Linear Codes and Weights

D. G. Hoffman

Auburn University Auburn, AL 36849

Let F be a finite field with q elements. A k dimensional subspace C of the vector space F^n of all n-tuples over F is called a *linear code* of *length* n and *dimension* k. Algebraically, C is just a k-dimensional vector space over F. However, as a particular subspace of F^n , C inherits some metric properties. Specifically, for every $v \in F^n$, the *weight* of v, denoted by wt(v), is defined to be the number of non-zero entries in the vector v, and the *distance* between two vectors is the weight of their difference. The interplay between the algebraic structure of C and the metric structure induced by the weight function is central to coding theory. (Should we rename it "Finite Analysis"?)

The ubiquitous triangle inequality $wt(v + w) \le wt(v) + wt(w)$ does hold, but, as the following example shows, it is too weak to tell the whole story.

υ	wt(v)
0	0
v_1	1
v_2	1
v_3	1
$v_1 + v_2$	2
$v_1 + v_3$	2
$v_2 + v_3$	2
$v_1 + v_2 + v_3$	1

The eight vectors of a hypothetical linear code of dimension 3 over the two-element field are listed on the left, and their weights on the right. The triangle inequality is satisfied, but it's all a sham, there is no such code!

Australasian Journal of Combinatorics 7(1993), pp.37-45

This example also illustrates our first goal here. Given an "abstract" vector space V over F, and a function ω from V to the non-negative integers, under what conditions can we realize V as a "concrete" subspace of some F^n , so that ω becomes the weight function? Our first theorem answers this question.

Theorem 1 Let V be a vector space over F of dimension k, and for each $v \in V$, let $\omega(v)$ be a non-negative integer. Then the following three statements are equivalent:

- 1) For some n, there is a linear transformation T from V into F^n , satisfying $wt(T(v)) = \omega(v)$ for all $v \in V$.
- 2) $\omega(0) = 0$, and $\omega(\alpha v) = \omega(v)$ for every $v \in V$, and every non-zero $\alpha \in F$. Also, if W is a subspace of V, then

$$\sum_{w \in W} \omega(w) \quad \text{ is divisible by } (q-1)q^{t-1},$$

where t is the dimension of W. And if X is a coset of W in V, then

$$\sum_{w \in W} \omega(w) \le \sum_{w \in X} \omega(w),$$

with the difference a multiple of q^t .

3) ω(0) = 0, and ω(αv) = ω(v) for every v ∈ V, and every non-zero α ∈ F. Also, if H is a subspace of V of dimension k − 1, then

$$q\sum_{w\in H}\omega(w)\equiv\sum_{v\in V}\omega(v)\quad (mod \ q^{k-1}),$$

and

$$q\sum_{w\in H}\omega(w)\leq \sum_{v\in V}\omega(v).$$

Proof: First we assume 1), and prove 2). For each $S \subseteq V$, we form the |S| by n matrix M(S) as follows: the rows of M(S) are indexed by the elements of S, and for each $v \in S, T(v)$ is the corresponding row of M(S). Note that each of the q field elements occurs exactly q^{t-1} times in each non-zero column of M(W). So if x is the number of such columns, then

$$\sum_{w \in W} \omega(w) = x(q-1)q^{t-1}.$$

If X is the coset W + u, then M(X) is obtained from M(W) by adding T(u) to each row of M(W). This process just permutes the entries of the x non-zero columns of M(W). However, a zero column of M(W) becomes a constant column in M(X), and if this constant is non-zero, M(X) gains weight. Thus

$$\sum_{w \in W} \omega(w) \le \sum_{w \in X} \omega(w)$$
, and

the difference is divisible by q^t , proving 2).

Obviously 2) implies 3), since the q cosets of H in V partition V.

Now we assume 3), and prove 1). We may assume that $V = F^k$, with elements written as row vectors. Thus the transformation T we seek will be of the form T(v) = vG, for some suitable matrix G with k rows. We proceed to construct G.

Let R be the set of all (k-1)-dimensional subspaces of V, and let $H \in R$. Since ω is constant on the q-1 non-zero vectors of any one-dimensional subspace of H, $\sum_{w \in H} \omega(w)$ is divisible by q-1, and so is $\sum_{v \in V} \omega(v)$, by the same reasoning.

Since q-1 and q^{k-1} are relatively prime, the number

$$\gamma_H := (q-1)^{-1} q^{1-k} (\sum_{v \in V} \omega(v) - q \sum_{w \in H} \omega(w))$$

is a non-negative integer. Finally, let v_H be any non-zero vector orthogonal to H.

Form the matrix G as follows: for each $H \in R$, place γ_H copies of the transpose of v_H in G as columns.

All that remains to be proved is that $wt(vG) = \omega(v)$ for all $v \in V$. This is obvious if v = 0, so we assume $v \neq 0$. Then

$$\begin{split} wt(vG) &= \sum_{\substack{H \in R \\ v \notin H}} \gamma_H = \\ &(q-1)^{-1} q^{1-k} (\sum_{u \in V} \omega(u) | \{H \in R | v \notin H\} | - \\ &q \sum_{w \in V} \omega(w) | \{H \in R | w \in H, v \notin H\} |) = \\ &(q-1)^{-1} q^{1-k} (\frac{q^k - q^{k-1}}{q-1} \sum_{u \in V} \omega(u) - q \frac{q^{k-1} - q^{k-2}}{q-1} \sum_{\substack{w \in V \\ w \notin (v)}} \omega(w)) \\ &= (q-1)^{-1} \sum_{u \in (v)} \omega(u) = \omega(v). \end{split}$$

Perhaps we have been a bit too cavalier in slinging sigmas around, and some explanation is in order.

The second equality is obtained by using the definition of γ_H , and interchanging the order of summation in the two pairs of sums.

For the third equality, we must evaluate $|\{H \in R | v \notin H\}|$ and $|\{H \in R | w \in H, v \notin H\}|$, where v and w are non-zero. The second of these is the more delicate. If w is in the one-dimensional subspace $\langle v \rangle$ spanned by v, then obviously $|\{H \in R | w \in H, v \notin H\}| = 0$. Now suppose $w \notin \langle v \rangle$. Recall that every non-zero s in V determines a unique element of R, namely the set of all vectors orthogonal to s; and conversely, every element of R is determined by q - 1 such vectors s. So first we calculate the cardinality of the set $S = \{s \in V | s \cdot w = 0, s \cdot v \neq 0\}$. Since there are q^{k-1} vectors orthogonal to w, and q^{k-2} of these are also orthogonal to v, we have $|S| = q^{k-1} - q^{k-2}$. Thus

$$|\{H \in R | w \in H, v \notin H\}| = \frac{q^{k-1} - q^{k-2}}{q-1}.$$

A simpler argument along the same lines shows that

$$|\{H \in R | v \notin H\}| = \frac{q^k - q^{k-1}}{q-1}.$$

The fifth equality follows from the fact that for the q-1 non-zero elements $u \in \langle v \rangle, \omega(u) = \omega(v)$.

This concludes the proof of Theorem 1.

The matrix G constructed above is by no means unique. In fact, any sequence of the following operations applied to G produces a matrix that still has the required properties:

a) multiply some columns by non-zero field elements

- b) adjoin some columns of zeros.
- c) permute the columns.

However, the next theorem shows that this is all the freedom we have, the rest is forced.

Theorem 2 Let G be a k by n matrix over F. For each (k-1)-dimensional subspace H of F^k , let γ_H be the number of non-zero columns of G orthogonal to H. Then

$$\gamma_H = (q-1)^{-1} q^{1-k} (\sum_{v \in F^k} wt(vG) - q \sum_{w \in H} wt(wG)).$$

Proof: As noted in the proof of theorem 1, for each non-zero $v \in F^k$,

1

$$wt(vG) = \sum_{\substack{J \in R \\ v \notin J}} \gamma_J.$$

Thus, for $H \in R$,

$$(q-1)^{-1}q^{1-k}(\sum_{v\in F^{k}}wt(vG) - q\sum_{w\in H}wt(wG)) = (q-1)^{-1}q^{1-k}(\sum_{J\in R}\gamma_{J}|\{v\in V|v\notin J\}| - q\sum_{J\in R}\gamma_{J}|\{w\in H|w\notin J\}|) = (q-1)^{-1}q^{1-k}((q^{k}-q^{k-1})\sum_{J\in R}\gamma_{J} - q(q^{k-1}-q^{k-2})\sum_{\substack{J\in R\\J\neq H}}\gamma_{J}) = \gamma_{H}.$$

This proves theorem 2.

A linear code C is a constant weight code if wt(v) = wt(w) for all non-zero $v, w \in C$. As an application, we characterize constant weight codec. But first, some definitions.

If C is a linear code of length n, and m is a positive integer, for every $v \in C$, form the vector consisting of m copies of v cancatenated together. The resulting linear code of length nm is called a replication of C, with multiplier m.

If β is a non-negative integer, adjoining β zeros to the end of every vector in C results in a linear code of length $n + \beta$ called a *padding* of C.

If π is a permutation of $\{1, 2, ..., n\}$, and if $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ is a vector of nonzero field elements, for every $v = (v_1, v_2, ..., v_n) \in C$ form the vector $(\alpha_1 v_{\pi(1)}, \alpha_2 v_{\pi(2)}, ..., \alpha_n v_{\pi(n)})$. The resulting linear code is said to be *equivalent* to C.

In the notation of theorem 2, let G be any k by $n = \frac{q^{k-1}}{q-1}$ matrix satisfing $\gamma_H = 1$ for every $H \in R$. The code $C := \{vG | v \in F^k\}$ is called a *dual Hamming code* of dimension k.

Theorem 3 Let C be a linear code of dimension k. Then C is a constant weight code if and only if C is equivalent to a padding of a replication of a dual Hamming code of dimension k. In this case, every non-zero $v \in C$ has weight mq^{k-1} , where m is the multiplier of the replication.

Proof: If C is equivalent to a padding of a replication of a dual Hamming code of dimension k with multiplier m, then, in the notation of theorem 2, $\gamma_H = m$ for all $H \in R$. So for any non-zero $v \in F^k$,

$$wt(vG) = \sum_{\substack{H \in R \\ v \notin H}} \gamma_H = m |\{H \in R | v \notin H\}| = m \frac{q^k - q^{k-1}}{q-1} = mq^{k-1}.$$

Conversely, if $wt(v) = \omega$ for every non-zero $v \in C$, then by Theorem 2, for any $H \in R$,

$$\begin{aligned} \gamma_H &= (q-1)^{-1} q^{1-k} (\sum_{\substack{v \in C \\ v \neq 0}} \omega - q \sum_{\substack{w \in H \\ w \neq 0}} \omega) = \\ \omega(q-1)^{-1} q^{1-k} (q^k - 1 - q(q^{k-1} - 1)) = \omega q^{1-k}, \end{aligned}$$

proving theorem 3.

The weight function is rather coarse; given a field element, it can only recognize whether or not it is zero. Here is a more discriminating function. If $\alpha \in F$ is nonzero, and $v \in F^n$, we define $wt(\alpha, v)$ to be the number of coordinates of v equal to α . (Perversely, we do not define wt(0, v).) Ok, here we go again.

Theorem 4 Let V be a vector space over F of dimension k, and for each non-zero $\alpha \in F$, and each $v \in V$, let $\omega(\alpha, v)$ be a non-negative integer. Then the following three statements are equivalent:

1) For some n, there is a linear transformation T from V into F^n , satisfying $wt(\alpha, T(v)) = \omega(\alpha, v)$ for every non-zero $\alpha \in F$, and every $v \in V$.

2) For every non-zero $\alpha \in F, \omega(\alpha, 0) = 0$, and $\omega(\alpha, v) = \omega(1, \alpha^{-1}v)$ for each $v \in V$. Also, if W is a subspace of V, then

$$\sum_{w \in W} \omega(\alpha, w) \text{ is divisible by } q^{t-1},$$

where t is the dimension of W. And if X is a coset of W in V, then

$$\sum_{w \in W} \omega(\alpha, w) \le \sum_{w \in X} \omega(\alpha, w),$$

with the difference a multiple of q^t .

For every non-zero α ∈ F,ω(α,0) = 0, and ω(α, v) = ω(1, α⁻¹v) for each v ∈ V.
Also, if H is a subspace of V of dimension k − 1, and X is a coset of H in V, then

$$\sum_{w \in H} \omega(1, w) \equiv \sum_{w \in X} \omega(1, \omega) \pmod{q^{k-1}},$$

and

$$\sum_{w \in H} \omega(1, w) \le \sum_{w \in X} \omega(1, w).$$

Proof: As this proof so closely parallels the proof of Theorem 1, we content ourselves with proving that 3) implies 1).

Again, we assume $V = F^k$, and define a matrix G. For each non-zero $v \in V$, let

$$\gamma_{v} = q^{1-k} (\sum_{\substack{w \in V \\ w \cdot v = 1}} \omega(1, w) - \sum_{\substack{w \in V \\ w \cdot v = 0}} \omega(1, w)).$$

By hypothesis, γ_v is a non-negative integer.

Form the matrix G as follows: for each non-zero $v \in V$, place γ_v copies of the transpose of v in G as columns.

Now we must show that $wt(\alpha, vG) = \omega(\alpha, v)$ for all non-zero $\alpha \in F$, and all $v \in V$. This is obvious if v = 0, so we assume $v \neq 0$. Then

$$wt(\alpha, vG) = \sum_{\substack{w \in V \\ w \cdot v = \alpha}} \gamma_w$$

= $q^{1-k} (\sum_{u \in V} \omega(1, u) | \{ w \in V | w \cdot v = \alpha, u \cdot w = 1 \} |$

43

$$\begin{aligned} &-\sum_{u \in V} \omega(1, u) |\{w \in V | w \cdot v = \alpha, u \cdot w = 0\}|) \\ &= q^{1-k} (\sum_{\substack{\beta \in F \\ \beta \neq 0}} \omega(1, \beta v) |\{w \in V | w \cdot v = \alpha, (\beta v) \cdot w = 1\}| \\ &- \sum_{\substack{\beta \in F \\ \beta \neq 0}} \omega(1, \beta v) |\{w \in V | w \cdot v = \alpha, (\beta v) \cdot w = 0\}|) \\ &= q^{1-k} (q^{k-1} \omega(1, \alpha^{-1} v)) = \omega(\alpha, v). \end{aligned}$$

For the third equality above, we used the fact that if u is not a scalar multiple of v, then the sets

$$\{w \in V | w \cdot v = \alpha, u \cdot w = 1\}$$
 and $\{w \in V | w \cdot v = \alpha, u \cdot w = 0\}$

have the same cardinality q^{k-2} , and so these terms cancel out.

For the fourth equality, the only non-zero summand is in the first sum, at $\beta = \alpha^{-1}$. This concludes the proof of Theorem 4.

The matrix G is not unique, we can add zero columns and permute columns. But that's all:

Theorem 5 Let G be a k by n matrix over F. For each non-zero v in F^k , let γ_v be the number of columns of G equal to the transpose of v. Then

$$\gamma_v = q^{1-k} (\sum_{\substack{w \in F^k \\ w \cdot v = 1}} wt(1, wG) - \sum_{\substack{w \in F^k \\ w \cdot v = 0}} wt(1, wG)).$$

Proof: As

$$wt(1, wG) = \sum_{\substack{u \in F^k \\ u \cdot w = 1}} \gamma_u,$$

$$\begin{aligned} q^{1-k} (\sum_{\substack{w \in F^k \\ w \cdot v = 1}} wt(1, wG) &- \sum_{\substack{w \in F^k \\ w \cdot v = 0}} wt(1, wG)) \\ &= q^{1-k} (\sum_{u \in F^k} \gamma_u | \{ w \in F^k | w \cdot v = 1, u \cdot w = 1 \} | \\ &- \sum_{u \in F^k} \gamma_u | \{ w \in F^k | w \cdot v = 0, u \cdot w = 1 \} |) \end{aligned}$$

$$= q^{1-k} (\sum_{\substack{\beta \in F \\ \beta \neq 0}} \gamma_{\beta v} | \{ w \in F^k | w \cdot v = 1, (\beta v) \cdot w = 1 \} |$$
$$- \sum_{\substack{\beta \in F \\ \beta \neq 0}} \gamma_{\beta v} | \{ w \in F^k | w \cdot v = 0, (\beta v) \cdot w = 1 \} |)$$
$$= q^{1-k} (q^{k-1} \gamma_v) = \gamma_v, \text{ proving Theorem 5.}$$

We leave to the reader the simple proof of the analogue of theorem 3:

Theorem 6 Let C be a linear code of dimension k. Then $wt(\alpha, v) = wt(\beta, w) = \omega$ for all non-zero $\alpha, \beta \in F$ and all non-zero $v, w \in C$ if and only if $C = \{vG | v \in F^k\}$ where G is a matrix in which each non-zero element of F^k appears as a column of G exactly $q^{1-k}\omega$ times.

References

 The Theory of Error-Correcting Codes, F. J. MacWilliams, N. J. A. Slonne, North-Holland Publishing Co. 1978.

(Received 14/11/91; revised 18/8/92)

