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Let F be a finite field with q elements. A k dimensional subspace C of the vector 

space Fn of all n-tuples over F is called a linear code of length n and dimension k. 

Algebraically, C is just a k-dimensional vector space over F. However, as a particular 

subspace of Fn, C inherits some metric properties. Specifically, for every v E Fn, 

the weight of v, denoted by wt( v), is defined to be the number of non-zero entries in 

the vector v, and the distance between two vectors is the weight of their difference. 

The interplay between the algebraic structure of C and the metric structure induced 

by the weight function is central to coding theory. (Should we rename it "Finite 

Analysis"? ) 

The ubiquitous triangle inequality wt( v + w) :::; wt( v) + wt( w) does hold, but, as 

the following example shows, it is too weak to tell the whole story. 

v wt(v) 

0 0 

VI 1 

V2 

V3 1 

VI + V2 2 

VI + V3 2 

V2 + V3 2 

VI + V2 + V3 

The eight vectors of a hypothetical linear code of dimension 3 over the two-element 

field are listed on the left, and their weights on the right. The triangle inequality is 

satisfied, but it's all a sham, there is no such code! 
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This example also illustrates our first goal here. Given an "abstract" vector space 

V over F, and a function w from V to the non-negative integers, under what conditions 

can we realize V as a "concrete" subspace of some Fn, so that w becomes the weight 

function? Our first theorem answers this question. 

Theorem 1 Let V be a vect01' space oveT F of dimension k) and fOT each v E V) let 

w( v) be a non-negati've integel'. Then the following three statements are equivalent: 

1) For some n, there is a linear tmnsfonnation T from V into Fn, satisfying 

wt(T(v)) = w(v) fOT all v E V. 

2) w(O) 0, a'nd w(av) = w(v) for every v E V, and eveTY non-zero a E F. Also, 

if vll is a subspace of V, then 

L w( w) is divisible by (q - 1 )qt-l, 
wEW 

where t is the dimension of TV. And if X is a coset of "Jill in V, then 

L w(w) ~ L w(w), 
wEW wEX 

with the difference a multiple of qt. 

3) w(O) 0, and w(av) = w(v) for eveTY v E V, and every non-zero a E F. Also, 

if Ii is a subspace of V of dimension k - I, then 

q L w(w) == L w(v) (mod l-l), 
wEH vEV 

and 

q L w(w) ~ L w(v). 
wEH vEV 

Proof: First we assume 1), and prove 2). For each S' ~ V, we form the lSI by n 

matrix 1Y[(8) as follows: the rows of J\1(8) are indexed by the elements of S, and 

for each v E 8, T( v) is the corresponding row of lvI (S). Note that each of the q field 

elements occurs exactly qt-l times in each non-zero column of lvI(W). So if x is the 

number of such columns, then 

L w(w) = x(q - l)qt-l. 
wEI,V 
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If X is the coset W + '11, then A1(X) is obtained from M(vV) by adding T(u) to 

each row of M(W). This process just permutes the entries of the x non-zero columns 

of M(W). However, a zero column of M(vV) becomes a constant column in M(X), 

and if this constant is non-zero, J\J(X) gains weight. Thus 

L w(w) ~ I: w(w), and 
wEW wEX 

the difference is divisible by qt, proving 2). 

Obviously 2) implies 3), since the q cosets of H in V partition V. 

Now we assume 3), and prove 1). We may assume that V = Fk, with elements 

written as row vectors. Thus the transformation T we seek will be of the form 

T(v) = vG, for some suitable matrix G with k rows. We proceed to construct G. 

Let R be the set of all (k - 1 )-dimensional subspaces of V, and let HER. Since 

w is constant on the q - 1 non-zero vectors of anyone-dimensional subspace of H, 

LWEH w( w) is divisible by q - 1, and so is I:VEV w( v), by the same reasoning. 

Since q 1 and qk-l are relatively prime, the number 

vEV wEH 

is a non-negative integer. Finally, let VH be any non-zero vector orthogonal to H. 

Form the matrix G as follows: for each HER, place IH copies of the transpose 

of VH in G as columns. 

All that remains to be proved is that wt{ vG) = w( v) for all v E V. This is obvious 

if v = 0, so we assume v =I- O. Then 

wt(vG) I: IH = 
JiER 
vrt.H 

(q -lt1ql-k(I: w{u)I{H E Rlv 1:- H}I-
uEV 

q L w(w)I{H E Rlw E H,v 1:- H}I) 
wEV 

k k-l k-l k-2 
(q_1)-lql-k(q -q I:w(u)-qq -q L w(w)) 

q - 1 uEV q - 1 wEV 

wf/.(v) 

(q - Itl I: w(u) = w(v). 
uE{v) 
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Perhaps we have been a bit too cavalier in slinging sigmas around, and some 

explanation is in order. 

The second equality is obtained by using the definition of Ill, and interchanging 

the order of summation in the two pairs of sums. 

For the third equality, we must evaluate I{H E R/v r/: H}I and /{H E Rlw E 

H, v r/: H} I, where v and tv are non-zero. The second of these is the more delicate. If 

tv is in the one-dimensional subspace (v) spanned by v, then obviously I{H E Rlw E 

H, v r/: H} I = O. Now suppose 'W r/: (v). Recall that every non-zero s in V determines 

a unique element of R, namely the set of all vectors orthogonal to s; and conversely, 

every element of R is determined by q - 1 such vectors s. So first we calculate the 

cardinality of the set S = {s E Vis, W = D,s, v=/:. OJ. Since there are qk-l vectors 

orthogonal to w, and qk-2 of these are also orthogonal to v, we have lSI = l-l -l-2. 

Thus 

I{H E Rlw E H,v r/: H}I = ---
q 

A simpler argument along the same lines shows that 

k k-l 

I{HER/vr/:H}/=q -q 
q - 1 

The fifth equality follows from the fact that for the q - 1 non-zero elements u E 

(v),w(u) = w(v). 

This concludes the proof of 'I'heorem 1. 

The matrix G constructed above is by no means unique. In fact, any sequence of 

the following operations a,pplied to G produces a matrix that still has the required 

properties: 

a) multiply some columns by non-zero field elements 

b) adjoin some columns of zeros. 

c) permute the columns. 

However, the next theorem shmvs that this is all the freedom we have, the rest is 

forced. 
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Theorem 2 Let G be a k by n matrix over F. For each (k- I)-dimensional subspace 

H of Fk J let IH be the number of non-zero columns of G orthogonal to H. Then 

IH = (q - I)-I q1-k( L wt(vG) - q L wt(wG)). 
wEH 

Proof: As noted in the proof of theorem 1, for each non-zero v E Fk, 

Thus, for HER, 

wt(vG) = L IJ· 
JER 
vlf-J 

(q - l)-lqI-k( L wt(vG) - q L wt(wG)) = 
wEH 

(q _1)-lq1-k(L IJI{v E Vlv rf- J}I- q L IJI{w E Hlw ~ J}I) 
JER JER 

(q _1)-l qI-k((l- qk-l) L IJ - q(l-l -l-2) L IJ) = IH. 
JER JER J:j:.H 

This proves theorem 2. 

A linear code C is a constant weight code if wt( v) = wt( w) for all non-zero 

v, w E C. As an application, we characterize constant weight cotic:::. :Su~ 1116t, 

some definitions. 

If C is a linear code of length n, and m is a positive integer, for every v E C, form 

the vector consisting of m copies of v cancatenated together. The resulting linear 

code of length nm is called a replication of C, with multiplier m. 

If f3 is a non-negative integer, adjoining f3 zeros to the end of every vector in C 

results in a linear code of length n+ f3 called a padding of C. 

If 11' is a permutation of {I, 2, ... , n}, and if a = (aI, a2,' .. , an) is a vector of non

zero field elements, for every v = (VI, v2, •.. , v n ) E C form the vector (a1 V7r(l), 02V7r(2) , 

... Jan V7r (n)). The resulting linear code is said to be equivalent to C. 

In the notation of theorem ~, let G be any k by n = q:~ll matrix satisfing IH = 1 

for every HER. The code C .- {vGlv E Fk} is called a dual Hamming code of 

dimension k. 
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Theorem 3 Let C be a linear code of dimension k. Then C is a constant weight 

code if and only if C is equivale·nt to a padding of a replication of a dual Hamming 

code of dimension k. In this case, every non-zero vEe has weight ml-1
, where m 

is the multiplier of the replication. 

Proof: If C is equivalent to a padding of a replication of a dual Hamming code of 

dimension k with multiplier rn, then, in the notation of theorem 2, /H = m for all 

HER. So for any non-zero v E Fk, 

wt( vG) L /H = mJ{H E RJv rf- H}J = 
HER 
vif-H 

qk _ qk-l k-l 
m---- = 111.q . 

q - 1 

Conversely, if wt( v) = w for every non-zero vEe, then by Theorem 2, for any 

HER, 

/H (q - l)-lql-k(Lw - q L w) = 
vEe wEH 
v:j:O w:j:O 

w(q - 1tlql-k(l- 1 - q(qk-l - 1)) = wql-\ 

proving theorem 3. 

The weight function is rather coarse; given a field element, it can only recognize 

whether or not it is zero. Here is a more discriminating function. If a E F is non

zero, and v E Fn, we define wt( 0, v) to be the number of coordinates of v equal to a. 

(Perversely, we do not define wt(O, v).) Ok, here we go again. 

Theorem 4 Let V be a vector space over F of dimension k, and for each non-zero 

a E F, and each v E V, lei w(a, v) be a non-negative integer. Then the following 

three statements aTe equivalent: 

1) For some n, theTe is a li'neaT tmT/'sfornwtion T from V into Fn! satisfying 

wt(a,T(v)) = w(a,v) for eve1'y non-zero a E F, and every v E V. 
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2) For every non-zero a E F,w(a, 0) = 0, and w(a, v) = w(l, a-Iv) for each v E V. 

Also} if W is a subspace of V, then 

L w(a, w) is divisible by qt-l, 
wEW 

where t is the dimension of TV. And if X is a coset of W in V, then 

L w(a, w) ::; I: w(a, w), 
wEW wEX 

with the difference a multiple of qt. 

3) For every non-zero a E F,w(et,O) = 0, andw(et,v) w(1,a- Iv) for each v E V. 

Also, if H is a subspace of V of dimension k 1, and X is a coset of H in V, 

then 

L w(l,w) == L w(l,w) (mod qk-l), 
wEH wEX 

and 

Lw(1,w)::; I:w(l,w). 
wEH wEX 

Proof: As this proof so closely parallels the proof of Theorem 1, we content ourselves 

with proving that 3) implies 1). 

Again, we assume V = Fk, and define a matrix G. For each non-zero v E V, let 

Iv = ql-k( L w(l,w) - I: w(l,'w)). 
wEV 

w·v=l 
wE\! 

w·v=O 

By hypothesis, Iv is a non-negative integer. 

Form the matrix G as follows: for each non-zero v E 11, place Iv copies of the 

transpose of v in G as columns. 

Now \ve must show that wt(a, vG) = w(a, v) for all non-zero a E F, and all v E V. 

This is obvious if v = 0, so we assume v =I- 0. Then 

wt( a, vG) L ltv 
wE\! 

tu·v=O' 

ql-k(I: w(l,u)l{w E \lIlt)· v et,u· tv = 1}1 
uE\' 
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- L w(I,'u)l{w E Vlw' v = O',u· W = O}I) 
uEV 

qI-k(L w(l, j3v)l{w E Vlw . v = 0', (j3v) . W = I}I 
pEF 
(#,O 

- L w(I,j3v)l{w E Vlw' v = 0', (j3v)· W = O}I) 
pEF 
(3:j:.O 

qI-k(l-lw(l, a-Iv)) = w(a,v). 

For the third equality above, we used the fact that if u is not a scalar multiple of 

v, then the sets 

{wEVlw'v=O',u,w= I} and {wE Vlw·v=a,u,w=O} 

have the same cardinality qk-2, and so these terms cancel out. 

For the fourth equality, the only non-zero summand is in the first sum, at j3 = a-I. 

This concludes the proof of Theorem 4. 

The matrix G is not unique, we can add zero columns and permute columns. But 

that's all: 

Theorem 5 Let G be a k by n matril: over F. Fo'l' each non-zero v in Fk, let 'v be 

the number of columns of G equal to the transpose of v. Then 

IV = ql-k( L wt(1, wG) - L wt(l, wG)). 

Proof: As 

ql-k( L wt(l, wG) 
wEFk 
w·v=l 

wt(l, lOG) = L IU, 
uEFk 

u·w=l 

L wt(l, wG)) 

-Llul{WEFklw,v O,u·w=l}1) 
uEFk 
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ql-k(:L l{3vl{W E Fklw, v = 1, (f3v)· w = 1}1 
f'EF 
{3,#O 

- :L l{3vl{w E Fklw. v = 0, (f3v)· w = 1}1) 
f'EF 
{3,#O 

ql-k(l-l,V) = IV, proving Theorem 5. 

We leave to the reader the simple proof of the analogue of theorem 3: 

Theoren16 Let C be a linear code of dimension k. Then wt( 0:, v) = wt(f3, w) = w 

for all non-zero 0:, f3 E F and all non-zero v, wEe if and only if C = {vGlv E Fk} 

where G is a matrix in which each non-zero element of Fk appears as a column of G 

exactly ql-kw times. 

References 

[1] The Theory of Error-Correcting Codes, F. J. MacWilliams, N. J. A. Slonne, 

North-Holland Publishing Co. 1978. 

(Received ~4/11/91; revised 18/8/92) 

45 




