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Abstract

The concept of semi-regular sets of matrices was introduced by J. Se-
berry in “A new construction for Williamson-type matrices”, Graphs and
Combinatorics, 2(1986), 81-87.

A regular s-set of matrices of order m was first discovered by J. Seberry
and A. L. Whiteman in “New Hadamard matrices and conference ma-
trices obtained via Mathon’s construction”, Graphs and Combinatorics,
4(1988), 355-377.

In this paper we study the product of semi-regular sets of matrices and
applications in various Williamson-like matrices. Using semi-regular sets
of matrices we construct new classes of Willianson type matrices, new
classes of complex Hadamard matrices and new Williamson type matrices
with additional properties.

1 Introduction and Basic Definitions

Definition 1 Suppose Q1,...,Q2, are (1, —1) matrices of order m satisfying

QiQ?:J) "'_]7&07 +s, 7,',].6{1,.“,23}, (1)
QiQa, = QH—SQzTr S {1: s 7‘5}3 (2)
2s
3 Q:QT = 2sm1,,. (3)
i=1
Call {Q1,...,Q2} a semi-regular s-set of matrices of order m.
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Definition 2 Suppose Ay, ..., A, are (1,—1) matrices of order m satisfying

A,’AjZJ, i,jE{l,...,s}, (4)
ATA;j = A;AT =T, i#3, ,5e€{1,...,s}, ()
ST(AAT + ATA) = 2sm1,. (6)

=1

Call {4:,...,4,} a regular s-set of matrices of order m [9], [11].

Regular sets of matrices are special semi-regular sets of matrices. To show this,
suppose {A;,...,A,} is a regular s-set of matrices and set Qi = Aj, Qjpe = AJT,
J =1,...,s. Hence {Q1,...,Q2} is a semi-regular s-set of matrices. J. Seberry
[8] constructed a semi-regular 3(q + 1)-set of matrices of order ¢2, say S, ..., Sq+1,
satisfying Q,Q'f = Q,;QT = Jp, 1 # j, where ¢ = 3(mod 4) is a prime power, and
a semi-regular (p + 1)-set of matrices of order p?, for p = 1(mod 4), a prime power.
J. Seberry and A. L. Whiteman [9] proved that if ¢ = 3(mod 4) is a prime power
there exists a regular 1(q + 1)-set of matrices of order g%, say A;,1=1,..., 3(g+1),
satisfying A;J = JA; = qJ.

Definition 3 Four (1,—1) matrices X, X5, X3, X4 of order n satisfying
X XT + X, XT + Xa XT + X XT = an1,

and
vt =vuT,
where U,V € {Xl,Xg,.Xg,X4} will be called Williamson type matrices of order

n [11]. Circulant, symmetric Williamson type matrices will be called Williamson
matrices.

Williamson and Williamson type matrices are discussed extensively by Baumert,
Miyamoto, Seberry, Whiteman, Yamada and Yamamoto ( [1], [6], [7], [8], [10]
(11}, [16], [18], [19], [23], [24], [28]).

Definition 4 Williamson type matrices (Williamson matrices) X;, X, X3, X4 will
be called nice if X; X7 + X3 XT =0, perfectif XlXér +X3XZ =X, X} + X, XF =0,
SpEC’I:CLl lf X]Xg + X3XZ, = Xng + XQXZN - X].XZ' + Xng‘ = 0.

The concept of special Williamson type matrices was introduced by Turyn [15], who
found symmetric, commuting and type 1 special Williamson type matrices of order
9/ for j a non-negative integer. Recently Xia [26] gave symmetric, commuting and
type 1 special Williamson type matrices of order N = 9* ;-:1 q;rj , where ¢; = 3(mod

4) is a prime power, and 7,7; are non-negative integers.
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Definition 5 Type 1 (1,—1) matrices A;, A,, Az, A4 of order n will be called tight
Williamson-like matrices if E;ﬂ AjAZ‘ = 4n], and AlAg‘+A2A’{+ A3A2+A4Ag' = 0.

Definition 6 Let C be a (1,—1,1, —%) matrix of order c satisfying CC* = cl, where
C* is the Hermitian adjoint of C. We call C' a complez Hadamard matriz of order c.

From [17], any complex Hadamard matrix has order 1 or order divisible by 2. Let
C = X +1Y, where X,Y consist of 1,—1,0 and X AY = 0 where A is the Hadamard
product. Clearly, if C is a complex Hadamard matrix then XXT + YY7T = cI,
XYT =Y X"

Definition 7 Four type 1 (1,—1) matrices, say Ty, T2, T35, T4 of order t will be
called T-matrices if T; A Tj = 0 for 4 # j, where A is the Hadamard product, and
4 T;TF =t

. . . . . . 4r;
Notation 1 For convenience, in this paper we write N = 9'[[;_, ¢, ’, where ¢; =
3(mod) is a prime power, and ¢,7; are non-negative integers.

Let M = (M;;) and N = (Ny) be orthogonal matrices with t? block M-structure
[10] of order tm and tn respectively, where M;; is of order m (3,7 = 1,...,t) and Ng
is of order n (g,h =1,2,...,t). We now define the the operation () as the following:

["Lyy Lig - Ly

MON<| I In o In

Lo L -+ Lu
where M;;, N;; and L,; are of order of m,n, and mn, respectively and
L;; = My X Nij+ Mg X Npj + -+ My X Ny,

where X is Kronecker product, 2,7 = 1,2,...,t. We call this the strong Kronecker
multiplication of two matrices, see [13].

2 Existence of Semi-Regular Sets of Matrices

The following results are known:
Theorem 1 Let both p = 1(mod 4) and ¢ = 3(mod 4) be prime powers. Then
(1) there ezists a semi-reqular (p + 1)-set of matrices of order p* (J. Seberry [8]),
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(i1) there ezists a regular 1(q+ 1)-set of matrices of order q? (J. Seberry and A. L.
Whiteman [9]).

Theorem 2 If there exist a semi-regular s-set of matrices of order m and a semi-
reqular t(= sm)-set of matrices of order n then there ezists a semi-reqular s-set of
matrices of order mn.

Proof. Let {4; = (a}), 4, = (@), Ay, = (a¥)} be the semi-regular s-set of
matrices of order m and { By, B, ..., By } be the semi-regular t-set of matrices of
order of n.

Define C; = (¢;) = (ak;Bi-1)ym+jtk-1)), ¢ = 1,...,2s so that

01 Bi-tymir 03Buymia 0 @i Bim
= @y Bi-tymiz 03 Bi-tymiz 0 @5 Blict)mar
. .
a1 Bi o Bictymir o @l Bim1

For any 4,7, ¢ — j # 0, *s, there exist no B,, B, such that u —v = +¢, B, in C;, B,
in C;. Thus C;C; = Jm X Jp = Jma, for 1,7, i~ 35 #0, +s. On the other hand, for
a fixed 4, write C;CY, = (D,,), where D,, is of order n, u,v = 1,...,m. Obviously,
Du = Jn, for u # v. Note that Du, = Y7t alnaih’ B 1ymik BEy, 1ymsr- Since
BkB,a_a = By4sBF, DI = D,,. Thus C.-C'?_;, is symmetric, i.e. C',-C';‘:_, = Ci4,CT.

uu

To show
2s
Z C:.CT = 2smnl,,, (N
1=1

note that (aj;)? =1 so the diagonal element of C;C7 is X B(i—l)MHBg—l)mH and
hence the diagonal element of ¥°2, C;C7 is

2sm 2t
> B;B] =) B;B] = 2nl, = 2smnl,.
7=1 i=1

The off-diagonal elements of C;CT are given by

Z(a;jaijB(i—l)m+j+h—1B(Ti-1)m+j+k~1) = Za;ja;;jj'(h # k).
=1 J=1
Since . m
Yo > aha,J =0
=1 j=1
the off-diagonal element of 3°7_, C;CF is zero. O
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~Corollary 1 Let both p = 1(mod 4) and g = 3(mod 4) be prime powers.

(i) if (p+ 1)p* — 1 is a prime power then there exists a semi-regular (p + 1)-set of
matrices of order p*((p + 1)p* — 1)?,

() if 2(p+1)p* — 1 is a prime power then there ezists a semi-regular (p + 1)-set of
matrices of order p*(2(p + 1)p* — 1),

(i%) if (g + 1)g* — 1 is a prime power then there ezists a regular 2(g + 1)-set of
matrices of order ¢*((g+ 1)g® — 1)%,

(w) if 3(g+1)¢*> — 1 is a prime power then there ezists a semi-reqular (g + 1)-set
of matrices of order ¢*(3(q + 1)¢® — 1)%.

Proof. (i) by Theorem 1 there exists a regular (p + 1)-set of matrices of order 2.
Since (p+1)p* —1 = 1(mod 4), by Theorem 1 there exists a semi-regular (p+ 1)p*-set
of matrices of order ((p + 1)p* — 1)%. Using Theorem 2, there exists a semi-regular
(p + 1)-set of matrices of order p*((p + 1)p* — 1)*.

(ii) By Theorem 1 there exists a semi-regular (p + 1)-set of matrices of order p2.
Since 2(p + 1)p* — 1 = 3(mod 4), by Theorem 1 there exists a regular (p + 1)p?-set
of matrices of order (2(p + 1)p? — 1)%. Using Theorem 2, there exists a semi-regular
(p 4 1)-set of matrices of order p?(2(p + 1)p* — 1)°.

(iii) This is Corollary 2 of [12].

(iv) By Theorem 1 there exists a regular (g + 1)-set of matrices of order ¢*. Case
1, ¢ = 3(mod 8). Then }(g+ 1)¢® — 1 = 1(mod 4). By Theorem 1 there exists a
semi-regular 3(g+ 1)g*-set of matrices of order +((g+1)¢* —1)*. By Theorem 2 there
exists a semi-regular (g + 1)-set of matrices of order ¢*(3(¢ +1)¢* —1)*. Case 2,
q = 7(mod 8). This follows from Corollary 5 of [12]. O

3 Wailliamson Type Matrices and Complex
Hadamard Matrices

We find new constructions for Williamson type matrices not given by Miyamoto [6]
or Seberry and Yamada [10], [11]. This theorem differs from that of Seberry [8] as
it does not need A;J = JA; = aJ where a is a constant [9].

Theorem 3 If there exist Williamson type matrices of order n and a semi-regular
s(= 2n)-set of matrices of order m then there ezist Williamson type matrices of order
nm.

69




Proof. Let A = (a;;), B = (b;;), C = (cij), D = (d;;) be the Williamson type matrices
of order » and let Ry,..., Ry, be the semi-regular s-set of matrices of order m. Set
E = (a;Rjpia), F' = (bijRusjsi1), G = (cijRantstio1), H = (dijRantjyio1), where
1,7 =1,...,n and the subscripts of R are reduced modulo n. By the same reasoning
as in the proof for Theorem 4 of (8], E, F, G, H are Williamson type matrices of order
nm. O

Corollary 2 If n (odd) is the order of Williamson type matrices and 2n — 1 is a
prime power then there ezist Williamson type matrices of order n(2n — 1),

Proof. Since n is odd, 2n — 1 = 1(mod 4). By Theorem 1 there exists a semi-regular
2n-set of matrices of order (2n—1)?. By Theorem 3 we have Williamson type matrices
of order n(2n — 1)2. 0

Corollary 3 (i) There exist Williamson type matrices of order 9%(2 - 9% — 1)* +f
2-9% — 1 is a prime power, where k is a non-negative integer,

(i) there exist Williamson type matrices of order 7-3%(14 - 3% —1)% 4f 14-3F — 1 is
a prime power, where k is a non-negative integer.

Proof. From the Index of [11}, there exist Williamson type matrices of orders of 9*
and 7 - 3%, where k = 0,1,.... Using Corollary 2, the corollary is established. ]

Theorem 4 If there ezist a complez Hadamard matriz of order 2¢ and a semi-regular
s(= 2c)-set of matrices of order m then there exists a complez Hadamard matriz of
order 2cm.

Proof. Let { Ai,..., Az, } be the semi-regular s(= 2c)-set of matrices of order m
and €' = X +1Y be the complex Hadamard matrix of order 2c¢, where both X and
Y are (0,1, —1) matrices satisfying X AY =0, XXT +YY7T = 2cl,., XY7T = Y XT.
Let P =X +Y and @ = X —Y. Then both P and @ are (1, —1) matrices of order 2¢
and PPT 4+ QQT = 4cl,., PQT = QPT. Let P = (pi;) and Q = (gi5), 4,7 =1,...,2c.
Set B = (pijAiyj-1) and F' = (qijAstiyj—1), where 1,5 = 1,...,s and the subscripts
of A are reduced modulo s = 2¢. Clearly, both E and F are (1, —1) matrices of order
2cm, since both P and Q are (1, —1) matrices of order 2c.

We now prove
EE" + FFT = 4cmlzem.

Write
E, F
E2 FZ
E = . and F = . )
E, F,
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where E; and F; are matrices of order m X sm.

Note that

EET 4+ F.FT =Y (pijpisAirio1 Afpjoq + 93G5 Astivio1 Arpipjoa)

i=1

g 2s
= S(AAT + A AL) = Y AjAT = 2smi,.
7=1 =1

On the other hand, if ¢ # k,

E;Ef + FFf = E(P{jpiji+j—-1AZ'+j—1 + Qijqijs+i+j—1Af+k+j—1)

i=1

= (Pijprj + ¢iiqki)Jm = 0.
j=1
Thus
EET + FFT = 2sml,,, = 4cmIzem.

Next we prove
EFT = FET.

Write EFT = (D,-j), where D;; is of order m, 4,7 = 1,...,2c. Note that D;; =
Ek-l PikgikAirh-1ATY s pr- For i # j, Dij = 3%, piegikm. Since PQT = QPT,
? = Dji, 1 # j. Note that Di; = ¥2¢ | piqixAisk-140, 151~ From (2), Definition 1,
= Dj;. Thus EFT is symmetric,i.e. EFT = FET. Finally, Set U = 3(E+F) and
V 1(E — F). Thus both U and V are (1,—1,0) matrices of order 2cmn satisfying
Una V 0, UUT + vVT = Y(EBET + FFT) 2¢emIpem. Since EFT = FET,
vvT =vUT. 7 Thus U 4V is a complex Hadamard matrix of order 2cm. a

Corollary 4 If both p = 1(mod 4) and p’(p + 1) — 1 are prime powers then there
ezists a complez Hadamard matriz of order p’(p + 1)(p?(p + 1) — 1)?, where j is a
positive integer.

Proof. Obviously, p?(p + 1) — 1 = 1(mod 4). By Theorem 1 there exists a regular
p/(p + 1)-set of matrices of order (p?(p + 1) —1)®. From Corollary 18 of [5], there
exists a complex Hadamard matrix of order p?(p + 1). Using Theorem 4, we have a
complex Hadamard matrix of order p?(p + 1)(p*(p + 1) — 1) o
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4 New Construction of Special, Perfect and Nice
Williamson Type Matrices

Part (iii) of the next theorem is known in [15] where the special Williamson type
matrices are symmetric and commuting. We include it here for completeness.

Theorem 5 (i) If there exist nice Williamson type matrices of orders n and m
then there exist Williamson type matrices of order nm,

(4) if there ezist nice Williamson type matrices of order n and spectal Williamson
type matrices of order m then there ezist nice Williamson type matrices of order
nm,

(vii) if there ezist special Williamson type matrices of orders n and m then there
exist special Williamson type matrices of order nm.

Proof. Let X3, X3, X3, X4 be nice Williamson type matrices of order n and Y;, Y3, Y3, Y,
be nice Williamson type matrices of order m. Set

1 1 1 1
Zi =5 (X4 X) x Vit 5 (X0 = Xo) x Yoy Z2 = 5(X1 + Xo) X ¥+ 5 (X1 = X3) x Yo,

%:%uﬁq@xn+g&_&pa;A:%uﬁxaxn+g&~&wn.
Then Zy, Z3, Z3, Z4 are (1, —1) matrices of order nm. Note that
22T = X+ X)X+ X)T x KYT + (X1 = X)X - Xo)T x Ry
+ (X0 + X)X - X)T x nYY,
22y = (X4 Xa)(Xa 4+ X)) x VYT + 3Ky — Xo) (X — X5)T x YaYT
+ 3%+ X)X - X)T x BYY,
2327 = {(Xs+ Xa)(Xs+ Xa)T x VT + 1 Xz — Xa)(Xs — Xa)T x VY7
4 (e XK - X x BV,
Z:Z] = {(Xs+ Xa)(Xs+ Xa)" x V3¥F + L(Xa — Xa)(Xs — X,)T x VaY7
+ 1 Xs+ Xa)(Xs — Xo)T x VYT,
It is easy to check that

2:2] + 2,27 + 22T + 2,27
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1 .
= 70GXT + XX + XaX] + XaXT) x (BT + XF + Yo ¥F + YY) = dnml .

Obviously, Z:ZF = Z,;Z7, for 4,j = 1,2,3,4. Thus, %1, %3, Zs, Zs are Williamson
type matrices of order nm.

In particular, let X, X,, X3, X4 be nice Williamson type matrices of order n and
Y1,Y,, Y3, Y, be special Williamson type matrices of order m. Note that

1 1
leg‘ = Z(Xl + Xo)(X1 + Xz)T X YlygT + Z(Xl - X)X~ Xz)T X Y2Y:;T

1 1 : ’
+Z<Xl + X)) (X1 - XZ)T X Y1Y4T + Z(Xl - X)Xy +X2)T X Y2Y3T,

where

(X1 + X2)(Xn = X2)T x Y + (X0 — Xo)(X1 + Xo)T x VoY
= (6XT - X XT) x (WY + va¥]) = 0.
Then

%,2] = E(Xl %Xz)(X, +X,)T x YT + i(X1 - X,)( X1 — X3)T x VYT
Similarly,

Z:2T = --(X3 + Xa)(Xa+ Xo)T x YT + (X3 = Xa)( X3 — Xy)T x Y';}’;T.
Hence

2,7 + 2,2T = %;,(XIXIT + Xo X7 + X3 X5 + X X]) x (WYL + YY) =0.
We have now proved Zi, Z;, Za, Z4 are nice Williamson type matrices of order nm.

Further suppose X1, X5, X3, X, are special Williamson type matrices of order n and
Y1,Y,, Y3, Y, are special Williamson type matrices of order m.

1 1 o
725 = 7(Xa + Xa)(Xs + Xa)T X AV + 2(X0 ~ Xo)(Xa - X4)T x VoY

(Xl + Xz)(Xa ~ X)) x Yy + (X1 - X5)(Xs + Xa)T x VoY,

Note that ’ :
(X1 4 X)(Xs + Xa)T = (X1 — Xo)(Xs — Xu)T =0,
then

1 1
5,25 = S0 + Xa)(Xa = Xa) X Y+ 506 — X0)(Xs + X7 x VYT,
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Similarly,
1 1
Z2,2T = Z(X1 + X2)(Xs — Xo)T x VoY, T + Z(X1 — X)(Xa + X)T x VLY

Clearly, 2,127 + Z,Z} = 0. Finally, by the same reasoning for Z,Z7 and 2,27, we
have :

1 1
AV Z(Xl + X)(Xs — Xo)T x YT + Z(Xx - X2)(Xs + X4)T x VoY
and ‘
1 1
2,27 = Z(X1 + X2)(Xs — Xo)T x Va¥VT + Z(X1 - Xo)(Xs + X)T x VYT

Clearly ZIZZ + Zng = 0. Thus Zy, Z,, Z3, Z, are special Williamson type matrices
of order nm. ‘ O

Corollary 5 If there exzist nice Williamson type matrices of orders n and m then
there exist Williamson type matrices of order nmN, where N was defined in Notation
1.

Proof. From [26], there exist special Williamson type matrices of order N. By The-
orem 5 there exist nice Williamson type matrices of order m N and hence Williamson
type matrices of order nmN. a

Let ¢ = 1(mod 4) be a prime power and n = 1(1 + ¢). By Theorem 1 there exists a
semi-regular 2n = (g + 1)-set of matrices of order ¢2, @1, ..., Q4 satisfying

QiQT = Jg, if i —j # 21,0, QT = Qis2nQT
and
4n
Z QJQ;T = 4‘12(1 + ‘I)qu‘
7=1

Suppose A = (ai;), B = (b;), C = (b;;), D = (d;;) are Williamson type matrices of
order n. Set ’

E = (ai;Q;-:), F = (b;Qntj-i)y G = (cijQantj-i), H = (dijQans;i),

where the subscripts of @ are reduced modulo n to the residue class {1,...,n}. By
the same reasoning as in the proof of Theorem 4 of [8], E, F, G, H are Williamson
type matrices of order ng®. Further suppose ABT + CDT =0, ie. A, B, C, D are
nice Williamson type matrices of order n. Write EFT = (X,;), GHT = (Y};), where
Xij, Yi; are of order ¢2, 7,7 = 1,...n. Note that

n n
r
Xij =3 aaQu-ibitQl ;= aubpdp,
k=1 k=1
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since (n+ k—3) — (k—1)# 0, 2n. Similarly,
YiJ' = Z CikQ2n+k—ibijg‘n+k—j = Z Cikdjk.]qz,
k=1 =1

since (3n+k—7)—(2n+k—1) # 0,2n. Note that ABT +CDT = 0 thus Xij+Yi; =0
and then EFT + GHT = 0. Similarly, if ADT 4+ BCT = 0 then EHT + FGT = 0.
Note that if n is odd, then 2n — 1 = 1(mod 4). Hence we have proved

Theorem 6 If there ezist nice (perfect) Williamson type matrices of order n, where
n 1s odd and 2n — 1 is a prime power then there ezist nice [perfect ) Williamson type
matrices of order n(2n — 1)2.

Corollary 6 Let N, N, and N, be three products of the kind defined by Notation 1.
If 2N — 1 is a prime power then there exist

(i) j)e%’fect Williamson type matrices of order N(2N — 1)2,
(1) mice Williamson type matrices of order N(2N — 1)? Ny,
(iii) Williamson type matrices of order N(2N — 1)?Ny (2N, — 1)?N,, if 2N; — 1 is @

prime power.

Proof. (i), (i) and (iii) hold by Theorem 6, Theorem 5 and Corollary 5 respectively.
m]

For example, by Corollary 6 there exist perfect Williamson type matrices of order

9-17%, nice Williamson type matrices of order 9- 172N and Williamson type matrices

of order 92.17N.

5 Tight Williamson-like Matrices and Applica-
tions

Some tight Williamson-like matrices were found by Xia [22]. For example, from [20],
we construct cyclic tight Williamson-like matrices of orders 5 and 13 with first rows

boddm b b —t — =ttt 44— and

- —t——Ft—t+, —— -ttt
+t-—t-—t++-==+- +-++++++-—++ — respectively.

From  {20] we construct type'l tight Williamson-like matrices of order 25. Any
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element in the abelian group Zs @ Zs can be expressed as (a, b), where a4, b € Zs, and
the addition in Zs @ Zs can be defined as (a, b)+ (¢,d) = (@ + b,c + d). Set

51={(0,0), (0,1), (1,2), (3,3), (0,3), (4,4), (3,4), (2,0), (2,2), (1,0), (1,4),
(0,2), (3,0)},

52 =1(0,1), (4,0), (3,1), (4,4), (0,4), (4,2), (1,0), (1,1), (3,2)},

S3 = {(1:2): (3:3)) (1,3), (47 1): (374)7 (27 0)! (2’3)» (4:3)7 (1:4)) (0:2); (2)4)7
(2,1}

Sa={(3, 3), (4, 1)7 (0, 3), (2, 0), (4, 3), (272): (0: 2), (2, 1),(3, 0)}.

The type 1 (1,—1) incidence matrices of S, 52, 53, S4 form tight Williamson-like
matrices of order 25.

Tight Williamson-like matrices are not Williamson type matrices but they are suit-
able for use in the Goethals-Seidel or Wallis-Whiteman arrays [14] with cross corre-
lation types of properties (see Definition 4). Besides forming Hadamard matrices of
Goethals-Seidel or Wallis-Whiteman type [14], tight Williamson-like matrices can be
used to form Hadamard matrices in the following special array.

Let A1, Az, As, A4 be tight Williamson-like matrices of order n. Set

A Ay Ay A,
A2 A1 A4 A3
AT AT AT 4T
AT AT T 4T

H =

Hence H is an Hadamard matrices of order 4n with 4 x 4 type 1 blocks.

Let Ay, Ay, A3, A4 be the tight Williamson-like matrices of order n and 1,T2,T5,T,
be T-matrices of order ¢.

Write

i

E1 T1XA1+T2XA2+T3XAZ+T4XAZ,
Ez = T1XA2+T2XA1+T3XAZ+T4XA§,
By = TixAs+Tox Ay =Ty x AT 2Ty x AT,
E4 = T1XA4+T2XA3*T3XAZ‘—T4XA{.

Clearly, each Ej is a (1, -1)-matrix. It is easy to check that E;'=1 EjE;-I' = 4inl,,.
Note that the E; are of type 1, hence we can construct an Hadamard matrix of order
4tn by using Theorem 3 of [14]. This proves the more general result:

If there exist tight Williamson-like matrices of order n and T-matrices of order ¢ then

there exists an Hadamard matrix of order 4in.

Xia proved [22] that if there exist tight Williamson-like matrices of order n and type
1 special Williamson type matrices of order m then there exist tight Williamson-like
matrices of order nm. Since there exist tight Williamson-like matrices of orders 5,
13, 25 and N is the order of type 1 special Williamson type matrices , there exist
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tight Williamson-like matrices of orders 5N, 13N, 25N and thus there exist Hadamard
matrices of orders 5t N, 13t N, 25t N where t is the order of the T-matrices.

Let A, B, C, D be tight Williamson-like matrices of order 7. Set

P_l A+ B C+D d Q—l A—B C-D
“”§ CT+DT _AT_BT an —2 CT——-DT\ —AT+BT

Thus P and @ are two disjoint W(2n,n) and then we have two disjoint W(2n,n)

where n = 5N, 13N, 25N.

By Corollary 2.11 of [4] a W(2n,n), where n is odd, only exists when n is a sum of two
squares. Hence we have reproved that if n (odd) is the order of tight Williamson-like

matrices then n is a sum of two squares (Xia [21]), in other words, the factorization
of n into powers of dlstlnct primes contains no odd powers of pmmes congruent to

3(mod 4).
Two disjoint W(2n,n) are often used for constructing Hadamard matrices [2], [3].

Also we can construct two disjoint W(2n,n) by using nice Williamson type ‘ma-
trices. Let A, B, C, D be nice Williamson type matrices of order n. Set P =
1| A+B C+D 40 = 1 A-B C-D
2lcyp —4-B|™9=3/0_p _ayB
P and Q are two disjoint W(2n,n). Thus there exist two disjoint W(2n,n) for
n = N(2N — 1)®N; where N, N; were defined by Notation 1 and 2N — 1 is a prime

power (see Corollary 6).

. It is easy to verify that

The constructions of all the above matrices P and @ were previously given in [2].

The following table shows the existence of tight Williamson-like matrices of odd orders
< 60. Tight Williamson-like matrices for odd order n can only exist for n = 1(mod

4), where the factorization of n into powers of distinct primes contains no odd powers
of primes congruent to 3(mod 4). Hence the following list contains only those n which
exist or could possibly exist.
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order construction

[22], see Section 5

9t (15], since type 1 special Williamson type are tight Williamson-like
matrices

13 [22], see Section 5

17 unknown '

25 [22], see Section 5

29 -unknown

37 unknown

41 unknown

45 [22], see this paper

49 unknown

53 unknown

Acknowlegement: I wish to thank Professor Jennifer Seberry for her help ’and
encouragement.
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