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Abstract 

A 4-(12, 6, 4) design that is not also a 5-(12, 6, 1) design must have at least 
one pair of blocks with five points in common. It is shown that there are just 
nine non-isomorphic such designs; so, including the 5-(12, 6, 1) design, there 
are ten 4-(12, 6, 4) designs. These designs are characterised by the orders of 
their automorphism groups and they all contain a 4-(11, 5, 1) design. 

1. Introduction 

A t - (v, k, A) design based on a set S of v points is a collection of subsets, each of 
size k, called blocks, such that each t-subset of S appears in exactly A blocks. For an 
integer s such that 0 < s :::; t, a t-design is also an s-design with, of course, a different 
value of A. Thus the 5-(12, 6, 1) design is also a 4-(12, 6, 4) design. However, there 
are 4-(12, 6, 4) designs which are not 5-designs. In this paper we continue the work 
of Part I [4] and Part II [1] and show that there are just nine mutually non-isomorphic 
such designs. We do this by reducing the number of cases that have to be examined 
in detail to forty-six which can then be completed by hand. Each of these cases has a 
unique completion to a 4-(12, 6, 4) design. A computer check shows that these fall into 
nine equivalence classes and that designs in these classes are characterised by the orders 
of their automorphism groups. 

For any t - (v, k, A) design let Ai be the number of times each i-subset of the v 
points appears in the design. Thus AO = b is the number of blocks; A 1 = T' is the number 
of replicas of each point; and At = A. For a 4-(12, 6, 4) design we have 

AO = b = 132, A1 = T' = 66, A2 = 30, A3 = 12, A4 = 4. 
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Let B be any block of the 12 points of a 4-(12, 6, 4) design and let bi be the number 
of blocks intersecting B in exactly i points. In Part I it is shown that only two solution 
sets are possible. They are 

Type I 
Type II 

bo bl b2 b3 b4 b5 b6 
1 0 45 40 45 0 1 
o 5 35 50 40 1 1 

The blocks of either type occur in pairs. A block of Type I is disjoint from just one 
other block. A block of Type II has five points in common with just one other block 
and intersects all other blocks. Two blocks of Type II with five points in common are 
said to befriendly blocks. In this paper the point set for a 4-(12,6,4) design is the set 
{I, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c}. 

I ~~:~~ I 7c 789c 
1236 .. 1456 .. 246 ..• 1678ab 
1236 .. 1456 .. 247 ••. 
1237 •. 1457 .. 24 ...• 26789a 
1237 •. 1457 .• 2679bc 
123 •.. 145 .•. 1367bc 2567ab 

B 136 •.. 256 .•• 3678ac 
1234 •• 12467b 23467a 137 ... 257 ••• 3679ab 
1234 •• 1246 .. 2346 .. 13 .... 25 .•.• 

1246 .. 2346 •. 46789b 
1235 .• 1247 •• 2347 .. 14679a 34679c 467abc 
1235 •• 1247 •. 2347 •. 146 ••. 346 ••• 

124 .•• 234 •.. 147 •.. 347 .•• 5678bc 
1245 •• 14 .... 34 •..• 5679ac 
1245 •. 125678 23567c 

1256 .• 2356 .. 15679b 356789 
1345 •. 1256 •. 2356 .. 156 •.. 356 ..• 
1345 .• 1257 •. 2357 .. 157 •.. 357 •.. 

1257 .. 2357 .. 15 ••.. 35 •••• 
2345 .• 125 .•• 235 ... F 
2345 .• 23678b 4567a8 16 •••• 

134678 245679 236 ••. 456 •.• 17 •.•. 
1346 .. 2456 .. 237 ... 457 ..• 
1346 •. 2456 .. 23 .... 45 .... 26 .•.• 
1347 .. 2457 .. 27 .... 
1347 •. 2457 .. 
134 •.. 245 •.. 36 .•.. 

37 •••• 
13567a 34567b 
1356 •. 3456 .. 46 •••. 
1356 •. 3456 .. 47 •... 
1357 •• 3457 .. 
1357 .. 3457 .. 56 ...• 
135 •.. 345 •.. 57 ..•• 

Table 1: : The new improved skeleton for a 4-(12, 6, 4) design. 
The blocks with both 6 and 7 contain a 3-(10, 4, 1) design. 
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In Part I the unique skeleton created by a pair of friendly blocks is determined. In 
Part II this skeleton is improved upon by showing that thirty-two of the blocks can be 
standardized in a unique fashion (see Table 1). These results are summarized in our 
first theorem. 

THEOREM 1: If[123456] and [123457] are a pair offriendly blocks in a 4-(12, 6, 
4,) design, then the completed and partially completed blocks of the design must follow the 
pattern given in Table 1. Furthermore the blocks with 67 contain a 3-(10, 4, 1) design 
on {I, 2, 3, 4, 5, 8, 9, a, b, c}. D 

Here we recall the Rule of Five, or the RF for short, which says that, given any three 
blocks of a 4-(12, 6, 4) design, at most two of them can have five points in common. 
We also recall the Prong Laws from Part IT . The prongs of a pair of friendly blocks are 
the two points which lie on one but not both of them, so each block of the friendly pair 
has its prong. From an examination of Table I we deduce the following principles: 
(i) If a block B intersects one of a friendly pair of blocks in just one point, then B contains 

the prong of the other block of the friendly pair; 
(ii) One-point intersections, which can occur only between Type 1/ blocks, never occur on 
the prongs of those blocks. 
(iii) Prongs are never orphans, that is to say, the prongs of a friendly pair never appear 
unless they are accompanied by at least one of the non-prong points from the same friendly 
pair. This applies even when both prongs appear together. 

2. A Partial Standardization of Section F 

Section F of the skeleton contains each quadruple from {8, 9, a, b, c} exactly twice, 
once on a block with 6 and once on a block with 7 (Part II, Lemma 1). The distribution 
of these quadruples relative to the already completed blocks is governed by Theorems 
2 and 3. 

THEOREM 2: In section D of the skeleton, blocks containing neither 6 nor 7 cannot 
intersect each other in five points. 
Proof: By Theorem 5 of Part IT, no two blocks of section E can have five points in 
common. Apply a swapmap (see Part II), thus carrying the blocks of section E into those 
described by the current theorem. 0 

THEOREM 3: Consider the two blocks of section F that contain the quadruple 9abc, 
say. Then; either these two blocks intersect in five points; or one of them has five points 
in common with a block from section E and the other has five points in common with a 
block from section D not containing 6 or 7. 
Proof: Given the standardized section E, if the two blocks of section F containing 9abc 
have five points in common, then, to satisfy the RF with blocks of section E, they must 
be [169abc] and [179abc]. Otherwise, the two blocks are patterned after [179abc] and 
[269abc]. Then [269abc] is friendly with the block [2679bc] of section E (in fact, if x 
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is anyone of 2, 3,4, 5, then the block [x69abc] in section F is friendly with a block of 
section E). Suppose that [I79abc] does not intersect a block of section D not containing 
6 or 7 in five points. Then, since the quadruple 9abc has to appear twice in section D 
(Part II, Lemma 3), those appearances must be on two of the three blocks [34 .... ], 
[35 .•.. ], [45 .••. ]. But this situation is prevented by Theorem 2. Therefore 
[I79abc] has to be friendly with a block of section D containing neither 6 nor 7; this 
block will have to contain 1. 0 

COROLLARY: In section F each of the quintuples 19abc, 28abc, 389bc, 489ac, 
589ab must appear at least once. 
Proof: Apply the permutation (12345)(89abc) in Theorem 3. 0 

This corollary reduces considerably the number of ways of completing section F. 
There is a further reduction to be had through the application of the automorphism group 
of section E to section F. 

3. The Group of Section E 

1678ab 

16789c 

2679bc 

2679a8 

367ac8 

367ab9 

467b89 

467bca 

567c9a 

567c8b 

Section E 

a = (12345)(S9abc) 

(3 = (1243)(S9ba) 

I = (I325)(8a9c) 

8 = (1452)(Sbc9) 

E = (I534)(8cab) 

( = (2354) (9acb ) 

Table 2: Some of the elements of H, the automorphism group of section E. 

With reference to Table I, let H be the group of point permutations that map section 
E onto itself. This group has order 40. It is the direct product of the group of order 2 
generated by the transposition (67) and a group of order 20 which fixes 6 and 7. The 
group H is also an automorphism group of of the whole of Table L In Table 2 are listed 
six of the elements of H, and the last five of these are elements that fix a pair of blocks 
of section E while cycling through the other four pairs of blocks. The selected elements 
show that H is 2-transitive on each of the sets {I, 2,3,4, 5} and {S, 9, a, b, c}. 
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4. The Completion of Section F 

Since each of the quintuples 19abc, 28abc, 389bc, 489ac~ 589ab has to appear at 
least once in section F, each member of {1, 2, 3, 4, 5} has associated with it a unique 
quadruple from {8, 9, a, b, c}. When one of these quadruples appears with its associate 
on a block of section F we shall describe that quadruple as being at home on 6 or 7 as 
the case may be (it can be at home on both). We shall take it to be the normal case 
when all the relevant quadruples are at home, in which case section F contains five pairs 
of friendly blocks. 

So far 6 and 7 are equivalent so, without loss of generality, it can always be assumed 
that 9abc is at home on 7. Now suppose the other 9abc is not at home on 6. Then, 
by Lemma 1 of Part II, 9abc must appear with 6 elsewhere in section F. This forces 
another quadruple from {8, 9, a, b, c} to be not at home on 6, which in tum forces 
another displacement; and so on. This process is called chaining on 6. Chaining on 
either or both of 6 and 7 is possible. Each chain must eventually close up to form a 
circuit. Unless otherwise indicated, all chains are on 6. 

The possible chain configurations can be displayed as directed graphs of degree two 
on a set of labelled vertices. Such graphs are called chain diagrams. Suppose the five 
points at the vertices of a regular pentagon are labelled successively with 1, 2, 3, 4, 5. 
Suppose x, y E {1, 2, 3, 4, 5}. If the quadruple from {8, 9, 8, b, c} that should be at 
home with x is instead on a block of section F containing y then draw a directed edge 
from vertex x to vertex y. Note that it is possible for x and y to be the same, in which 
case the quadruple is at home on both 6 and 7, giving a pair of friendly blocks, and 
the chain diagram has a loop on vertex x. A loop is not a proper chain. For diagrams 
with two proper chains it is necessary to indicate on which of 6 and 7 the chains are 
formed by placing the appropriate digit near the chain. There is the exceptional case 
corresponding to a 5-(12, 6, 1) design for which the chain diagram has no edges. We 
treat this as an empty set and give it the symbol 0; otherwise the chain diagrams are 
labelled with roman numerals. 

Under the action of the group H the possible completions of section F are placed 
in fourteen equivalence classes whose chain diagrams are given in Table 3. For most 
of the cases the direction of the circuits is immaterial and the arrows on the edges are 
omitted. However, for classes VIII and IX the directions of the circuits do matter and 
arrows are needed. 

5. Not-Gardening and the Completion of Section B 

For each way of completing section F there are at most six ways of completing section 
B and experience has shown that if one of these ways is selected then the completion of 
the remaining unfinished blocks is uniquely forced. We demonstrate with a selected case 
(see Table 4) in which section F belongs to Class III. 
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• • C! U c::-

JZ5 I II III 

Q 
~ ~ 

C;; 

~ D 6 

~ CJ t) ~ 
6 6 

IV V VI VII 

Q ~ 

~ 0 ~ ~ 
VIII IX X XI 

Q Q 

~ 
~s 70 ~ 7 

~ ~ 
XII XIII 

6 XIV 6 

Table 3: Chain diagrams associated with section F. Note that these are directed graphs although, except for 

two cases, the direction of the circuits is immaterial. The vertices are to be labelled 1, 2, 3, 4, 5 as successive 

vertices of a regular pentagon. The numbers 6 and 7 refer to circuits on blocks containing 6 or 7 respectively. 

The blocks [5689ab], [5789ab] are friendly with prongs 6 and 7. In section B the 
blocks [1234 .. ], [1234 .. ] cannot intersect [5689ab] in one point, for if they did 
then they would have to contain 7, the prong of [5789ab], which is impossible. Thus the 
pair [1234 .. ], [1234 •• ] is marked "not c." Again, in section F, the block [4689bc] is 
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friendly with the section E block [4678ge] whose prong is 7. Therefore the blocks [1235 
. • ], [1235 . . ] are marked "not a"; and so on for each appropiate pair of seCtion B 
(see Table 4). This process is called not-gardening. 

By Lemma 8 of Part II, each pair from {8, 9, a, b, e} appears just once in section 
B. By Theorems 2 and 5 of Part II, no two blocks of section B intersect in five points. 
Therefore the blocks [1234. . ], [1234. . ] can be completed in just three ways, 
with disjoint pairs from {8, 9, a, b}. Once one of these ways is chosen, there are just 
two ways of completing the pair [1235. . ], [1235 .. ]. Then the remaining pairs 
of section B can be completed in just one way. Hence there are six ways (i), (ii), ... , 
(vi), of completing section B, as given in Table 4. However, the largest subgroup of the 
group H fixing both section E and section F is generated by fJ2. This interchanges (iii) 
with (vi), and (i) with (v), so the number of inequivalent ways of completing section B 
reduces to four; (i), (ii) , (iii), (iv). 

Section F Section B 

168ab~ not e 1234 .• 89 8b 8a 8b 89 8a 

179abe 1234 .. ab 9a 9b 9a ab 9b 

269~be not a 1235 .. 8b 8e 8b 89 8e 89 

278abe 1235 .. 9c 9b ge be 9b be 

368?ac not b 1245 .. 8e 89 89 8a 8a 8e 

3789be 1245 .. 9a ae ae ge ge 9a 

4689b~ not 8 1345 .. 9b 9c 9a 9b 9a ge 

4789ae 1345 .. ae ab be ae be ab 

5~89ab not 9 2345 .. 8a 8a 8c 8e 8b 8b 

5789ab 2345 .. be be ab ab ac ac 

Class III (i) (ii) (iii) (iv) (v) (vi) 

Table 4: The six completions of section B for a section F of Class m. The permutation (32 leaves 
section F fixed and interchanges (ii) with (vi), and (I) with (v). In section F the prongs are underlined. 

The process of not-gardening can be applied to all the classes of section F to produce 
the forty-six cases listed in Tables 5, 6, 7 and 8. We anticipate a little here by claiming 
that for the mixed chain classes XII, XIII and XIV, there are no continuations. The entries 
for section B for these classes are the same as those of classes III, IV and VI respectively. 
The tables also give the order of the automorphism group of the completed design arising 
from each class. For quick identification each case has been given a list number. 
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Class 0 The 5-(12. 6. 1) desi~n 
List No 1 
IGI 95,040 

Class I F B (i) (ii) 

169abe 1234 8b 89 
Use a: 179abe 1234 9a ab 

268abe 1235 89 8a 
278abe 1235 ae ge 
3689be 1245 8e 8e 
3789be 1245 9b 9b 
4689ae 1345 8a 8b 
4789ae 1345 be ae 
5689ab 2345 ge 9a 
5789ab 2345 ab be 
List No 2 3 
IGI 1440 8 

Class II F B (0 (ii) (iii) (iv) 

1689ab 1234 ge 9a 9a ge 
Use 82 179abe 1234 ab be be ab 

268abe 1235 8e 89 8a 89 
278abe 1235 9a ae ge ae 
3689be 1245 89 8b 8e 8e 
3789be 1245 be ge 9b 9b 
4689ae 1345 8b 8e 8b 8a 
4789ae 1345 ae ab ae be 
569abe 2345 8a 8a 89 8b 
5789ab 2345 9b 9b ab 9a 
List No 4 5 6 7 
IGI 5 5 16 16 

Class III F B (n (ii) (iii) (iv) 

168abe 1234 89 8b 8a 8b 
Use (32 179abe 1234 ab 9a 9b 9a 

269abe 1235 8b 8e 8b 89 
278abe 1235 ge 9b ge be 
3689ae 1245 8e 89 89 8a 
3789be 1245 9a ae ae ge 
4689be 1345 9b ge 9a 9b 
4789ae 1345 ae ab be ae 
5689ab 2345 8a 8a 8e 8e 
5789ab 2345 be be ab ab 
List No 8 9 10 11 
81GI 8 6 8 6 

Table 5: Classes 0, I, II and Ill. 
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Class IV F B (i) (ii) (iii) 

1689ae 1234 8b 8a 8b 
Use (3 179abe 1234 9a 9b 9a 

2689be 1235 ge 9a 9b 
278abe 1235 ab be ae 
368abe 1245 8a 8e 8e 
3789be 1245 be ab ab 
469abe 1345 8e 8b 89 
4789ae 1345 9b ge be 
5689ab 2345 89 89 8a 
5689ab 2345 ae ae ge 
List No 12 13 14 
IGI 8 8 144 

Class V F B (i) (ii) (iii) (iv) (v) (vi) 

1689be 1234 8b 8a 8a 89 89 8b 
179abe 1234 9a 9b 9b ab ab 9a 
269abe 1235 8a 8e 89 8e 8a 89 
278abe 1235 ge 9a ae 9a ge ae 
368abe 1245 8e 8b 8e 8a 8b 8a 
3789be 1245 ab ae ab be ae be 
4689ae 1345 9b ge 9a 9b 9a ge 
4789ae 1345 ae ab be ae be ab 
5689ab 2345 89 89 8b 8b 8e 8e 
5789ab 2345 be be ge ge 9b 9b 
List No 15 16 17 18 19 20 
IGI 6 55 6 6 6 6 

Class VI F B (i) (ij) (iii) (iv) (v) (vi) 
1689be 1234 8a 8e 89 8e 8a 89 
179abe 1234 ge 9a ae 9a ge ae 
269abe 1235 8b 8a 8a 89 89 8b 
278abe 1235 9a 9b 9b ab ab 9a 
368abe 1245 8e 8b 8e 8a 8b 8a 
3789be 1245 ab ae ab be ae be 
4689ab 1345 9b ab 9a 9b 9a ge 
4789ae 1345 ae ge be ae be ab 
5689ae 2345 89 89 8b 8b 8e 8e 
5789ab 2345 be be ge ge 9b 9b 
List No 21 22 23 24 25 26 
IGI 5 5 5 24 24 5 

Table 6: Classes IV, V and VI. 
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Class VII F B en (ii) (iii) (iv) (v) (vi) 

1689ae 1234 8a 8b 89 8a 8b 89 
179abe 1234 9b 9a ab 9b 9a ab 
269abe 1235 8b 8e 8b 89 89 8e 
278abe 1235 ge 9b ge be be 9b 
368abe 1245 8e 8a 8a 8b 8e 8b 
3789be 1245 ab be be ae ab ae 
4689be 1345 9a ge 9b ge 9b 9a 
4789ae 1345 be ab ae ab ae be 
5689ab 2345 89 89 8e 8e 8a 8a 
5789ab 2345 ae ae 9a 9a ge ge 
List No 27 28 29 30 31 32 
IGI 5 5 5 5 16 16 

Class VIII F B en (ii) (iii) 

168abe 1234 8b 89 8b 
Use (3 179abe 1234 9a ab 9a 

2689ae 1235 8e 8b 89 
278abe 1235 9b ge be 
369abe 1245 9c 9b 9b 
3789be 1245 ab ae ae 
4689be 1345 89 8e 8a 
4789ae 1345 ae 9a ge 
5689ab 2345 8a 8a 8e 
5789ab 2345 be be ab 
List NQ 33 34 35 
IGI 72 5 72 

Class IX F B (i) (ii) (iii) 

1689be 1234 8b 8a 8b 
Use (3 179abe 1234 9a 9b 9a 

269abe 1235 8e 8b 8a 
278abe 1235 ab ae be 
3689ae 1245 8a 8e 89 
3789be 1245 ge 9a 3C 

468abe 1345 9b ge ge 
4789ae 1345 ae ab ab 
5689ab 2345 89 89 8e 
5789ab 2345 be be 9b 
List No 36 37 38 
IGI 72 5 24 

Table 7: Classes VII, VIII and IX. 

268 



Class X F B (i) (ii) (iii) (iv) (v) (vi) 
1689ab 1234 8c 89 89 8b 8b 8e 
179abe 1234 9b be be ge ge 9b 
269abe 1235 8a 8e 8b 8e 8a 8b 
278abe 1235 be ab ae ab be ae 
3689ae 1245 89 8a 8c 89 8e 8a 
3789be 1245 ae ge 9a ae 9a ge 
468abe 1345 ge 9b ge 9a 9b 9a 
4789ae 1345 ab ae ab be ae be 
5689be 2345 8b 8b 8a 8a 89 89 
5789ab 2345 9a 9a 9b 9b ab ab 
List No 39 40 41 42 43 44 
IGI 8 8 6 8 6 8 

Class XI F B (i) (in 
168abe 1234 ge 9b 

Use a 179abe 1234 ab ae 
2689be 1235 8b 89 
278abe 1235 9a ab 
3689ae 1245 89 8e 
3789be 1245 ae 9a 
4689ab 1345 8e 8b 
4789ae 1345 9b ge 
569abe 2345 8a 8a 
5789ab 2345 be be 
List No 45 46 
IGl 55 6 

Class XII None 
Class XIII None 
Class XIV None 

Table 8: Classes X, XI, XII, XIII and XIV. 

6. Completing the Design; Prong Hunting 

As a demonstration of a typical case we now complete Class TIl (i) to a 4-( 12, 6, 4) 
design. Having completed sections F and B according to Table 5, let us now use some 
of the theorems from Part TI to fill in further blocks. By Theorem 8 of Part II, the last 
block in each subsection of section C cannot have five points in common with any block 
of section B. Therefore, in section C, the block [123 ... ] cannot contain any of the 
pairs 89, 8b, ge, ab and so has a unique completion to [1238ae]. The last blocks of 
other the subsections of section B likewise all have unique completions. In particular, 
we have the blocks [1238ae], [1249be], [125abe]. 
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Now, by Theorem 3 of Part II, the last blocks in the subsections of section B can 
never have five points in common with the last blocks of the subsections of section D. 
Therefore, in the first subsection of section D, the block [12. • •• ] has a unique 
completion to [1289ab]. In the same subsection, the block [126 •.• ] must contain 9 by 
the RF applied to the blocks [1678ab] and [168abc]. Also, by the RF applied to [2679bc] 
and [269abc], [126 ... ] must contain 8. Thus we have the partially completed block 
[126 . 89], and likewise the partially completed block [127 • 89]. Each subsection of 
section D can be similarly treated leading to the situation in table 9. The blocks marked 
with an asterisk are definitely known to be of Type I. 

I ~~!~~ I ac 8c 9c 
1236 •• 126. 89 246.8a 1678ab 
1236 •• 127 . 89 247 . 9b 
1237 •. 1289ab 248abc 26789a 
1237 .. 2679bc 
1238ac 1367bc 2567ab 

136. 9b 256. 8e 3678ac 
12467b 23467a* 137 . 8a 257 • ge 3679ab* 
1246 .. 2346 .. 139abc 2589ac 
1246 2346 .. 46789b 

12358b 1247 .. 2347 .. 14679a 34679c 467abc 
12359c 1247 •. 2347 .. 146. 9a 346. ab 

1249bc 2349ac 147 . 8b 347 • ab 5678bc 
12458c* 1489ac 3489ab 5679ac 
12459a 125678 23567c 

1256 2356 .. 15679b 356789 
13459b 1256 .. 2356 .. 156 . 9c 356. be 
1345ac 1257 •. 2357 .. 157 . 8c 357 • ae 

1257 •• 2357 .• 1589bc* 358abc 
234588 125abc 2359ab F 
2345bc 23678b 4567a8 168abc 

134678 245679 236. 8b 456. ae 179abc 
1346 •. 2456 .. 237 • 9a 457 . be 
1346 •• 2456 .• 2389bc 459abc 269abc 
1347 •. 2457 .. 278abc 
1347 •. 2457 .. 
1348bc 24589b 3689ac 

3789bc 
13567a 34567b 
1356 •. 3456 .. 4689bc 
1356 .. 3456 .• 4789ac 
1357 •. 3457 .. 
1357 •. 3457 .. 5689ab 
13589a 34589c 5789ab 

Table 9: Class ill (1). The situation at the end of the second paragraph of 
Section 6. Blocks definitely known to be of Type I are marked with an asterisk. 

The completion to a 4-(12, 6, 4) design can be carried out in many ways and the 
details differ from case to case. Usually many, if not all, of the subsections of section D 
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can be completed at this stage. For example, [1589be] is a Type I block so the blocks 
[156 • ge] and [157 • 8e] can only be completed with a if five point intersections with 
[1589be] are to be avoided. Also, the blocks [139abe], [1489ac], [2389be] and [248abe] 
all have friendly mates in section F, so by the RF, there must be blocks [13689b], 
[1469abl, [2368ab] and [24689a] in section D. Each triple from {8, 9, a, b, e} occurs 
just once with each of 6 and 7 in section D (Lemma 4, Part II) so [126 . 89] can only 
be completed with e, and so on. 

1123456 
123457 

1234ab 

12358b 
1235ge 

12458c* 
12459a 

13459b 
1345ae 

234583 
2345be 

9 
12369a 
1236be 
1237ab 
12378c 
1238ae 

12467b 
12468b 
1246ae 
124783* 
1247ge 
1249be 

125678 
125683 
12569b 
125793 
1257be 
125abe 

134678 
134683 
1346ge 
13479b 
1347ae 
1348be 

13567a 
1356ab 
13568c* 
13578b 
13579c 
13589a 

6 e 
1456be 
145689 
145789 
1457ab 
1458ab 

23467a* 
23469b* 
23468c 
2347be 
234789 
2349ae 

23567e 
2356ae 
235689 
235783 
23579b 
2359ab 

245679 
2456ge 
2456ab 
2457ae* 
24578b 
24589b 

34567b 
34568b 
34569a 
34579a 
34578c 
3458ge 

ae 
1268ge 
12789b 
1289ab 

24689a 
2479ab* 
248abc 

1367bc 2567ab 
13689b* 2568bc 
13789a 25789c 
139abe 2589ac 

14679a 
1469ab 
1478bc 
1489ae 

34679c 
346abc 
3478ab 
3489ab 

15679b 356789 
1569ae 3569bc* 
1578ae* 357 abc 
1589be* 358abc 

23678b 
2368ab 
2379ae 
2389bc 

4567a8 
4568ac 
4579bc 
459abc 

9c 
1678ab 

26789a 
2679bc 

3678ac 
3679ab* 

46789b 
467abc 

5678bc 
5679ac 

168abc 
179abc 

269abc 
278abc 

3689ae 
3789be 

4689bc 
4789ae 

5689ab 
5789ab 

Table 10: Class ill (I). The completed design. Type I blocks are marked with an asterisk. 

To complete the subsections of section B the process of prong hunting will nearly 
always work on at least one of the blocks of section B. In the present case section B has 
the block [12358b] which has one-point intersections on 1, 3, 5, 8, b with the blocks 
[14679a], [34679c] [5679ac], [4789ac], [467abc] respectively. The only point common 
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to these five blocks is 7, which, by the prong laws must be the prong of the mate of 
[12358b]. Therefore this mate is [13578b]. Then, in the 135-subsection of section B 
the block [1357 •• ] can only be completed with a pair from {9, a, c}. By the RF 
with the blocks [13567a], [13589a], [357 . ac], both 9a and ac are forbidden. Therefore 
there is a block [13579c], which has [12359c] of section B as a friendly mate. A count 
of quadruples containing the triple 135 shows that the blocks [1356 •. ], [1356 •• ] 
between them must contain each of 8, a, b, c just once. The RF forbids 8 to pair with 
either of a or b so the 13S-subsection is completed by the blocks [13568c] and [1356ab]. 
Now, in section D the only legimate way of completing [137 • 8a] is with a 9, and so 
on. The completed design is given in Table 10. 

7. Comments 

It was found that each of the cases listed for classes I to XII can be completed to 
a 4-(12, 6, 4) design in a unique fashion, but none of the cases in classes XII, XIII 
and XIV have a completion. The completed designs always have Type II blocks in 
multiples of twelve. As is to be expected, there are isomorphisms occuring among the 
forty-six completed designs. The designs were checked using Cayley [5] and nauty [6]. 
These produced nine equivalence classes which, fortunately, are such that designs are in 
different classes if and only if the orders of their automorphism groups are different. To 
produce a set of standard designs a representative of each isomorphism class was chosen 
and given a new name. The 5-(12, 6, 1) design as modelled in Breach [2] we have called 
Design 1. Then the others, lexicographically ordered according to decreasing numbers 
of Type I blocks and group orders, have been called Design 2, Design 3, etc. 

In Table 11 is given the complete list of standard designs together with their group 
orders and the numbers of blocks of each type. The blocks of all the ten standard designs 
are displayed in Breach, Elmes, Sharry and Street [3]. The design completed in this 
paper as a demonstration is Design 8. 

As a matter of observation, in the forty-six completed models the blocks of section 
D that contain 7 but not 6 are always the same. If a short proof of this statement can 
be found beforehand then the completion of the forty-six models would be considerably 
simplified. But what is more interesting is that in any of the 4-(12, 6, 4) designs 
completed according to this paper the restriction on 7 is always a 4-(11, 5, 1) design; if 
all the blocks containing 7 are selected and 7 is then deleted from those blocks, then 
one would expect that the new blocks so formed are those of a 3-(11, 5, 4) design, not 
a 4-design. Again, if this could be predicted at the beginning then the classification of 
the 4-(12, 6, 4) designs would be much easier. 
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List Ng STANDARD DESIGN Group Ng Blocks 

Order Type I Type n 
List Ng 1 Design 1 95,040 132 0 

List Ng 2 Design 2 1440 60 72 

List Ng14 Design 3 144 60 72 

List Nq 31 Design 4 16 36 96 

List Nq 33 Design 5 72 24 108 

List Ng 24 Design 6 24 24 108 

List Ng 9 Design 7 6 24 108 

List Ng 8 Design 8 8 12 120 

List Ng " Design 9 5 12 120 

List Nq 45 Design 10 55 0 132 

Table 11: Standard 4-(12, 6, 4) designs. 
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