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ABSTRACT. We prove that for every finite group G there exist orient able as well as 
non-orientable maps with automorphism group isomorphic to G. 

1. Introduction 

Whenever combinatorial or other mathematical structures are investigated, the 
question of their isomorphisms, and hence of their automorphisms, arises naturally. 
This justifies the study of their automorphism groups. There are a number of results 
about various classes of combinatorial structures saying that every finite group is 
the automorphism group of some member of the class. Examples are provided by 
graphs [5], cubic graphs [6], Steiner triple systems [8], "pictures" [1], and others. 
Results of this type indicate that a given class is, to some extent, rich. On the 
other hand, there are some very natural classes that do not have this property, for 
instance, trees [4]. 

Similar questions have been asked in connection with graph embeddings on sur
faces. As was proved in [3], every finite group is the automorphism group of some 
map on an orient able surface. However, it is by no means obvious that the same 
holds for non-orient able maps. The purpose of this paper is to answer this question 
in the affirmative. 

Throughout, a map is a connected graph cellularly embedded in some closed 
surface. The map is orientable (non-orientable) if so is the supporting surface. An 
altiomorphism of a map is a mapping which sends vertices to vertices, edges to 
edges, faces to faces and preserves their incidence; if the surface is orient able it also 
preserves the orientation. A mapping that preserves the incidence of vertices, edges, 
and faces of an orient able map but reverses the orientation is called a reflection. 
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2. The orientable case 

The aim of this section is to prove that every finite group G is the group of 
(orientation preserving) automorphisms of some orient able map. As mentioned in 
Introduction, this result has already been proved by Cori and Machi [3]. Their 
proof is based on the idea of a hypermap which is then replaced by the correspond
ing bipartite map embedded in the same surface [11]. We adopt a more direct 
approach by modifying the original ideas of Frucht [5]: We take a suitable embed
ding of a Cayley graph of G and subsequently incorporate the features of direction 
and colouring in a new map without changing the automorphism group. Besides 
simplicity, this method has the advantage that it applies also to the non-orient able 
case. 

Let us start by taking the (right) Cayley graph C( G, D) for the group G with 
respect to a generating set D of G. We always assume that D does not contain 
the group identity e and that n-1 = D. Recall that C( G, D) has vertex set G and 
arc set G x D. The initial vertex of an arc (g, r) E G x D is 9 and the reverse 
of (g, r) is the arc (gr, r- 1

) E G x D. The element r is referred to as the colour 
of the arc (g, r). It is well known that for each h E G the mapping 'Ph defined 
bY'Ph(g,r) (hg,r) is a colour-preserving automorphism of the graph C(G,D). 
Moreover, every colour-preserving automorphism of C (G, D) has this form, and 
hence the group of all colour-preserving automorphisms of C( G, D) is isomorphic to 
G (see, for instance [12]). 

We now construct an orient able map with underlying graph C( G, D) = K. In 
order to do this we specify for every vertex 9 E G the local rotation Pg at g, i.e., a 
cyclic permutation of arcs emanating from g. Choose Pe arbitrarily and for 9 E G 
set Pg = 'PgPe'P;l. The product P = TIgEG Pg is a rotation of ]{ describing a 2-cell 
embedding M (K, P) of K on some orient able surface. It is easy to see that 
each local rotation Pg induces the same cyclic permutation p of D and therefore M 
coincides with the Cayley map M( G, D, p) in the sense of Biggs and White [2, p. 
117]. The following observation can be found in [12, Theorem 5.3.4]. 

Proposition 1. For every h E G, the mapping 'Ph is an automorphism of the map 
M = (C( G, D), P) described above. Consequently, the group of all colour-preserving 
automorphisms of M is isomorphic to G. 

Proof. Since the group of all colour-preserving automorphisms of the graph K = 
C( G, n) is isomorphic to G we only need to show that 'Ph is a map automorphism, 
which is easily seen to be equivalent with the fact that 'PhP P'Ph. The latter is 
proved by the following computation: 

With help of this proposition it is now easy to establish the main result of this 
section. 
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Theorem 2. For every finite group G there exists an orientable map M such that 
the group of (orientation-preserving) automorphisms of M is isomorphic to G. 

Proof. Clearly we may assume that G is non-trivial. Let K = C( G, n) be a Cayley 
graph of the group G and let M be a Cayley map constructed as above. Obviously, 
there exists a subset n' c Q with the following two properties: (1) for every x E Q, 

either x or x-I is in Q', and (2) if both x and x-I belong to Q' then x is an involution. 
(Note that specifying the set Q' results in assigning preferred orientation to edges 
that correspond to non-involutory generators.) Now, for every generator r E Q' 

choose a fixed 3-connected planar map Hr with two distinguished vertices U r and 
Vr such that: 

(i) U r and Vr lie in the outer face of the map, 
(ii) if r is not an involution then Hr has no non-trivial automorphisms fixing the 

set {u r , vr }, 

(iii) if r is an involution then Hr has precisely one non-trivial map automorphism 
fixing the set {u r , vr }, and this automorphism interchanges U r and V r, and 

(iv) the maps H r , r E Q' are pairwise non-isomorphic. 
One of the possibilities to define an infinite series of such H r 's is suggested in 

Figs. 1 and 2. Further, let us choose a fixed orientation of the supporting surface 
of the Cayley map M and, similarly, fix an orientation of every map Hr. 

Fig. 1. H r , r non-involutory 

Fig. 2. H r , r involutory 

We proceed by constructing a new map M' from M, embedded in the same 
oriented surface S: Replace a small neighbourhood of each edge of colour r E Q' 

(i.e., a strip along every edge of the form (g,gr), g E G) by a copy of the map Hr in 
such way that 'U r is identified with g and Vr with gr, and so that the orientations of 
Hr and S agree (Fig. 3). It is easy to see that our construction of M' guarantees that 
the (orientation-preserving) map automorphisms of M' are in 1-1 correspondence 
with the colour-preserving map automorphisms of M. The rest is a consequence of 
Proposition 1. 0 
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H,I 

Fig. 3. 

The just described method enables us to construct infinite classes of maps with 
prescribed automorphism group, satisfying several additional requirements. As an 
example we prove: 

Corollary 3. For every finite group G there exist infinitely many cubic 3-connected 
orientable maps whose automorphism group is isomorphic to G. 

Proof. Consider the maps M' constructed in the preceding proof, with the H,'s as 
suggested in Figs. 1 and 2. Now, for each vertex v of M' at which copies of Hr's 
are attached, do the following: Expand v to a cycle Cv on the supporting surface 
in such a way that the cyclic order of edges originally incident with v remains the 
same, see Fig. 4. It is an easy exercise to verify that the automorphism group of 
the resulting 3-connected cubic map is isomorphic to G. 0 

Fig. 4. 

3. The non-orientable case 

In this section we prove that every finite group G is the automorphism group 
of some non-orient able map. Before doing this we briefly recall the description of 
non-orient able 2-cell embeddings by means of generalized embedding schemes [9, 
10]. 

Let ]( be a connected graph. As before, let P be a rotation of K, i.e., P = 
ITVEV(G) Pv where Pv is a cyclic permutation of arcs emanating from v. In addition, 
let A be a voltage assignment on K, with values in the multiplicative group {I, -I} 
subject to the condition that A(X-1

) = A(X). The pair (P,.-\) is called generalized 
embedding scheme and determines a map M = (K, P, A) of ]( in a surface S in the 
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embedding scheme and determines a map M (K, P, >.) of K in a surface S in the 
following way. Let x and y be two arcs of K incident with the same vertex and such 
that pc:(x)(x- I ) y for some c(x) E {I, -I}. Then the sequence xy forms a portion 
of the boundary of some face F of the embedding. The successor of the arc y on the 
boundary of F is determined by the formula = PC:(Y)(y-I), where fey) = c(x )>.(y). 
Repeatedly applying this rule we eventually compute the boundaries of all faces 
of the embedding. To be more precise, this procedure yields for every face F two 
sequences of arcs representing its boundary, namely ( ... xyz ... ) and ( ... z-I y-I x-I ... ). 
Geometrically this corresponds to two possible ways of tracing the boundary of 
F. The fact that every 2-cell embedding in some closed surface admits such a 
description is proved in [9, 10] or [7J. We remark that the surface supporting the 
embedding given by the scheme (P, >.) is non-orientable if and only if there exists a 
cycle in the graph K containing an odd number of edges with voltage -l. 

The occurence of face boundaries in pairs has deeper topological reasons. To 
explain it, we construct for our graph K with an embedding given by (P, >.) an 
orient able "antipodal" embedding as follows. Let K>" be a new graph with vertex 
set V(K) x {I, and edge set E(K) x {I, -I}; if x is an arc of K with initial 
vertex 'U and terminal vertex v then the arc (x, i), i E {I, -I}, has initial vertex 
(u,i) and terminal vertex (v,i>'(x)). Now, consider the embedding of Ii>" in an 
orient able surface, given by the rotation 

It was shown in [10} that the projection 7r : K>" -r K erasing the second coor
dinate extends to an (unbranched) double covering of the map M = (K, P, >.) by 
the derived map M>" = (KA, p>"). Equivalently we can say that every face F = 
( ... xyz ... ) of M lifts to two oppositely oriented faces in M>". If one of them is F = 
( ... (x,i),(y,j),(z,k), ... ) then the other (its mate) is mF = ( ... (z,-k)-I,(y,_j)-I, 
(x, _i)-I, ... ). Of course, m(mF) = F. 

Now we have enough means to construct non-orient able maps with prescribed 
automorphism groups. Let G be a finite group. If G is trivial or isomorphic to 
Z2 then the existence of the required maps is obvious. Thus, assume that the 
order of G is at least 3. Then we can take a generating set fl for G which with 
some two generators sand t also contains their product st. Let p be a cyclic 
permutation of fl. Define the rotation P for the Cayley graph K = C( G, fl) by 
setting P(g,1') = (g,p(1')) and the voltage assignment>. as follows: >.(g,1') = -1 
if and only if l' = S or l' = s-l. Observe that the triangle (e,s), t),(st,(st)-l) 
contains exactly one arc with negative voltage and therefore the map M = (K, P, >.) 
is non-orientable. 

Continuing in our construction, define for each h E G two mappings rph,j, j E 
{I, -I}, of the arc-set of the derived map M>" by setting 

rph,j((g,1'),i) = ((hg,1'),ji) , i E {-I, I}. 
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Lelllilla 4. For each h E G, the mapping tph,l is an automorphism of the map MA 
while tph,-l is a reBection of A1>'" 

Proof. The first statement follows from the identity tph,lPA = PAtph,l which can be 
proved in the same way as done in Proposition 1. The second statement is easily 
seen to be equivalent with the identity tph,_lPA = (PA)-\:Jh,_l which is proved in 
the following lines: 

(Pi(hg, r), -i) = (p(-l)(-i)(hg, r), -i) (PA)-l((hg, r), -i) = 

(pA)-l!.ph,_l((g, r), i). 0 

U sing the idea of the double covering we easily obtain the following: 

Lelllilla 5. The group of all colour-preserving automorphisms of the non-orientable 
map M = (C(G,n),p,)..) is isomorphic to G. 

Proof. Let F be a face of M and let F and mF be the lifts of Fin 1I1A. Routine cal
culations show that for each h E G and each j E {-I, I} , tp h,j maps the set {F, mF} 

onto the set {Yh,j(F),mYh,j(F)}. In other words, !.ph,j preserves the mates. This 
altogether shows that the automorphism tp h : (g, r) ~ (hg, r) of C (G, 0,) is at 
the same time an automorphism of the non-orient able map (C( G, 0,), P, )..). Since 
C(G, 0,) does not contain any other colour-preserving automorphisms, our lemma 
follows. 0 

Analogously as in the previous section we form the subset 0,' ~ 0, and for each 
R E rtf we replace every edge of the form (g, gr) by a copy of the map H r satisfying 
the properties (i)- (i v) listed in the proof of Theorem 2, see also Figs. 1, 2 and 3. 
Thus we obtain 

Theorel11 6. For every finite group G there exists a non-orientable map whose 
automorphism group is isomorphic to G. Moreover, the underlying graph can be 
chosen to be cubic. 0 

REFERENCES 

1. G.Behrendt, Automorphism groups of pictures, J. Graph Theory 14 (1990), 423-426. 
2. N.Biggs and A.T.White, Permutation Groups and Combinatorial Struci1lres, London Math. 

Soc. Lect. Notes, Cambridge Univ. Press, Cambridge, 1979. 
3. R.Cori and A.Machi, Construction of maps with prescribed automorphism gro~lp, Theoret. 

Compo Sci. 21 (1982), 91-98. 
4. V.Z.Feinberg, Automorphism groups of trees, Dokl. Akad. Nauk BSSR 13 (1969), 1065-1067. 
5. R.Frucht, Herstellung von Graphen mit vorgegebener abstrakten Gruppe, Compositio Math. 6 

(1938), 239-250. 
6. R.Frucht, Graphs of degree three with a given abstract group, Canadian J. Math. 1 (1949), 

365-378. 

52 



MAPS WITH GIVEN AUTOMORPHISM GROUP 

7. J.L.Gross and T.W.Tucker, Topological Graph Theory, Wiley, New York, 1987. 
8. E.Mendelsohn, On the group of automorphisms of Steiner triple and quadruple systems, J. 

Combin. Theory (A) 25 (1978), 97-104. 
9. G.Ringel, The combinatorial map color theorem, J. Graph Theory 1 (1977), 141-155. 

10. S.Stahl, Generalized embedding schemes, J. Graph Theory 2 (1978), 41-52. 
11. T.R.S. Walsh, Hypermaps versus bipartite maps, J. Combin. Theory (B) 18 (1975), 155-163. 
12. A.T.White, Graphs, Groups and Surfaces (Second Edition), North Holland, Amsterdam, 1984. 

(Received 30/3/92 J' 

53 




