IN SEARCH OF $4-(12,6,4)$ DESIGNS: PART III

D.R.Breach,
Department of Mathematics, University of Canterbury, Christchurch, New Zealand;

Anne Penfold Street,
Centre for Combinatorics, Department of Mathematics, University of Queensland, Brisbane 4072, Australia.

Abstract

A 4-(12, 6, 4) design that is not also a $5-(12,6,1)$ design must have at least one pair of blocks with five points in common. It is shown that there are just nine non-isomorphic such designs; so, including the $5-(12,6,1)$ design, there are ten $4-(12,6,4)$ designs. These designs are characterised by the orders of their automorphism groups and they all contain a $4-(11,5,1)$ design.

1. Introduction

A $t-(v, k, \lambda)$ design based on a set S of v points is a collection of subsets, each of size k, called blocks, such that each t-subset of S appears in exactly λ blocks. For an integer s such that $0<s \leq t$, a t-design is also an s-design with, of course, a different value of λ. Thus the $5-(12,6,1)$ design is also a $4-(12,6,4)$ design. However, there are 4-(12, 6, 4) designs which are not 5 -designs. In this paper we continue the work of Part I [4] and Part II [1] and show that there are just nine mutually non-isomorphic such designs. We do this by reducing the number of cases that have to be examined in detail to forty-six which can then be completed by hand. Each of these cases has a unique completion to a 4-(12,6,4) design. A computer check shows that these fall into nine equivalence classes and that designs in these classes are characterised by the orders of their automorphism groups.

For any $t-(v, k, \lambda)$ design let λ_{i} be the number of times each i-subset of the v points appears in the design. Thus $\lambda_{0}=b$ is the number of blocks; $\lambda_{1}=r$ is the number of replicas of each point; and $\lambda_{t}=\lambda$. For a 4-(12,6,4) design we have

$$
\lambda_{0}=b=132, \quad \lambda_{1}=r=66, \quad \lambda_{2}=30, \quad \lambda_{3}=12, \quad \lambda_{4}=4 .
$$

Let B be any block of the 12 points of a $4-(12,6,4)$ design and let b_{i} be the number of blocks intersecting B in exactly i points. In Part I it is shown that only two solution sets are possible. They are

	b_{0}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}
Type I	1	0	45	40	45	0	1
Type II	0	5	35	50	40	1	1

The blocks of either type occur in pairs. A block of Type I is disjoint from just one other block. A block of Type II has five points in common with just one other block and intersects all other blocks. Two blocks of Type II with five points in common are said to be friendly blocks. In this paper the point set for a $4-(12,6,4)$ design is the set $\{1,2,3,4,5,6,7,8,9, a, b, c\}$.

Table 1: : The new improved skeleton for a 4-(12, 6,4$)$ design. The blocks with both 6 and 7 contain a 3-(10, 4, 1) design.

In Part I the unique skeleton created by a pair of friendly blocks is determined. In Part II this skeleton is improved upon by showing that thirty-two of the blocks can be standardized in a unique fashion (see Table 1). These results are summarized in our first theorem.

THEOREM 1: If [123456] and [123457] are a pair of friendly blocks in a 4-(12, 6, 4,) design, then the completed and partially completed blocks of the design must follow the pattern given in Table 1. Furthermore the blocks with 67 contain a 3-(10, 4, 1) design on $(1,2,3,4,5,8,9, a, b, c\}$.

Here we recall the Rule of Five, or the RF for short, which says that, given any three blocks of a 4-(12, 6,4) design, at most two of them can have five points in common. We also recall the Prong Laws from Part II. The prongs of a pair of friendly blocks are the two points which lie on one but not both of them, so each block of the friendly pair has its prong. From an examination of Table I we deduce the following principles:
(i) If a block B intersects one of a friendly pair of blocks in just one point, then B contains the prong of the other block of the friendly pair;
(ii) One-point intersections, which can occur only between Type II blocks, never occur on the prongs of those blocks.
(iii) Prongs are never orphans, that is to say, the prongs of a friendly pair never appear unless they are accompanied by at least one of the non-prong points from the same friendly pair. This applies even when both prongs appear together.

2. A Partial Standardization of Section \mathbb{F}

Section F of the skeleton contains each quadruple from $\{\mathbf{8}, \mathbf{9}, \mathbf{a}, \mathrm{b}, \mathrm{c}\}$ exactly twice, once on a block with 6 and once on a block with 7 (Part II, Lemma 1). The distribution of these quadruples relative to the already completed blocks is governed by Theorems 2 and 3.

THEOREM 2: In section D of the skeleton, blocks containing neither 6 nor 7 cannot intersect each other in five points.
Proof: By Theorem 5 of Part II, no two blocks of section E can have five points in common. Apply a swapmap (see Part II), thus carrying the blocks of section E into those described by the current theorem.

THEOREM 3: Consider the two blocks of section F that contain the quadruple 9abe, say. Then; either these two blocks intersect in five points; or one of them has five points in common with a block from section E and the other has five points in common with a block from section D not containing 6 or 7.
Proof: Given the standardized section E, if the two blocks of section F containing 9abc have five points in common, then, to satisfy the RF with blocks of section E , they must be [169abc] and [179abc]. Otherwise, the two blocks are patterned after [179abc] and [269abc]. Then [269abc] is friendly with the block [2679bc] of section E (in fact, if x
is any one of $\mathbf{2 , 3}, \mathbf{4}, 5$, then the block [x 69 abc] in section F is friendly with a block of section E). Suppose that [179abc] does not intersect a block of section D not containing 6 or 7 in five points. Then, since the quadruple 9abc has to appear twice in section D (Part II, Lemma 3), those appearances must be on two of the three blocks [34], [35], [45]. But this situation is prevented by Theorem 2. Therefore [179abc] has to be friendly with a block of section D containing neither 6 nor 7; this block will have to contain 1.

COROLLARY: In section F each of the quintuples 19abc, 28abc, 389bc, 489ac, 589ab must appear at least once.
Proof: Apply the permutation (12345)(89abc) in Theorem 3.
This corollary reduces considerably the number of ways of completing section F. There is a further reduction to be had through the application of the automorphism group of section E to section F .

3. The Group of Section \mathbf{E}

Table 2: Some of the elements of \mathbf{H}, the automorphism group of section \mathbf{E}.
With reference to Table I, let H be the group of point permutations that map section E onto itself. This group has order 40. It is the direct product of the group of order 2 generated by the transposition (67) and a group of order 20 which fixes 6 and 7. The group H is also an automorphism group of of the whole of Table I. In Table 2 are listed six of the elements of H , and the last five of these are elements that fix a pair of blocks of section E while cycling through the other four pairs of blocks. The selected elements show that H is 2 -transitive on each of the sets $\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}\}$ and $\{\mathbf{8}, \mathbf{9}, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$.

4. The Completion of Section F

Since each of the quintuples 19abc, 28abc, 389bc, 489ac, 589ab has to appear at least once in section F, each member of $\{1,2,3,4,5\}$ has associated with it a unique quadruple from $\{\mathbf{8}, \mathbf{9}, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$. When one of these quadruples appears with its associate on a block of section F we shall describe that quadruple as being at home on $\mathbf{6}$ or 7 as the case may be (it can be at home on both). We shall take it to be the normal case when all the relevant quadruples are at home, in which case section F contains five pairs of friendly blocks.

So far 6 and 7 are equivalent so, without loss of generality, it can always be assumed that 9abc is at home on 7. Now suppose the other 9abe is not at home on 6 . Then, by Lemma 1 of Part II, 9abc must appear with 6 elsewhere in section F. This forces another quadruple from $\{\mathbf{8}, \mathbf{9}, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$ to be not at home on 6 , which in turn forces another displacement; and so on. This process is called chaining on 6. Chaining on either or both of 6 and 7 is possible. Each chain must eventually close up to form a circuit. Unless otherwise indicated, all chains are on 6.

The possible chain configurations can be displayed as directed graphs of degree two on a set of labelled vertices. Such graphs are called chain diagrams. Suppose the five points at the vertices of a regular pentagon are labelled successively with $1,2,3,4,5$. Suppose $\mathbf{x}, \mathrm{y} \in\{\mathbf{1}, \mathbf{2}, \mathbf{3}, 4,5\}$. If the quadruple from $\{\mathbf{8}, \mathbf{9}, \mathbf{a}, \mathbf{b}, \mathbf{c}\}$ that should be at home with \mathbf{x} is instead on a block of section F containing y then draw a directed edge from vertex x to vertex y. Note that it is possible for \mathbf{x} and \mathbf{y} to be the same, in which case the quadruple is at home on both 6 and 7 , giving a pair of friendly blocks, and the chain diagram has a loop on vertex \mathbf{x}. A loop is not a proper chain. For diagrams with two proper chains it is necessary to indicate on which of 6 and 7 the chains are formed by placing the appropriate digit near the chain. There is the exceptional case corresponding to a $5-(12,6,1)$ design for which the chain diagram has no edges. We treat this as an empty set and give it the symbol \emptyset; otherwise the chain diagrams are labelled with roman numerals.

Under the action of the group H the possible completions of section F are placed in fourteen equivalence classes whose chain diagrams are given in Table 3. For most of the cases the direction of the circuits is immaterial and the arrows on the edges are omitted. However, for classes VIII and IX the directions of the circuits do matter and arrows are needed.

5. Not-Gardening and the Completion of Section B

For each way of completing section F there are at most six ways of completing section B and experience has shown that if one of these ways is selected then the completion of the remaining unfinished blocks is uniquely forced. We demonstrate with a selected case (see Table 4) in which section F belongs to Class III.

	$\begin{array}{lll} \hline & 0 & \\ 0 & & 0 \\ & 0 & 0 \end{array}$		$0^{6} 6$ III

Table 3: Chain diagrams associated with section F. Note that these are directed graphs although, except for two cases, the direction of the circuits is immaterial. The vertices are to be labelled $1,2,3,4,5$ as successive vertices of a regular pentagon. The numbers 6 and 7 refer to circuits on blocks containing 6 or 7 respectively.

The blocks [5689ab], [5789ab] are friendly with prongs 6 and 7. In section B the blocks [1234 . .], [1234 . .] cannot intersect [5689ab] in one point, for if they did then they would have to contain 7, the prong of [5789ab], which is impossible. Thus the pair [1234 . .], [1234 . .] is marked "not c." Again, in section F, the block [4689bc] is
friendly with the section E block [46789c] whose prong is 7. Therefore the blocks [$\mathbf{1 2 3 5}$. .], [1235 . .] are marked "not a"; and so on for each appropiate pair of section B (see Table 4). This process is called not-gardening.

By Lemma 8 of Part II, each pair from \{8, 9, a, b, c\} appears just once in section B. By Theorems 2 and 5 of Part II, no two blocks of section B intersect in five points. Therefore the blocks [1234 . .], [1234 . .] can be completed in just three ways, with disjoint pairs from $\{\mathbf{8}, \mathbf{9}, \mathbf{a}, \mathbf{b}\}$. Once one of these ways is chosen, there are just two ways of completing the pair [1235 . .], [1235 . .]. Then the remaining pairs of section B can be completed in just one way. Hence there are six ways (i), (ii), ..., (vi), of completing section B, as given in Table 4. However, the largest subgroup of the group H fixing both section E and section F is generated by β^{2}. This interchanges (iii) with (vi), and (i) with (v), so the number of inequivalent ways of completing section B reduces to four; (i), (ii), (iii), (iv).

Section F	Section B							
168abc 179abc	not c	$\begin{aligned} & 1234 \ldots \\ & 1234 \ldots \end{aligned}$	$\begin{aligned} & 89 \\ & \text { ab } \end{aligned}$	$\begin{aligned} & 8 \mathrm{~b} \\ & 9 \mathrm{a} \end{aligned}$	$\begin{array}{\|l} 8 \mathrm{a} \\ 9 \mathrm{~b} \\ \hline \end{array}$	$\begin{aligned} & 8 \mathrm{~b} \\ & 9 \mathrm{a} \end{aligned}$	$\begin{array}{\|l\|} \hline 89 \\ \text { ab } \end{array}$	$\begin{array}{\|l} 8 \mathrm{a} \\ 9 \mathrm{~b} \end{array}$
$\begin{aligned} & \text { 269abc } \\ & 278 \mathrm{abc} \end{aligned}$	not a	$\begin{aligned} & 1235 \ldots \\ & 1235 \ldots \end{aligned}$	$\left\lvert\, \begin{aligned} & 8 \mathrm{~b} \\ & 9 \mathrm{c} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 8 c \\ 9 b \end{array}$	$\begin{aligned} & 8 \mathrm{~b} \\ & 9 \mathrm{c} \end{aligned}$	$\begin{aligned} & 89 \\ & \text { bc } \end{aligned}$	$\left\lvert\, \begin{aligned} & 8 c \\ & 9 b \end{aligned}\right.$	$\begin{aligned} & 89 \\ & \mathrm{bc} \end{aligned}$
$\begin{array}{\|l} 3689 \mathrm{ac} \\ 3789 \mathrm{bc} \end{array}$	not b	$\begin{aligned} & 1245 \ldots \\ & 1245 \ldots \end{aligned}$	$\begin{array}{\|l} 8 c \\ 9 a \end{array}$	$\begin{aligned} & 89 \\ & \mathrm{ac} \end{aligned}$	$\begin{array}{\|l\|} \hline 89 \\ \text { ac } \end{array}$	$\begin{aligned} & 8 \mathrm{a} \\ & 9 \mathrm{c} \end{aligned}$	$\begin{array}{\|\|l\|l} \hline 8 \mathrm{a} \\ 9 \mathrm{c} \\ \hline \end{array}$	$\begin{aligned} & 8 c \\ & 9 a \end{aligned}$
$\begin{aligned} & 4689 \mathrm{bc} \\ & 4789 \mathrm{ac} \end{aligned}$	not 8	$\begin{aligned} & 1345 \ldots \\ & 1345 \ldots \end{aligned}$	$\int \begin{aligned} & 9 \mathrm{~b} \\ & \mathrm{ac} \end{aligned}$	$\begin{array}{\|l} \hline 9 \mathrm{c} \\ \mathrm{ab} \end{array}$	$9 \mathrm{a}$ bc	$\begin{array}{\|l} 9 \mathrm{~b} \\ \mathrm{ac} \end{array}$	$\begin{aligned} & 9 a \\ & b c \end{aligned}$	$\begin{aligned} & 9 \mathrm{c} \\ & \mathrm{ab} \end{aligned}$
$\begin{array}{\|c\|c\|} 5689 \mathrm{ab} \\ 5789 \mathrm{ab} \\ \hline \end{array}$	not 9	$\begin{aligned} & 2345 \ldots \\ & 2345 \ldots \end{aligned}$	$\begin{array}{\|l} 8 \mathrm{a} \\ \mathrm{bc} \end{array}$	$\begin{aligned} & 8 \mathrm{a} \\ & \mathrm{bc} \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \mathrm{c} \\ \mathrm{ab} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 8 c \\ \mathrm{ab} \\ \hline \end{array}$	$\begin{array}{\|l} 8 \mathrm{bb} \\ \mathrm{ac} \end{array}$	$\begin{array}{\|l} \hline 8 \mathrm{~b} \\ \mathrm{ac} \\ \hline \end{array}$
Class III			(i)	(ii)	(iii)	(iv)	(v)	(vi)

Table 4: The six completions of section B for a section \mathbb{F} of Class III. The permutation β^{2} leaves section F fixed and interchanges (ii) with (vi), and (i) with (v). In section F the prongs are underlined.

The process of not-gardening can be applied to all the classes of section F to produce the forty-six cases listed in Tables 5, 6, 7 and 8. We anticipate a little here by claiming that for the mixed chain classes XII, XIII and XIV, there are no continuations. The entries for section B for these classes are the same as those of classes III, IV and VI respectively. The tables also give the order of the automorphism group of the completed design arising from each class. For quick identification each case has been given a list number.

Class Q	The 5-(12, 6, 1) design						
	List No 1						
	\|G			95,040			
Class I	F	B	(i)	(ii)			
Use α	169abc	1234	8b	89			
	179abc	1234	9 a	ab			
	268abc	1235	89	8a			
	278abc	1235	ac	9 c			
	3689bc	1245	8 c	8c			
	3789 bc	1245	9b	9b			
	4689ac	1345	8 a	8 b			
	4789ac	1345	bc	ac			
	5689ab	2345	9 c	9a			
	5789 ab	2345	ab	bc			
	List No		2	3			
	[G]		1440	8			
Class II	F	B		(ii)	(iii)	(iv)	
Use δ^{2}	1689ab	1234	9 c	9a	9a	9c	
	179abc	1234	ab	bc	bc	ab	
	268abc	1235	8 c	89	8a	89	
	278abc	1235	9 a	ac	9c	ac	
	3689bc	1245	89	8b	8c	8 c	
	3789bc	1245	be	9 c	9b	9b	
	4689ac	1345	8 b	8 c	8b	8 a	
	4789ac	1345	ac	ab	ac	bc	
	569abc	2345	8 a	8 a	89	8b	
	5789ab	2345	9 b	9 b	ab	9a	
	List No		4	5	6	7	
	IG]		5	5	16	16	
Class III	F	B	(i)	(ii)	(iii)	(iv)	
Use β^{2}	168abc	1234	89	8b	8a	8b	
	179abc	1234	ab	9 a	9b	9a	
	269abc	1235	8b	8 c	8b	89	
	278abc	1235	9 c	9 b	9c	bc	
	3689ac	1245	8c	89	89	8a	
	3789bc	1245	9a	ac	ac	9 c	
	4689 bc	1345	9b	9 c	9a	9b	
	4789ac	1345	ac	ab	bc	ac	
	5689ab	2345	8a	8 a	8c	8c	
	5789ab	2345	bc	bc	ab	ab	
	List No		8	9	10	11	
	8\|G]		8	6	8	6	

Table 5: Classes $\emptyset, ~ I, ~ I I ~ a n d ~ I I I . ~$

Class IV	F	B	(i)	(ii)	(iii)				
Use β	1689ac	1234	8b	8 a	8b				
	179abc	1234	9 a	9b	9 a				
	2689bc	1235	9 c	9 a	9 b				
	278abc	1235	$\mathbf{a b}$	bc	ac				
	368abc	1245	8 a	8c	8 c				
	3789 bc	1245	bc	ab	ab				
	469abc	1345	8c	8b	89				
	4789ac	1345	9b	9 c	bc				
	5689ab	2345	89	89	8 a				
	$5689 a b$	2345	ac	ac	9 c				
	List No		12	13	14				
	\|G			8	8	144			
Class V	F	B	(i)	(ii)	(iii)	(iv)	(v)	(vi)	
	1689 bc 179abc 269abc 278abc 368abc 3789bc 4689ac 4789ac 5689ab 5789ab	1234	8b	8 a	8 a	89	89	8 b	
		1234	9 a	9b	9 b	ab	ab	9 a	
		1235	8 a	8 c	89	8c	8 a	89	
		1235	9 c	9 a	ac	9 a	9 c	ac	
		1245	8 c	8 b	8 c	8a	8 b	8 a	
		1245	ab	ac	ab	bc	ac	bc	
		1345	9 b	9 c	9 a	9b	9 a	9 c	
		1345	ac	ab	bc	ac	bc	ab	
		2345	89	89	8 b	8 b	8 c	8 c	
		2345	bc	be	9 c	9 c	9b	9 b	
	List No		15	16	17	18	19	20	
	\|G			6	55	6	6	6	6
Class VI	F	B	(i)	(ii)	(iii)	(iv)	(v)	(vi)	
	1689bc	1234	8 a	8 c	89	8c	8a	89	
	179abe	1234	9 c	9 a	ac	9 a	9 c	ac	
	269abc	1235	8 b	8 a	8 a	89	89	8 b	
	278abc	1235	9 a	9 b	9 b	ab	ab	9 a	
	368abc	1245	8c	8 b	8 c	8 a	8b	8 a	
	3789 bc	1245	ab	ac	ab	be	ac	bc	
	4689ab	1345	9 b	ab	9 a	9b	9 a	9 c	
	4789ac	1345	ac	9 c	bc	ac	bc	ab	
	5689 ac	2345	89	89	8 b	8b	8c	8 c	
	5789ab	2345	bc	bc	9 c	9 c	9b	9 b	
	List No		21	22	23	24	25	26	
	\|G			5	5	5	24	24	5

Table 6: Classes IV, V and VI.

Class VII	F	B	(i)	(ii)	(iii)	(iv)	(v)	(vi)	
	1689ac	1234	8 a	8b	89	8a	8b	89	
	179abc	1234	9 b	9 a	ab	9b	9a	ab	
	269abc	1235	8b	8 c	8b	89	89	8 c	
	278abc	1235	9c	9b	9 c	bc	bc	9b	
	368abc	1245	8 c	8a	8 a	8b	8 c	8b	
	3789bc	1245	ab	bc	bc	ac	ab	ac	
	4689 bc	1345	9 a	9 c	9 b	9 c	9b	9 a	
	4789ac	1345	bc	ab	ac	ab	ac	bc	
	5689ab	2345	89	89	8 c	8 c	8 a	8 a	
	5789ab	2345	ac	ac	9 a	9 a	9c	9c	
	List No		27	28	29	30	31	32	
	\|G]		5	5	5	5	16	16	
Class VIII	F	B	(i)	(ii)	(iii)				
Use β	168abc	1234	8b	89	8b				
	179abc	1234	9 a	ab	9a				
	2689ac	1235	8 c	8b	89				
	278abc	1235	9 b	9c	bc				
	369abc	1245	9 c	9b	9 b				
	3789bc	1245	ab	ac	ac				
	4689bc	1345	89	8c	8 a				
	4789ac	1345	ac	9a	9 c				
	5689ab	2345	8 a	8a	8 c				
	5789ab	2345	bc	bc	ab				
	List No		33	34	35				
	\|G			72	5	72			
Class IX	F	B	(i)	(ii)	(iii)				
Use β	1689bc	1234	8b	8 a	8b				
	179abc	1234	9 a	9b	9 a				
	269abc	1235	8 c	8b	8 a				
	278abc	1235	ab	ac	bc				
	3689ac	1245	8 a	8c	89				
	3789bc	1245	9c	9 a	ac				
	468abc	1345	9 b	9c	9 c				
	4789ac	1345	ac	ab	ab				
	5689ab	2345	89	89	8 c				
	5789ab	2345	bc	bc	9 b				
	List No		36	37	38				
	[G]		72	5	24				

Table 7: Classes VII, VIII and IX.

Class X	F	B	(i)	(ii)	(iii)	(iv)	(v)	(vi)	
	1689ab	1234	8c	89	89	8b	8b	8 c	
	179abc	1234	9b	bc	bc	9c	9c	9b	
	269abc	1235	8 a	8 c	8b	8 c	8 a	8b	
	278abc	1235	bc	ab	ac	ab	bc	ac	
	3689ac	1245	89	8a	8 c	89	8c	8 a	
	3789bc	1245	ac	9 c	9 a	ac	9a	9 c	
	468abc	1345	9c	9 b	9 c	9a	9b	9 a	
	4789ac	1345	ab	ac	ab	bc	ac	be	
	5689bc	2345	8b	8b	8 a	8 a	89	89	
	5789ab	2345	9a	9a	9b	9b	ab	ab	
	List No		39	40	41	42	43	44	
	\|G]		8	8	6	8	6	8	
Class XI	F	B	(i)	(ii)					
Use α	168abc	1234	9 c	9 b					
	179abc	1234	ab	ac					
	2689bc	1235	8b	89					
	278abc	1235	9 a	ab					
	3689ac	1245	89	8 c					
	3789bc	1245	ac	9 a					
	4689ab	1345	8c	8 b					
	4789ac	1345	9b	9 c					
	569abc	2345	$8 \mathrm{a}$	8 a					
	5789ab	2345	bc	bc					
	List No		45	46					
	\|G			55	6				
Class XII	None								
Class XIII	None								
Class XIV	None								

Table 8: Classes X, XI, XII, XIII and XIV.

6. Completing the Design; Prong Hunting

As a demonstration of a typical case we now complete Class III (i) to a 4-(12, 6, 4) design. Having completed sections F and B according to Table 5, let us now use some of the theorems from Part II to fill in further blocks. By Theorem 8 of Part II, the last block in each subsection of section C cannot have five points in common with any block of section B. Therefore, in section C, the block [123 . . .] cannot contain any of the pairs $\mathbf{8 9}, 8 \mathrm{~b}, 9 \mathrm{c}, \mathrm{ab}$ and so has a unique completion to [1238ac]. The last blocks of other the subsections of section B likewise all have unique completions. In particular, we have the blocks [1238ac], [1249bc], [125abc].

Now, by Theorem 3 of Part II, the last blocks in the subsections of section B can never have five points in common with the last blocks of the subsections of section D. Therefore, in the first subsection of section D, the block [12] has a unique completion to [1289ab]. In the same subsection, the block [126 . . .] must contain 9 by the RF applied to the blocks [1678ab] and [168abc]. Also, by the RF applied to [2679bc] and [269abc], [126 . .] must contain 8. Thus we have the partially completed block [126 . 89], and likewise the partially completed block [127 . 89]. Each subsection of section D can be similarly treated leading to the situation in table 9 . The blocks marked with an asterisk are definitely known to be of Type I.

	C		D		E
123456	123679	14567 c	1267ac	24678 c	16789c
123457	1236..	1456..	126.89	246.8a	1678ab
	1236	1456 . .	127.89	247. 9b	
	1237 . .	1457..	1289ab	248abc	26789a
	1237 . .	1457.			2679bc
	1238ac	1458ab	1367bc	2567ab	
B 123489			136.9b	256.8 c	3678ac
123489	12467b	23467a*	137. 8a	257.9c	3679ab*
1234ab	1246..	2346.	139abc	2589ac	
	1246..	2346.			46789b
12358b	1247..	2347..	14679a	34679c	467abc
12359c	1247..	2347 .	146.9a	$346 . a b$	
	1249bc	2349ac	147. 8b	347. ab	5678bc
12458c*	125678	23567c	1489ac	3489ab	5679ac
	1256..	2356..	15679b	356789	
13459b	1256..	2356..	156.9c	356. bc	
1345 ac	1257..	2357	157.8c		
	1257..	2357.	1589bc*	358abc	
	134678	245679	236.8 b	456. ac	179abc
	1346 . .	2456 . .	237. 9a	457. bc	
	1346..	2456..	2389 bc	459 abc	269abc
	1347	2457.			278abc
	1347. .	2457. .			
	1348bc	24589b			$\begin{aligned} & \text { 3689ac } \\ & \text { 3789 bc } \end{aligned}$
	13567a	34567b			
	1356..	3456..			4689bc
	1356 . .	3456.			4789ac
	1357 . .	$3457 .$.			
	$13589 \mathrm{a}^{\circ}$	$34589{ }^{\circ}{ }^{\circ}$			$\begin{aligned} & \text { 5689ab } \\ & \text { 5789ab } \end{aligned}$

Table 9: Class III (i). The situation at the end of the second paragraph of Section 6. Blocks definitely known to be of Type I are marked with an asterisk.

The completion to a $4-(12,6,4)$ design can be carried out in many ways and the details differ from case to case. Usually many, if not all, of the subsections of section D
can be completed at this stage. For example, [1589bc] is a Type I block so the blocks [156.9c] and [157.8c] can only be completed with a if five point intersections with [1589bc] are to be avoided. Also, the blocks [139abc], [1489ac], [2389bc] and [248abc] all have friendly mates in section F , so by the RF, there must be blocks [13689b], [1469ab], [2368ab] and [24689a] in section D. Each triple from \{8, 9, a, b, c\} occurs just once with each of 6 and 7 in section D (Lemma 4, Part II) so [126 . 89] can only be completed with \mathbf{c}, and so on.

Table 10: Class III (i). The completed design. Type I blocks are marked with an asterisk.

To complete the subsections of section B the process of prong hunting will nearly always work on at least one of the blocks of section B. In the present case section B has the block [12358b] which has one-point intersections on $1,3,5,8$, \mathbf{b} with the blocks [14679a], [34679c] [5679ac], [4789ac], [467abc] respectively. The only point common
to these five blocks is 7, which, by the prong laws must be the prong of the mate of [12358b]. Therefore this mate is [13578b]. Then, in the 135-subsection of section B the block [1357 . .] can only be completed with a pair from \{9, a, c \} . By the RF with the blocks [13567a], [13589a], [357 . ac], both 9a and ac are forbidden. Therefore there is a block [13579c], which has [12359c] of section B as a friendly mate. A count of quadruples containing the triple 135 shows that the blocks [1356 . .], [1356 . .] between them must contain each of $\mathbf{8}, \mathbf{a}, \mathbf{b}, \mathbf{c}$ just once. The RF forbids 8 to pair with either of \mathbf{a} or \mathbf{b} so the 135 -subsection is completed by the blocks [13568c] and [1356ab]. Now, in section D the only legimate way of completing [137 . 8a] is with a 9 , and so on. The completed design is given in Table 10.

7. Comments

It was found that each of the cases listed for classes I to XII can be completed to a $4-(12,6,4)$ design in a unique fashion, but none of the cases in classes XII, XIII and XIV have a completion. The completed designs always have Type II blocks in multiples of twelve. As is to be expected, there are isomorphisms occuring among the forty-six completed designs. The designs were checked using Cayley [5] and nauty [6]. These produced nine equivalence classes which, fortunately, are such that designs are in different classes if and only if the orders of their automorphism groups are different. To produce a set of standard designs a representative of each isomorphism class was chosen and given a new name. The 5-(12,6,1) design as modelled in Breach [2] we have called Design 1. Then the others, lexicographically ordered according to decreasing numbers of Type I blocks and group orders, have been called Design 2, Design 3, etc.

In Table 11 is given the complete list of standard designs together with their group orders and the numbers of blocks of each type. The blocks of all the ten standard designs are displayed in Breach, Elmes, Sharry and Street [3]. The design completed in this paper as a demonstration is Design 8.

As a matter of observation, in the forty-six completed models the blocks of section D that contain 7 but not 6 are always the same. If a short proof of this statement can be found beforehand then the completion of the forty-six models would be considerably simplified. But what is more interesting is that in any of the $4-(12,6,4)$ designs completed according to this paper the restriction on 7 is always a $4-(11,5,1)$ design; if all the blocks containing 7 are selected and 7 is then deleted from those blocks, then one would expect that the new blocks so formed are those of a $3-(11,5,4)$ design, not a 4 -design. Again, if this could be predicted at the beginning then the classification of the $4-(12,6,4)$ designs would be much easier.

List No	STANDARD DESIGN	Group	No Blocks	
		Order	Type I	Type II
List No 1	Design 1	95,040	132	0
List No 2	Design 2	1440	60	72
List No 14	Design 3	144	60	72
List No 31	Design 4	16	36	96
List No 33	Design 5	72	24	108
List No 24	Design 6	24	24	108
List No 9	Design 7	6	24	108
List No 8	Design 8	8	12	120
List No 4	Design 9	5	12	120
List No 45	Design 10	55	0	132

Table 11: Standard 4-(12, 6, 4) designs.

8. Acknowledgements

Most of this work was done while one of us, DRB, was visiting the Centre for Combinatorics at the Department of Mathematics of The University of Queensland and he is grateful for the hospitality given him there. The work was sponsored by the Australian Research Council, from which APS holds an Australian Senior Research Fellowship. We are grateful to Sylvia Elmes for running programs to check and classify the completed designs.

9. References

[1]. D. R. Breach, In search of 4-(12, 6, 4) designs; Part II, this volume, 247-258.
[2]. D. R. Breach, Star gazing in affine planes, Proceedings of the Ninth Australian Conference on Combinatorial Mathematics, Brisbane, Australia, Lecture Notes in Mathematics 952, Springer-Verlag, (1982) 1-33.
[3]. D. R. Breach, Sylvia H Elmes, Martin J. Sharry and Anne Penfold Street, The curious property of the 4-(12, 6, 4) designs, submitted.
[4]. D. R. Breach, Martin J. Sharry and Anne Penfold Street, In search of 4-(12, 6, 4) designs; Part I, this volume, 237-245.
[5]. John Cannon, A language for group theory, Department of Pure Mathematics, University of Sydney, Australia, (1987).
[6]. Brendan D. McKay, nauty User's Guide (Version 1.5), Australian National University Computer Science Technical Report TR: CS-90-02 (1990).

