A matrix approach to the Yang multiplication theorem

Akihiro Munemasa Pritta Etriana Putri*
Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences, Tohoku University
Japan
munemasa@math.is.tohoku.ac.jp pritta@ims.is.tohoku.ac.jp

Dedicated to the memory of Professor Noboru Ito

Abstract

In this paper, we use two-variable Laurent polynomials attached to matrices to encode properties of compositions of sequences. The Lagrange identity in the ring of Laurent polynomials is then used to give a short and transparent proof of a theorem about the Yang multiplication.

1 Introduction

Many classes of complementary sequences have been investigated in the literature (see [1]). A quadruple of (± 1)-sequences $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})$ of length m, m, n, n, respectively, is called base sequences if

$$
N_{a}(j)+N_{b}(j)+N_{c}(j)+N_{\boldsymbol{d}}(j)=0
$$

for all positive integers j, where

$$
N_{s}(j)= \begin{cases}\sum_{i=0}^{l-j-1} s_{i} s_{i+j} & \text { if } 0 \leq j<l, \\ 0 & \text { otherwise },\end{cases}
$$

for $\boldsymbol{s}=\left(s_{0}, \ldots, s_{l-1}\right) \in\{ \pm 1\}^{l}$. We denote by $B S(m, n)$ the set of base sequences of length m, m, n, n. If $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}) \in B S(m, n)$, then it is complementary with weight $2(m+n)$. In [9], Yang proved the following theorem, which is known as one version of the Yang multiplication theorem:

Theorem 1.1 ([9, Theorem 4]). If $B S(m+1, m) \neq \emptyset$ and $B S(n+1, n) \neq \emptyset$, then $B S\left(m^{\prime}, m^{\prime}\right) \neq \emptyset$ with $m^{\prime}=(2 m+1)(2 n+1)$.

[^0]The well-known Hadamard conjecture states that Hadamard matrices of order $4 n$ exist for every positive integer n. A consequence of Theorem 1.1 is the existence of a Hadamard matrix of order $8 m^{\prime}$ for a positive integer m^{\prime} satisfying the hypotheses. Indeed, a class of sequences called T-sequences with length $2 m^{\prime}$ can be obtained from $B S\left(m^{\prime}, m^{\prime}\right)$ [8], and Hadamard matrices of order $8 m^{\prime}$ can be produced from T sequences with length $2 m^{\prime}$ by using Goethals-Seidel arrays [10]. For more information on T-sequences, we refer the reader to $[1,2,3,4]$.

In order to prove Theorem 1.1, Yang used the Lagrange identity for polynomial rings. Let $\mathbb{Z}\left[x^{ \pm 1}\right]$ be the ring of Laurent polynomials over \mathbb{Z} and $*: \mathbb{Z}\left[x^{ \pm 1}\right] \rightarrow \mathbb{Z}\left[x^{ \pm 1}\right]$ be the involutive automorphism defined by $x \mapsto x^{-1}$. Let $\boldsymbol{a}=\left(a_{0}, \ldots, a_{l-1}\right) \in \mathbb{Z}^{l}$. We define the Hall polynomial $\phi_{\boldsymbol{a}}(x) \in \mathbb{Z}\left[x^{ \pm 1}\right]$ of \boldsymbol{a} by

$$
\phi_{\boldsymbol{a}}(x)=\sum_{i=0}^{l-1} a_{i} x^{i}
$$

It is easy to see that a quadraple (± 1)-sequences $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})$ of length m, m, n, n, respectively, is a base sequences if and only if

$$
\left(\phi_{\boldsymbol{a}} \phi_{\boldsymbol{a}}^{*}+\phi_{\boldsymbol{b}} \phi_{\boldsymbol{b}}^{*}+\phi_{\boldsymbol{c}} \phi_{\boldsymbol{c}}^{*}+\phi_{\boldsymbol{d}} \phi_{\boldsymbol{d}}^{*}\right)(x)=2(m+n)
$$

Suppose $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}) \in B S(n+1, n)$ and $(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}, \boldsymbol{e}) \in B S(m+1, m)$. The proof of Theorem 1.1 in [9] is by establishing the identity

$$
\begin{align*}
& \left(\phi_{\boldsymbol{q}} \phi_{\boldsymbol{q}}^{*}+\phi_{\boldsymbol{r}} \phi_{\boldsymbol{r}}^{*}+\phi_{\boldsymbol{s}} \phi_{\boldsymbol{s}}^{*}+\phi_{\boldsymbol{t}} \phi_{\boldsymbol{t}}^{*}\right)(x) \\
& =\left(\phi_{\boldsymbol{a}} \phi_{\boldsymbol{a}}^{*}+\phi_{\boldsymbol{b}} \phi_{\boldsymbol{b}}^{*}+\phi_{\boldsymbol{c}} \phi_{\boldsymbol{c}}^{*}+\phi_{\boldsymbol{d}} \phi_{\boldsymbol{d}}^{*}\right)\left(x^{2}\right)\left(\phi_{\boldsymbol{e}} \phi_{\boldsymbol{e}}^{*}+\phi_{\boldsymbol{f}} \phi_{\boldsymbol{f}}^{*}+\phi_{\boldsymbol{g}} \phi_{\boldsymbol{g}}^{*}+\phi_{\boldsymbol{h}} \phi_{\boldsymbol{h}}^{*}\right)\left(x^{2(2 m+1)}\right) \tag{1}
\end{align*}
$$

after defining the sequences $\boldsymbol{q}, \boldsymbol{r}, \boldsymbol{s}, \boldsymbol{t}$ appropriately such that, in particular,

$$
\begin{aligned}
\phi_{\boldsymbol{q}}(x)= & \phi_{\boldsymbol{a}}\left(x^{2}\right) \phi_{\boldsymbol{f}^{*}}\left(x^{2(2 m+1)}\right)+x \phi_{\boldsymbol{c}}\left(x^{2}\right) \phi_{\boldsymbol{g}}\left(x^{2(2 m+1)}\right) \\
& -x^{2(2 m+1)} \phi_{\boldsymbol{b}^{*}}\left(x^{2}\right) \phi_{\boldsymbol{e}}\left(x^{2(2 m+1)}\right)+x^{2(2 m+1)+1} \phi_{\boldsymbol{d}}\left(x^{2}\right) \phi_{\boldsymbol{h}}\left(x^{2(2 m+1)}\right) .
\end{aligned}
$$

A key to the proof is the Lagrange identity (see [9, Theorem L]): given a, b, c, d, e, f, g, h in a commutative ring with an involutive automorphism $*$, set

$$
\begin{align*}
q & =a f^{*}+c g-b^{*} e+d h \\
r & =b f^{*}+d g^{*}+a^{*} e-c h^{*} \tag{2}\\
s & =a g^{*}-c f-b h-d^{*} e \\
t & =b g-d f+a h^{*}+c^{*} e
\end{align*}
$$

Then

$$
\begin{equation*}
q q^{*}+r r^{*}+s s^{*}+t t^{*}=\left(a a^{*}+b b^{*}+c c^{*}+d d^{*}\right)\left(e e^{*}+f f^{*}+g g^{*}+h h^{*}\right) \tag{3}
\end{equation*}
$$

However, the derivation of (1) from (3) is not so immediate since one has to define a, b, c, d, e, f, g, h, as

$$
\begin{aligned}
& \phi_{\boldsymbol{a}}\left(x^{2}\right), \phi_{\boldsymbol{b}}\left(x^{2}\right), x \phi_{\boldsymbol{c}}\left(x^{2}\right), x \phi_{\boldsymbol{d}}\left(x^{2}\right), \\
& x^{2 m+(1-n)(2 m+1)} \phi_{\boldsymbol{e}}\left(x^{2(2 m+1)}\right), x^{-n(2 m+1)} \phi_{\boldsymbol{f}}\left(x^{2(2 m+1)}\right), \\
& x^{-n(2 m+1)} \phi_{\boldsymbol{g}}\left(x^{2(2 m+1)}\right), x^{(1-n)(2 m+1)} \phi_{\boldsymbol{h}}\left(x^{2(2 m+1)}\right),
\end{aligned}
$$

rather than

$$
\phi_{\boldsymbol{a}}\left(x^{2}\right), \phi_{\boldsymbol{b}}\left(x^{2}\right), \phi_{\boldsymbol{c}}\left(x^{2}\right), \phi_{\boldsymbol{d}}\left(x^{2}\right), \phi_{\boldsymbol{e}}\left(x^{2(2 m+1)}\right), \phi_{\boldsymbol{f}}\left(x^{2(2 m+1)}\right), \phi_{\boldsymbol{g}}\left(x^{2(2 m+1)}\right), \phi_{\boldsymbol{h}}\left(x^{2(2 m+1)}\right),
$$

respectively. We note that Đoković and Zhao [7] observed some connection between the Yang multiplication theorem and the octonion algebra. More information on the Yang multiplication theorem and constructions of complementary sequences can be found in [5].

In this paper, we give a more straightforward proof of Theorem 1.1. Our approach is by constructing a matrix Q from the eight sequences $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$ and produce Laurent polynomials $\psi_{\boldsymbol{s}}(x)$ for $\boldsymbol{s} \in\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}\}$ of single variable and a Laurent polynomial $\psi_{Q}(x, y)$ of two variables for a matrix Q, such that

$$
\psi_{Q}(x, y)=\psi_{\boldsymbol{a}}(x) \psi_{\boldsymbol{f}}(y)+\psi_{\boldsymbol{c}}(x) \psi_{\boldsymbol{g}}(y)+\psi_{\boldsymbol{b}}(x) \psi_{\boldsymbol{e}}(y)+\psi_{\boldsymbol{d}}(x) \psi_{\boldsymbol{h}}(y) .
$$

This gives an interpretation of the Lagrange identity in term of sequences and matrices, i.e. there exist matrices Q, R, S, T such that

$$
\begin{aligned}
& \left(\psi_{Q} \psi_{Q}^{*}+\psi_{R} \psi_{R}^{*}+\psi_{S} \psi_{S}^{*}+\psi_{T} \psi_{T}^{*}\right)(x, y) \\
& =\left(\psi_{\boldsymbol{a}} \psi_{\boldsymbol{a}}^{*}+\psi_{\boldsymbol{b}} \psi_{\boldsymbol{b}}^{*}+\psi_{\boldsymbol{c}} \psi_{\boldsymbol{c}}^{*}+\psi_{\boldsymbol{d}} \psi_{\boldsymbol{d}}^{*}\right)(x)\left(\psi_{\boldsymbol{e}} \psi_{\boldsymbol{e}}^{*}+\psi_{\boldsymbol{f}} \psi_{\boldsymbol{f}}^{*}+\psi_{\boldsymbol{g}} \psi_{\boldsymbol{g}}^{*}+\psi_{\boldsymbol{h}} \psi_{\boldsymbol{h}}^{*}\right)(y)
\end{aligned}
$$

Then (1) follows immediately by noticing $\psi_{Q}\left(x, x^{(2 n+1)}\right)=\psi_{\boldsymbol{q}}(x)$ and $\left(\psi_{\boldsymbol{a}} \psi_{\boldsymbol{a}}^{*}\right)(x)=$ $\left(\phi_{\boldsymbol{a}} \phi_{\boldsymbol{a}}^{*}\right)\left(x^{2}\right)$.

The paper is organized as follows. In Section 2, we will define a Laurent polynomial $\psi_{\boldsymbol{a}}(x)$ for a sequence \boldsymbol{a} and introduce basic properties of $\psi_{\boldsymbol{a}}(x)$. We will also show how to combine sequences and matrices to produce new sequences and matrices, eventually leading to a construction of a matrix from a given set of eight sequences. Finally, in Section 3, we will prove Theorem 1.1 as a consequence of the Lagrange identity in the ring of Laurent polynomials of two variables. We note here that Theorem 1.1 [9, Theorem 4] is known as one of the Yang multiplication theorem. Other versions of the Yang multiplication theorem will be investigated in subsequent papers.

2 Preliminary Results

Let \mathcal{R} be a commutative ring with identity and let $*$ be an involutive automorphism of \mathcal{R}. Moreover, let $\mathcal{R}\left[x^{ \pm 1}\right]$ be the ring of Laurent polynomials over \mathcal{R} and $*$: $\mathcal{R}\left[x^{ \pm 1}\right] \rightarrow \mathcal{R}\left[x^{ \pm 1}\right]$ be the extension of the involutive automorphism $*$ of \mathcal{R} defined by $x \mapsto x^{-1}$.
Definition 2.1. Let $\boldsymbol{a}=\left(a_{0}, \ldots a_{l-1}\right) \in \mathcal{R}^{l}$. We define the Hall polynomial $\phi_{\boldsymbol{a}}(x) \in$ $\mathcal{R}\left[x^{ \pm 1}\right]$ of \boldsymbol{a} by

$$
\phi_{\boldsymbol{a}}(x)=\sum_{i=0}^{l-1} a_{i} x^{i}
$$

We define a Laurent polynomial $\psi_{\boldsymbol{a}}(x) \in \mathcal{R}\left[x^{ \pm 1}\right]$ by

$$
\psi_{\boldsymbol{a}}(x)=x^{1-l} \phi_{\boldsymbol{a}}\left(x^{2}\right) .
$$

Hall polynomials have been used not only by Yang, but also others. See [6] and references therein. For a sequence $\boldsymbol{a}=\left(a_{0}, \ldots, a_{l-1}\right) \in \mathcal{R}^{l}$ of length l we define $\boldsymbol{a}^{*} \in \mathcal{R}^{l}$ by $\left(a_{l-1}^{*}, \ldots, a_{0}^{*}\right)$. It follows immediately that $\boldsymbol{a}^{* *}=\boldsymbol{a}$ for every $\boldsymbol{a} \in \mathcal{R}^{l}$.

Definition 2.2. For a sequence $\boldsymbol{a}=\left(a_{0}, \ldots, a_{l-1}\right)$ of length l with entries in \mathcal{R}, we define the non-periodic autocorrelation $N_{\boldsymbol{a}}$ of \boldsymbol{a} by

$$
N_{\boldsymbol{a}}(j)= \begin{cases}\sum_{i=0}^{l-j-1} a_{i} a_{i+j}^{*} & \text { if } 0 \leq j<l, \\ 0 & \text { otherwise }\end{cases}
$$

We say that a set of sequences $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ not necessarily all of the same length, is complementary with weight w if

$$
\sum_{i=1}^{n} N_{a_{i}}(j)= \begin{cases}w & \text { if } j=0 \\ 0 & \text { otherwise }\end{cases}
$$

By Definition 2.2 with $\mathcal{R}=\mathbb{Z}$, we see that $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}) \in B S(m, n)$ if and only if $\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}\}$ is complementary with weight $2(m+n)$.
Lemma 2.3. Let l be a positive integer and $\boldsymbol{a} \in \mathcal{R}^{l}$. Then

$$
\psi_{\boldsymbol{a}^{*}}(x)=\psi_{\boldsymbol{a}}^{*}(x)
$$

Proof. Straightforward.
Lemma 2.4. For sequences $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ with entries in \mathcal{R}, the following are equivalent.
(i) $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ are complementary with weight w,
(ii) $\sum_{i=1}^{n}\left(\phi_{\boldsymbol{a}_{i}} \phi_{\boldsymbol{a}_{i}}^{*}\right)(x)=w$,
(iii) $\sum_{i=1}^{n}\left(\psi_{\boldsymbol{a}_{i}} \psi_{\boldsymbol{a}_{i}}^{*}\right)(x)=w$.

Proof. It is straightforward to check that (i) is equivalent to (ii). Equivalence of (ii) and (iii) is clear since for any sequence $\boldsymbol{a}, \phi_{\boldsymbol{a}}\left(x^{2}\right) \phi_{\boldsymbol{a}}^{*}\left(x^{2}\right)=\psi_{\boldsymbol{a}}(x) \psi_{\boldsymbol{a}}^{*}(x)$ from Definition 2.1.

Definition 2.5. Let $\boldsymbol{a}=\left(a_{0}, \ldots, a_{l-1}\right) \in \mathcal{R}^{l}$. Define

$$
\boldsymbol{a} / 0=\left(a_{0}, 0, a_{1}, \ldots, 0, a_{l-1}\right) \in \mathcal{R}^{2 l-1}, \quad 0 / \boldsymbol{a}=\left(0, a_{0}, 0, \ldots, a_{l-1}, 0\right) \in \mathcal{R}^{2 l+1}
$$

Lemma 2.6. For every $\boldsymbol{a} \in \mathcal{R}^{l}$,

$$
\psi_{\boldsymbol{a} / 0}(x)=\psi_{0 / \boldsymbol{a}}(x)=\psi_{\boldsymbol{a}}\left(x^{2}\right)
$$

Proof. By Definition 2.1 and Definition 2.5, we have

$$
\begin{aligned}
& \psi_{\boldsymbol{a} / 0}(x)=x^{1-(2 l-1)} \phi_{\boldsymbol{a} / 0}\left(x^{2}\right)=x^{2-2 l} \phi_{\boldsymbol{a}}\left(x^{4}\right)=\psi_{\boldsymbol{a}}\left(x^{2}\right) \\
& \psi_{0 / \boldsymbol{a}}(x)=x^{1-(2 l+1)} \phi_{0 / \boldsymbol{a}}\left(x^{2}\right)=x^{-2 l} x^{2} \phi_{\boldsymbol{a}}\left(x^{4}\right)=\psi_{\boldsymbol{a}}\left(x^{2}\right)
\end{aligned}
$$

Now, we will define a Laurent polynomial of two variables for arbitrary matrices. Let $\mathcal{R}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ be the ring of Laurent polynomials in two variables x, y. We define an involutive ring automorphism $*: \mathcal{R}\left[x^{ \pm 1}, y^{ \pm 1}\right] \rightarrow \mathcal{R}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ by $x \mapsto x^{-1}, y \mapsto y^{-1}$ and $a \mapsto a^{*}$ for $a \in \mathcal{R}$.

Definition 2.7. For $A \in \mathcal{R}^{m \times n}$, we denote the row vectors of a matrix A by $\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{m-1}$. Define

$$
\operatorname{seq}(A)=\left(\boldsymbol{a}_{0}\left|\boldsymbol{a}_{1}\right| \cdots \mid \boldsymbol{a}_{m-1}\right) \in \mathcal{R}^{m n}
$$

where \mid denotes concatenation, and

$$
\psi_{A}(x, y)=\sum_{i=0}^{m-1} \psi_{\boldsymbol{a}_{i}}(x) y^{2 i+1-m}
$$

Clearly, we have $\psi_{A \pm B}(x, y)=\psi_{A}(x, y) \pm \psi_{B}(x, y)$ for every $A, B \in \mathcal{R}^{m \times n}$. Note that we may regard \mathcal{R}^{n} as $\mathcal{R}^{1 \times n}$. So, for every $\boldsymbol{a} \in \mathcal{R}^{n}$, we have $\boldsymbol{a}^{t} \in \mathcal{R}^{n \times 1}$ where t denotes the transpose of a matrix.

Lemma 2.8. Let $\boldsymbol{f} \in \mathcal{R}^{m}$ and $\boldsymbol{a} \in \mathcal{R}^{n}$. Then

$$
\psi_{\boldsymbol{f}^{t} \boldsymbol{a}}(x, y)=\psi_{\boldsymbol{a}}(x) \psi_{\boldsymbol{f}}(y)
$$

Proof. Let $\boldsymbol{f}=\left(f_{0}, \ldots, f_{m-1}\right)$. Then

$$
\begin{aligned}
\psi_{\boldsymbol{f}^{t} \boldsymbol{a}}(x, y) & =\sum_{i=0}^{m-1} \psi_{\left(\boldsymbol{f}^{t} \boldsymbol{a}\right)_{i}}(x) y^{2 i+1-m} \\
& =\sum_{i=0}^{m-1} f_{i} \psi_{\boldsymbol{a}}(x) y^{2 i+1-m} \\
& =\psi_{\boldsymbol{a}}(x) \sum_{i=0}^{m-1} f_{i} y^{2 i+1-m} \\
& =\psi_{\boldsymbol{a}}(x) \psi_{\boldsymbol{f}}(y)
\end{aligned}
$$

Lemma 2.9. If $A \in \mathcal{R}^{m \times n}$, then

$$
\psi_{\mathrm{seq}(A)}(x)=\psi_{A}\left(x, x^{n}\right)
$$

Proof. Let $\boldsymbol{a}_{0}, \ldots, \boldsymbol{a}_{m-1}$ be the row vectors of A. Since $\phi_{\text {seq }(A)}(x)=\sum_{i=0}^{m-1} x^{n i} \phi_{\boldsymbol{a}_{i}}(x)$,
we have

$$
\begin{aligned}
\psi_{\mathrm{seq}(A)}(x) & =x^{1-m n} \phi_{\mathrm{seq}(A)}\left(x^{2}\right) \\
& =x^{1-m n} \sum_{i=0}^{m-1} x^{2 n i} \phi_{\boldsymbol{a}_{i}}\left(x^{2}\right) \\
& =x^{1-m n} \sum_{i=0}^{m-1} x^{2 n i+n-1} \psi_{\boldsymbol{a}_{i}}(x) \\
& =\sum_{i=0}^{m-1} x^{n(2 i+1-m)} \psi_{\boldsymbol{a}_{i}}(x) \\
& =\psi_{A}\left(x, x^{n}\right) .
\end{aligned}
$$

3 Main Result

We will present our result by three steps. The following lemma is essential to describe the Yang multiplication theorem by using matrix approach.

Lemma 3.1. Let

$$
\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \mathcal{R}^{n}, \quad \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h} \in \mathcal{R}^{m} .
$$

Set

$$
\begin{aligned}
Q & =\boldsymbol{f}^{* t} \boldsymbol{a}+\boldsymbol{g}^{t} \boldsymbol{c}-\boldsymbol{e}^{t} \boldsymbol{b}^{*}+\boldsymbol{h}^{t} \boldsymbol{d}, \\
R & =\boldsymbol{f}^{* t} \boldsymbol{b}+\boldsymbol{g}^{* t} \boldsymbol{d}+\boldsymbol{e}^{t} \boldsymbol{a}^{*}-\boldsymbol{h}^{* t} \boldsymbol{c}, \\
S & =\boldsymbol{g}^{* t} \boldsymbol{a}-\boldsymbol{f}^{t} \boldsymbol{c}-\boldsymbol{h}^{t} \boldsymbol{b}-\boldsymbol{e}^{t} \boldsymbol{d}^{*} \\
T & =\boldsymbol{g}^{t} \boldsymbol{b}-\boldsymbol{f}^{t} \boldsymbol{d}+\boldsymbol{h}^{* t} \boldsymbol{a}+\boldsymbol{e}^{t} \boldsymbol{c}^{*}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left(\psi_{Q} \psi_{Q}^{*}+\psi_{R} \psi_{R}^{*}+\psi_{S} \psi_{S}^{*}+\psi_{T} \psi_{T}^{*}\right)(x, y) \\
& =\left(\psi_{\boldsymbol{a}} \psi_{\boldsymbol{a}}^{*}+\psi_{\boldsymbol{b}} \psi_{\boldsymbol{b}}^{*}+\psi_{\boldsymbol{c}} \psi_{\boldsymbol{c}}^{*}+\psi_{\boldsymbol{d}} \psi_{\boldsymbol{d}}^{*}\right)(x)\left(\psi_{\boldsymbol{e}} \psi_{\boldsymbol{e}}^{*}+\psi_{\boldsymbol{f}} \psi_{\boldsymbol{f}}^{*}+\psi_{\boldsymbol{g}} \psi_{\boldsymbol{g}}^{*}+\psi_{\boldsymbol{h}} \psi_{\boldsymbol{h}}^{*}\right)(y)
\end{aligned}
$$

Proof. By Lemma 2.3 and Lemma 2.8, we have

$$
\begin{aligned}
\psi_{Q}(x, y) & =\psi_{\boldsymbol{a}}(x) \psi_{\boldsymbol{f}}^{*}(y)+\psi_{\boldsymbol{c}}(x) \psi_{\boldsymbol{g}}(y)-\psi_{\boldsymbol{b}}^{*}(x) \psi_{\boldsymbol{e}}(y)+\psi_{\boldsymbol{d}}(x) \psi_{\boldsymbol{h}}(y), \\
\psi_{R}(x, y) & =\psi_{\boldsymbol{b}}(x) \psi_{\boldsymbol{f}}^{*}(y)+\psi_{\boldsymbol{d}}(x) \psi_{\boldsymbol{g}}^{*}(y)+\psi_{\boldsymbol{a}}^{*}(x) \psi_{\boldsymbol{e}}(y)-\psi_{\boldsymbol{c}}(x) \psi_{\boldsymbol{h}}^{*}(y), \\
\psi_{S}(x, y) & =\psi_{\boldsymbol{a}}(x) \psi_{\boldsymbol{g}}^{*}(y)-\psi_{\boldsymbol{c}}(x) \psi_{\boldsymbol{f}}(y)-\psi_{\boldsymbol{b}}(x) \psi_{\boldsymbol{h}}(y)-\psi_{\boldsymbol{d}}^{*}(x) \psi_{\boldsymbol{e}}(y), \\
\psi_{T}(x, y) & =\psi_{\boldsymbol{b}}(x) \psi_{\boldsymbol{g}}(y)-\psi_{\boldsymbol{d}}(x) \psi_{\boldsymbol{f}}(y)+\psi_{\boldsymbol{a}}(x) \psi_{\boldsymbol{h}}^{*}(y)+\psi_{\boldsymbol{c}}^{*}(x) \psi_{\boldsymbol{e}}(y) .
\end{aligned}
$$

Thus, by applying the Lagrange identity, the result follows.

For the remainder of this section, we fix a multiplicatively closed subset \mathcal{T} of $\mathcal{R} \backslash\{0\}$ satisfying $-1 \in \mathcal{T}=\mathcal{T}^{*}$. Also, we denote $\mathcal{T}_{0}=\mathcal{T} \cup\{0\}$. Denote by supp (\boldsymbol{a}) and $\operatorname{supp}(A)$ the set of indices of nonzero entries of a sequence $\boldsymbol{a}=\left(a_{0}, \ldots, a_{l-1}\right) \in \mathcal{R}^{l}$ and a matrix $A=\left[a_{i j}\right]_{0 \leq i \leq m-1,0 \leq j \leq n-1} \in \mathcal{R}^{m \times n}$, respectively. We say that sequences $\boldsymbol{a}, \boldsymbol{b}$ are disjoint if $\operatorname{supp}(\boldsymbol{a}) \cap \operatorname{supp}(\boldsymbol{b})=\emptyset$. Matrices A, B are also said to be disjoint if $\operatorname{supp}(A) \cap \operatorname{supp}(B)=\emptyset$.

Lemma 3.2. Let m and n be positive integers,

$$
\begin{aligned}
& \boldsymbol{a}, \boldsymbol{b} \in \mathcal{T}^{n+1} \\
& \boldsymbol{c}, \boldsymbol{d} \in \mathcal{T}^{n} \\
& \boldsymbol{f}, \boldsymbol{g} \in \mathcal{T}^{m+1} \\
& \boldsymbol{h}, \boldsymbol{e} \in \mathcal{T}^{m}
\end{aligned}
$$

Set

$$
\begin{array}{rrrr}
\boldsymbol{a}^{\prime}=\boldsymbol{a} / 0, & \boldsymbol{b}^{\prime}=\boldsymbol{b} / 0, & \boldsymbol{c}^{\prime}=0 / \boldsymbol{c}, & \boldsymbol{d}^{\prime}=0 / \boldsymbol{d} \\
\boldsymbol{f}^{\prime}=\boldsymbol{f} / 0, & \boldsymbol{g}^{\prime}=\boldsymbol{g} / 0, & \boldsymbol{h}^{\prime}=0 / \boldsymbol{h}, & \boldsymbol{e}^{\prime}=0 / \boldsymbol{e}
\end{array}
$$

Write

$$
\begin{align*}
Q & =\boldsymbol{f}^{\prime * t} \boldsymbol{a}^{\prime}+\boldsymbol{g}^{\prime t} \boldsymbol{c}^{\prime}-\boldsymbol{e}^{\prime t} \boldsymbol{b}^{\prime *}+\boldsymbol{h}^{\prime t} \boldsymbol{d}^{\prime} \tag{4}\\
R & =\boldsymbol{f}^{\prime * t} \boldsymbol{b}^{\prime}+\boldsymbol{g}^{\prime * t} \boldsymbol{d}^{\prime}+\boldsymbol{e}^{\prime t} \boldsymbol{a}^{\prime *}-\boldsymbol{h}^{\prime * t} \boldsymbol{c}^{\prime} \tag{5}\\
S & =\boldsymbol{g}^{\prime * t} \boldsymbol{a}^{\prime}-\boldsymbol{f}^{\prime t} \boldsymbol{c}^{\prime}-\boldsymbol{h}^{\prime t} \boldsymbol{b}^{\prime}-\boldsymbol{e}^{t} \boldsymbol{d}^{* *} \tag{6}\\
T & =\boldsymbol{g}^{\prime t} \boldsymbol{b}^{\prime}-\boldsymbol{f}^{\prime t} \boldsymbol{d}^{\prime}+\boldsymbol{h}^{\prime * t} \boldsymbol{a}^{\prime}+\boldsymbol{e}^{\prime t} \boldsymbol{c}^{\prime *} \tag{7}
\end{align*}
$$

Then $Q, R, S, T \in \mathcal{T}^{(2 m+1) \times(2 n+1)}$ satisfy

$$
\begin{aligned}
& \left(\psi_{Q} \psi_{Q}^{*}+\psi_{R} \psi_{R}^{*}+\psi_{S} \psi_{S}^{*}+\psi_{T} \psi_{T}^{*}\right)(x, y) \\
& =\left(\psi_{\boldsymbol{a}} \psi_{\boldsymbol{a}}^{*}+\psi_{\boldsymbol{b}} \psi_{\boldsymbol{b}}^{*}+\psi_{\boldsymbol{c}} \psi_{\boldsymbol{c}}^{*}+\psi_{\boldsymbol{d}} \psi_{\boldsymbol{d}}^{*}\right)\left(x^{2}\right)\left(\psi_{\boldsymbol{e}} \psi_{\boldsymbol{e}}^{*}+\psi_{\boldsymbol{f}} \psi_{\boldsymbol{f}}^{*}+\psi_{\boldsymbol{g}} \psi_{\boldsymbol{g}}^{*}+\psi_{\boldsymbol{h}} \psi_{\boldsymbol{h}}^{*}\right)\left(y^{2}\right)
\end{aligned}
$$

Proof. Notice that $\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}, \boldsymbol{c}^{\prime}, \boldsymbol{d}^{\prime} \in \mathcal{T}_{0}^{2 n+1}$ and $\boldsymbol{e}^{\prime}, \boldsymbol{f}^{\prime}, \boldsymbol{g}^{\prime}, \boldsymbol{h}^{\prime} \in \mathcal{T}_{0}^{2 m+1}$.
Since $\operatorname{supp}\left(s^{* *}\right)=\operatorname{supp}\left(s^{\prime}\right)$ for every $\boldsymbol{s} \in\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}\}$ and $\left(s^{\prime}, \boldsymbol{t}^{\prime}\right)$ is disjoint whenever

$$
\boldsymbol{s} \in\{\boldsymbol{a}, \boldsymbol{b}\}, \boldsymbol{t} \in\{\boldsymbol{c}, \boldsymbol{d}\} \quad \text { or } \quad \boldsymbol{s} \in\{\boldsymbol{f}, \boldsymbol{g}\}, \boldsymbol{t} \in\{\boldsymbol{h}, \boldsymbol{e}\}
$$

matrices A and B are disjoint whenever $A \neq B$ and

$$
A, B \in\left\{\boldsymbol{f}^{\prime * t} \boldsymbol{a}^{\prime}, \boldsymbol{g}^{\prime t} \boldsymbol{c}^{\prime}, \boldsymbol{e}^{\prime t} \boldsymbol{b}^{\prime *}, \boldsymbol{h}^{\prime t} \boldsymbol{d}^{\prime}\right\}
$$

Also,

$$
\begin{aligned}
& \operatorname{supp}\left(\boldsymbol{a}^{\prime}\right) \cup \operatorname{supp}\left(\boldsymbol{c}^{\prime}\right)=\operatorname{supp}\left(\boldsymbol{b}^{\prime *}\right) \cup \operatorname{supp}\left(\boldsymbol{d}^{\prime}\right)=\{0, \ldots, 2 n\}, \\
& \operatorname{supp}\left(\boldsymbol{f}^{\prime *}\right)=\operatorname{supp}\left(\boldsymbol{g}^{\prime}\right), \quad \operatorname{supp}\left(\boldsymbol{e}^{\prime}\right)=\operatorname{supp}\left(\boldsymbol{h}^{\prime}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{supp}(Q)= & \operatorname{supp}\left(\boldsymbol{f}^{\prime * t} \boldsymbol{a}^{\prime}\right) \cup \operatorname{supp}\left(\boldsymbol{g}^{\prime t} \boldsymbol{c}^{\prime}\right) \cup \operatorname{supp}\left(\boldsymbol{e}^{\prime t} \boldsymbol{b}^{* *}\right) \cup \operatorname{supp}\left(\boldsymbol{h}^{\prime t} \boldsymbol{d}^{\prime}\right) \\
= & \left\{(i, j): i \in \operatorname{supp}\left(\boldsymbol{g}^{\prime}\right), j \in \operatorname{supp}\left(\boldsymbol{a}^{\prime}\right) \cup \operatorname{supp}\left(\boldsymbol{c}^{\prime}\right)\right\} \\
& \cup\left\{(i, j): i \in \operatorname{supp}\left(\boldsymbol{e}^{\prime}\right), j \in \operatorname{supp}\left(\boldsymbol{b}^{\prime *}\right) \cup \operatorname{supp}\left(\boldsymbol{d}^{\prime}\right)\right\} \\
= & \left\{(i, j): i \in \operatorname{supp}\left(\boldsymbol{g}^{\prime}\right) \cup \operatorname{supp}\left(\boldsymbol{e}^{\prime}\right), j \in\{0, \ldots, 2 n\}\right\} \\
= & \{0, \ldots, 2 m\} \times\{0, \ldots, 2 n\} .
\end{aligned}
$$

By a similar argument, we obtain

$$
\operatorname{supp}(R)=\operatorname{supp}(S)=\operatorname{supp}(T)=\{0, \ldots, 2 m\} \times\{0, \ldots, 2 n\}
$$

Therefore, $Q, R, S, T \in \mathcal{T}^{(2 m+1) \times(2 n+1)}$. The claimed identity follows from Lemma 2.6 and Lemma 3.1.

Theorem 3.3. Let m, n be positive integers, and suppose

$$
\begin{aligned}
& \boldsymbol{a}, \boldsymbol{b} \in \mathcal{T}^{n+1} \\
& \boldsymbol{c}, \boldsymbol{d} \in \mathcal{T}^{n} \\
& \boldsymbol{f}, \boldsymbol{g} \in \mathcal{T}^{m+1} \\
& \boldsymbol{h}, \boldsymbol{e} \in \mathcal{T}^{m}
\end{aligned}
$$

satisfy

$$
\begin{aligned}
\left(\psi_{\boldsymbol{a}} \psi_{\boldsymbol{a}}^{*}+\psi_{\boldsymbol{b}} \psi_{\boldsymbol{b}}^{*}+\psi_{\boldsymbol{c}} \psi_{\boldsymbol{c}}^{*}+\psi_{\boldsymbol{d}} \psi_{\boldsymbol{d}}^{*}\right)(x) & =2(2 n+1) \\
\left(\psi_{\boldsymbol{e}} \psi_{\boldsymbol{e}}^{*}+\psi_{\boldsymbol{f}} \psi_{\boldsymbol{f}}^{*}+\psi_{\boldsymbol{g}} \psi_{\boldsymbol{g}}^{*}+\psi_{\boldsymbol{h}} \psi_{\boldsymbol{h}}^{*}\right)(x) & =2(2 m+1)
\end{aligned}
$$

Then there exist $\boldsymbol{q}, \boldsymbol{r}, \boldsymbol{s}, \boldsymbol{t} \in \mathcal{T}^{(2 m+1)(2 n+1)}$ such that

$$
\left(\psi_{\boldsymbol{q}} \psi_{\boldsymbol{q}}^{*}+\psi_{\boldsymbol{r}} \psi_{\boldsymbol{r}}^{*}+\psi_{\boldsymbol{s}} \psi_{s}^{*}+\psi_{\boldsymbol{t}} \psi_{\boldsymbol{t}}^{*}\right)(x)=4(2 m+1)(2 n+1) .
$$

Proof. Define Q, R, S, T as in (4), (5), (6), (7), respectively. Write

$$
\boldsymbol{q}=\operatorname{seq}(Q), \quad \boldsymbol{r}=\operatorname{seq}(R), \quad \boldsymbol{s}=\operatorname{seq}(S), \quad \boldsymbol{t}=\operatorname{seq}(T)
$$

By Lemma 3.2, $\boldsymbol{q}, \boldsymbol{r}, \boldsymbol{s}, \boldsymbol{t} \in \mathcal{T}^{(2 m+1)(2 n+1)}$. Applying Lemma 2.9 and Lemma 3.2, we have

$$
\begin{aligned}
& \left(\psi_{\boldsymbol{q}} \psi_{\boldsymbol{q}}^{*}+\psi_{\boldsymbol{r}} \psi_{\boldsymbol{r}}^{*}+\psi_{\boldsymbol{s}} \psi_{\boldsymbol{s}}^{*}+\psi_{\boldsymbol{t}} \psi_{\boldsymbol{t}}^{*}\right)(x) \\
& =\left(\psi_{Q} \psi_{Q}^{*}+\psi_{R} \psi_{R}^{*}+\psi_{S} \psi_{S}^{*}+\psi_{T} \psi_{T}^{*}\right)\left(x, x^{2 n+1}\right) \\
& =\left(\psi_{\boldsymbol{a}} \psi_{\boldsymbol{a}}^{*}+\psi_{\boldsymbol{b}} \psi_{\boldsymbol{b}}^{*}+\psi_{\boldsymbol{c}} \psi_{\boldsymbol{c}}^{*}+\psi_{\boldsymbol{d}} \psi_{\boldsymbol{d}}^{*}\right)\left(x^{2}\right)\left(\psi_{\boldsymbol{e}} \psi_{\boldsymbol{e}}^{*}+\psi_{\boldsymbol{f}} \psi_{\boldsymbol{f}}^{*}+\psi_{\boldsymbol{g}} \psi_{\boldsymbol{g}}^{*}+\psi_{\boldsymbol{h}} \psi_{\boldsymbol{h}}^{*}\right)\left(x^{2(2 n+1)}\right) \\
& =4(2 m+1)(2 n+1)
\end{aligned}
$$

Hence the proof is complete.
Finally, we see that Theorem 1.1 follows from Theorem 3.3 by setting $\mathcal{T}=\{ \pm 1\} \subseteq$ \mathbb{Z}. Hence, our method gives a more transparent proof of Theorem 1.1. Indeed, by taking $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}) \in B S(n+1, n)$ and $(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}, \boldsymbol{e}) \in B S(m+1, m)$, the hypotheses in Theorem 3.3 are satisfied by Lemma 2.4. Then the resulting sequences $(\boldsymbol{q}, \boldsymbol{r}, \boldsymbol{s}, \boldsymbol{t})$ belong to $B S\left(m^{\prime}, m^{\prime}\right)$ by Lemma 2.4 where $m^{\prime}=(2 m+1)(2 n+1)$.

Acknowledgements

We would like to thank Robert Craigen for valuable advice.

References

[1] G. Cohen, D. Rubie, J. Seberry, C. Koukouvinos, S. Kounias and M. Yamada, A survey of base sequences, disjoint complementary sequences and $O D(4 t ; t, t, t, t)$, J. Combin. Math. Combin. Comput. 5 (1989), 69-103.
[2] H. Kharaghani and C. Koukouvinos, Complementary, base and Turyn sequences in: Handbook of Combin. Des. (C.J. Colbourn and J.H. Dinitz., eds.), 2nd Ed., pp. 317-321, Chapman \& Hall/CRC Press, Boca Raton, FL, 2007.
[3] H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, J. Combin. Designs 13 (2005), 435-440.
[4] C. Koukouvinos and J. Seberry, Addendum to further results on base sequences, disjoint complementary sequences, $O D(4 t ; t, t, t, t)$ and the excess of Hadamard matrices, Congr. Numer. 82 (1991), 97-103.
[5] C. Koukouvinos, S. Kounias, J. Seberry, C.H. Yang and J. Yang, Multiplication of sequences with zero autocorrelation, Australas. J. Combin. 10 (1994), 5-15.
[6] R. Craigen, W. Gibson and C. Koukouvinos, An update on primitive ternary complementary pairs, J. Combin. Theory Ser. A 114 (2007), 957-963.
[7] D. Ž. Đoković and K. Zhao, An octonion algebra originating in combinatorics, Proc. Amer. Math. Soc. 138 (2010), 4187-4195.
[8] D. Ž. Đoković , Hadamard matrices of small order and Yang conjecture, J. Combin. Des. 18 (2010), 254-259.
[9] C.H. Yang, On composition of four-symbol δ-codes and Hadamard matrices, Proc. Amer. Math. Soc. 107 (1989), 763-776.
[10] R. J. Turyn, An infinite class of Williamson matrices, J. Combin. Theory Ser. A 12 (1972), 319-321.

[^0]: * Also at Combinatorial Mathematics Research Group, Institut Teknologi Bandung, Bandung, Indonesia.

