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Abstract 

Let n be a positive integer with n $; (V(O)-2)/2. A graph G is n­

extendable if it contains a set of n independent edges and every set of n 

independent edges can be extended to a perfect matching of G. In this paper, 

we give a characterization of n-extendable graphs. The characterizations of 

other matching extension are also discussed. 

1. Introduction 

All graphs in this paper are finite and have no loops or multiple edges. 

A perfect matching, or I-factor, of a graph 0 is a set of independent edges 

h· h h 11 h . f 0 L be . " . h V(G)-2 W IC toget er cover ate vertlces 0 . et n a pOSItIve mteger WIt n ~-2- . 

A graph 0 is n-extendable if it contains a set of n independent edges and every set of 

n independent edges can be extended to a perfect matching of G. We call 0 0-

extendable if it has a perfect matching. A graph 0 is said to be bicritical if for every 

pair of distinct vertices u and v G- {u, v} has a perfect matching (clearly bicritical 

graphs are I-extendable). A 3-connected bicritical graph is called a brick. A graph 0 
I 

is said to be factor-critical if G-v has a perfect matching for every vE V(O). 

In 1980, Plummer [7] studied the properties of n-extendable graphs and 

showed that every 2-extendable graph is either bipartite or a brick. Motivated by this 

result he [8, 9] further looked at the relationship between n-extendability and other 

graphic parameters (e.g., degree, connectivity, genus, toughness). Recently, Schrag 
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and Cammack [11] and Yu [12] classified the 2-extendable generalized Petersen 

graphs, and Chan, Chen and Yu [3] classified the 2-extendable Cayley graphs on 

abelian groups. For more results and the motivations of n-extendable graphs, the 

interested reader is refereed to a recent survey paper by Plummer [10]. 

Little, Orant and Holton [4] gave good characterizations of I-extendable 

graphs and I-extendable bipartite graphs. Brualdi and Perfect [2] in 1971 obtained a 

criterion of n-extendable bipartite graphs, but their result is described in terms of 

matrices and systems of distinct representatives. In this paper, we shall characterize 

the n-extendable graphs (n ~ 1). Since n-extendable graphs must have a I-factor" we 

deal only with graphs of even order. For graphs of odd order, we generalize the ide,a of 

n-extendability and introduce nt -extendability. A graph 0 is nt -extendable if (1) 

for any vertex v of VeO) there exists a set of n independent edges in 0 which miss v 

and (2) for every vertex v and every set of n independent edges el = XlYl, e2 = X2Y2, 

... , en = XnYn missing v, there exists a near perfect matching of 0 which contains el, e2, 

... , en and misses v. Analogous to n-extendability, we study the properties of nt 

-extendable graph and obtain a characterization for it. The generalizations of factor­

critical and bicritical graphs are also discussed. 

For any set S s;: VeG), we denote by G-S the subgraph of 0 obtained by 

deleting the vertices of S together with their incident edges, and by O[S] the subgraph 

of G induced by S. 

The followings are some preliminary results which we need in this paper. 

Theorem 1.1 (Tutte's Theorem) A graph 0 has a perfect matching if and only if o(G­

S) ~ lSI for all S s;: VeO). 

Theorem 1.2 (Little, Orant and Holton [4]) Let 0 be a graph of even order. Then 0 

is I-extendable if and only if for all S s;: V(G), 

(1) o(O-S) ~ lSI and 

(2) o(O-S) = lSI implies that S is an independent set. 

Theorem 1.3 (Plummer [7]) If 0 is a graph with p vertices, then the following claims 

hold. 

(1) If 0 is n-extendable, then 0 is also (n-l)-extendable. 

(2) If 0 is a connected n-extendable graph, then 0 is (n+ 1 )-connected. 
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(3) If P ~ 4 and d(O) ~ ~ + n, then 0 is n-extendable. 

Theorem 1.4 (See [6]) A graph 0 is factor-critical if and only if 0 has an odd number 

of vertices and o(O-S) ~ lSI for all 0 #- S C; V(O). 

2. Characterizations and Properties 

The family of n-extendable graphs is quite large. For example, the cube, the 

tetrahedron, the dodecahedron and the complete bipartite graph Kr.r are 2-extendable. 

In fact, if the minimum degree 0(0) is larger than n+IV(0)1!2 and IV(O)I ~ 4, then 0 

is n-extendable (see Theorem 1.3 (3». 

Several results in this section will be based on the following observation. 

Observation 2.1 A graph 0 is n-extendable if and only if for any matching M of size i 

(1 ~ i ~ n) the graph 0-V(M) is (n-i)-extendable. 

Proof: Suppose that 0 is n-extendable. For any matching M of size i (1 ~ i ~ n), let 

H = G-V(M). Observe that by Theorem 1.3 (1) H has a perfect matching. Let M' be 

a matching of H with n-i edges. Then MuM' is an n-matching of 0 and thus there 

exists a perfect matching P of 0 containing MuM'. Clearly, P-M is a perfect matching 

of H which contains M' and so H is (n-i)-extendable. 

Conversely, for any matching Q of size n in 0, let M be a subset of Q with i 

edges. By assumption O-V(M) is (n-i)-extendable. Thus there exists a perfect 

matching P of 0-V(M) containing Q-M and therefore PuM is a perfect matching of 0 

containing Q. 0 

We begin by giving a characterization of n-extendable graphs which is a 

generalization of Theorem 1.2. 

Theorem 2.2 A graph 0 is n-extendable (n ~ 1) if and only if for any S C; V (0) 

(1) o(O-S) ~ lSI and 

(2) o(O-S) = ISI-2k (0 ~ k ~ n-l) implies that F(S) ~ k, where F(S) is the 

size of a maximum matching in O[S]. 

Proof: Suppose 0 is n-extendable. Since 0 has a perfect matching, (1) follows from 

Tutte's theorem. Suppose o(O-S) = ISI-2k (0 ~ k ~ n-l) for some vertex-set S C; 
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Y(O). We consider first the case that k = n-1. In this case. assume F(S) > n-1. Let 

ej = XjYi (1 :S; i ::; n-l) be n-l independent edges in O[S]. By Observation 3.1. O-{XIt 

Yi .... , Xn-t. Yn-d is I-extendable. Let 0' = O-{Xi. Yh .... Xn-l. Yn-d and S' = S-{xJ, 

Yl, .... Xn-l, Yn.d· Then o(G'-S') = o(O-S) = ISI-2(n-l) = IS'I. By Theorem 1.2. S' is 

an independent set. Thus F(S) ::; F(S')+(n-l) = n-l = k, a contradiction. Since k­

extendability implies (k-l)-extendability. (2) holds for 0::; k :s; n-2. 

Now suppose (1) and (2) hold. The proof that 0 is n-extendable will use 

induction on n. 

If n = 1, the claim holds from Theorem 1.2 as F(S) = 0 means that S is 

independent. 

Suppose that the claim holds for n < r. Consider n = r. By the induction 

hypothesis, (1) and (2) imply that 0 is (r-l )-extendable. If G is r-extendable, we are 

done. Otherwise, there exist r-I independent edges ej = XiYi (l ::; i ::; r-l) so that Of = 
O-{Xl, Yl, ... , Xr-l. Yr-d is not I-extendable. Since G' has a perfect matching, 

condition (1) of Theorem 1.2 holds. Thus, if 0' is not I-extendable. then there exists a 

set S' k Y(O') so that o(O'-S') = IS'I and F(S') ~ 1. Let S = S'U{Xl, Yl, ... , xr-It Yr-d. 

Then o(O-S) = o(O'-S') = IS'I = ISI-2(r-l) and F(S) ~ F(S')+(r-l) ~ r, which 

contradicts condition (2). 0 

Next we study relationships between n-extendability and nt -extendability. It 

turns out that they are very similar. If a new vertex is joined to all vertices of an ni 

-extendable graph 0, then the resulting graph is (n+l)-extendable. Thus (n+l)­

extendable graphs can be obtained by this method and in this sense. nt -extend ability 

is weaker than (n+I)-extendabiIity. On the other hand, if G is ni -extendable, then 

for any vertex vE Y(O), O-v is n-extendable. Hence ni -extendability is "stronger" 

than n-extendability. However, there exist (n+ I)-extendable graphs with the 

property that on deletion of some vertex the resulting graph is not ni -extendable; for 

example, the cube is 2-extendable but on deleting any vertex v, G-v is not It 

-extendable. So it is natural to think of nt -extendability as lying between nand 

(n+l)-extendability. Not surprising then, we can characterize all n~ -extendable 

graphs in terms of n-extendable and (n+ I)-extendable graphs. 

Theorem 2.3 A graph G of odd order is nt -extendable if and only if G+Kl is (n+ 1)­

extendable. 
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Proof: Assume that G is nt -extendable. Let H = G+Kl' where V(K1) = {z} and 

choose n+ 1 independent edges, ei = XiYi (i = 1, 2, ... , n+ 1) of E(H). 

Case 1. All n+ 1 independent edges lie in E(G). Since G is nt -extendable, 

there exists a near perfect matching M containing e}, e2, ... , en and missing Xn+l in G. 

Let w be the vertex adjacent to Yn+l in M. Then M-{wYn+du{wz, xn+lYn+d will be a 

perfect matching of H containing el, e2, ... , en+l. 

Case 2. Suppose that one of el, e2, ... , en+l is not in E(G), say en+l. Let en+l = 

ZW, where w E V(G)-{x}, Yl, ... , xn, Yn}. Then there exists a near perfect matching M 

of G containing el, e2, ... , en and missing the vertex w. Thus Mu{zw} is a perfect 

matching of H as required. 

Conversely, for any n independent edges e}, e2, ... , en of E(G) and vertex v of 

V (G) not lying on these edges, there exists a perfect matching M of H containing el, 

e2, ... , en. vz. Then M' = M-{z} is a near perfect matching of G which contains el, e2, 
... , en and misses v. 0 

Remark: Even though when G is nt -extendable, G+Kl is (n+l)-extendable, it is 

not the case that if G is n-extendable, then G+Kl is nt -extendable. For example, the 

cycle C2m is I-extendable, but C2m+Kl is not It -extendable 

From the definition of nt -extendability, we have the following observation. 

Observation 2.4 A graph Gis nt -extendable if and only if G-v is n-extendable for 

any vertex vE V(G). 

We now give a characterization of nt -extendable graphs. 

Theorem 2.5 A graph G is It -extendable if and only if for any S ~ V(G), S ::j:. 0, 

(1) o(G-S) =:; ISI-l and 

(2) if both o(G-S) = ISI-l and lSI ~ 3, then S is independent. 

Proof: If G is It -extendable, then G is factor-critical, and by Theorem 1.4 condition 

(1) holds. 

Suppose there exists a vertex-set S of V(G) with lSI ~ 3 such that o(G-S) = 

ISI-I but S is not independent. Let e = xyE E(G[S]) and zE S-{x,y}. Let G' = G-{z} 

and Sf = S- {z}. Then, as by Observation 2.4 G' is I-extendable, it follows that 0(0'-
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S') = o(O-S) = ISI-l = IS'I. From Theorem 1.2, S' must be an independent set. But 

this contradicts the fact that eE E(O[S']). 

Conversely, condition (1) guarantees that 0 has an odd number of vertices 

(choose S = {v), vE V(O» and then Theorem 104 implies that 0 is factor-critical. But 

we need the stronger result that O-{ v} is I-extendable for any vE V(G). Suppose 

that for vE V(O) and eE E(O-v) there is no perfect matching in O-v containing e. 

Since O-v has a perfect matching, then by Theorem 1.2 and Theorem 1.1 we know that 

there exists a vertex-set S ~ V(G-v) so that o(O-v-S) = lSI and S is not 

independent. Thus lSI ~ 2. Let SIt = Su{v}. Then O(O-S") = o(G-v-S) = lSI = 16"1-1 
and IS"I ~ 3, but SIt is not independent. This contradicts condition (2). 0 

Theorem 2.6 A graph G is n± -extendable if and only if for any S ~ V(G), S :;: 0, 

(1) o(G-S) ::::; ISI-I and 

(2) if o(G-S) = ISI-2k-I (0 ::::; k ::::; n-1) and lSI ~ 2k+3 for some vertex-set S ~ 

V(O), then F(S) ::::; k, where F(S) is the size of maximum matching in G[S]. 

Proof: The proof will be by induction on n. When n = 1. it is Theorem 2.5. 

Suppose the theorem holds when n < r. and consider the case n = r. 

Assuming that 0 is S- -extendable, it follows that 0 is factor-critical. Thus (1) 

follows from Theorem 104. If o(O-S) = ISI-2k-l (0::::; k::::; r-2) and lSI ~ 2k+3, then by 

the induction hypothesis, F(S) ::::; k. Suppose then that there exists a set S such that 

o(O-S) = ISI-2(r-l )-1 and lSI ~ 2r+ 1 (k = r-l), but F(S) ~ r. Let ei = xiYi (1 ::::; i ::::; r) 

be r independent edges in O[S], vE S' = S-{Xl, Yl •... , Xr• Yr} and G' = G-{Xl, Yl, ... , xr, 

Yr, v}. Then o(O'-S') = o(G-S) = ISI-2r+ 1 = IS'I+2 > IS'I and by Tutte's theorem, G' 

has no perfect matching. This contradicts the fact that 0 is 1- -extendable. 

Conversely, suppose that conditions (1) and (2) hold but G is not ri" 

-extendable. Then there exists a vertex vE V(G) such that O-v is not r-extendable. 

Applying Observation 2.1, there exist independent edges ei = XiYi (1 ::::; i ::::; r-I) so that 

G' = O-V-{Xl. YI, ... , Xr-t. Yr-tl is not I-extendable. However. from the induction 

hypothesis 0 is (r-1)t -extendable and thus 0' has a perfect matching. Then from 

Tutte's Theorem for all S ~ V(O'), o(O'-S) ::::; lSI. But now as G' is not I-extendable. 
I 

from Theorem 1.2, there exists a set S' ~ V(O') such that o(O'-S') = IS'I and S' is not 

independent. Let S = S'u{v, Xl. Yh ... , xr-l, Yr-tl. Then o(O-S) = o(O'-S') = IS'I = ISI-

2(r-I)-1 = ISI-2r+l and so lSI = IS'I+2(r-1)+1 ~ 2+2(r-l)+1 = 2r+1. But F(S) ~ 

F(S')+(r-l) ~ r, which contradicts condition (2) when k = r-l. 0 
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Corollary 2.7 If G is an nt -extendable graph, then G is also (n-I>! -extendable. 

We now tum to study some of the properties of nt-extendable graphs. They 

are analogous to those of n-extendable graphs. 

Theorem 2.8 If G is a graph of order 2r+l, r:2: n+l :2: 2 and o(G) :2: r+n+l, then G is 

nt -extendable. Moreover, the lower bound on o(G) is sharp. 

Proof: By Observation 2.4, we need only to show that for any vE V(G) G-v is n­

extendable. For any vE V(G), o(G-v) :2: o(G)-1 :2: r+n. From Theorem 1.3 (3), G-v is 

n-extendable and we are done. 

To see that the bound is sharp, consider the graph G = Kr+n + Kr-n+1• Since r :2: 

n+ 1, we take a vertex v and n independent edges XIYb XzYz, ••. , XnYn from Kr+n. There 

remain r-n-l vertices in Kr+n which cannot be matched to the r-n+l vertices in Kr-n+1' 

Thus o(G) = r+n and G is not ~ -extendable. D 

Theorem 2.9 If G is connected and n~ -extendable (n ~ 1), then G is (n+2)­

connected and, moreover, there exists an ~ -extendable graph G of connectivity n+2. 

Proof: If G is n~ -extendable, then, by Theorem 2.3, G+Kl is (n+I)-extendable. 

Since G+Kl is connected, by Theorem 1.3 (2), G+Kl is (n+2)-connected. Let Kl = 

{u}. Since n :2: 1, G-v = (G+Kl)-{U, v} is connected for any vE V(O). By 

Observation 2.4, G-v is n-extendable for any vE V(G). Thus G-v is (n+ I)-connected 

by applying Theorem 1.3 (2). 

Suppose that G is not (n+2)-connected. Then there exists a cut-set S k; 

V(G), lSI = n+1. For any vE S, S-{v} is a cut-set of G-v. Since IS-{v}1 = n, this 

contradicts the fact that G-v is (n+ 1 )-connected. 

To see that an n~ -extendable graph might not be (n+3)-connected, we 

consider the graph 0 = Kn+2+(KpuKq) where n+2+p+q is odd and p :2: q :2: 2n+2. 

Clearly G is not (n+3)-connected as V(Kn+2) is a cut-set of size n+2. We next show 

that G is nt -extendable. For any given n independent edges ei = XiYi, 1 ::; i ::; n, and a 

vertex ve {Xl> Yb X2, Y2, "', xn, Yn}, let S = {v, XI, Yt. X2, Y2 .... , xn, Yn}, VI = V(Kp)-S, 

V2 = V(Kn+2)-S and V3 = V(Kq)-S (see Figure 2.1). We now need 
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Kp Kq 

Figure 2.1 

only to show that G-S has a perfect matching. Clearly, the existence of a perfect 

matching in the graph G-S is equivalent to a partition of V2 into two subsets V2', V2" 

such that IV2'I ~ lVII, IV2"1 ~ IV31, IV2'I == IVII (mod 2), and IV2"1 == IV31 (mod 2). As 

IV(G)I is odd and p, q ~ 2n+2, we have that IVII+IV21+IV31 = IV(G)I-ISI = p+q+l-n is 

even and IVll+1V31 ~ IV21+2. Therefore the required partition (V2', V2") can always 
be achieved. This completes the proof. 0 

Remark: Theorem 2.9 does not hold for n = 0; that is, for factor-critical graphs. The 

graph below provides an example of a t -extendable graph which is not 2-connected. 

Figure 2.2 The factor-critical graph is not 2-connected. 

Corollary 2.10 If G is an ni -extendable graph of order p, p ~ 2n+5, and if u is a 

vertex of degree n+2 in G, then NG(u) is an independent set. 
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Proof: Suppose u is a vertex of degree n+2 in an nt -extendable graph 0 and let 

Na(u) = {VI. V2, ... , vn+21. Since p > 2n+4, we can choose n+l vertices wI. W2, ... , 

Wn+l in V(O)-Na(u)-{u}. As 0 is (n+2)-connected, by Menger's theorem we have 

n+2 vertex-disjoint paths joining Na(u) and (WI, W2 •... , wn+I. ul. Hence there are 

n+2 independent edges el = VIU, e2 = V2WI', ... , en+2 = Vn+2Wn+l', where Wi' is the last 

vertex on the path from Wj to Vj+ 1. 

Suppose now that Na(u) is not independent, say vIV2E E(O). Then VIV2, e4, 

e5, ... , en+2 are n independent edges. Since u is an isolated vertex of O-Na(u), there 

exists no near perfect matching containing VtV2, e4, e5, ... , en+2 and missing V3. This 

contradicts the fact that 0 is nt -extendable. D 

A graph 0 is called n-critical if the deletion of any n vertices of V(O) results 

in a graph with a perfect matching. This concept is a generalization of the notions of 

factor-critical and bicritical which correspond to the cases when n = 1 and n = 2, 

respectively. Here we present a characterization of n-critical graphs. 

Theorem 2.11 A graph 0 is n-critical if and only if IV(O)I == n (mod 2) and for any 

vertex-set S ~ V(O) with lSI ~ n, o(O-S) :-:; ISI-n. 

Proof: Suppose that 0 is n-criticaL Then it is immediate that IV(O)I == n (mod 2). 

Suppose there is a vertex-set S ~ V(O) with lSI ~ nand o(O-S) > ISI-n. Delete n 

vertices Vb V2, ... , Vn from S and denote the remaining set by S'. Then O(O-{VI, V2 •... , 

vn}-S') = o(O-S) > ISI-n = IS'I and by Tutte's theorem, G-{VI' V2, ... , vn} has no 

perfect matching. But this contradicts the hypothesis. 

Conversely, suppose that IV(O)I == n (mod 2) and for any vertex-set S ~ V(O) 

with lSI ~ n, o(O-S) :-:; ISI-n. If 0 is not n-critical, then there exist n vertices vI. V2, ... , 

Vn such that O-{Vb V2, ... , vn} has no perfect matching. Using Tutte's theorem again, 

there exists a set S' ~ V (0)- {VI, V2 •... , Vn} so that 0(0- {Vt. V2, ... , Vn }-S') > IS'I. 
Let S = S' u{Vlt V2, ... , vn }. Then o(O-S) > IS'I = ISI-n, a contradiction. D 

There is another generalizations of n-extendability which consists of all graphs 

o satisfying the property that for any n-matching M and a set of m distinct vertices Ul, 

U2, ...• Urn of 0, none of which is incident with any edge of M, there exists a perfect 

matching M* of 0 such that M ~ M* and UjUj e M* for 1 :-:; i, j :-:; m and i i-: j. This is 

called (n,m)-extendability and was studied by Liu and Yu [5]. This concept is 
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stronger than n-extendability and is very helpful for studying the Cartesian products of 

n-extendable graphs. 
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