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Abstract

We define a nearly platonic graph to be a finite k-regular simple planar
graph in which all but a small number of the faces have the same de-
gree. We show that it is impossible for such a graph to have exactly one
disparate face, and offer some conjectures, including the conjecture that
nearly platonic graphs with two disparate faces come in a small set of
families.

1 Introduction

Several authors [4, 10, 11, 13] have been interested in planar embeddings of graphs
in which almost all faces are of one type, with one or two exceptions. For the most
part, these papers deal with nearly regular planar graphs: those in which most faces
and vertices are of degrees that are a multiple of some m, and a small number
of other faces have degrees that are not a multiple of m. The proof techniques
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involve transformations which may change the number of edges of one or more faces,
preserving divisibility of their degrees by m. A typical theorem in the area is Lemma
2.2 of [13], which states that no 3-regular planar graph exists in which all but one
face has degree a multiple of three.

These theorems thus leave open the full question with which this article is in-
terested: is it possible to produce a vertex-regular planar graph in which almost all
faces have one degree and a small number of faces have a different degree, regardless
of whether the disparate face degrees are multiples of some m—e.g., can a 3-regular
graph be drawn in which all faces are triangles except for a single 9-gon—and if so,
what restrictions exist on the construction?1

For a single exceptional face, the answer is in the negative:

Theorem 1. There is no finite, planar, regular graph that has all but one face of
one degree and a single face of a different degree.

Nearly platonic graphs with two exceptional faces do exist. All of our construc-
tions at present are simple variants of the Platonic graphs; we conjecture that these
are the only possibilities. For three exceptional faces, constructions become abun-
dant.

For a question so easily stated, one suspects that the result is already folklore,
perhaps demanding greater than usual diligence in checking the literature. If it
is known, however, it is not widely known. Several commenters and one referee
suggested checking the work of Michel Deza and collaborators on chemical graphs
[5, 6] and related chemical graph software, CaGe and CPF [3]. Our main claim seems
to appear in Deza’s work, but in [5] without proof, and in [6] with a short paragraph
directing the reader to examine another list. (We learned to our regret that M. Deza
passed away during the preparation of this paper.) Certainly the result is apparently
unknown to the combinatorialists who are our main audience. A search through
standard graph theory textbooks [1, 7, 8], and others) yields no relevant theorem,
preprint queries (such as [15]) attracted no firm answer, and citations of [4, 13] etc.
remain interested in nearly regular graphs. We sought the advice of leading textbook
authors in graph theory, who responded [2, 14] that our main theorem is “new to
me, and of interest” and, for our conjecture, “I believe it but I don’t know if it has
actually been decided.”

The only theorems our proof requires are basic theorems of graph theory, and
some careful case by case vertex-counting. After the efforts described, we now have
some confidence that publication of our elementary proof of this theorem and the
description of the accompanying conjectures will be useful and hopefully stimulative
of further investigation.

In Section 1.1 we recall the relevant theorems of graph theory and construct the
basic properties we will make use of in the sequel. In Section 2 we establish the
negative answer for the case with a single exceptional face; in the final section we
discuss the cases of two and three exceptional faces, and offer some open questions.

1For the interested reader, the question arose in the context of teaching an introductory combi-
natorics course, in an attempt to construct a graph with exceptional outer face in anticipation of
student error.
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1.1 Basic theorems

A (v, e, f)-graph will denote a graph with that has v vertices and e edges that has a
planar embedding with f faces. Consider such a graph in which the degree of each
vertex is k, there are f1 faces of degree d1, and the remaining f2 = f−f1 have degree
d2. Every edge has two ends and abuts two faces, so twice the number of edges must
equal both the sum of the degrees of all the vertices, and the sum of the degrees of
the faces:

2e = kv

2e = f1d1 + f2d2.

An important theorem in graph theory is Euler’s formula, which holds that for all
planar graphs,

v − e+ f = 2.

Putting these pieces together and solving for various values we obtain:

f =
kv − f1(d1 − d2)

d2
(1)

v(2d2 − kd2 + 2k) = 2f1d1 + (4− 2f1)d2 (2)

e

kd2

(
4− (k − 2)(d2 − 2)

)
= Φ(f1, d1, d2), (3)

where

Φ(f1, d1, d2) = 2 +
f1(d1 − d2)

d2
= 2 + f1

(
d1
d2

− 1

)
.

If k = 2, our graph is just a polygon, which has two faces of equal degree (the
inner and the outer). Ignoring those, we have 3 ≤ k ≤ 5, since the minimum degree
of a planar graph is at most 5, and di ≥ 3, because faces must be at least triangles.

Now we can show that, regardless of k,

Lemma 2. If f1 ≤ 3, then Φ(f1, d1, d2) > 0.

Proof. If d1 ≥ d2, then obviously Φ(f1, d1, d2) > 0, so we assume d1 < d2. Then

−1 <
d1 − d2

d2
< 0

and so
2− f1 < Φ(f1, d1, d2) < 2.

Hence if f1 ≤ 2, then Φ(f1, d1, d2) > 0. We now consider f1 = 3. If d2 ≥ 6, then

2e = d2(f − 3) + 3d1 ≥ 6(f − 3) + 9 = 6f − 9 = 2(3f − 6) + 3 ≥ 2e+ 3

a contradiction. Hence d2 ≤ 5. Then

Φ(3, d1, d2) ≥ 2 + 3

(
3

5
− 1

)
=

4

5
> 0.
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Corollary 3. If f1 ≤ 3, then

(k, d2) = (3, 3), (3, 4), (3, 5), (4, 3), or (5, 3). (4)

Proof. The lemma shows that Φ(f1, d1, d2) is positive, when f1 ≤ 3. Then Equation 3
forces

(k − 2)(d2 − 2) < 4.

There are only five integral solutions to this inequality when k, d2 ≥ 3. They are the
solutions listed.

If f1 = 0 the five Platonic solids are obtained. One corresponds to each of the
five possibilities enumerated in Corollary 3, and a little more work (see any relevant
graph theory textbook, for instance [7]) shows that these are the only possible such
graphs.

2 f1 = 1: Nonexistence

If f1 = 1, then a single face has degree different from all the others. We show that
such a graph cannot exist.

We study the five possibilities for (k, d2) above in turn. In each case, we will
calculate the allowable number of vertices as a function of d1: substitute k, d2 and
f1 into Equation 2 and solve through for v.

v =
2(d1 + d2)

4− (k − 2)(d2 − 2)
(5)

Then we will consider how they might be adjacent to each other, eventually deriving
a contradiction. In each case, what we essentially show, reformulated, is that the
face regularity requirement has to be weakened further to gain any new graphs: the
class of possible graphs for a given (k, d2) with f1 ≤ 1 is still populated only by the
Platonic graphs, f1 = 0.

Without loss of generality we may assume that the graph has been drawn in the
plane so that F , the unique face of degree d1, is the outer face. Let x0x1 . . . xd1−1x0

be ∂F , the cycle bounding F . All remaining vertices and edges are interior to ∂F .
An edge that is not part of F ’s bounding cycle, but joins two vertices of the cycle,
is called a chord.

Lemma 4. For f1 = 1, (k, d2) ∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}, the outer face has
no chords.

Proof. We proceed by contradiction. Assume there exists such a graph with outer
face F and a chord.

Suppose without loss of generality that x0xj is the chord, and that j is minimal
in that no edge x�xk exists with 0 ≤ �, k < j. If k = 3, then obviously 3 ≤ j ≤ d1−3,
for j = 1 would be a double edge (which we do not permit) and j = 2 would mean
that x1 would have a neighbor within the face that could not have a path other than
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through x1 to x0 or xj ; the result would be a face of degree greater than 5. Let yi
be the vertices within the region R1 bounded by the cycle x0x1 . . . xjx0 and zi the
vertices within the region R2 bounded by xjxj+1 . . . x0xj .

k = 3, d2 = 3. Because x0 is already of degree 3, the path x1, x0, xj must be on the
boundary of a triangular face, forcing edge x1xj , which implies deg xj ≥ 4, a
contradiction.

k = 3, d2 = 4. We observe that because both x0 and xj are already of degree 3, the
path x1x0xjxj−1 must be on the boundary of a rectangular face. If j ≥ 4, we
would have edge x1xj−1, which contradicts minimality of j. If j = 3 and x1

and x2 have a common neighbor y1, we either have a triangular face x1x2y1 or
a pentagonal one x0x1y1x2x3 depending on placement of the third neighbor of
y1.

k = 3, d2 = 5. We produce the contradiction illustrated in Figure 2.

xj

x1

x0

y1

Figure 1: A basic inflorescence.

We have x1 �= xj , xj−1 �= x0 to avoid a multigraph. Likewise 1 �= j − 1 else
x1 must be adjacent to y1 not on the boundary of F , and y1 must in turn be
adjacent to some other vertices within this face, since the boundary vertices
are all of degree 3 already. But this makes y1x1 a bridge, and the face within
which it lies is of degree strictly greater than 5. This is illustrated in Figure 1.
Call such an instance an inflorescence for the remainder of this argument.

So there are at least two distinct vertices x1 and xj−1. Now x1 must connect
to some y1 and xj−1 to some yj−1. But then y1 = yj−1 to make the pentagon
y1x1x0xjxj−1. To give y1 degree 3, it must be adjacent to some y2; if it were
adjacent to x2 it would create a triangle, and to x3 or higher a face of degree
greater than 5, as x2 would require an inflorescence.

Now x1xj−1 is not an edge by minimality of j, nor is x2 = xj−2, else either
x2y2 is an edge, creating at least one face of degree 4, or it is not an edge, in
which case x2 is adjacent to some y3, which must be adjacent to y2 to close
two pentagonal faces, yet neither y2 nor y3 yet has degree 3, so inflorescences
would increase the degree of one or both of the internal faces with x2 on the
boundary.

Now y2 is not adjacent to x2 or xj−2 (square, or greater with inflorescence), so
it must be adjacent to two yi, say y3 and y4. These must be adjacent to x2 and
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xj

x0 x1 x2

xj−1 xj−2

x3

xj−3

x4

xj−4

xj−5

x5

y1 y2

y3

y4

y5

y6

y7

y8

y9 y10

Figure 2: Contradiction for k = 3, d2 = 5 boundary self-adjacency.

xj−2 to close the faces. We have x2 not adjacent to xj−2, else y3 is connected
by a path of length 2 to y4, say via y5, forming a face of degree 4 or, with an
inflorescence from y5, degree 6 or more.

Neither y3 nor y4 can be adjacent to each other (a triangle is formed, or a face
of degree greater than 5 with an inflorescence), nor by a path via a y5 of length
2 (a square is formed, or a face of degree 6 or more); thus y3 is adjacent to y4
by a path of length 3, say via y5 and y6. We cannot now have x3 = xj−3, since
in such a case if x3 is adjacent to y5 or y6, a face of degree 4 (or 6 or more) is
formed, while if not adjacent to either, it must be adjacent to some y7 which
in turn is adjacent to both y5 and y6, forming a triangle. So x3 and xj−3 exist
and are distinct.

Now x3 is not adjacent to y5 (square), y6 (y5 would root an infloresence into a
pentagon), so it is adjacent to some y7, and y7 must be adjacent to y5 to close a
face. Likewise xj−3 is adjacent to some y8 in turn adjacent to y6, with y7 �= y8,
else y6 is on the boundary of a face of degree 6 or more.

We have y7 not adjacent to y8 (square), and so must be adjacent via a path of
length 2; the intermediate vertex cannot be an xi since this would increase the
degree of the vertex to 4 or more, so say the intermediate vertex is y9. We now
have x3 not adjacent to xj−3 by minimality of j, nor is x4 = xj−4, since if y9
is adjacent to x4 squares are created, and if not, the path from y9 to x4 would
have at most one intermediate vertex which would root an inflorescence.

Now y9 is not adjacent to x4 or xj−4 (square), so it must be adjacent to a y10,
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which to close faces must in turn be adjacent to x4 and xj−4. But now to make
a face of degree 5, both x5 and xj−5 must exist, but must be adjacent; but then
any other path from x5 to xj−5, which must not include x4, xj−4 or y10, will be
part of the boundary of a face of degree greater than 5, a contradiction.

The required vertices are illustrated in Figure 2.

k = 4, d2 = 3. Suppose that the fourth neighbor of x0 is in R2, that is, it is either
zi or xi for j + 1 ≤ d1 − 2. Then since x0 is already of degree 4, the path
x1x0xj must be on the boundary of a triangular face, forcing edge x1xj . Now
since xj is already of degree 4, the path x1, xj , xj−1 must be on the boundary
of a triangular face, forcing edge x1xj−1. Once more, x1 is now of degree 4, so
the path x2, x1, xj−1 must be on the boundary of a triangular face, forcing edge
x2xj−1. We continue until the forced edge reaches x� j

2
� when j is odd or x j

2
+1

when j is even. Then there is only one vertex of degree 2 left on the boundary
of R1, namely x� j

2
� when j is odd or x j

2
when j is even, and the next forced

edge would be a multiple edge, a contradiction. The argument works in the
opposite direction if the fourth neighbor of x0 is in R1.

k = 5, d2 = 3. Assume that x0xj is minimal in the sense that no chord xixk exists
with 0 ≤ i < k ≤ j other than x0xj itself. Since k = 5, x0 and xj both have two
other neighbors. Clearly if both neighbors of x0 (resp. xj) are within R2, then
in order to make a triangular face, we must have a chord x1xj (resp. x0xj−1),
a contradiction. If both neighbors of both x0 and xj are within R1, then the
path xd−1x0xjxj+1 must border a face of degree at least 4, also a contradiction.

Thus, either x0 and xj both have exactly one more neighbor in each of R1 and
R2, or x0 has both additional neighbors in R1 and xj has exactly one additional
neighbor in each of R1 and R2, or x0 has one neighbor in each Ri and xj has
both neighbors in R1. The latter two are the same case after a relabeling, and
so we deal with the former.

In both cases, the contradiction results from our conditions forcing the con-
struction of the icosahedron; the minimality-contradicting edge is on the border
of its planar embedding.

Case 1: Suppose both vertices have one neighbor in each region. We produce
the contradiction to minimality illustrated in Figure 3.

The two neighbors of x0 and xj in R1 must be the same, to produce a triangle
bordering x0xj . Call this neighbor y1. The paths y1x0x1 and y1xjxj−1 must
close to create faces. We cannot have x1 = xj−1, else y1 would root inflores-
cences in one or both of these triangles. Thus, y1 has one additional neighbor,
say y2.

Now x1 and xj−1 each have three additional neighbors, one of which must be y2
as the faces bordered by their edge with y1 must close. Now y2 must have two
addtional neighbors, one of which must be the neighbor of x1 and the other
of xj−1 along the edge incident to these vertices which is nearest to y2 and on
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xj xj−1 xj−2 xj−3

x0 x1 x2 x3

y1 y2

y4

y3

y5 y6

Figure 3: Contradiction for Case 1, k = 5, d2 = 3.

the other side from y1. These must be two distinct neighbors, else y2 needs
another neighbor (say z) inside one or the other of the two resulting faces;
the putative z can then have only at most three neighbors on the boundary of
the face and requires additional neighbors within the face, which lack sufficient
boundary vertices to connect to and thus form boundaries of faces of degree
greater than 3.

Let the new neighbors of y2 be y3 and y4. They must be adjacent. Since x1 and
xj−1 need an additional neighbor outside the faces containing their edge with
y2, we must have an x2 and xj−2 on the outer face; these cannot be equal, for if
they were, x2 would need to be adjacent to all four of x1, xj−1, y3, and y4, and
would need an additional neighbor in one of its bounded faces, say z, which
could be adjacent to at most three of its bounding neighbors; z would need
additional neighbors which would form boundaries of faces of degree greater
than 3.

Now x2 must be adjacent to y3 and xj−2 to y4. Further, y3 and y4 require an
additional neighbor each, not within any of their so-far closed faces (it would
be unable to connect sufficiently). To form a triangle, it must be the same
vertex, say y5. Now x2 and xj−2 must both be adjacent to y5.

One more neighbor of y5 is needed, as usual not in any of its so far closed
nearby faces; call it y6. We will have x2 and xj−2 both adjacent to y6, and
requiring one more neighbor each, say x3 and xj−3, which cannot be the same
neighbor: y6 needs two more neighbors, and the extra neighbor would be create
a face of degree too high.

But now y6 already has five edges and thus x3 and xj−3 must be adjacent to
close the relevant face. But x3 and xj−3 still need two more neighbors each to
be of degree 5, which cannot appear within any of the so far completed faces,
so this edge cannot be an edge of F . This contradicts our minimal choice of
x0xj .

Case 2: The logic is extremely similar. Using x0 as the vertex with its two
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additional neighbors in R1 and xj with one additional neighbor in each Ri,
we illustrate the required vertices and eventual contradiction to minimality in
Figure 4.

xj xj−1 xj−2

xd−1 x0 x1 x2

y2

y1 y3

y4

y5

y6

Figure 4: Contradiction for Case 2, k = 5, d2 = 3.

We have exhausted all possibilities and the proof is now complete.

Corollary 5. For k = 3, d2 = 5 there is no vertex yt adjacent to two distinct vertices
xa, xb.

Proof. Suppose it is not the case, and let a < b. Then one of the paths xa−1xaytxbxb+1

or xa+1xaytxbxb−1 belongs to the boundary of a pentagonal face, forcing a chord
xa−1xb+1 or xa+1xb−1, which is impossible by the previous Lemma 2.

We now prove our main theorem.
Proof of Theorem 6

k = 3, d2 = 3. In this situation after substitution in Equation 5 we obtain

v = 2

(
d1 + 3

3

)
. (6)

Either the graph has vertices other than those that form the boundary of F
the exceptional face, or it does not. If it does not, then v = d1 = 6 and
e = 3v/2 = 9. Hence there is a chord to F contrary to Lemma 2.

Thus the graph must have a vertex interior to F . Then

v = 2

(
d1 + 3

3

)
≥ d1 + 1.

But then d1 ≤ 3, a contradiction, because d1 �= d2.

k = 3, d2 = 4. In this situation after substitution in Equation 5 we obtain

v = d1 + 4 (7)
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Hence there is a set Y of exactly 4 vertices interior to the face F . Also d1 ≥ 6,
because d1 �= d2 and v is even, because k is odd. Because there are no chords
to F (Lemma 2) it follows that each xi on the boundary of F is adjacent to
some some vertex in Y .

Consider an edge xx′ incident to F . Let y, y′ be the vertices adjacent to x and
x′ respectively. Because yxx′y′ is a path of length 3, it follows that yy′ is an
edge. Hence every edge xixi+1 incident to F has a mate yiyi+1 on Y . Thus
because d1 ≥ 6, d2 = 4 and |Y | = 4 at least two edges on Y are mated twice to
edges on the boundary of F . Then because k = 3, there can be no edge with
ends in Y incident to a doubly mated edge, contrary to the requirement that
there be at least 6 mated edges.

k = 3, d2 = 5. This part is longer, so we itemize briefly the statements we will
prove:

• The yi to which the xi are adjacent are distinct.

• The yi are also adjacent to a set {zi}, none of which are yi or xi and all
of which are distinct.

• The zi are not adjacent to each other, and must be adjacent to wi, which
are not xi, yi or zi.

• There must be exactly five wi which form a face boundary, giving a con-
tradiction.

Because k = 3, each vertex xi is adjacent to exactly one yi. The yi are distinct
by Lemma .

Each path yixixi+1yi+1 must be part of the boundary of a face of degree 5 with
a fifth vertex zi. The zi cannot be any ys: first, if zi = yi+2 or yi−1 a square
is formed. Suppose instead that zi = yi+j, with j minimal in absolute value
and either j ≥ 3 or j ≤ −2. The arguments are the same up to sign and a
shift by 1, so suppose j ≥ 3. Then the path yizixi+jxi+j−1yi+j−1 must bound
a pentagon with fifth vertex yi+1. But this contradicts the minimality of j, for
we now have a j one less is absolute value (which may be the previous case).

The zi must be distinct. If zi = zi+1, then yi+1 either roots an inflorescence or
the vertex other than zi and xi+1 to which yi+1 is connected does so, while if
zi = zi+j with j minimal and at least 2, the vertex zi is of degree at least 4.

None of the zi are adjacent to each other: if zi is adjacent to zi+1, a triangle is
formed; if to zi+2, then zi+1 roots an inflorescence; if to zi+j with j minimal,
j ≥ 3, a face of degree greater than 5 is formed.

So z0 is adjacent to w0, z1 is adjacent to w1 �= w0 (square), and w1 is adjacent
to w0 to close a face. Next z2 is adjacent to w2, which is not w1 (square) or w0

(w1 would root an inflorescence), and hence w2 is adjacent to w1. Next z3 is
adjacent to w3, which is not w2 (square), w1 (already degree 3), or w0 (hexagon
or greater), and so w3 is adjacent to w2. Likewise z4 must exist (with only three
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or four xi, the wi would all be adjacent and no inflorescence would be possible
to increase the degree of the resulting triangle or square) and be adjacent to
w4, which is not w3 (square), w2 or w1 (already degree 3), or w0 (w3 would root
an inflorescence). Then w4 is adjacent to w3, and the cycle must close to form
a face of degree 5 bounded by the wi. But additional zi would make a face
abutting the edge w4w0 of too large a degree. Hence d1 = 5, a contradiction.

k = 4, d2 = 3. In this case v = d1 + 3 and e = 2v = 2d1 + 6. Hence there is a set
Y = {y1, y2, y3} of exactly 3 vertices not incident to F . Each vertex xi on F
is adjacent to two vertices in Y , because k = 4 and F has no chords. This
accounts for 3d1 edges. Thus d1 ≤ 6. Because d1 �= d2, we have 4 ≤ d1 ≤ 6.
Furthermore there are thus e − 3d1 = 6 − d1 edges on Y . But if yi, yj are
incident to xh, then yixhyj is a path of length 3. Hence, because d2 = 3, it
follows that yiyj is an edge.

Suppose that x1 is adjacent to y1 and y2. Then x2 is also adjacent to, say, y2.
It must also be adjacent to another yi. If x2 is also adjacent to y1, then y3 is
either within the regions bounded by the edges on x1, x2, y1 and y2, or not. If
it is, then it may not be adjacent to x1 or x2, which are already of degree 4,
and it is isolated from any other xi, and hence has too few possible neighbors.
If y3 is external to this subgraph, then either y1 or y2 is internal to the cycle
formed by the other three and is isolated from any possible fourth neighbors.
Thus x2 is adjacent to y2 and thus also y3, and hence y2y3 and then further
y3y1 are edges. Now since x0y1 is an edge, the triangularity of faces requires
that x0y3 be an edge, and now all yi have four neighbors and no other external
vertices are possible, i.e. we have constructed the octahedron.

k = 5, d2 = 3. The leftmost non-boundary edge of xi and the rightmost nonbound-
ary edge of xi+1 must meet at vertex yi to form a triangular face. We have the
following: yi cannot be any xj since the bounding face has no chords; yi �= yi+1

since xi cannot be twice adjacent to the same yi. Finally we have that yi �= yi+j

for j > 1, j �= d, for suppose j is a minimal contradiction to this claim. Then
xi and xi+1 both have neighbors along edges intermediate between those con-
necting them to yi and, respectively, yi−1 and yi+1; call these temporarily zi
and zi+1. Now yi must be adjacent to these zi in order to close the triangular
faces partially bounded by yixizi and yixi+1zi+1, since xi and xi+1 are already
of degree 5. But yi is additionally a neighbor of xi, xi+1, and xi+j and xi+j+1,
which requires too many edges. (The zk cannot be any x� since this would be a
chord, and the x� listed are distinct since j > 1.) Hence all yi are distinct; ∂F
consists of the base edges of a series of d triangles joined at their base vertices
and otherwise distinct.

Each boundary vertex xi has an additional neighbor which by definition is
adjacent by an edge lying between yi and yi−1. Let such a vertex adjacent to
xi be called zi. We again claim that all zi are distinct and not equal to yj or xj

for any j. The xj clause is clear since this would be a chord of the boundary.
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First, by definition, zi cannot be yi or yi−1, as it is a separate neighbor of xi.
Now suppose that zi is yi+j, j > 1 and minimal among all such j, including
with signs reversed and distances taken modulo d. In that case to close the
triangular faces abutted by zixiyi−1 and zixiyi we would require edges ziyi−1

and ziyi respectively. This makes yi+j of degree 5. Now since zi+j is not yi+j,
to close the triangular face abutted by yizixi+j we would require zi+j = yi,
contradicting the minimality of j once signs are reversed. Hence no zi can be
any yk.

Next, in order to close triangular faces, each zi must be adjacent to yi, to
close the face partially bounded by zixiyi, and yi−1, to close the face partially
bounded by zixiyi−1. If zi = zi+1, then yi possesses two more neighbors, the
edges for which will increase the degree of one of the faces that yi abuts beyond
3. If zi = zi+j, j > 1, then zi would have to be of degree at least 6 since zi
is adjacent to yi−1 and yi, unless yi+j = yi−1, in which case we reverse the
direction of labeling and argue as before for j = 1. Thus, all zi are distinct and
not equal to xk or yk for any k.

Each yi requires another neighbor outside of the triangular faces it abuts so
far; call these wi. Since yi is now of degree 5, each wi is necessarily adjacent to
zi−1 and zi to close these faces, making the zi of degree 5. But then the faces
wizi+1wi must close cyclically, and the resulting face must be triangular. Thus
in the same manner as previous arguments we are led to the contradiction that
d1 = d2, i.e. we have constructed the icosahedron.

By elimination of all cases, we have concluded the theorem:

Theorem 6. There are no nearly platonic graphs with one disparate face.

Remark: Our definition of nearly platonic graphs included finiteness. It is easy to
construct infinite examples that satisfy all other criteria: surround a non-square with
squares on its edges, close the corners with two sides, and repeat the construction
for the resulting graph indefinitely to obtain a 4-regular graph with all but exactly
one face squares. One wonders if the following method to prove Theorem 6 would
be illuminating and more convenient: show that a regular, simple planar graph with
a single disparate face must be infinite.

3 f1 = 2 or 3

We will say that a k-regular simple plane graph is a (k; dn1
1 dn2

2 · · · dnt
t )-graph if it has

ni faces of degree di, i = 1, 2, . . . , t, where f = n1 + n2 + · · ·+ nt.
In this section we primarily consider graphs of type (k; d21d

n2
2 ), that is, nearly

platonic graphs in which two faces are disparate from all others. This, it turns out,
is probably the largest number of faces d1 for which the term “nearly platonic” may
be fairly applied. We find fifteen families of graphs of this type; interestingly, other
than the cycle all seem to be related to platonic solids. The families are indexed
by the equivalent possible pairs of distinct faces of platonic solids: the general idea
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is that one uses those faces as the two disparate faces, and repeats a fundamental
unit around a long cycle. Prisms and antiprisms are common examples based on the
cube and octahedron respectively. (Of course, the fundamental unit may be only a
fraction of the related Platonic graph.)

One of the citations in the chemical graph literature previously mentioned, which
thoroughly studies a similar concept, is [6]. In that article the authors study poly-
cycles, which require that the two disparate faces not share vertices (a consideration
motivated, we believe, by the physical context, which disallows several of our con-
structions) and allowing vertices on the boundary of a disparate face to have different
degree (which a nearly platonic graph forbids). Our constructions are chains of such
graphs.

The cycle is trivially the (2;n2d02) graph.
The tetrahedron has only one equivalent pair of faces, since any two faces share

an edge. Cutting this edge and repeating the resulting graph results in a “thin cycle”
which is not the skeleton of a polyhedron, because it is not connected; however, it is
a (3; (3d)232d)-graph. Its fundamental unit is shown in Figure 5.

Figure 5: Tetrahedron thin cycle.

In the language of [6] this would be a chain of {3, 3} − e polycycles.
There are two families related to the cube. The prisms are (3; d24d)-graphs iso-

morphic to Cd�P2. They exist for all d ≥ 3; the d = 4 case is the cube. These are
polyhedral.

The other family related to the cube is the related thin cycle, with fundamental
unit shown in Figure 6.

Figure 6: Cube thin cycle.

This as a fundamental unit does not seem to appear in [6]; of the remainder of
our constructions, several can be found there and several are different due to the
different problem being considered.

There are three families related to the octahedron. The antiprisms are (4; d232d)-
graphs. They exist for all d ≥ 3; the d = 3 case is the octahedron. They arise from
choosing two opposite faces.

The thin cycle has fundamental unit given in Figure 7, from the choice of two
faces that share an edge.
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Figure 7: Octahedron thin cycle.

One may also choose two faces in the octahedron that share only one vertex,
yielding an even less polyhedral (4; (3d)236d)-graph, since the two disparate faces
share multiple isolated vertices, indicated in Figure 8.

Figure 8: Octahedron vertex cycle.

There are three families related to the dodecahedron. One is prism-like, consisting
of the skeleton of a truncated trapezohedron, formed by choosing two opposite faces
in the dodecahedron. These are (3; d252d)-graphs. They exist for all d ≥ 3; the d = 5
case is the dodecahedron. Its fundamental unit is illustrated in Figure 9. (Deza and
Sikirić call these snubAPrismm, or in Deza’s later work, Barrelm.)

Figure 9: Barrelm.

A thin cycle is formed from the dodecahedron by choosing two adjacent faces,
with the fundamental unit shown in Figure 10.

Figure 10: Dodecahedron thin cycle.

A “thick cycle” formed from the dodecahedron by choosing a face and a face
neither adjacent nor opposite has the fundamental unit in Figure 11.
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Figure 11: Dodecahedron thick cycle.

Finally, there are five families related to the icosahedron.
By choosing two faces sharing a side, we obtain the fundamental unit in Figure 12

for the related icosahedron thin cycle.

Figure 12: Icosahedron thin cycle.

By choosing two faces sharing exactly one vertex, we obtain the fundamental unit
of the icosahedron vertex cycle, shown in Figure 13.

Figure 13: Icosahedron vertex cycle.

Choosing one face, and one of the three faces that shares a side with the face
opposite the first, gives the icosahedron first thick cycle, yielding the (5; (3d)2318d)-
graph shown in Figure 14.

Figure 14: Icosahedron first thick cycle.

Choosing one face, and one of the six faces on the far side that shares a single
vertex with the face opposite the first, yields a fundamental unit of the icosahedron
second thick cycle illustrated in Figure 15.
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Figure 15: Icosahedron second thick cycle.

Finally, choosing two opposite faces yields the only fundamental unit where the
two disparate faces of the resulting graph, the icosahedron wide cycle, are separated
by a path of minimum length 2. Like the previous graphs of this type, it may
be divided into a smaller repeatable fraction, in this case one third, as shown in
Figure 16.

Figure 16: Icosahedron wide cycle.

In all fifteen of these families, one property is constant: both of the disparate faces
have the same degree, since we produce the families by repeating a given fundamental
unit around a cycle, and the units involved are axially symmetric. As of this writing,
we have been unable to generate a counterexample to the following conjecture:

Conjecture 1. If a graph is vertex-regular and planar, and all but 2 faces are of one
degree, then the remaining two faces must have the same degree as each other.

Another observation is that in all these families the longest path between the
boundaries of the two disparate faces is at most two edges. Can the distance be
increased indefinitely? Our suspicion is not. Both of these claims would follow if a
much stronger possibility holds:

Question: Are the nearly platonic families listed above the only types of finite,
regular planar graph with exactly two disparate faces?

When there are 3 or more disparate faces the disparate face degrees may be
different. Indeed, it is possible to produce graphs with all three disparate faces
having differing face degrees, as illustrated in Figure 17.

Figure 17: A 3-disparate graph with all disparate faces of differing degree.
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Of course, there are also 3-disparate graphs which display symmetries, as Fig-
ure 18 shows.

Figure 18: A pair of 3-disparate graphs with symmetries among the disparate faces.

Our concern in this paper is with the restricted cases, and so we do not delve
into these graph types. It is intuitively obvious that as d1 grows, construction of a
(k; f d1

1 f d2
2 )-graph becomes easier. It might be of interest to graph theorists to make

this intuition more rigorous by means of some statistic on the set of planar graphs.
Another direction of investigation into nearly platonic graphs could be an effort to
catalog the regular planar graphs with three disparate faces, especially those with
symmetries.
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[10] M. Horňák and E. Jucovič, Nearly regular cell-decompositions of orientable 2-
manifolds with at most two exceptional cells, Math. Slov. 27 (1977), No. 1, 73–89.

[11] S. Jendrol’, On the non-existence of certain nearly regular planar maps with
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