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Abstract

For a simple graph G, let G◦ be the graph obtained from G by adding a
loop at each vertex. Let SG be the set of all permutations σ on V (G)
such that vσ(v) ∈ E(G◦). In other words, each σ ∈ SG partitions the
graph G into vertex-disjoint cycles, where a 1-cycle is a single vertex,
a 2-cycle is a single edge, and orientation for cycles of length three or
higher matters. We define the graphical factorial of a graph G, denoted
by G!, as the cardinality of SG. The Stirling numbers of the first kind
for G, denoted by

[
G
k

]
, is the number of permutations σ ∈ SG such

that σ partitions V (G) into exactly k cycles. In this paper, we will find
the Stirling numbers of the first kind of elements of some families of
graphs, such as paths, cycles, complete bipartite graphs, wheels, fans,
and ladders.

1 Introduction

The Stirling numbers of the second kind, denoted by
{
n
k

}
, count the number of set

partitions of [n] = {1, . . . , n} into k parts. These numbers satisfy the recurrence
relation {

n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k − 1

}
,

with the initial conditions
{
n
0

}
=
{
0
k

}
= 0 for all n, k > 0, and

{
0
0

}
= 1. The Bell

numbers, denoted by Bn, are defined as Bn =
∑n

k=0

{
n
k

}
.

Now consider En the empty graph on n vertices. It is easy to check that the
number of partitions of V (En) into k parts, where the vertices in each part form an
independent set in

{
n
k

}
. By generalizing this idea, the k-th Stirling number of the

second kind for a graph G, denoted by
{
G
k

}
, is defined as the number of partitions of

V (G) into k independent sets. According to Galvin and Tanh [5], this definition was
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first explicitly introduced by Tomescu in 1971 [11]. Consequently, the Bell number
for a graph G is defined as BG =

∑n
k=0

{
G
k

}
, where n = |V (G)|. For a more recent

discussions about these numbers, see [3, 4, 7].
On the other hand, the (unsigned) Stirling numbers of the first kind, denoted by[

n
k

]
, count the number of cyclic partitions of [n] = {1, . . . , n} into k cycles. In other

words,
[
n
k

]
counts the number of permutations in Sn, the symmetric group on [n],

that can written as the product of k disjoint cycles, where 1-cycles are included in
the count. The Stirling numbers of the first kind satisfy the recurrence relation[

n

k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1

k − 1

]
,

with the initial conditions
[
n
0

]
=
[
0
k

]
= 0 for all n, k > 0, and

[
0
0

]
= 1. Clearly,

n! =
∑n

k=0

[
n
k

]
.

Using a similar idea that motivated the definition of the Stirling numbers of the
second kind for graphs, we will define the graphical Stirling numbers of the first kind:
For a simple graph G, let G◦ be the graph obtained from G by adding a loop at each
vertex. Let SG be the set of all permutations σ on V (G) such that vσ(v) ∈ E(G◦).
In other words, each σ ∈ SG partitions the graph G into vertex-disjoint cycles, where
a 1-cycle is a single vertex, a 2-cycle is a single edge, and orientation for cycles of
length three or higher matters. To avoid any confusion, from now on, by “cycle” we
mean this more general definition. We will call an element in SG a cyclic partition of
G. We define the graphical factorial for a graph G, denoted by G!, as the number of
distinct cyclic partitions of G. The k-th Stirling number of the first kind of a graph
G, denoted by

[
G
k

]
, is the number of permutations σ ∈ SG such that σ partitions

V (G) into exactly k cycles. It is easy to see that G! =
∑n

k=0

[
G
k

]
, where n = |V (G)|.

It is noteworthy that this definition of a factorial of a graph coincides with that of
seating rearrangements with stays on a graph that was discussed by DeFord in [1].

In this paper, Kn, Cn, and Pn denote the complete graph, the cycle, and the path
on n vertices, respectively. Also, Kn,m denotes the complete bipartite graph with one
part having n and the other part having m vertices. The join of two simple graphs
G and H, denoted by G on H, is the graph whose vertex set is V (G) ∪ V (H) and
whose edge set E(G)∪E(H)∪{uv | u ∈ G, v ∈ H}. We call the graph K1 on Cn the
wheel on (n + 1) vertices and denote it by Wn, and call the graph K1 on Pn the fan
on (n+ 1) vertices and denote it by Fn.

In addition to the join of two graphs, we will use two graphical products: For
simple graphs G and H, the Cartesian product of G and H, denoted by G�H, is a
graph with the vertex set V (G)×V (H) such that any two vertices (u, u′) and (v, v′)
are adjacent in G�H if and only if u = v and u′v′ ∈ E(H), or u′ = v′ and uv ∈ E(G).
The strong product if G and H, denoted by G � H, is a graph with the vertex set
V (G)× V (H) such that any two vertices (u, u′) and (v, v′) are adjacent in G�H if
and only if u = v and u′v′ ∈ E(H), or u′ = v′ and uv ∈ E(G), or uv ∈ E(G) and
u′v′ ∈ E(H).
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Throughout this paper, we will use Iverson bracket which is defined as

[Q] =

{
1 if Q is true;

0 otherwise,

where Q is a statement that can be true or false. Moreover, we will use the notation
x k for the falling factorial power x(x− 1) · · · (x− k + 1), where x ∈ R and k ∈ N.

The following result was proven in [1] and [2]. In this theorem, fk is the k-th
Fibonacci number defined by the recurrence relation fk = fk−1 + fk−2 and the initial
conditions f1 = f2 = 1. By convention, we assume that P0! = 1 = f1, where P0 is
the path on zero vertices, i.e., the empty set.

Theorem 1.1. Let n,m ∈ N. Then

1. Kn! = n!;

2. Pn! = fn+1;

3. Cn! = fn+1 + fn−1 + 2, for n ≥ 3;

4. Kn,m! =
∑k

i=0m
i n i, where k = min{m,n};

5. Wn! = (2n+ 1)fn+1 + nfn + fn−1 − 2(n− 1), for n ≥ 3;

6. Fn! = fn+1 +
∑n

l=1[fn−l+1(fl+2 − 1) + fl(fn−l+2 − 1)], for n ≥ 2.

We will finish this section with the following observation whose proof is obvious:

Observation 1.1. Let G be a simple graph with n ≥ 3 vertices. Then
[
G
1

]
= 2|H(G)|,

where H(G) is the set of undirected Hamiltonian cycles of G.

2 Stirling Numbers of the First Kind for Basic Graphs

The first result in this section is obvious and we will omit its proof.

Proposition 2.1. For n ∈ N,
[
Kn

k

]
=
[
n
k

]
.

In our next two theorems,
[
Pn

k

]
and

[
Cn

k

]
are given in closed-form expressions:

Theorem 2.1. Let n, k be positive integers. Then
[
Pn

k

]
=
(

k
n−k

)
.

Proof. It is easy to see that
[
Pn

k

]
is the number of integer solutions to the Diophantine

equation
x1 + · · ·+ xk = n,

where xi ∈ {1, 2} for all 1 ≤ i ≤ k. Starting from one of the leaves of Pn, say v,
each xi represents whether the i-th cycle from v along Pn is a 1-cycle or a 2-cycle.
We know that the number of integer solutions to this equation is

(
k

n−k

)
. Note that
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in any such cyclic partition the number of 1-cycles and 2-cycles is 2k− n and n− k,
respectively.

Using Theorem 2.1 and the well-known Fibonacci identity

n∑
k=0

(
k

n− k

)
=

n∑
j=0

(
n− j
j

)
= fn+1,

we confirm part (2) of Theorem 1.1.

Theorem 2.2. Let n, k ∈ N. If n ≥ 3 and k ≥ 2, then
[
Cn

k

]
=
(
k−1
n−k

)
+ 2
(

k−1
n−k−1

)
. If

n ≥ 3, then
[
Cn

1

]
= 2.

Proof. We know that for n ≥ 3,
[
Cn

1

]
= 2 since the only cycle of length three or

higher is the graph itself. On the other hand, for n ≥ 3 and k ≥ 2, we have[
Cn

k

]
=

[
Pn−1

k − 1

]
+ 2

[
Pn−2

k − 1

]
. (1)

The reason for the above identity is this: Let v be any vertex in Cn and let u and
w be its two neighbors. Three cases can happen: v is in a 1-cycle, vu is a 2-cycle
or vw is a 2-cycle. In the first case, we are left with Pn−1 when we remove v. In
the second case, we are left with Pn−2 when we remove vu—and similarly in the
third case, when we remove vw. Using Theorem 2.1 and equation (1), we have[
Cn

k

]
=
(
k−1
n−k

)
+ 2
(

k−1
n−k−1

)
.

Theorem 2.3. Let assume that n,m ∈ N and m ≤ n. Then for k ∈ N,[
Kn,m

k

]
=

m∑
i=0

(
m

i

)(
n

i

)[
i

k + 2i− (m+ n)

]
i!.

Proof. We will prove this theorem by a combinatorial argument. Since Kn,m does not
contain any odd cycles beside the 1-cycles, in cycles of length 2 or higher, each vertex
in one part can be matched with a vertex in the other part, where all the matchings
are pairwise disjoint. Due to this observation, we will first choose i vertices in
each part that will be in an even cycle. The remaining vertices in each part then
become 1-cycles, and there are m+ n− 2i such cycles. As a result, we are left with
l = k − (m + n − 2i) even cycles in a graph H isomorphic to Ki,i. Let us assume
that the vertices in one part of H are labeled v1, . . . , vi, and we call this part H1.
We will label the vertices in H2, the other part of H, by u1, . . . , ui. Suppose C is an
even cycle in H and let v be a vertex in C that belongs to H1. Starting with v and
traversing C, we will visit the vertices in H1 at every other step until we return to v,
given that C is of length 4 or higher. This creates a cycle of labels of vertices in C
whose length is half of the length of C. On the other hand, if C is a 2-cycle, the label
of v creates a 1-cycle among the labels of vertices in H1. Based on this observation,
we will first partition the labels in H1 into l disjoint cycles, which can be done in

[
i
l

]
many ways. Then we rearrange the vertices in H2 in i! ways and create even cycles
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in H accordingly: Let C1, . . . , Cl be a cyclic partition of the labels of vertices in H1

into l cycles arranged in a left-to-right order. Starting with the leftmost vertex v′ in
the leftmost cycle C ′ not yet being used, we will match v′ with the leftmost available
vertex in a fixed rearrangements of u1, . . . , ui, and then by moving back and forth
between H2 and H1, we match the vertex at each step with the leftmost available
vertex in the other part, until all the vertices in C ′ has been visited and we are back
at v′. We then move on to the next available cycle in C1, . . . , Cl, and repeat this
process.

Finally, by summing over k = 0, . . . ,m+ n, we have

Kn,m! =
m+n∑
k=0

[
Kn,m

k

]
=

m+n∑
k=0

m∑
i=0

(
m

i

)(
n

i

)[
i

k + 2i− (m+ n)

]
i!

=
m∑
i=0

(
m

i

)(
n

i

)
i!

(
m+n∑
k=0

[
i

k + 2i− (m+ n)

])

=
m∑
i=0

m i

(
n

i

)( m+n−i∑
k=m+n−2i

[
i

k + 2i− (m+ n)

])

=
m∑
i=0

m i

(
n

i

)( i∑
j=0

[
i

j

])
=

m∑
i=0

m i

(
n

i

)
i! =

m∑
i=0

m in i,

which confirms part (4) of Theorem 1.1 with the assumption that m = min{m,n}.
We will finish this section with theorems regarding wheels and fans.

Theorem 2.4. For n ≥ 3, let Wn = K1 on Cn. Then

1.
[
Wn

k

]
=
(
k−1
n−k

)
+ 2
(

k−1
n−k−1

)
+ n
(
k−1
n−k

)
+ 2n

∑n−k−1
j=0

(
k−1
j

)
for k ≥ 3;

2.
[
W3

2

]
= 11 and

[
Wn

2

]
= 2(1 + 2n) for n ≥ 4;

3.
[
Wn

1

]
= 2n.

Proof. Let v be the vertex representing K1 in K1 on Cn and we will refer to the
copy of Cn in this graphs as C. We will consider three cases: 1) v is in a 1-cycle;
2) v is in a 2-cycle; 3) v is in a cycle of length 3 or higher. It is easy to see what
happens when we have the first two cases. In the third case, since v needs to be in
a cycle C ′ of length three or higher, there will be two vertices in C, say u and w,
that are adjacent to v in C ′. Let us assume that we choose u first, for which we
have n possibilities. Then traversing C clockwise, we will choose w and add the path
P that thus connects u to w to form C ′, and then decide on the orientation on C ′.
Assuming that l is the number of vertices along P (including u and w), what is left
of Wn when we remove C is a path with n − l vertices. As a result, n − l needs to
be greater than or equal to k − 1 so that we can have a cyclic partition of K1 on Cn

into k cycles. This means that 2 ≤ l ≤ n− k+ 1. Consequently, for each choice of u,
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l, and the orientation on C ′, we have to find the number of cyclic partitions of Pn−l
into k − 1 cycles. Following this argument, when k ≥ 3, we have[

Wn

k

]
=

[
Cn

k − 1

]
+ n

[
Pn−1

k − 1

]
+ 2n

([
Pn−2

k − 1

]
+ · · ·+

[
Pk−1

k − 1

])
,

and as a result,[
Wn

k

]
=

(
k − 1

n− k

)
+ 2

(
k − 1

n− k − 1

)
+ n

(
k − 1

n− k

)
+ 2n

n−k−1∑
j=0

(
k − 1

j

)
,

which proves part(1) using Theorems 2.1 and 2.2. When n ≥ 4 and k = 2, v is either
in a 1-cycle, or in a cycle of length 3 or higher. In the former case, the other cycle
is C; in the latter case, the other cycle is either a 1-cycle or a 2-cycle. Therefore,[
Wn

2

]
= 2 + 2n+ 2n. The case where n = 3 and k = 2 can easily be checked by hand.

Finally, part (3) follows from the fact that K1 on Cn has n undirected Hamiltonian
cycles.

Corollary 2.1. For n, k ≥ 3, if n > 2k, then
[
Wn

k

]
= n2k.

A combinatorial argument for the above corollary is this: Let v and C be the
same as in the previous proof. It is not hard see that v cannot be in a 1-cycle or a
2-cycle, because we will not be able to partition C into k − 1 cycles, even if we use
only 2-cycles to do so. As a result, v is in a cycle of length 3 or higher. We choose
a vertex in C, say u. Starting with u, we traverse clockwise along C and partition
the graph into k − 1 cycles of size 1 or 2. The remaining vertices along with v form
a cycle that can be oriented in two different ways. Therefore,

[
Wn

k

]
= n2k.

Theorem 2.5. For n ≥ 2, let Fn = K1 on Pn. Then for k ≥ 1,[
Fn

k

]
=

(
k − 1

n− k + 1

)
+ (2k − n)

(
k

n− k

)
+ 2k

n−k+1∑
i=2

(
k − 1

n− i− k + 1

)
.

Proof. Let v be the vertex representing K1 in K1 on Pn and we will refer to the copy
of Pn in this graphs as P . We will consider three cases: 1) v is in a 1-cycle; 2) v is
in a 2-cycle; 3) v is in a cycle of length 3 or higher. It is easy to see what happens
in the first case. In the second case, we will first partition P into k cycles, which
can be done in

[
Pn

k

]
=
(

k
n−k

)
ways. We know from the proof of Theorem 2.1 that the

number of 1-cycles in any cyclic partition of P into k cycles is 2n−k. We choose one
them and make it a 2-cycle in Fn by adding v to it. In the third case, let us assume
that the number of vertices in C the cycle containing v, v itself excluded, is i. It is
easy to see that 2 ≤ i ≤ n− k + 1, since we need at least k − 1 vertices not in C in
order to partition Fn into k cycles. It follows that the number of these partition is
equal to the number of integer solutions to the Diophantine equation

x1 + · · ·+ xk = n,



AMIR BARGHI /AUSTRALAS. J. COMBIN. 70 (2) (2018), 253–268 259

Figure 1: Ln and L∗n

where xj ∈ {1, 2} for all 1 ≤ j ≤ k, with the exception of one them that needs to be
equal to i. The reasoning is this: Starting from one of the leaves of P , say u, each xj
represents whether the j-th cycle from u along P is a 1-cycle or a 2-cycle, with the
exception of one representing the number of vertices in C that belong to P . We will
first choose which xj is equal to i. Then by removing it from the above Diophantine
equation, we are left with the equation

y1 + · · ·+ yk−1 = n− i,

where yj ∈ {1, 2} for all 1 ≤ j ≤ k − 1. We know the number of integer solutions to
this equation is

(
k−1

n−i−k+1

)
. Keeping in mind that C has two distinct orientations, we

finish the proof.

Corollary 2.2. For n ≥ 2, if n ≥ 2k, then
[
Fn

k

]
= k2k.

A combinatorial argument, similar to the one we have for Corollary 2.1, can be
made for this corollary as well. We leave this to the reader.

3 Stirling Numbers of the First Kind for Ladders

In this section, we will find the ordinary generating functions for the Stirling numbers
of the first kind for three different families of ladders. The first ladder that we
will consider is Ln = P2�Pn, where n ∈ N. We assume that

[
L0

k

]
= [k = 0].

Also, it is clear that for n ∈ N,
[
Ln

0

]
= 0, and for k > 2n,

[
Ln

k

]
= 0. Now let

l(x, y) =
∑∞

n=0

∑∞
k=0

[
Ln

k

]
ykxn.

Theorem 3.1. For n ∈ N, let Ln = P2�Pn. With the assumption that
[
L0

k

]
= [k =

0], the ordinary generating function for
[
Ln

k

]
is

l(x, y) =
(1− yx)(1− x)

1− (1 + y)2x− (−1 + y)y2x2 + 2y2(1 + y)x3 − y3x4
.

Proof. In order to find the ordinary generating function of
[
Ln

k

]
, we need to consider

the family of graphs L∗n obtained from Ln by linking a new vertex to one of the
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vertices on one of the boundary copies of P2 in Ln (see Figure 1). We assume that
L∗0 = P1 and let l∗(x, y) =

∑∞
n=0

∑∞
k=0

[
L∗
n
k

]
ykxn.

Suppose v is one the vertices in one of the boundary copies of Pn in Ln. By
considering the cases where v is in a 1-cycle, a 2-cycle, or a cycle of length 3 or
higher, for n ≥ 3 and k ≥ 2, we have the recurrence[

Ln

k

]
=

[
L∗n−1
k − 1

]
+

[
Ln−1

k − 1

]
+

[
L∗n−2
k − 2

]
+

[
Ln−2

k − 2

]
+ 2

n−1∑
i=1

[
Ln−1−i

k − 1

]
, (2)

and consequently,[
Ln−1

k

]
=

[
L∗n−2
k − 1

]
+

[
Ln−2

k − 1

]
+

[
L∗n−3
k − 2

]
+

[
Ln−3

k − 2

]
+ 2

n−2∑
i=1

[
Ln−2−i

k − 1

]
. (3)

Note that the above equation holds when n = 3 and k ≥ 2. By subtracting (3) from
(2), we have [

Ln

k

]
−
[
Ln−1

k

]
=

[
L∗n−1
k − 1

]
+

[
Ln−1

k − 1

]
+

[
L∗n−2
k − 2

]
+

[
Ln−2

k − 2

]
+

[
Ln−2

k − 1

]
−
[
L∗n−2
k − 1

]
−
[
L∗n−3
k − 2

]
−
[
Ln−3

k − 2

]
.

(4)

On the other hand, for n ≥ 1 and k ≥ 1, we have[
L∗n
k

]
=

[
Ln

k − 1

]
+

[
L∗n−1
k − 1

]
. (5)

Noting that
[
Ln

1

]
= 2 for n ≥ 2,

[
L∗
n
1

]
= 0 for n ≥ 1,

l(x, y) = 1 + yx+ y2x+ 2yx2 + 2y2x2 + 4y3x2 + y4x2 +
∞∑
n=3

∞∑
k=1

[
Ln

k

]
ykxn,

and

l∗(x, y) = y + 2y2x+ y3x+
∞∑
n=2

∞∑
k=1

[
L∗n
k

]
ykxn,

and by using (4) and (5), we have the following matrix equation[
1− x− yx− yx2 − y2x2 + y2x3 −yx+ yx2 − y2x2 + y2x3

−y 1− yx

] [
l(x, y)
l∗(x, y)

]
=

[
1− x
0

]
.

By solving this matrix equation, we have

[
l(x, y)
l∗(x, y)

]
=

[
1− yx yx− yx2 + y2x2 − y2x3
y 1− x− yx− yx2 − y2x2 + y2x3

] [
1− x

0

]
1− (1 + y)2x− (−1 + y)y2x2 + 2y2(1 + y)x3 − y3x4

,
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ee′

Figure 2: A cyclic partition of L6 and the associated domino tiling of P2�L6

which gives us

l∗(x, y) =
y(1− x)

1− (1 + y)2x− (−1 + y)y2x2 + 2y2(1 + y)x3 − y3x4

and

l(x, y) =
(1− yx)(1− x)

1− (1 + y)2x− (−1 + y)y2x2 + 2y2(1 + y)x3 − y3x4
.

Corollary 3.1. For n ∈ N, let Ln = P2�Pn. With the assumption that L0! = 1, the
ordinary generating function for Ln! is

l̂(x) = l(x, 1) =
1− x

1− 3x− 3x2 + x3
.

According to the Online Encyclopedia of Integer Sequences, the sequence Ln! is
the number of perfect matchings (or domino tilings) of C4�Pn = P2�Ln [9]. (For
more on domino tilings of P2�Pn�P2m, where n,m ∈ N, see [1].) Here is how the
bijection between the graph factorial of Ln and the perfect matchings of P2�Ln

works: 1) When a vertex v is a 1-cycle in Ln, in the associated domino tiling we
place a vertical domino between the two copies of v in C4�Pn. 2) When u and v
form a 2-cycle, in the associated domino tiling, we place two horizontal dominoes
between the two copies of u and v in each copy of Ln. 3) We know that Ln does
not contain any odd cycles other than the 1-cycles, since it is bipartite. Let C be
an even cycle of length four or higher. Since Ln has only two copies of Pn, there
are two edges in C that each link a vertex in one copy of Pn in Ln to a vertex in
the other copy of Ln. Let e be the edge on the right and e′ the one on the left. If
C is traversed clockwise in Ln, then we put a domino on the upper copy of Ln in
C4�Pn along e. Then we place two dominoes in the lower copy of Ln, perpendicular
to the first domino and to its left, so that the projections of these three dominoes
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v

u

Figure 3: T2n and T2n+1

into the plane P containing one of the copies of Ln give us three consecutive edges in
C. Now we will go to the upper copy and place two more parallel dominoes directly
to the left of the two previously-placed dominoes so that their projections into P

overlap at two vertices. We will continue in this fashion until the projections of the
placed dominoes into P reaches e′. (See Figure 2.) On whichever copy of Ln the last
two dominoes are placed, we will place a domino along e′ in the other copy. If C
is traversed counter-clockwise, we will do the same process, but will place the first
domino on the lower copy.

The second family of ladders we are considering is defined as follows: For n ∈ N,
we define the triangular ladder on 2n vertices, denoted by T2n, to be the graph
obtained from Ln by adding parallel diagonals in each face of Ln. In order to find[
T2n

k

]
, we need to define the triangular ladder graphs on 2n+ 1 vertices, denoted by

T2n+1: these graphs are obtained from T2n by adding a vertex and linking it to the two
adjacent boundary vertices in T2n. We call this vertex the corner vertex of T2n+1. (See
Figure 3.) As we will demonstrate below, regardless of whether the number of vertices
is even or odd, the number of cycle decompositions of these families of graphs satisfy
the same recurrence relation. Because of this, we will combine to two families and find
the ordinary generating function for this new family, t(x, y) =

∑∞
n=0

∑∞
k=0

[
Tn

k

]
ykxn.

We assume that
[
T0

k

]
= [k = 0]. It is easy to see that for n ∈ N,

[
Tn

0

]
= 0, and for

k > n,
[
Tn

k

]
= 0.

Theorem 3.2. For n ∈ N, let Tn be the triangular ladder graph on n vertices. With
the assumption that

[
T0

k

]
= [k = 0], the ordinary generating function for

[
Tn

k

]
is

t(x, y) =
1− x

1− (1 + y)x− y(1 + y)x3 + y2x5
.

Proof. Suppose v is a degree two vertex in one of the boundary copies of Pn in T2n
(see Figure 3). By considering the cases where v is in a 1-cycle, a 2-cycle, a 3-cycle,
or a cycle of length 4 or higher, for n ≥ 2 and k ≥ 2, we have the recurrence[

T2n
k

]
=

[
T2n−1
k − 1

]
+

[
T2n−2
k − 1

]
+

[
T2n−3
k − 2

]
+

[
T2n−4
k − 2

]
+ 2

2n−3∑
i=1

[
Ti

k − 1

]
.
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On the other hand, when u is the corner vertex in T2n+1 (see Figure 3), the cases
where u is in a 1-cycle, a 2-cycle, a 3-cycle, or a cycle of length 4 or higher, for n ≥ 2
and k ≥ 2, we have[

T2n+1

k

]
=

[
T2n
k − 1

]
+

[
T2n−1
k − 1

]
+

[
T2n−2
k − 2

]
+

[
T2n−3
k − 2

]
+ 2

2n−2∑
i=1

[
Ti

k − 1

]
.

Note that regardless of whether the number of vertices is odd or even, for n ≥ 4 and
k ≥ 2, the number of cyclic partitions of this family of graphs into k cycles satisfies
the recurrence relation[

Tn
k

]
=

[
Tn−1
k − 1

]
+

[
Tn−2
k − 1

]
+

[
Tn−3
k − 2

]
+

[
Tn−4
k − 2

]
+ 2

n−3∑
i=1

[
Ti

k − 1

]
. (6)

It follows that[
Tn−1
k

]
=

[
Tn−2
k − 1

]
+

[
Tn−3
k − 1

]
+

[
Tn−4
k − 2

]
+

[
Tn−5
k − 2

]
+ 2

n−4∑
i=1

[
Ti

k − 1

]
. (7)

By subtracting equation (7) from equation (6), for n ≥ 5 and k ≥ 2, we have[
Tn
k

]
−
[
Tn−1
k

]
−
[
Tn−1
k − 1

]
−
[
Tn−3
k − 1

]
−
[
Tn−3
k − 2

]
+

[
Tn−5
k − 2

]
= 0. (8)

Noting that
[
Tn

1

]
= 2 for n ≥ 2, and

t(x, y) = 1 + yx+ yx2 + y2x2 + 2yx3 + 3y2x3 + y3x3 + 2yx4 + 6y2x4

+5y3x4 + y4x4 +
∞∑
n=5

∞∑
k=1

[
Tn
k

]
ykxn,

by using (8), we have

t(x, y) =
1− x

1− (1 + y)x− y(1 + y)x3 + y2x5
.

Corollary 3.2. For n ∈ N, let Tn be the triangular ladder graph on n vertices. With
the assumption that T0! = 1, the ordinary generating function for Tn! is

t̂(x) = t(x, 1) =
1− x

1− 2x− 2x3 + x5
.

According to the Online Encyclopedia of Integer Sequences, the sequence Tn! is
the number permutations of length n within distance 2 of a fixed permutation [10].
Without loss of generality, we may assume that the fixed permutation used is the
identity permutation 1 2 · · · n. If π is a permutation on [n], then its distance from
the identity permutation is defined as maxi∈[n] |pi − i|. In general, V (d, n) denotes
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Figure 4: Labeling the vertices of T12 and T13

the number of permutations of length n with distance d of a fixed permutation [8].
Here we are dealing with V (2, n).

Here is how the bijection between the number of cycle decomposition of Tn and
V (2, n) works: When n is even, label the boundary vertex of degree two in Tn with
1 and then, alternating between the two copies of Pn, label the rest of the vertices
with numbers 2 through n. When n is odd, label the corner vertex of Tn with 1 and
then, by alternating between the two copies of Pn, label the rest of the vertices with
numbers 2 through n such that 2 is a degree three vertex while 3 is a degree four
vertex. In either case, any label is only adjacent to labels that are at distance at
most two from it. In a cyclic partition of this graph, if a label is in a 1-cycle, then in
the bijection, that label is a fixed point of the associated permutation. If two labels
form a 2-cycle, then in the bijection, these two labels are switched in the associated
permutation. Finally, if l1, l2, . . . , lk is a cycle of length three or higher, then in the
associated permutation, l1 is in l2’s position, l2 is in l3’s position, etc. It is not hard
to see that because of how the labeling is constructed, the distance of the resulting
permutation from the identity permutation is at most two. (See Figure 4.)

Now we will find the Stirling number of the first kind of the strong ladder graph
Sn = P2 � Pn. We assume that

[
S0

k

]
= [k = 0]. Also, it is easy to see that for n ≥ 1,[

Sn

0

]
= 0, and for k > 2n,

[
Sn

k

]
= 0. Now let s(x, y) =

∑∞
n=0

∑∞
k=0

[
Sn

k

]
ykxn.

Theorem 3.3. For n ∈ N, let Sn = P2 � Pn, where � is the strong graph product.
With the assumption that

[
S0

k

]
= [k = 0], the ordinary generating function for

[
Sn

k

]
is

s(x, y) =
1− 2x− 2yx

1− (2 + 3y + y2)x− 2y(2 + 3y + y2)x2 + 4y(1 + y)2x3
.

Proof. In order to find the ordinary generating function of
[
Sn

k

]
, we need to consider

the family of graphs S∗n obtained from Sn by adding a vertex and linking it to the two
vertices in one of the boundary copies of Pn in Sn. Let s∗(x, y) =

∑∞
n=0

∑∞
k=0

[
S∗
n
k

]
ykxn

be the ordinary generating function for the Stirling numbers of the first kind of the
members of this family of graphs. To make computing s(x, y) and s∗(x, y) easier, we
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Figure 5: Sn, S∗n, and S�n

will denote Sn and S∗n by S2n and S2n+1, respectively, based the number of vertices
in each graph. Hence,

s(x, y) =
∞∑
n=0

∞∑
k=0

[
S2n

k

]
ykxn

and

s∗(x, y) =
∞∑
n=0

∞∑
k=0

[
S2n+1

k

]
ykxn.

Suppose v is one the vertices in one of the boundary copies of Pn in S2n. By
considering the cases where v is in a 1-cycle, a 2-cycle, a 3-cycle, or a cycle of length
4 or higher, for n ≥ 3 and k ≥ 2, we have the recurrence[

S2n

k

]
=

[
S2n−1

k − 1

]
+

[
S2n−2

k − 1

]
+ 4

[
S2n−3

k − 1

]
+ 2

[
S2n−3

k − 2

]
+ 2

[
S2n−4

k − 1

]
+ 2

[
S2n−4

k − 2

]
+ 4

n−2∑
i=0

2i

[
S2n−4−2i

k − 1

]
+ 2

n−2∑
i=0

2i

[
S2n−4−2i

k − 2

]
+ 8

n−3∑
i=0

2i

[
S2n−5−2i

k − 1

]

+ 4
n−3∑
i=0

2i

[
S2n−5−2i

k − 2

]
.

(9)

In the above sums, the reason for 2i in each term is that cycles of length 4 or higher
can either use two parallel or two crossing edges in each � of this strong product.
On the other hand, for n ≥ 2 and k ≥ 1, we have[

S2n+1

k

]
=

[
S2n

k − 1

]
+ 2

[
S2n−1

k − 1

]
+ 2

n−1∑
i=0

2i

[
S2n−2−2i

k − 1

]
+ 4

n−2∑
i=0

2i

[
S2n−3−2i

k − 1

]
. (10)
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Consequently, for n ≥ 3 and k ≥ 2, we have[
S2n−1

k

]
=

[
S2n−2

k − 1

]
+ 2

[
S2n−3

k − 1

]
+ 2

n−2∑
i=0

2i

[
S2n−4−2i

k − 1

]
+ 4

n−3∑
i=0

2i

[
S2n−5−2i

k − 1

]
(11)

and[
S2n−1

k − 1

]
=

[
S2n−2

k − 2

]
+ 2

[
S2n−3

k − 2

]
+ 2

n−2∑
i=0

2i

[
S2n−4−2i

k − 2

]
+ 4

n−3∑
i=0

2i

[
S2n−5−2i

k − 2

]
. (12)

By subtracting the sum of (12) and two times (11) from (9), for n ≥ 3 and k ≥ 2,
we have[

S2n

k

]
− 2

[
S2n−1

k

]
− 2

[
S2n−1

k − 1

]
+

[
S2n−2

k − 1

]
+

[
S2n−2

k − 2

]
− 2

[
S2n−4

k − 1

]
− 2

[
S2n−4

k − 2

]
= 0. (13)

On the other hand, by subtracting two times (11) from (10), for n ≥ 3 and k ≥ 2,
we have [

S2n+1

k

]
−
[
S2n

k − 1

]
− 2

[
S2n−1

k

]
− 2

[
S2n−1

k − 1

]
= 0. (14)

Noting that
[
S2n
1

]
= 2n for n ≥ 3,

[
S2n+1

1

]
= 2n for n ≥ 1,

s(x, y) = 1 + yx+ y2x+ 6yx2 + 11y2x2 + 6y3x2 + y4x2 +
∞∑
n=3

∞∑
k=1

[
S2n

k

]
ykxn,

and s∗(x, y) =

y+ 2yx+ 3y2x+ y3x+ 4yx2 + 16y2x2 + 19y3x2 + 9y4x2 + y5x2 +
∞∑
n=3

∞∑
k=1

[
S2n+1

k

]
ykxn,

by using (13) and (14), we have the following matrix equation[
1 + yx+ y2x− 2yx2 − 2y2x2 −2x− 2yx

−y 1− 2x− 2yx

] [
s(x, y)
s∗(x, y)

]
=

[
1
0

]
.

By solving this matrix equation, we have

[
s(x, y)
s∗(x, y)

]
=

[
1− 2x− 2yx 2x+ 2yx

y 1 + yx+ y2x− 2yx2 − 2y2x2

] [
1
0

]
1− (2 + 3y + y2)x− 2y(2 + 3y + y2)x2 + 4y(1 + y)2x3

,

which gives us

s∗(x, y) =
y

1− (2 + 3y + y2)x− 2y(2 + 3y + y2)x2 + 4y(1 + y)2x3

and

s(x, y) =
1− 2x− 2yx

1− (2 + 3y + y2)x− 2y(2 + 3y + y2)x2 + 4y(1 + y)2x3
.
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Corollary 3.3. For n ∈ N, let Sn = P2 � Pn, where � is the strong graph product.
With the assumption that S0! = 1, the ordinary generating functions for S∗n! and Sn!
are

ŝ∗(x) = s∗(x, 1) =
1

1− 6x− 12x2 + 16x3

and

ŝ(x) = s(x, 1) =
1− 4x

1− 6x− 12x2 + 16x3
,

respectively.

According to the Online Encyclopedia of Integer Sequences, the sequence Sn! is
the number of 2× n array permutations with each element making zero or one king
moves [6].

Finally, we will find the factorial of the family S�n obtained from Sn−1 by adding
two vertices to this graph and then linking one of the new vertices to the two adjacent
vertices in a boundary copy of P2 in Sn−1 and linking the other new vertex to the
other two. (See Figure 5.) We will call this graph on 2n vertices, the strong diamond
ladder. We will omit the following theorem’s proof as it is very similar to that of
Theorem 3.3.

Theorem 3.4. For n ∈ N, let S�n be the strong diamond graph on 2n vertices. With
the assumption that

[
S�
0
k

]
= [k = 0] and

[
S�
1
k

]
= [k = 1], the ordinary generating

function for
[
S�
n
k

]
is d(x, y) = P (x, y)/Q(x, y), where

P (x, y) = 1− (4 + 3y + y2)x+ (4 + 2y + 3y3 + y4)x2 − 2y(−6− 8y − y2 + y3)x3

− 4y(1 + y)2(2 + 3y2 + y3)x4 + 8y3(1 + y)3x5

and

Q(x, y) = (1− 2x− 2yx)(1− (2 + 3y+ y2)x− 2y(2 + 3y+ y2)x2 + 4y(1 + y)2x3).
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