On extremal graphs with exactly one Steiner tree connecting any k vertices*

Xueliang Li Yan Zhao
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071
China
lxl@nankai.edu.cn zhaoyan2010@mail.nankai.edu.cn

Abstract

The problem of determining the largest number $f(n ; \bar{\kappa} \leq \ell)$ of edges for graphs with n vertices and maximal local connectivity at most ℓ was considered by Bollobás. Li et al. studied the largest number $f\left(n ; \bar{\kappa}_{3} \leq 2\right)$ of edges for graphs with n vertices and at most two internally disjoint Steiner trees connecting any three vertices. In this paper, we further study the largest number $f\left(n ; \bar{\kappa}_{k}=1\right)$ of edges for graphs with n vertices and exactly one Steiner tree connecting any k vertices with $k \geq 3$. It turns out that this is not an easy task to finish, unlike the same problem for the classical connectivity parameter. We determine the exact values of $f\left(n ; \bar{\kappa}_{k}=1\right)$ for $k=3,4, n$, and characterize the graphs which attain each of these values.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the terminology and notation of Bondy and Murty [3]. We refer to the number of vertices in a graph as the order of the graph and the number of its edges as its size. We use the basic notations $e(G), \delta(G)$ and $d(v)$ to denote the size of G, the minimum degree of G and the degree of a vertex v, respectively. We say that two paths are internally disjoint if they have no common vertex except the end vertices. For any two distinct vertices u and v in a graph G, the local connectivity $\kappa_{G}(u, v)$ is the maximum number of internally disjoint paths connecting u and v. Then the connectivity of G is defined as $\kappa(G)=\min \left\{\kappa_{G}(u, v): u, v \in V(G), u \neq v\right\}$; whereas $\bar{\kappa}(G)=\max \left\{\kappa_{G}(u, v): u, v \in V(G), u \neq v\right\}$ is called the maximal local connectivity of G, introduced by Bollobás.

[^0]Bollobás [1] considered the problem of determining the largest number $f(n ; \bar{\kappa} \leq \ell)$ of edges for graphs with n vertices and maximal local connectivity at most ℓ. In other words, $f(n ; \bar{\kappa} \leq \ell)=\max \{e(G):|V(G)|=n$ and $\bar{\kappa}(G) \leq \ell\}$. Determining the exact value of $f(n ; \bar{\kappa} \leq \ell)$ has got a great attention and many results have been worked out, see $[1-2,5-7,15-16,18]$.

For a graph $G(V, E)$ and a subset S of V where $|S| \geq 2$, an S-Steiner tree or a Steiner tree connecting S is a subgraph $T\left(V^{\prime}, E^{\prime}\right)$ of G which is a tree such that $S \subseteq V^{\prime}$. Two S-Steiner trees T_{1} and T_{2} are called internally disjoint if $E\left(T_{1}\right) \cap$ $E\left(T_{2}\right)=\varnothing$ and $V\left(T_{1}\right) \cap V\left(T_{2}\right)=S$. Note that T_{1} and T_{2} are vertex-disjoint in $G \backslash S$. For $S \subseteq V$, the generalized local connectivity $\kappa(S)$ is the maximum number of internally disjoint trees connecting S in G. The generalized k-connectivity is defined as $\kappa_{k}(G)=\min \{\kappa(S): S \subseteq V(G),|S|=k\}$. These concepts can be found in [4]. Many results have been worked out on the generalized connectivity; we refer the reader to $[9-12,14]$ for details.

In analogue to the classical maximal local connectivity, another parameter $\bar{\kappa}_{k}(G)$ $=\max \{\kappa(S): S \subseteq V(G),|S|=k\}$, called the maximal generalized local connectivity of G, was introduced in [8]. The authors studied the largest number $f\left(n ; \bar{\kappa}_{3} \leq 2\right)$ of edges for graphs with n vertices and at most two internally disjoint Steiner trees connecting any three vertices. Later, Li and Mao [13] determined the exact value of $f\left(n ; \bar{\kappa}_{k} \leq \ell\right)$ for $k=n$ and $n-1$, and for a general k they construct a graph to obtain a sharp lower bound.

In this paper, we will study the problem of determining the largest number $f\left(n ; \bar{\kappa}_{k}=1\right)$ of edges for graphs with n vertices and maximal generalized local connectivity exactly equal to 1 , that is, $f\left(n ; \bar{\kappa}_{k}=1\right)=\max \left\{e(G):|V(G)|=n\right.$ and $\bar{\kappa}_{k}(G)=$ $1\}$. It is easy to see that for $k=2, f(n ; \bar{\kappa}=1)=n-1$, and if a graph G satisfies $\bar{\kappa}(G)=1$, then G must be a tree. It turns out that for $k \geq 3$, the problem is not easy to attack.

This paper is organized as follows. In Section 2, we introduce a graph operation to describe three graph classes. In Section 3, we first estimate the exact value of $f\left(n ; \bar{\kappa}_{3}=1\right)$, that is, $f\left(n ; \bar{\kappa}_{3}=1\right)=\frac{4 n-3-r}{3}$ for $n=3 r+q, 0 \leq q \leq 2$. Then, in Section 4, we determine $f\left(n ; \bar{\kappa}_{4}=1\right)$ for $n=4 r+q, 0 \leq q \leq 3$. Finally, in Section 5, $f\left(n ; \bar{\kappa}_{n}=1\right)$ is determined to be $\binom{n-1}{2}+1$. Furthermore, we characterize extremal graphs attaining each of these values. For general k, we get the lower bound of $f\left(n ; \bar{\kappa}_{k}=1\right)$ by constructing extremal graphs for $n=r(k-1)+q, 0 \leq q \leq k-2$.

2 Preliminaries

In this section, we first give some definitions frequently used in the sequel, and then introduce a graph operation to describe three graph classes.

For a graph G, we say a path $P=u_{1} u_{2} \ldots u_{q}$ is an ear of G if $V(G) \cap V(P)=$ $\left\{u_{1}, u_{q}\right\}$. If $u_{1} \neq u_{q}, P$ is an open ear; otherwise P is a closed ear. By $\ell(P)$ we denote the length of P and C_{q} a cycle on q vertices.

Let H_{1} and H_{2} be two disjoint graphs. The adding operation $H_{1}+H_{2}$ of H_{1}
and H_{2} is defined from the disjoint union of H_{1} and H_{2} by adding exactly one edge between a vertex of H_{1} and a vertex of H_{2}, arbitrarily. Since the added edge is arbitrarily chosen, the adding operation defines a class of graphs rather than a single graph. Sometimes the adding operation contains exactly one graph, for example, $K_{2}+K_{1}=\left\{P_{3}\right\}$. In this case, we will use the notation $H_{1}+H_{2}$ to mean the graph in the class $H_{1}+H_{2}$ for brevity. As we will see, this does not violate the correctness of our proofs. Also note that for a graph $G \in H_{1}+H_{2},|V(G)|=\left|V\left(H_{1}\right)\right|+\left|V\left(H_{2}\right)\right|$ and $e(G)=e\left(H_{1}\right)+e\left(H_{2}\right)+1$.
$\left\{C_{3}\right\}^{i}+\left\{C_{4}\right\}^{j}+\left\{C_{5}\right\}^{k}+\left\{K_{1}\right\}^{\ell}$ is a class of connected graphs obtained from i copies of C_{3}, j copies of C_{4}, k copies of C_{5} and ℓ copies of K_{1} by the adding operations such that $0 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor, 0 \leq j \leq 2,0 \leq k \leq 1,0 \leq \ell \leq 2$ and $3 i+4 j+5 k+\ell=n$. Note that these operations are taken in an arbitrary order.

Let $n=3 r+q, 0 \leq q \leq 2$. If $q=0, \mathcal{G}_{n}^{0}=\left\{C_{3}\right\}^{r}$. If $q=1, \mathcal{G}_{n}^{1}=\left\{C_{3}\right\}^{r}+K_{1}$ or $\left\{C_{3}\right\}^{r-1}+C_{4}$. If $q=2, \mathcal{G}_{n}^{2}=\left\{C_{3}\right\}^{r}+\left\{K_{1}\right\}^{2}$ or $\left\{C_{3}\right\}^{r-1}+C_{4}+K_{1}$ or $\left\{C_{3}\right\}^{r-1}+C_{5}$ or $\left\{C_{3}\right\}^{r-2}+\left\{C_{4}\right\}^{2}$.

Let $A, B, D_{1}, D_{2}, D_{3}, F_{1}, F_{2}, F_{3}, F_{4}$ be the graphs shown in Figure 1.

Figure 1. The graphs used for the second graph class

$$
\{A\}^{i_{0}}+\{B\}^{i_{1}}+\left\{D_{1}\right\}^{i_{2}}+\left\{D_{2}\right\}^{i_{3}}+\left\{D_{3}\right\}^{i_{4}}+\left\{F_{1}\right\}^{i_{5}}+\left\{F_{2}\right\}^{i_{6}}+\left\{F_{3}\right\}^{i_{7}}+\left\{F_{4}\right\}^{i_{8}}+\left\{K_{1}\right\}^{i_{9}}
$$ is composed of another connected graph class by the adding operations such that (1) $0 \leq i_{0} \leq 2,0 \leq i_{1} \leq\left\lfloor\frac{n}{4}\right\rfloor, 0 \leq i_{2}+i_{3}+i_{4} \leq 2,0 \leq i_{5}+i_{6}+i_{7}+i_{8} \leq 1,0 \leq i_{9} \leq 2 ;$ (2) D_{i} and F_{j} are not simultaneously in a graph belonging to this graph class where $1 \leq i \leq 3,1 \leq j \leq 4 ;(3) 3 i_{0}+4 i_{1}+5\left(i_{2}+i_{3}+i_{4}\right)+6\left(i_{5}+i_{6}+i_{7}+i_{8}\right)+i_{9}=n$.

Let $n=4 r+q, 0 \leq q \leq 3$. If $q=0, \mathcal{H}_{n}^{0}=\{B\}^{r}$. If $q=1, \mathcal{H}_{n}^{1}=\{B\}^{r}+K_{1}$ or $\{B\}^{r-1}+D_{i}(1 \leq i \leq 3)$. If $q=2, \mathcal{H}_{n}^{2}=\{B\}^{r}+\left\{K_{1}\right\}^{2}$ or $\{B\}^{r-1}+\{A\}^{2}$ or $\{B\}^{r-1}+D_{i}+K_{1}$ or $\{B\}^{r-2}+D_{i}+D_{j}(1 \leq i, j \leq 3)$ or $\{B\}^{r-1}+F_{i}(1 \leq i \leq 4)$. If $q=3, \mathcal{H}_{n}^{3}=\{B\}^{r}+A$.

Define the third graph class as follows: for $n=5, \mathcal{K}_{5}=\{G:|V(G)|=5, e(G)=$ $7\}$; for $n \geq 6, \mathcal{K}_{n}=K_{n-1}+K_{1}$.

The following observation is obvious.

Observation 2.1. Let G and G^{\prime} be two connected graphs. If G^{\prime} is a subgraph of G and $\bar{\kappa}_{k}\left(G^{\prime}\right) \geq 2$, then $\bar{\kappa}_{k}(G) \geq 2$.

Next we state a famous theorem which is fundamental for calculating the number of edge-disjoint spanning trees and getting from it a useful lemma for our following results.

Theorem 2.2. (Nash-Williams [17], Tutte [19]) A multigraph contains k edgedisjoint spanning trees if and only if for every partition \mathcal{P} of its vertex sets it has at least $k(|\mathcal{P}|-1)$ cross-edges, whose ends lie in different partition sets.

Lemma 2.3. Let M be a subset of edges of $K_{n}(n \geq 5)$ where $0 \leq|M| \leq n-3$, and G be a graph obtained from K_{n} by deleting M. Then G contains two edge-disjoint spanning trees.

Proof. Let \mathcal{P} be a partition of $V(G)$ into p sets $V_{1}, V_{2}, \ldots, V_{p}$ where $1 \leq p \leq n$, and let \mathcal{E} represent the cross-edges. Set $\left|V_{i}\right|=n_{i}, 1 \leq i \leq p$. If $p=1$ then this case is trivial, so we suppose next that $2 \leq p \leq n$. By Theorem 2.2, in order to obtain two edgedisjoint spanning trees, we only need to prove that the inequality $|\mathcal{E}| \geq\binom{ n}{2}-\sum_{i=1}^{p}\binom{n_{i}}{2}-$ $|M| \geq 2(p-1)$, that is equivalent to saying that $\binom{n}{2}-|M|-2(p-1) \geq \sum_{i=1}^{p}\binom{n_{i}}{2}$, holds. As $|M| \leq n-3$, and $\sum_{i=1}^{p}\binom{n_{i}}{2}$ attains the maximum value $\binom{n-p+1}{2}$ by $n_{i}=n-(p-1)$ and $n_{j}=1$ where $j \neq i$, we only need to prove that $\binom{n}{2}-(n-3)-2(p-1) \geq\binom{ n-p+1}{2}$ holds. Let $f(n, p)=\binom{n}{2}-(n-3)-2(p-1)-\binom{n-p+1}{2}$. Our aim is to prove that $f(n, p) \geq 0$. Now $f(n, p)=\binom{n-1}{2}-2(p-2)-\binom{n-p+1}{2}^{2}=\frac{1}{2}(n-1)(n-2)-2(p-2)-$ $\frac{1}{2}[(n-1)-(p-2)](n-p)=\frac{1}{2}[(n-1)(p-2)+(p-2)(n-p-4)]=\frac{1}{2}(p-2)(2 n-p-5)$. Since $2 \leq p \leq n$ and $n \geq 5$, it follows immediately that $f(n, p) \geq 0$.

3 The case $k=3$

We consider the case $k=3$ in this section. At first, we begin with a necessary and sufficient condition for $\bar{\kappa}_{3}(G)=1$.

Proposition 3.1. Let G be a connected graph. Then $\bar{\kappa}_{3}(G)=1$ if and only if every cycle in G has no ear.

Proof. To settle the "only if" part, assume, to the contrary, that C is a cycle in G and P is an ear of C. Set $V(C) \cap V(P)=\{u, v\}$ where u and v may be the same vertex. If $\ell(P)=1$, then P is an open ear; pick a vertex from $u C v$ and $v C u$ respectively, say u_{1} and u_{2}. Then $T_{1}=u_{2} C u_{1}$ and $T_{2}=u_{1} C u_{2} \cup u v$ are two internally disjoint trees connecting $\left\{u, u_{1}, u_{2}\right\}$, a contradiction to $\bar{\kappa}_{3}(G)=1$. If $\ell(P) \geq 2$, pick a vertex in $C \backslash\{u, v\}$ and $P \backslash\{u, v\}$, respectively, say u_{1} and u_{2}. Then there are also two internally disjoint trees connecting $\left\{u, u_{1}, u_{2}\right\}$, another contradiction.

To prove the "if" part, let S be a set of any three vertices. We need to prove that $\kappa_{3}(S)=1$. Since every cycle in G has no ear, then every maximal bridgeless subgraph of G is a cycle and each edge incident with it is a cut edge. If two vertices in S belong to different cycles C_{1} and C_{2}, then it is immediate to check that only one tree connects S, since the cut edge in the path from C_{1} to C_{2} can be used only once. If three vertices in S belong to a cycle, then it is immediate to see that only one tree connects S. Thus $\bar{\kappa}_{3}(G)=1$.

Lemma 3.2. Let G be a connected graph of order 5 and size at least 6 . Then $\bar{\kappa}_{3}(G) \geq 2$.

Proof. Let H be a connected spanning subgraph of G and suppose H has size exactly 6. Since the possible connected graphs of order 5 and size 6 are D_{1}, D_{2}, D_{3} and $B+K_{1}$, it is easy to see that each of these graphs has a cycle with an ear. Then by Proposition 3.1, it follows that $\bar{\kappa}_{3}(H) \geq 2$. By Observation 2.1, it follows that $\bar{\kappa}_{3}(G) \geq 2$.

Theorem 3.3. Let $n=3 r+q$, where $0 \leq q \leq 2$, and let G be a connected graph of order n such that $\bar{\kappa}_{3}(G)=1$. Then $e(G) \leq \frac{4 n-3-q}{3}$, with equality if and only if $G \in \mathcal{G}_{n}^{q}$.

Proof. We apply induction on n. For $n=3, e(G) \leq 3$, and let $G=C_{3} \in \mathcal{G}_{n}^{0}$. For $n=4$, if $G=K_{4} \backslash e$, then there exists a cycle C_{3} with an open ear of length 2, which contradicts to Proposition 3.1. Similarly, $G \neq K_{4}$. So G is obtained from K_{4} by deleting two edges arbitrarily, that is, $G=C_{3}+K_{1}$ or C_{4}, and then $G \in \mathcal{G}_{n}^{1}$. For $n=5$, by Lemma 3.2, $e(G) \leq 5$ and if $e(G)=5$, then $G=C_{3}+\left\{K_{1}\right\}^{2}$ or $C_{4}+K_{1}$ or C_{5}, and then $G \in \mathcal{G}_{n}^{2}$. Let $n \geq 6$. Assume that the assertion holds for graphs of order less than n. We will show that the assertion holds for graphs of order n. We distinguish two cases according to whether or not G has cut edges.

If G has no cut edge, then G is bridgeless, and combining with Proposition 3.1, G is a cycle. Then $e(G)=n<\frac{4 n-5}{3}$, since $n \geq 6$.

Suppose that there exists at least one cut edge in G. Pick one, say e. Let G_{1} and G_{2} be two connected components of $G \backslash e$. Set $V\left(G_{1}\right)=n_{1}, V\left(G_{2}\right)=n_{2}$ where $n_{1}+n_{2}=n$. Clearly, $e(G)=e\left(G_{1}\right)+e\left(G_{2}\right)+1$. Furthermore, set $n_{1} \equiv q_{1}(\bmod 3)$, $n_{2} \equiv q_{2}(\bmod 3)$ where $q_{1}, q_{2} \in\{0,1,2\}$.

If $q_{1}=0$ or $q_{2}=0$, without loss of generality, say $q_{1}=0$. By the induction hypothesis, $e\left(G_{1}\right) \leq \frac{4 n_{1}-3}{3}, e\left(G_{2}\right) \leq \frac{4 n_{2}-3-q_{2}}{3}$. If $e\left(G_{1}\right)<\frac{4 n_{1}-3}{3}$ or $e\left(G_{2}\right)<\frac{4 n_{2}-3-q_{2}}{3}$, then $e(G)<\frac{4 n-3-q_{2}}{3}$. If $e\left(G_{1}\right)=\frac{4 n_{1}-3}{3}$ and $e\left(G_{2}\right)=\frac{4 n_{2}-3-q_{2}}{3}$, then by the induction hypothesis, $G_{1} \in \mathcal{G}_{n_{1}}^{0}, G_{2} \in \mathcal{G}_{n_{2}}^{q_{2}}$. It follows that $G=G_{1}+G_{2} \in \mathcal{G}_{n}^{q_{2}}$ and $e(G)=$ $\frac{4 n-3-q_{2}}{3}$.

If $q_{1}=1$ and $q_{2}=1$, by the hypothesis induction, $e\left(G_{1}\right) \leq \frac{4 n_{1}-4}{3}, e\left(G_{2}\right) \leq \frac{4 n_{2}-4}{3}$. If $e\left(G_{1}\right)<\frac{4 n_{1}-4}{3}$ or $e\left(G_{2}\right)<\frac{4 n_{2}-4}{3}$, then $e(G)<\frac{4 n-5}{3}$. If $e\left(G_{1}\right)=\frac{4 n_{1}-4}{3}$ and $e\left(G_{2}\right)=$ $\frac{4 n_{2}-4}{3}$, then by the induction hypothesis, $G_{1} \in \mathcal{G}_{n_{1}}^{1}, G_{2} \in \mathcal{G}_{n_{2}}^{1}$. It follows that $G \in \mathcal{G}_{n}^{2}$ and $e(G)=\frac{4 n-5}{3}$.

If $q_{1} \in\{1,2\}$ and $q_{2}=2$, then $e\left(G_{1}\right) \leq \frac{4 n_{1}-3-q_{1}}{3}$ and $e\left(G_{2}\right) \leq \frac{4 n_{2}-5}{3}$. Thus $e(G) \leq \frac{4 n-5-q_{1}}{3}<\frac{4 n-2-q_{1}}{3}$.

So we get the following result for $k=3$.
Theorem 3.4. $f\left(n ; \bar{\kappa}_{3}=1\right)=\frac{4 n-3-q}{3}$, where $n=3 r+q$ and $0 \leq q \leq 2$.

4 The case $k=4$

In this section, we turn our consideration to the case $k=4$. Similarly, we will give a necessary and sufficient condition for $\bar{\kappa}_{4}(G)=1$. First of all, we begin with a claim useful for simplifying our argument. Let $P_{1}=u_{1} w_{1} w_{2} \ldots w_{k} v_{1}$ be an ear of a cycle C. Set $H=C \cup P_{1}$ and add another ear $P_{2}=u_{2} w_{1}^{\prime} w_{2}^{\prime} \ldots w_{l}^{\prime} v_{2}$ to H. We claim that there is always a cycle C^{\prime} in $H \cup P_{2}$ which has two ears in the following cases: if $u_{2}, v_{2} \in V(C)$, then $C^{\prime}=C_{1}^{*}$; if $u_{2}, v_{2} \in V\left(P_{1}\right)$, then $C^{\prime}=C_{2}^{*}$; if $u_{2} \in v_{1} C u_{1}$, $v_{2} \in V\left(P_{1}\right)$ and P_{1} is an open ear, then $C^{\prime}=C_{3}^{*}$; if $u_{2} \in v_{1} C u_{1}, v_{2} \in V\left(P_{1}\right)$ and P_{1} is a closed ear, then $C^{\prime}=C_{4}^{*}$. See Figure 2 for an illustration.

C_{1}^{*}

C_{2}^{*}

C_{3}^{*}

Figure 2. $C_{i}^{*}(1 \leq i \leq 4)$

Proposition 4.1. Let G be a connected graph. Then $\bar{\kappa}_{4}(G)=1$ if and only if every cycle in G has at most one ear.

Proof. To settle the "only if" part, let C be a cycle in G. Assume, to the contrary, that C has two ears P_{1} and P_{2}. In Figure 3, we list all cases that C has two ears. The marked dots are the chosen four vertices, and different trees are marked with different lines. Note that an ear P of the cycle C divides this cycle into two segments, say C_{1} and C_{2}. If an ear P of C has length 1 , then both C_{1} and C_{2} have length at least 2. In this case, we replace P with C_{1} such that $P \cup C_{2}$ forms a new cycle and C_{1} is an ear of this cycle, which has length at least 2. From Figure 3, we can find two internally disjoint trees connecting four vertices in G, a contradiction.

To prove the "if" part, since every maximal bridgeless subgraph of G is a cycle C or $C \cup P$, where P is an ear of C, then every edge incident to a maximal bridgeless subgraph of G is a cut edge of G. Similar to Proposition 3.1, it is easy to check that only one tree connects every four vertices in G, and so $\bar{\kappa}_{4}(G)=1$.
Lemma 4.2. Let G be a connected graph of order 5 and size 6 . Then $G \in\{B+$ $\left.K_{1}, D_{1}, D_{2}, D_{3}\right\}$ and $\bar{\kappa}_{4}(G)=1$.

(a)

(e)

(b)

(c)

(d)

(f)

(g)

(h)

Figure 3. Graphs for Proposition 4.1

Proof. We can easily obtain $\delta(G) \leq 2$; otherwise $e(G) \geq \frac{3 n}{2}=\frac{15}{2}$. If $\delta(G)=1$, by deleting a vertex of degree 1 , say v, we obtain a graph $G^{*}=K_{4} \backslash e$. Observe that $G^{*}+K_{1}$ has no cycle with two ears. Thus by Proposition 4.1, $\bar{\kappa}_{4}(G)=1$.

Suppose that $\delta(G)=2$, without loss of generality, let $d(v)=2$. Then $G \backslash v$ is C_{4} or $C_{3}+K_{1}$. Adding v back, there are four graphs D_{1}, D_{2}, D_{3} or $B+K_{1}$, and for each of the graphs, $\bar{\kappa}_{4}(G)=1$.

Lemma 4.3. Let G be a connected graph of order 5 and size at least 7 . Then $\bar{\kappa}_{4}(G) \geq 2$.

Proof. By Observation 2.1, we need to check the case that G has order 5 and size exactly 7. First, similar to Lemma $4.2, \delta(G) \leq 2$. Suppose that $\delta(G)=1$, without loss of generality, let $d(v)=1$. Then $|V(G \backslash v)|=4$ and $e(G \backslash v)=6$, which implies that $G \backslash v$ is K_{4}. Then there are two internally disjoint trees connecting the four vertices of the clique K_{4}. It follows that $\bar{\kappa}_{4}(G \backslash v) \geq 2$, and hence $\bar{\kappa}_{4}(G) \geq 2$.

If $\delta(G)=2$, suppose that v has degree 2 , then $|V(G \backslash v)|=4$ and $e(G \backslash v)=5$, giving that $G \backslash v$ is $K_{4} \backslash e$. Adding v again, the graph G has a cycle with two ears, and by Proposition 4.1, $\bar{\kappa}_{4}(G) \geq 2$.
Lemma 4.4. Let G be a connected graph of order 6 and size 7. Then $G \in\{B+$ $\left.\left\{K_{1}\right\}^{2},\left\{C_{3}\right\}^{2}, D_{1}+K_{1}, D_{2}+K_{1}, D_{3}+K_{1}, F_{1}, F_{2}, F_{3}, F_{4}\right\}$ and $\bar{\kappa}_{4}(G)=1$.

Proof. Obviously, $\delta(G) \leq 2$. If $\delta(G)=1$, by deleting a vertex of degree 1 we get the graphs in Lemma 4.2. Adding v again, it is easy to check that $\bar{\kappa}_{4}(G)=1$.

If $\delta(G)=2$, without loss of generality, let $d(v)=2$, then $|V(G \backslash v)|=5$ and $e(G \backslash v)=5$. Then $G \backslash v$ is C_{5} or $C_{4}+K_{1}$ or $K_{3}+\left\{K_{1}\right\}^{2}$. Adding v again, the graph G belongs to $\left\{B+\left\{K_{1}\right\}^{2}, F_{1}, F_{2}, F_{3}, F_{4}\right\}$, and for each of the graphs, it is easy to check that $\bar{\kappa}_{4}(G)=1$.

Lemma 4.5. Let G be a connected graph of order 6 and size at least 8. Then $\bar{\kappa}_{4}(G) \geq 2$.

Proof. By Observation 2.1, we need to check the case that G has order 6 and size exactly 8 . We can easily obtain $\delta(G) \leq 2$; otherwise $e(G) \geq \frac{3 n}{2}=9$. If $\delta(G)=1$, we delete a vertex of degree one to get a graph of order 5 and size 7 . Then by Lemma 4.3, it follows that $\bar{\kappa}_{4}(G) \geq 2$.

If $\delta(G)=2$, without loss of generality, let $d(v)=2$, then $|V(G \backslash v)|=5$ and $e(G \backslash v)=6$. It follows that $G \backslash v$ is one of the graphs in Lemma 4.2. Adding v again, there is a cycle with two ears, and by Proposition 4.1, $\bar{\kappa}_{4}(G) \geq 2$.

Theorem 4.6. Let $n=4 r+q$, where $0 \leq q \leq 3$, and let G be a connected graph of order n such that $\bar{\kappa}_{4}(G)=1$. Then

$$
e(G) \leq \begin{cases}\frac{3 n-2}{2} & \text { if } q=0, \\ \frac{3 n-3}{2} & \text { if } q=1, \\ \frac{3 n-4}{2} & \text { if } q=2, \\ \frac{3 n-3}{2} & \text { if } q=3\end{cases}
$$

with equality if and only if $G \in \mathcal{H}_{n}^{q}$.
Proof. We apply induction on n. For $n=4$, it is easy to see that $e(G) \leq 5$ and if $e(G)=5$, and then $G=B \in \mathcal{H}_{n}^{0}$. For $n=5$, if G is a connected graph of order 5 and size at least 7 , then $\bar{\kappa}_{4}(G) \geq 2$ by Lemma 4.3. In other cases, either $e(G) \leq 5$ or $G \in \mathcal{H}_{n}^{1}$ by Lemma 4.2. For $n=6$, if G is a connected graph of order 6 and size at least 8 , then $\bar{\kappa}_{4}(G) \geq 2$ by Lemma 4.5. In other cases, either $e(G) \leq 6$ or $G \in \mathcal{H}_{n}^{2}$ by Lemma 4.4. Let $n \geq 7$, and suppose that the assertion holds for graphs of order less than n. We show that the assertion holds for graphs of order n. We consider two cases according to whether or not G has cut edges.

If G has no cut edge, then G is bridgeless, and combining with Proposition 4.1, G is a cycle or a cycle with an ear. If G is a cycle, then $e(G)=n<\frac{3 n-4}{2}$, since $n \geq 7$. If G is a cycle with an ear, then $e(G)=n+1<\frac{3 n-4}{2}$, since $n \geq 7$.

Suppose that G has cut edges. Without loss of generality, let e be a cut edge. Let G_{1} and G_{2} be two connected components of $G \backslash e$. Set $V\left(G_{1}\right)=n_{1}, V\left(G_{2}\right)=n_{2}$ where $n_{1}+n_{2}=n$. Clearly, $e(G)=e\left(G_{1}\right)+e\left(G_{2}\right)+1$. Furthermore, set $n_{1} \equiv q_{1}(\bmod 4)$, $n_{2} \equiv q_{2}(\bmod 4)$ where $q_{1}, q_{2} \in\{0,1,2,3\}$.

If $q_{1}=0, q_{2} \in\{0,1,2\}$ or $q_{1}=1, q_{2}=1$, by the induction hypothesis, $e\left(G_{1}\right) \leq \frac{3 n_{1}-2-q_{1}}{2}, e\left(G_{2}\right) \leq \frac{3 n_{2}-2-q_{2}}{2}$. If $e\left(G_{1}\right)<\frac{3 n_{1}-2-q_{1}}{2}$ or $e\left(G_{2}\right)<\frac{3 n_{2}-2-q_{2}}{2}$, then $e(G)<\frac{3 n-2-q_{1}-q_{2}}{2}$. If $e\left(G_{1}\right)=\frac{3 n_{1}-2-q_{1}}{2}$ and $e\left(G_{2}\right)=\frac{3 n_{2}-2-q_{2}}{2}$, then by the induction hypothesis, $G_{1} \in \mathcal{H}_{n_{1}}^{q_{1}}, G_{2} \in \mathcal{H}_{n_{2}}^{q_{2}}$, and it follows that $G=G_{1}+G_{2} \in \mathcal{H}_{n}^{q_{1}+q_{2}}$ and $e(G)=\frac{3 n-2-q_{1}-q_{2}}{2}$.

If $q_{1}=0, q_{2}=3$, by the induction hypothesis, $e\left(G_{1}\right) \leq \frac{3 n_{1}-2}{2}, e\left(G_{2}\right) \leq \frac{3 n_{2}-3}{2}$. If $e\left(G_{1}\right)<\frac{3 n_{1}-2}{2}$ or $e\left(G_{2}\right)<\frac{3 n_{2}-3}{2}$, then $e(G)<\frac{3 n-3}{2}$. If $e\left(G_{1}\right)=\frac{3 n_{1}-2}{2}$ and $e\left(G_{2}\right)=$ $\frac{3 n_{2}-3}{2}$, then by the induction hypothesis, $G_{1} \in{\underset{\mathcal{H}}{n_{1}}}_{0}^{2}, G_{2} \in \mathcal{H}_{n_{2}}^{3}$, and it follows that $G=G_{1}+G_{2} \in \mathcal{H}_{n}^{3}$ and $e(G)=\frac{3 n-3}{2}$.

If $q_{1}=1, q_{2}=2$, then $e\left(G_{1}\right) \leq \frac{3 n_{1}-3}{2}$ and $e\left(G_{2}\right) \leq \frac{3 n_{2}-4}{2}$, and thus $e(G) \leq \frac{3 n-5}{2}<$ $\frac{3 n-3}{2}$.

If $q_{1}=1, q_{2}=3$, then $e\left(G_{1}\right) \leq \frac{3 n_{1}-3}{2}, e\left(G_{2}\right) \leq \frac{3 n_{2}-3}{2}$, and so $e(G) \leq \frac{3 n-4}{2}<\frac{3 n-2}{2}$.
If $q_{1}=2, q_{2}=2$, then $e\left(G_{1}\right) \leq \frac{3 n_{1}-4}{2}, e\left(G_{2}\right) \leq \frac{3 n_{2}-4}{2}$, and it follows that $e(G) \leq \frac{3 n-6}{2}<\frac{3 n-3}{2}$.

If $q_{1}=2, q_{2}=3$, then $e\left(G_{1}\right) \leq \frac{3 n_{1}-4}{2}, e\left(G_{2}\right) \leq \frac{3 n_{2}-3}{2}$, and so $e(G) \leq \frac{3 n-5}{2}<\frac{3 n-3}{2}$.
If $q_{1}=3, q_{2}=3$, by the induction hypothesis, $e\left(G_{1}\right) \leq \frac{3 n_{1}-3}{2}, e\left(G_{2}\right) \leq \frac{3 n_{2}-3}{2}$. If $e\left(G_{1}\right)<\frac{3 n_{1}-3}{2}$ or $e\left(G_{2}\right)<\frac{3 n_{2}-3}{2}$, then $e(G)<\frac{3 n-4}{2}$. If $e\left(G_{1}\right)=\frac{3 n_{1}-3}{2}$ and $e\left(G_{2}\right)=$ $\frac{3 n_{2}-3}{2}$, then by the induction hypothesis, $G_{1} \in \mathcal{H}_{n_{1}}^{3}, G_{2} \in \mathcal{H}_{n_{2}}^{3}$, and it follows that $G=G_{1}+G_{2} \in \mathcal{H}_{n}^{2}$ and $e(G)=\frac{3 n-4}{2}$.

So we get the following result for $k=4$.

Theorem 4.7.

$$
f\left(n ; \bar{\kappa}_{4}=1\right)= \begin{cases}\frac{3 n-2}{2} & \text { if } q=0 \\ \frac{3 n-3}{2} & \text { if } q=1, \\ \frac{3 n-4}{2} & \text { if } q=2 \\ \frac{3 n-3}{2} & \text { if } q=3\end{cases}
$$

where $n=4 r+q$ and $0 \leq q \leq 3$.

$5 \quad$ The case $k=n$

Let us turn now to the case $k=n$. Let $n \geq 5$, since $k=3$ and $k=4$ have been considered before. Observe that in this case the edge disjoint trees are the same as the internally disjoint trees.

Theorem 5.1. Let G be a connected graph of order n such that $\bar{\kappa}_{n}(G)=1$ where $n \geq 5$. Then $e(G) \leq\binom{ n-1}{2}+1$, with equality if and only if $G \in \mathcal{K}_{n}$.

Proof. Let $G=K_{5} \backslash M$, where M is a subset of the edges of K_{5}. On one hand, to make $\bar{\kappa}_{5}(G)=1, M$ should contain at least 3 edges by Lemma 2.3, and then $e(G) \leq 7$. On the other hand, to form two edge-disjoint spanning trees, G should contain at least 8 edges, since each tree consists of at least 4 edges. Thus, G must have order 5 and size 7 , meaning that it belongs to \mathcal{K}_{5}. It suffices to verify the case $n \geq 6$. By Lemma 2.3 again, to make $\bar{\kappa}_{n}(G)=1, e(G) \leq\binom{ n}{2}-(n-2)=\binom{n-1}{2}+1$.

Now we show that \mathcal{K}_{n} is equal to $K_{n-1}+K_{1}$. Suppose H is a graph with order n, size $\binom{n-1}{2}+1$ and $\bar{\kappa}_{n}(H)=1$ but different from $K_{n-1}+K_{1}$.

We claim that $2 \leq \delta(H) \leq n-3$. Otherwise, if $\delta(H)=1$, then $H=K_{n-1}+K_{1}$. If $\delta(H) \geq n-2$, then $e(H)=\frac{\Sigma_{v \in V(H)} d(v)}{2} \geq \frac{(n-2) n}{2}, H$ is obtained from K_{n} by deleting at most $\frac{n}{2}$ edges. Since $n \geq 6$, then $\frac{n}{2} \leq n-3$. By Lemma 2.3, H has two edge-disjoint spanning trees, a contradiction.

Let v be a vertex of H with degree equal to $\delta(H)$, and let $H^{*}=H \backslash v$. Since there are $n-1-d(v)$ vertices not adjacent to v in H and H is obtained from K_{n} by deleting $n-2$ edges, H^{*} is obtained from K_{n-1} by deleting $n-2-(n-1-d(v))=$ $d(v)-1 \leq(n-1)-3$ edges. By Lemma 2.3, H^{*} has two edge-disjoint spanning
trees T_{1}^{*} and T_{2}^{*}. By adding an edge incident with v to T_{1}^{*} and T_{2}^{*} respectively, we will obtain two edge-disjoint spanning trees of H, a contradiction. Thus \mathcal{K}_{n} is equal to $K_{n-1}+K_{1}$.

So we get the following result for $k=n$.
Theorem 5.2. $f\left(n ; \bar{\kappa}_{n}=1\right)=\binom{n-1}{2}+1$ where $n \geq 5$.
Remark: Let G be a connected graph. For $k=3$ and $k=4$, we get necessary and sufficient conditions for $\bar{\kappa}_{k}(G)=1$ by means of the number of ears of cycles. Naturally, one might think that this method can always be applied for $k=5$, i.e., every cycle in G has at most two ears, but unfortunately we found a counterexample: Let G be a graph which contains a cycle with three independent closed ears. Set $C=u_{1} u_{2} u_{3}, P_{1}=u_{1} v_{1} w_{1} u_{1}, P_{2}=u_{2} v_{2} w_{2} u_{2}$, and $P_{3}=u_{3} v_{3} w_{3} u_{3}$. Then, $\bar{\kappa}_{5}(G)=1$. In fact, let S be the set of chosen five vertices. Obviously, for each i, if v_{i} and w_{i} are in S, then $\bar{\kappa}_{5}(S)=1$. So only one vertex in $P_{i} \backslash u_{i}$ can be chosen. Suppose that v_{1}, v_{2}, v_{3} have been chosen. By symmetry, u_{1}, u_{2} are chosen. It is easy to check that there is only one tree connecting $\left\{u_{1}, u_{2}, v_{1}, v_{2}, v_{3}\right\}$. The remaining case is that all u_{1}, u_{2} and u_{3} are chosen. Then, no matter which are the other two vertices, only one tree can be found.

For general k with $5 \leq k \leq n-1$, we can only get the following lower bound of $f\left(n ; \bar{\kappa}_{k}=1\right)$. The exact value is not easy to obtain.

Theorem 5.3.

$$
f\left(n ; \bar{\kappa}_{k}=1\right) \geq \begin{cases}r\binom{k-1}{2}+r-1, & \text { if } q=0 \\ r\binom{k-1}{2}+\binom{q}{2}+r, & \text { if } 1 \leq q \leq k-2\end{cases}
$$

for $n=r(k-1)+q, 0 \leq q \leq k-2$.
Proof. If $q=0$, let $G=\left\{K_{k-1}\right\}^{r}$, then $e(G)=r\binom{k-1}{2}+r-1$. If $1 \leq q \leq k-2$, let $G=\left\{K_{k-1}\right\}^{r}+K_{q}$, and then $e(G)=r\binom{k-1}{2}+\binom{q}{2}+r$. In every case, it is easy to verify that $\bar{\kappa}_{k}(G)=1$.

Acknowledgements

The authors are very grateful to the referees and editor for their valuable comments and suggestions which helped to improve the presentation of the paper.

References

[1] B. Bollobás, On graphs with at most three independent paths connecting any two vertices, Studia Sci. Math. Hungar. 1 (1966), 137-140.
[2] B. Bollobás, Extremal Graph Theory, Acdemic press, 1978.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[4] G. Chartrand, S. Kappor, L. Lesniak and D. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984), 1-6.
[5] J. Leonard, On graphs with at most four edge-disjoint paths connecting any two vertices, J. Combin. Theory, Ser. B 13 (1972), 242-250.
[6] J. Leonard, On a conjecture of Bollobás and Edrös, Period. Math. Hungar. 3 (1973), 281-284.
[7] J. Leonard, Graphs with 6-ways, Canad. J. Math. 25 (1973), 687-692.
[8] H. Li, X. Li and Y. Mao, On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices, Bull. Malays. Math. Sci. Soc. 37 (3) (2014), 747-756.
[9] H. Li, X, Li, Y. Mao and J. Yue, Note on the spanning-tree packing number of lexicographic product graphs, Discrete Math. 338 (5) (2015), 669-673.
[10] S. Li and X. Li, Note on the hardness of generalized connectivity, J. Combin. Optim. 24 (2012), 389-396.
[11] S. Li, X. Li and W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310 (2010), 2147-2163.
[12] X. Li and Y. Mao, The generalized 3-connectivity of lexicographic product graphs, Discrete Math. 8 Theor. Comput. Sci. 16 (1) (2014), 339-354.
[13] X. Li and Y. Mao, On extremal graphs with at most ℓ internally disjoint Steiner trees connecting any $n-1$ vertices, Graphs $\& \mathcal{C}$ Combin. 31 (6) (2015), 2231-2259.
[14] X. Li, Y. Mao and Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Combin. 58 (2) (2014), 304-319.
[15] W. Mader, Ein extremal problem des zusammenhangs von graphen, Math. Z. 131 (1973), 223-231.
[16] W. Mader, Grad und lokaler zusammenhang in endlichen graphen, Math. Ann. 205 (1973), 9-11.
[17] C.S.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
[18] B. Sørensen and C. Thomassen, On k-rails in graphs, J. Combin. Theory 17 (1974), 143-159.
[19] W. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221-230.

[^0]: * Supported by NSFC Nos. 11371205 and 11531011.

