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Abstract

In this paper, we use two-variable Laurent polynomials attached to ma-
trices to encode properties of compositions of sequences. The Lagrange
identity in the ring of Laurent polynomials is then used to give a short
and transparent proof of a theorem about the Yang multiplication.

1 Introduction

Many classes of complementary sequences have been investigated in the literature
(see [1]). A quadruple of (±1)-sequences (a, b, c,d) of length m,m, n, n, respectively,
is called base sequences if

Na(j) +Nb(j) +Nc(j) +Nd(j) = 0

for all positive integers j, where

Ns(j) =

{∑l−j−1
i=0 sisi+j if 0 ≤ j < l,

0 otherwise,

for s = (s0, . . . , sl−1) ∈ {±1}l. We denote by BS(m,n) the set of base sequences of
length m, m, n, n. If (a, b, c,d) ∈ BS(m,n), then it is complementary with weight
2(m+ n). In [9], Yang proved the following theorem, which is known as one version
of the Yang multiplication theorem:

Theorem 1.1 ([9, Theorem 4]). If BS(m + 1, m) �= ∅ and BS(n + 1, n) �= ∅, then
BS(m′, m′) �= ∅ with m′ = (2m+ 1)(2n+ 1).
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The well-known Hadamard conjecture states that Hadamard matrices of order 4n
exist for every positive integer n. A consequence of Theorem 1.1 is the existence of
a Hadamard matrix of order 8m′ for a positive integer m′ satisfying the hypotheses.
Indeed, a class of sequences called T -sequences with length 2m′ can be obtained
from BS(m′, m′) [8], and Hadamard matrices of order 8m′ can be produced from T -
sequences with length 2m′ by using Goethals–Seidel arrays [10]. For more information
on T -sequences, we refer the reader to [1, 2, 3, 4].

In order to prove Theorem 1.1, Yang used the Lagrange identity for polynomial
rings. Let Z[x±1] be the ring of Laurent polynomials over Z and ∗ : Z[x±1] → Z[x±1]
be the involutive automorphism defined by x �→ x−1. Let a = (a0, . . . , al−1) ∈ Z

l.
We define the Hall polynomial φa(x) ∈ Z[x±1] of a by

φa(x) =
l−1∑
i=0

aix
i.

It is easy to see that a quadraple (±1)-sequences (a, b, c,d) of length m,m, n, n,
respectively, is a base sequences if and only if

(φaφ
∗
a + φbφ

∗
b + φcφ

∗
c + φdφ

∗
d)(x) = 2(m+ n).

Suppose (a, b, c,d) ∈ BS(n + 1, n) and (f , g,h, e) ∈ BS(m + 1, m). The proof of
Theorem 1.1 in [9] is by establishing the identity

(φqφ
∗
q + φrφ

∗
r + φsφ

∗
s + φtφ

∗
t)(x)

= (φaφ
∗
a + φbφ

∗
b + φcφ

∗
c + φdφ

∗
d)(x

2)(φeφ
∗
e + φfφ

∗
f + φgφ

∗
g + φhφ

∗
h)(x

2(2m+1)), (1)

after defining the sequences q, r, s, t appropriately such that, in particular,

φq(x) = φa(x
2)φf∗(x2(2m+1)) + xφc(x

2)φg(x
2(2m+1))

− x2(2m+1)φb∗(x
2)φe(x

2(2m+1)) + x2(2m+1)+1φd(x
2)φh(x

2(2m+1)).

A key to the proof is the Lagrange identity (see [9, Theorem L]): given a, b, c, d, e,
f , g, h in a commutative ring with an involutive automorphism ∗, set

q = af ∗ + cg − b∗e+ dh,

r = bf ∗ + dg∗ + a∗e− ch∗,

s = ag∗ − cf − bh− d∗e,

t = bg − df + ah∗ + c∗e.

(2)

Then

qq∗ + rr∗ + ss∗ + tt∗ = (aa∗ + bb∗ + cc∗ + dd∗)(ee∗ + ff ∗ + gg∗ + hh∗). (3)

However, the derivation of (1) from (3) is not so immediate since one has to define
a, b, c, d, e, f, g, h, as

φa(x
2), φb(x

2), xφc(x
2), xφd(x

2),

x2m+(1−n)(2m+1)φe(x
2(2m+1)), x−n(2m+1)φf(x

2(2m+1)),

x−n(2m+1)φg(x
2(2m+1)), x(1−n)(2m+1)φh(x

2(2m+1)),
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rather than

φa(x
2), φb(x

2), φc(x
2), φd(x

2), φe(x
2(2m+1)), φf (x

2(2m+1)), φg(x
2(2m+1)), φh(x

2(2m+1)),

respectively. We note that Ðoković and Zhao [7] observed some connection between
the Yang multiplication theorem and the octonion algebra. More information on the
Yang multiplication theorem and constructions of complementary sequences can be
found in [5].

In this paper, we give a more straightforward proof of Theorem 1.1. Our approach
is by constructing a matrix Q from the eight sequences a, b, c,d, e, f , g,h and pro-
duce Laurent polynomials ψs(x) for s ∈ {a, b, c,d, e, f , g,h} of single variable and
a Laurent polynomial ψQ(x, y) of two variables for a matrix Q, such that

ψQ(x, y) = ψa(x)ψf (y) + ψc(x)ψg(y) + ψb(x)ψe(y) + ψd(x)ψh(y).

This gives an interpretation of the Lagrange identity in term of sequences and ma-
trices, i.e. there exist matrices Q,R, S, T such that

(ψQψ
∗
Q + ψRψ

∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, y)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)(ψeψ

∗
e + ψfψ

∗
f + ψgψ

∗
g + ψhψ

∗
h)(y).

Then (1) follows immediately by noticing ψQ(x, x
(2n+1)) = ψq(x) and (ψaψ

∗
a)(x) =

(φaφ
∗
a)(x

2).
The paper is organized as follows. In Section 2, we will define a Laurent poly-

nomial ψa(x) for a sequence a and introduce basic properties of ψa(x). We will
also show how to combine sequences and matrices to produce new sequences and
matrices, eventually leading to a construction of a matrix from a given set of eight
sequences. Finally, in Section 3, we will prove Theorem 1.1 as a consequence of the
Lagrange identity in the ring of Laurent polynomials of two variables. We note here
that Theorem 1.1 [9, Theorem 4] is known as one of the Yang multiplication theorem.
Other versions of the Yang multiplication theorem will be investigated in subsequent
papers.

2 Preliminary Results

Let R be a commutative ring with identity and let ∗ be an involutive automorphism
of R. Moreover, let R[x±1] be the ring of Laurent polynomials over R and ∗ :
R[x±1] → R[x±1] be the extension of the involutive automorphism ∗ of R defined by
x �→ x−1.

Definition 2.1. Let a = (a0, . . . al−1) ∈ Rl. We define the Hall polynomial φa(x) ∈
R[x±1] of a by

φa(x) =
l−1∑
i=0

aix
i.

We define a Laurent polynomial ψa(x) ∈ R[x±1] by

ψa(x) = x1−lφa(x
2).
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Hall polynomials have been used not only by Yang, but also others. See [6] and
references therein. For a sequence a = (a0, . . . , al−1) ∈ Rl of length l we define
a∗ ∈ Rl by (a∗l−1, . . . , a

∗
0). It follows immediately that a∗∗ = a for every a ∈ Rl.

Definition 2.2. For a sequence a = (a0, . . . , al−1) of length l with entries in R, we
define the non-periodic autocorrelation Na of a by

Na(j) =

{∑l−j−1
i=0 aia

∗
i+j if 0 ≤ j < l,

0 otherwise.

We say that a set of sequences {a1, . . . ,an} not necessarily all of the same length, is
complementary with weight w if

n∑
i=1

Nai
(j) =

{
w if j = 0,

0 otherwise.

By Definition 2.2 with R = Z, we see that (a, b, c,d) ∈ BS(m,n) if and only if
{a, b, c,d} is complementary with weight 2(m+ n).

Lemma 2.3. Let l be a positive integer and a ∈ Rl. Then

ψa∗(x) = ψ∗
a(x).

Proof. Straightforward.

Lemma 2.4. For sequences a1, . . . ,an with entries in R, the following are equivalent.

(i) a1, . . . ,an are complementary with weight w,

(ii)
∑n

i=1(φai
φ∗
ai
)(x) = w,

(iii)
∑n

i=1(ψai
ψ∗
ai
)(x) = w.

Proof. It is straightforward to check that (i) is equivalent to (ii). Equivalence of
(ii) and (iii) is clear since for any sequence a, φa(x

2)φ∗
a(x

2) = ψa(x)ψ
∗
a(x) from

Definition 2.1.

Definition 2.5. Let a = (a0, . . . , al−1) ∈ Rl. Define

a/0 = (a0, 0, a1, . . . , 0, al−1) ∈ R2l−1, 0/a = (0, a0, 0, . . . , al−1, 0) ∈ R2l+1.

Lemma 2.6. For every a ∈ Rl,

ψa/0(x) = ψ0/a(x) = ψa(x
2).

Proof. By Definition 2.1 and Definition 2.5 , we have

ψa/0(x) = x1−(2l−1)φa/0(x
2) = x2−2lφa(x

4) = ψa(x
2),

ψ0/a(x) = x1−(2l+1)φ0/a(x
2) = x−2lx2φa(x

4) = ψa(x
2).



A. MUNEMASA ET AL. /AUSTRALAS. J. COMBIN. 70 (2) (2018), 279–287 283

Now, we will define a Laurent polynomial of two variables for arbitrary matrices.
Let R[x±1, y±1] be the ring of Laurent polynomials in two variables x, y. We define
an involutive ring automorphism ∗ : R[x±1, y±1] → R[x±1, y±1] by x �→ x−1, y �→ y−1

and a �→ a∗ for a ∈ R.

Definition 2.7. For A ∈ Rm×n, we denote the row vectors of a matrix A by
a0, . . . ,am−1. Define

seq(A) = (a0 | a1 | · · · | am−1) ∈ Rmn,

where | denotes concatenation, and

ψA(x, y) =

m−1∑
i=0

ψai
(x)y2i+1−m.

Clearly, we have ψA±B(x, y) = ψA(x, y)± ψB(x, y) for every A,B ∈ Rm×n. Note
that we may regard Rn as R1×n. So, for every a ∈ Rn, we have at ∈ Rn×1 where t
denotes the transpose of a matrix.

Lemma 2.8. Let f ∈ Rm and a ∈ Rn. Then

ψf ta(x, y) = ψa(x)ψf (y).

Proof. Let f = (f0, . . . , fm−1). Then

ψf ta(x, y) =
m−1∑
i=0

ψ(f ta)i(x)y
2i+1−m

=
m−1∑
i=0

fiψa(x)y
2i+1−m

= ψa(x)

m−1∑
i=0

fiy
2i+1−m

= ψa(x)ψf (y).

Lemma 2.9. If A ∈ Rm×n, then

ψseq(A)(x) = ψA(x, x
n).

Proof. Let a0, . . . ,am−1 be the row vectors of A. Since φseq(A)(x) =
∑m−1

i=0 xniφai
(x),
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we have

ψseq(A)(x) = x1−mnφseq(A)(x
2)

= x1−mn
m−1∑
i=0

x2niφai
(x2)

= x1−mn

m−1∑
i=0

x2ni+n−1ψai
(x)

=

m−1∑
i=0

xn(2i+1−m)ψai
(x)

= ψA(x, x
n).

3 Main Result

We will present our result by three steps. The following lemma is essential to describe
the Yang multiplication theorem by using matrix approach.

Lemma 3.1. Let

a, b, c,d ∈ Rn, e, f , g,h ∈ Rm.

Set

Q = f ∗ta+ gtc− etb∗ + htd,

R = f ∗tb+ g∗td+ eta∗ − h∗tc,

S = g∗ta− f tc− htb− etd∗,

T = gtb− f td+ h∗ta+ etc∗.

Then

(ψQψ
∗
Q + ψRψ

∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, y)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)(ψeψ

∗
e + ψfψ

∗
f + ψgψ

∗
g + ψhψ

∗
h)(y).

Proof. By Lemma 2.3 and Lemma 2.8, we have

ψQ(x, y) = ψa(x)ψ
∗
f (y) + ψc(x)ψg(y)− ψ∗

b(x)ψe(y) + ψd(x)ψh(y),

ψR(x, y) = ψb(x)ψ
∗
f (y) + ψd(x)ψ

∗
g(y) + ψ∗

a(x)ψe(y)− ψc(x)ψ
∗
h(y),

ψS(x, y) = ψa(x)ψ
∗
g(y)− ψc(x)ψf (y)− ψb(x)ψh(y)− ψ∗

d(x)ψe(y),

ψT (x, y) = ψb(x)ψg(y)− ψd(x)ψf (y) + ψa(x)ψ
∗
h(y) + ψ∗

c(x)ψe(y).

Thus, by applying the Lagrange identity, the result follows.
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For the remainder of this section, we fix a multiplicatively closed subset T of
R\ {0} satisfying −1 ∈ T = T ∗. Also, we denote T0 = T ∪ {0}. Denote by supp(a)
and supp(A) the set of indices of nonzero entries of a sequence a = (a0, . . . , al−1) ∈ Rl

and a matrix A = [aij ]0≤i≤m−1,0≤j≤n−1 ∈ Rm×n, respectively. We say that sequences
a, b are disjoint if supp(a) ∩ supp(b) = ∅. Matrices A,B are also said to be disjoint
if supp(A) ∩ supp(B) = ∅.

Lemma 3.2. Let m and n be positive integers,

a, b ∈ T n+1,

c,d ∈ T n,

f , g ∈ T m+1,

h, e ∈ T m.

Set

a′ = a/0, b′ = b/0, c′ = 0/c, d′ = 0/d,

f ′ = f/0, g′ = g/0, h′ = 0/h, e′ = 0/e.

Write

Q = f ′∗ta′ + g′tc′ − e′tb′∗ + h′td′, (4)
R = f ′∗tb′ + g′∗td′ + e′ta′∗ − h′∗tc′, (5)
S = g′∗ta′ − f ′tc′ − h′tb′ − e′td′∗, (6)
T = g′tb′ − f ′td′ + h′∗ta′ + e′tc′∗. (7)

Then Q,R, S, T ∈ T (2m+1)×(2n+1) satisfy

(ψQψ
∗
Q + ψRψ

∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, y)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x

2)(ψeψ
∗
e + ψfψ

∗
f + ψgψ

∗
g + ψhψ

∗
h)(y

2).

Proof. Notice that a′, b′, c′,d′ ∈ T 2n+1
0 and e′, f ′, g′,h′ ∈ T 2m+1

0 .
Since supp(s′∗) = supp(s′) for every s ∈ {a, b, c,d, e, f , g,h} and (s′, t′) is

disjoint whenever

s ∈ {a, b}, t ∈ {c,d} or s ∈ {f , g}, t ∈ {h, e},

matrices A and B are disjoint whenever A �= B and

A,B ∈ {f ′∗ta′, g′tc′, e′tb′∗,h′td′}.

Also,

supp(a′) ∪ supp(c′) = supp(b′∗) ∪ supp(d′) = {0, . . . , 2n},
supp(f ′∗) = supp(g′), supp(e′) = supp(h′).
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Hence

supp(Q) = supp(f ′∗ta′) ∪ supp(g′tc′) ∪ supp(e′tb′∗) ∪ supp(h′td′)
= {(i, j) : i ∈ supp(g′), j ∈ supp(a′) ∪ supp(c′)}

∪ {(i, j) : i ∈ supp(e′), j ∈ supp(b′∗) ∪ supp(d′)}
= {(i, j) : i ∈ supp(g′) ∪ supp(e′), j ∈ {0, . . . , 2n}}
= {0, . . . , 2m} × {0, . . . , 2n}.

By a similar argument, we obtain

supp(R) = supp(S) = supp(T ) = {0, . . . , 2m} × {0, . . . , 2n}.

Therefore, Q,R, S, T ∈ T (2m+1)×(2n+1). The claimed identity follows from Lemma
2.6 and Lemma 3.1.

Theorem 3.3. Let m,n be positive integers, and suppose

a, b ∈ T n+1,

c,d ∈ T n,

f , g ∈ T m+1,

h, e ∈ T m

satisfy

(ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x) = 2(2n+ 1),

(ψeψ
∗
e + ψfψ

∗
f + ψgψ

∗
g + ψhψ

∗
h)(x) = 2(2m+ 1).

Then there exist q, r, s, t ∈ T (2m+1)(2n+1) such that

(ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x) = 4(2m+ 1)(2n+ 1).

Proof. Define Q,R, S, T as in (4), (5), (6), (7), respectively. Write

q = seq(Q), r = seq(R), s = seq(S), t = seq(T ).

By Lemma 3.2, q, r, s, t ∈ T (2m+1)(2n+1). Applying Lemma 2.9 and Lemma 3.2, we
have

(ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x)

= (ψQψ
∗
Q + ψRψ

∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, x

2n+1)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x

2)(ψeψ
∗
e + ψfψ

∗
f + ψgψ

∗
g + ψhψ

∗
h)(x

2(2n+1))

= 4(2m+ 1)(2n+ 1).

Hence the proof is complete.

Finally, we see that Theorem 1.1 follows from Theorem 3.3 by setting T = {±1} ⊆
Z. Hence, our method gives a more transparent proof of Theorem 1.1. Indeed, by
taking (a, b, c,d) ∈ BS(n + 1, n) and (f , g,h, e) ∈ BS(m + 1, m), the hypotheses
in Theorem 3.3 are satisfied by Lemma 2.4. Then the resulting sequences (q, r, s, t)
belong to BS(m′, m′) by Lemma 2.4 where m′ = (2m+ 1)(2n+ 1).
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