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Abstract

Let A be a non-trivial, finitely-generated abelian group and A∗ = A\{0}.
A graph is A-magic if there exists an edge labeling f using elements of A∗

which induces a constant vertex labeling of the graph. Such a labeling
f is called an A-magic labeling and the constant value of the induced
vertex labeling is called the A-magic value. The integer-magic spectrum
of a graph G is the set

IM(G) = {k ∈ N | G is Zk-magic},
where N is the set of natural numbers. The null set of G is the set of
integers k ∈ N such that G has a Zk-magic labeling with magic value 0.
In this paper, we determine the integer-magic spectra and null sets of the
Cartesian product of two trees.

1 Introduction

All concepts and notation not explicitly defined in this paper can be found in [2].
Let G = (V,E) be a connected simple graph. For any non-trivial, finitely generated
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abelian group A (written additively), let A∗ = A \ {0}. A mapping f : E → A∗

is called an edge labeling of G. Any such edge labeling induces a vertex labeling
f+ : V → A, defined by f+(v) =

∑

uv∈E
f(uv). If there exists an edge labeling f whose

induced mapping on V is a constant map, we say that f is an A-magic labeling of
G and that G is an A-magic graph. The corresponding constant is called an A-
magic value. The integer-magic spectrum of a graph G is the set IM(G) = {k ∈
N | G is Zk-magic}, where N is the set of natural numbers. Here, Z1 is understood
to be the set of integers. Generally speaking, it is quite difficult to determine the
integer-magic spectrum of a graph. Note that the integer-magic spectrum of a graph
is not to be confused with the set of achievable magic values.

Group-magic graphs were studied in [7, 9, 15, 16, 26] and Zk-magic graphs were
investigated in [4,6,8,10–14,17–22,27,28]. Z-magic graphs were considered by Stanley
[29, 30], where he pointed out that the theory of magic labelings could be studied
in the general context of linear homogeneous diophantine equations. They were also
considered in [1, 23].

Within the mathematical literature, various definitions of magic graphs have been
introduced. The original concept of an A-magic graph is due to J. Sedlacek [24, 25],
who defined it to be a graph with real-valued edge labeling such that (i) distinct edges
have distinct nonnegative labels, and (ii) the sum of the labels of the edges incident
to a particular vertex is the same for all vertices. Previously, Kotzig and Rosa [5] had
introduced yet another definition of a magic graph. Over the years, there has been
considerable interest in graph labeling problems. The interested reader is directed
to Wallis’ [31] monograph on magic graphs and to Gallian’s [3] excellent dynamic
survey of graph labelings.

2 Cartesian product of a tree with a path

Some work on group-magic labelings of trees and their related graphs appear
within the literature [11–14,17,21,22]. With regards to Cartesian products, Low and
Lee [15] showed the following: If G and H are Zk-magic, then G × H is Zk-magic.
In this section, we study the group-magicness of the Cartesian product of trees with
paths.

With the purpose of constructing large classes of Zk-magic graphs, Salehi [19,20]
introduced the concept of a null set of a graph. The null set of a graph G, denoted
by N(G), is the set of integers k ∈ N such that G has a Zk-magic labeling with magic
value 0. Hence, N(G) ⊆ IM(G).

It is easy to see that a graph G is Z2-magic if and only if the degrees of the
vertices are of the same parity. Moreover, 2 ∈ N(G) if and only if the degree of each
vertex of G is even.

Let G be a graph of order s and Pt be the path of order t. Let V (G) = {g1, . . . , gs}
and V (Pt) = {p1, . . . , pt}. Consider the Cartesian product graph G×Pt. For a fixed
i, the subgraph induced by {(gi, pj) | 1 ≤ j ≤ t} is called a vertical path (or more
precisely, the gi-path). For a fixed j, the subgraph induced by {(gi, pj) | 1 ≤ i ≤ s}
is called a horizontal graph (or more precisely, the j-th graph).
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Remark 2.1. For P2 × P2
∼= C4, we label the edges (clockwise) 1,−1, 1 and −1.

Thus, N(P2 × P2) = N = IM(P2 × P2).

Lemma 2.1. Let s ≥ 2 and t ≥ 3. Then, N(Ps × Pt) = N \ {2} = IM(Ps × Pt).

Proof: Since Ps × Pt contains vertices of even and odd degrees, it is not Z2-magic.
Let Ps = g1 · · · gs. Label the vertical g1-path and gs-path by 1 and the other vertical
gj-paths (if any) by 2, where 2 ≤ j ≤ s− 1; label the horizontal 1-st and t-th paths
by −1 and the other horizontal paths by −2. This yields a Zk-magic labeling with
magic value 0, for k ∈ N \ {2}. �

For s ≥ 3, t ≥ 2 and 1 ≤ r ≤ s, let B(r; s, t) be the graph obtained from Ps × Pt

by deleting all edges of the r-th vertical path. Note that B(r; s, t) ∼= B(s−r+1; s, t).

Remark 2.2. Observe that B(2; 3, 2) ∼= C6. In this case, we label the edges (clock-
wise) 1,−1, 1,−1, 1 and −1. Thus, N(B(2; 3, 2)) = N = IM(B(2; 3, 2)).

Lemma 2.2. Let s ≥ 3, t ≥ 2 and 2 ≤ r ≤ s − 1. If (s, t) 	= (3, 2), then
N(B(r; s, t)) = N \ {2} = IM(B(r; s, t)).

Proof: Clearly, B(r; s, t) is not Z2-magic. To obtain a Zk-magic labeling forB(r; s, t)
with magic value 0 (for k 	= 2), we perform the following steps:

1. Label Ps × Pt using the labeling found in the proof of Lemma 2.1.

2. Delete the edges of the r-th vertical path.

3. Multiply all edge labels that are to the left (or right) of the (former) r-th vertical
path by −1. �

Example 2.1. Here are some labelings (see Figure 1) which illustrate the proofs of
Lemmas 2.1 and 2.2 for P5 × P3, B(2; 5, 3) and B(3; 5, 3), respectively:
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Definition 2.1. Let T be a tree, u ∈ V (T ) and deg(u) ≥ 3. We say that u has the
2-pendant paths property to mean the following:
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• There exists two paths uv1v2 · · · va and uw1w2 · · ·wb.

• T is the edge-disjoint union of [T − ({vi | 1 ≤ i ≤ a} ∪ {wj | 1 ≤ j ≤ b})] and
path wb · · ·w1uv1 · · · va, through identification of vertex u.

Lemma 2.3. Let T be a tree which is not a path. Then, there exists a vertex u ∈
V (T ) which has the 2-pendant paths property.

Proof: View T as a rooted tree. Since T is not a path, there is a vertex u furthest
away from the root, where deg(u) ≥ 3. Then, there are at least two subtrees of u
which are paths. Hence, u has the 2-pendant paths property. �

Lemma 2.4. Let s ≥ 2. If Ts is a tree of order s, then N \ {2} ⊆ N(Ts × P2) ⊆
IM(Ts × P2).

Proof: For s = 2, the claim holds by Remark 2.1. Now, let s ≥ 3. Using math-
ematical induction, we assume that the claim holds for any tree of order less than
s, where s ≥ 3. Now consider Ts, a tree of order s. If Ts = Ps, then we are done
by Lemma 2.1. Suppose that Ts is not a path. Then by Lemma 2.3, there exists a
vertex u of Ts which has the 2-pendant paths property. Let uv1 · · · va and uw1 · · ·wb

be two such pendant paths. Let T = Ts −
({vi | 1 ≤ i ≤ a} ∪ {wj | 1 ≤ j ≤ b}) and

G = T×P2. Let P be the path wb · · ·w1uv1 · · · va, which is isomorphic to Pa+b+1. Let
B be the graph obtained from P ×P2 by deleting the edges of the (b+ 1)-st vertical
path. Here, B is isomorphic to B(b+1; a+ b+1, 2). Now, G and B are edge-disjoint
and Ts × P2 = G ∪ B, (via identification of the copies of u in G with the vertices
of the edge-deleted (b + 1)-st vertical path in B). By the inductive hypothesis and
Lemma 2.2 (or Remark 2.2, if B ∼= B(2; 3, 2) ∼= C6), we know that G and B have
Zk-magic labelings with magic value 0, for k 	= 2. Combining these two Zk-magic
labelings, we get the required Zk-magic labeling of Ts × P2, for k 	= 2. Hence by
mathematical induction, the claim is established. �

Theorem 2.5. Let s ≥ 2 and t ≥ 3. If Ts is a tree of order s, then N(Ts × Pt) =
N \ {2} = IM(Ts × Pt).

Proof: Since Ts × Pt contains vertices of even and odd degrees, it is not Z2-magic.
From Lemma 2.1, the claim holds when s = 2 or s = 3. Using mathematical
induction, we assume that the claim holds for any tree of order less than s, where
s ≥ 4. Now consider Ts, a tree of order s. If Ts = Ps, then we are done by Lemma 2.1.
Suppose that Ts is not a path. Then by Lemma 2.3, there exists a vertex u of Ts

which has the 2-pendant paths property. Let uv1 · · · va and uw1 · · ·wb be two such
pendant paths. Let T = Ts −

({vi | 1 ≤ i ≤ a} ∪ {wj | 1 ≤ j ≤ b}) and G = T × Pt.
Let P be the path wb · · ·w1uv1 · · · va, which is isomorphic to Pa+b+1. Let B be the
graph obtained from P × Pt by deleting the edges of the (b + 1)-st vertical path.
Here, B is isomorphic to B(b+ 1; a+ b+ 1, t). Now, G and B are edge-disjoint and
Ts×Pt = G∪B, (via identification of the copies of u in G with the vertices of the edge-
deleted (b+ 1)-st vertical path in B). By the inductive hypothesis and Lemma 2.2,
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we know that G and B have Zk-magic labelings with magic value 0, for k 	= 2.
Combining these two Zk-magic labelings, we get the required Zk-magic labeling of
Ts × Pt, for k 	= 2. Hence by mathematical induction, the claim is established. �

Example 2.2. Here are Zk-magic labelings (see Figure 2), where k 	= 2 for T5 × P3

and T7 × P3, respectively:
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Example 2.3. Note that K1,3 × P2 is an Eulerian graph with an even number of
edges. Traveling along an Eulerian circuit of K1,3 × P2, we can label the edges
1,−1, 1,−1, . . . , 1,−1. This is Zk-magic labeling with magic value 0, for k ∈ N. See
Figure 3.
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3 Cartesian product of two trees

Suppose T is a tree and t ≥ 3. Let BT (r; t) be the graph obtained from T × Pt

by deleting all the edges of the r-th horizontal tree, where 2 ≤ r ≤ t− 1.

Lemma 3.1. Let T be a tree of order at least 3, t ≥ 4 and 2 ≤ r ≤ t − 1. Then,
N(BT (r; t)) = N \ {2} = IM(BT (r; t)).

Proof: Since BT (r; t) contains vertices of even and odd degrees, it is not Z2-magic.
To obtain a Zk-magic labeling for BT (r; t) with magic value 0 (for k 	= 2), we perform
the following steps:

1. Label T × Pt, as described in the proof of Theorem 2.5.
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2. Delete the edges of the r-th horizontal tree.

3. Multiply all edge labels that are above (or below) the (former) r-th horizontal
tree by −1.

This gives us a Zk-magic labeling of BT (r; t) with magic value 0, for k 	= 2. �

Remark 3.1. Suppose that T is a tree of order at least 3 and t = 3. Then the
procedure described in the proof of Lemma 3.1 yields N \ {2} ⊆ N(BT (2; 3)) ⊆
IM(BT (2; 3)). If T has no vertex of even degree, BT (2; 3) has no vertices of odd
degree. In this case, labeling all of the edges of BT (2; 3) with 1 gives a Z2-magic
labeling with magic value 0. Thus, N(BT (2; 3)) = N = IM(BT (2; 3)). On the
other hand, if T has a vertex of even degree, then BT (2; 3) has vertices of even and
odd degrees and hence, is not Z2-magic. In this case, N(BT (2; 3)) = N \ {2} =
IM(BT (2; 3)).

Example 3.1. Here are some labelings which illustrate Remark 3.1. The integer-
magic spectrum of BT5(2; 3) is N \ {2}. See Figure 4. Now, let T = K1,3. Then, the
integer-magic spectrum of BT (2; 3) is N.
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Theorem 3.2. Let s, t ≥ 2. If Ts and Tt are trees of order s and t, respectively, then
N \ {2} ⊆ N(Ts × Tt) ⊆ IM(Ts × Tt).

Proof: Let s ≥ 2. When t = 2, the claim holds by Lemma 2.4. When t = 3,
the claim holds by Theorem 2.5. Using mathematical induction, we assume the
claim holds for any tree of order less than t, where t ≥ 4. Now consider Tt, a
tree of order t. If Tt = Pt, then we are done by Theorem 2.5. Suppose that Tt

is not a path. Then by Lemma 2.3, there exists a vertex u of Tt which has the
2-pendant paths property. Let uv1 · · · va and uw1 · · ·wb be two such pendant paths.
Let T = Tt −

({vi | 1 ≤ i ≤ a} ∪ {wj | 1 ≤ j ≤ b}) and G = Ts × T . Let P
be the path wb · · ·w1uv1 · · · va which is isomorphic to Pa+b+1. Let B be the graph
obtained from Ts×P by deleting the edges of the (b+1)-st horizontal tree. Here, B
is isomorphic to BTs(b+1; t). Now, G and B are edge-disjoint and Ts × Tt = G∪B.
By the inductive hypothesis and Lemma 3.1, we know that G and B have Zk-magic
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labelings with magic-value 0, for k 	= 2. Combining these two Zk-magic labelings, we
get the required Zk-magic of Ts × Tt, for k 	= 2. Hence by mathematical induction,
the claim is established. �

Remark 3.2. Theorem 3.2 establishes the entire integer-magic spectra and null sets
of the Cartesian product of two trees, for all k 	= 2. To determine if 2 is contained in
the integer-magic spectrum or null set of Ts × Tt, one merely examines the parities
of the degrees of the vertices in Ts × Tt.

Example 3.2. Here is a construction of a Zk-magic labeling with magic value 0 of
K1,3 ×K1,3, using the ideas in the proofs of the above results.

(1) From the proof of Lemma 2.1, we obtain labelings of P2 × P3 and P3 × P3.

(2) Perform the steps described in the proof of Lemma 2.2 on P3 × P3 to get a
labeling of B(3; 2, 3).

(3) From the proof of Theorem 2.5, we obtain a labeling of K1,3 × P3.

(4) From the proof of Lemma 3.1, we get a labeling of BK1,3(2; 3).

(5) Combining the labeling of K1,3 × P2 obtained in Example 2.3, we get a labeling
of K1,3 ×K1,3.

All labelings obtained above are magic with magic value 0. Here are the resulting
labelings (see Figure 5). Clearly, this is a Zk-magic labeling of K1,3×K1,3 with magic
value 0, for all k ∈ N.

Theorem 3.3. Let si ≥ 2, for 1 ≤ i ≤ 2r and Tsi be a tree of order si. Then,
N \ {2} ⊆ IM(Ts1 × Ts2 × Ts3 × Ts4 · · · × Ts2r−1 × Ts2r).

Proof: In [15], it was shown that the Cartesian product of two Zk-magic graphs is
Zk-magic. This, along with Theorem 3.2, establishes our claim. �

4 Miscellany

The main focus of this paper has been to determine the entire integer-magic
spectra and null sets of Ts × Tt. This section contains various miscellaneous results
which the authors encountered along the way.

We first note that Zk-magic labelings can be obtained for Ps × Pt with any
number of deleted vertical paths, excluding the 1-st and s-th vertical paths. This
is accomplished by repeatedly using the procedure described in the proof of Lemma
2.2. Thus, we have the following theorem:

Theorem 4.1. Let s ≥ 3, t ≥ 2 and G = Ps × Pt with some deleted vertical paths
(excluding the 1-st and s-th vertical paths). Then, N \ {2} ⊆ N(G) ⊆ IM(G).



W.C. SHIU AND R.M. LOW/AUSTRALAS. J. COMBIN. 70 (1) (2018), 157–167 164

1

−1

−1
1

−2

1

1 1

−1−1

1
−2

−1 −1
1 1

−2

2

2

−1

1

−1
1

−1

−1

1

2

1

−2

P2 × P3 P3 × P3 B(3; 2, 3)

1

−1

−1
1

−2

1

1

1

−1

1

−1

1

1

−1

−1
−2

2 1

−1

1

1

−1
1

−1

−1

1

−1

−1

−1

1
1

−1

−1

−1

1

1

−1

−1

1

1

1

K1,3 × P3 BK1,3(2; 3) K1,3 × P2

1

−1

1

−1

1

−1

−1

−1

1

1

−1

1

−1

1

1

−1

−1

11

−1

1

1

−1

−1

K1,3 ×K1,3

Figure 5

Example 4.1. Here is a Zk-magic labeling (see Figure 6) with magic value 0 (k 	= 2)
of P5 × P3 with its 2-nd and the 4-th vertical paths deleted. This was obtained by
using the procedure described in the proof of Lemma 2.2 twice.
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One can also obtain Zk-magic labelings for Ts ×Pt (where Ts is a tree of order s)
with any number of deleted horizontal trees, excluding the 1-st and t-th horizontal
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trees. This is accomplished by repeatedly using the procedure described in the proof
of Lemma 3.1. Thus, we have the following theorem:

Theorem 4.2. Let s ≥ 3, t ≥ 4 and G = Ts × Pt with some deleted horizontal trees
(excluding the 1-st and t-th horizontal trees). Then, N \ {2} ⊆ N(G) ⊆ IM(G).

Theorem 4.3. Suppose that 2 ≤ r ≤ s − 1 and t ≥ 2. Let path Ps = u1 · · ·us and
B(r; s, t) be the graph obtained from Ps × Pt by deleting all edges of the r-th vertical
path. Furthermore, suppose that G × Pt has a Zk-magic labeling with magic value
0, for k 	= 2. Let H be the one point union of G and Ps by identifying a vertex of
G with the vertex ur ∈ V (Ps). Then, H × Pt has a Zk-magic labeling with magic
value 0.

Proof: Note that H × Pt
∼= (G × Pt) ∪ B(r; s, t). The claim follows immediately

from this. �

To determine ifH×Pt (in Theorem 4.3) has a Z2-magic labeling, one merely examines
the parities of the degrees of the vertices.
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