right\}$, whence $v \notin\left\{z, z^{\prime}, y, y^{\prime}\right\}$. Thus, in both cases, $v \notin\left\{z, z^{\prime}, y, y^{\prime}\right\}$. The set $\{u, y, z\}$ is a TRDS of \bar{G}, whence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n<4 n$.

Lemma 2.5 Let G be a connected graph of order $n \geq 4$ with $\min \{\delta(G), \delta(\bar{G})\} \geq 2$. Moreover, suppose \bar{G} is connected. Then $\gamma_{t r}(G) \gamma_{t r}(\bar{G})<4 n$.

Proof. Let G be a connected graph of order $n \geq 4$ with $\min \{\delta(G), \delta(\bar{G})\} \geq 2$. Moreover, suppose \bar{G} is connected. We may assume, by Lemma 2.2, that $\operatorname{diam}(G) \geq$ 3 or $\operatorname{diam}(\bar{G}) \geq 3$. Without loss of generality, suppose $\operatorname{diam}(G) \geq 3$, and consider a diametrical path $u=u_{0}, u_{1}, \ldots, u_{\operatorname{diam}(G)}=v$ of G. Define $V_{i}, i=0, \ldots, \operatorname{diam}(G)$, as the set of vertices at distance i from u. It is easy to see that if $\operatorname{diam}(G) \geq 4$, then
the set $\{u, x\}$ for $x \in V_{3}$ is a TRDS of \bar{G} and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 2 n$. Thus, we may assume that $\operatorname{diam}(G)=3$.

Consider the case where $V_{3}=\{v\}$. Obviously, $\left|V_{1}\right| \geq 2\left(\left|V_{2}\right| \geq 2\right.$, respectively), since otherwise $u(v$, respectively) is a leaf of G. The set $\{u, v\}$ is a TDS of \bar{G}. If it is a TRDS of \bar{G}, then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 2 n$. So suppose $\{u, v\}$ is not a RDS of \bar{G}. Then there exists a vertex $y \in V_{1} \cup V_{2}$ such that $N_{G}(y) \supseteq V_{1} \cup V_{2}-\{y\}$.
Suppose there is a vertex $y^{\prime} \in V_{1} \cup V_{2}-\{y\}$ such that $N_{G}\left(y^{\prime}\right) \supseteq V_{1} \cup V_{2}-\left\{y, y^{\prime}\right\}$. Let $z \in N_{G}(v)$ with $z \in V_{2}-\left\{y^{\prime}\right\}$, and let $z^{\prime} \in N_{G}(u)$ with $z^{\prime} \in V_{1}-\left\{y^{\prime}\right\}$. If $y \in V_{1}$, then $\{y, u, z\}$ is a TRDS of G. If $y \in V_{2}$, then $\left\{z, y, z^{\prime}\right\}$ is a TRDS of G. Hence $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n$.
Assume, therefore, that each vertex $y^{\prime} \in V_{1} \cup V_{2}-\{y\}$ is adjacent to a vertex of $V_{1} \cup V_{2}-\left\{y, y^{\prime}\right\}$ in \bar{G}. But then $\{y, u, v\}$ is a TRDS of \bar{G} and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n$.
Now suppose $V_{3} \supset\{v\}$. We may assume that the TDS $\{u, v\}$ of \bar{G} is not a RDS of \bar{G}. Hence, there exists a vertex $y \in V_{2}$ such that $N_{G}(y) \supseteq V_{1} \cup V_{2} \cup V_{3}-\{v, y\}$. Now suppose that there is a vertex $y^{\prime} \in V_{2}-\{y\}$ such that $N_{G}\left(y^{\prime}\right) \supseteq V_{1} \cup V_{2} \cup V_{3}-\left\{v, y^{\prime}\right\}$. Let $z \in N_{G}(v)-\left\{y^{\prime}\right\}$. The set $\left\{y, u_{1}, z\right\}$ is a TRDS of G and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n$. Hence, $\{y, u, v\}$ is a TRDS of \bar{G} and so $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 3 n$.

3 Main Result

We are now ready to state and prove our main result:
Theorem 3.1 Let G be a graph of order $n \geq 4$, and suppose neither G nor \bar{G} contains isolated vertices or is isomorphic to K. Then $\gamma_{t r}(G) \gamma_{t r}(\bar{G}) \leq 4 n$ with equality holding if and only if either $G \in \mathcal{L}$ or $\bar{G} \in \mathcal{L}$.

Proof. Let G be a graph of order $n \geq 4$, such that G has no isolates and is not isomorphic to K. By Lemmas 2.3 and 2.4, both G and \bar{G} must be connected and $\min \{\delta(G), \delta(\bar{G})\} \geq 2$. Our result now follows from Lemma 2.5. By Lemmas 2.1, 2.2, $2.3,2.4$ and 2.5 equality holds if and only if $G \in \mathcal{L}$ or $\bar{G} \in \mathcal{L}$.

References

[1] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999), 61-69.
[2] J. H. Hattingh, E. Jonck, E. J. Joubert, Bounds on the total restrained domination number of a graph, Graphs Combin. 26 (2010), 77-93.
[3] J. H. Hattingh, E. Jonck, E. J. Joubert and A. R. Plummer, Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs, Discrete Math. 308 (2008), 1080-1087.
[4] J.H. Hattingh and E. J. Joubert, The product of the restrained domination numbers of a graph and its complement, Acta Math. Sin. (Engl. Ser.) 30 (2014), 445-452.
[5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1997.
[7] M. A. Henning and J.E. Maritz, Total restrained domination in graphs with minimum degree two, Discrete Math. 308 (2008), 1909-1920.
[8] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un graphe simple, C. R. Acad. Sci Ser. A 274 (1972), 728-730.
[9] H. Karami, A. Khodkar, S. M. Sheikholeslami and D. B. West, Inequalities of Nordhaus-Gaddum type for connected domination, Graphs Combin. 28 (2012), 123-131.
[10] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), 175-177.
[11] J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM J. Discrete Math. 10 (1997), 529-550.
[12] B. Zelinka, Remarks on restrained and total restrained domination in graphs, Czechoslovak Math. J. 55 (130) (2005), 165-173.
(Received 23 June 2016; revised 12 July 2017, 12 Jan 2018)

[^0]: * Also at Department of Mathematics, East Carolina University, Greenville, NC 27858, U.S.A.
 \dagger Research supported in part by the South African National Research Foundation.

