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Abstract Many problems in information security can be resolved using combina­

torial structures, primarily geometries. In fact, often the most efficient solutions 

kn'awn are provided by schemes based on geometries. In this expository article 

we look at two problems in information security and discuss proposed geometrical 

solutions. In addition, we generalise two known constructions for Key Distribution 

Patterns, using Laguerre planes. The generalisation has the potential to provide 
new examples of Key Distribution Patterns, as well as simplifying the proofs of 

the constructions considerably. 

1. Introd uction 

This paper gives an introduction to some applications of finite geometries to 

information security. Section 1 describes the general framework of these appli­

cations and discusses why finite geometries might be useful in this context. In 

sections 2 and 3 we look at two applications in more detail, surveying known re­

sults on secret sharing schemes and on key distribution patterns which make use 

of finite geometries. Finally, section 4 contains the extensions of some known con­

structions of key distribution patterns (KDPs) into certain finite geometries known 

as Laguerre planes. These generalisations have the advantage that the verification 

of the KDP property is easier in the Laguerre plane context. Further, if there is 

a Laguerre plane of non-prime power order (currently an unsolved problem) then 

the generalisations give new examples of KDPs. 

The field of information security is largely driven by the need to provide 

information security functions for a society which is increasingly dependent on 

digital information and communication. In particular, two structures designed to 
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provide some of these functions are secret sharing schemes and key distribution 

patterns. 

Informally, a secret sharing scheme is a means by which only certain prede­

termined subsets of a set of authorised participants can access a secret. The secret 

could be either a piece of information, a key for a cryptosystem or a key allowing 

control of some action. Since we can think of the participants as points and the 

subsets with access to the secret as blocks, we immediately see that we can model 

such schemes with incidence structures. Just why we might want to use geometries 

for these incidence structures will be discussed in Section 2. 

One of the most difficult and important problems facing users of cryptographic 

systems is the problem of key management, since a cryptosystem is useless or 

worse than useless if its keys have been compromised. Key management principles 

and procedures seek to provide a secure method of distributing keys among a 

number of participants in a cryptographic scheme. Section 3 investigates a natural 

way of modelling a key distribution pattern as a design. It has been found that 

geometry has played a part in the construction of some efficient key distribution 

patterns, in particular, [14] gave two constructions of Key Distribution Patterns 

based on families of conics in finite affine planes. In Section 4 we generalise these 

by providing constructions in any Laguerre plane. If there are Laguerre planes of 

non-prime power order (currently an unsolved problem) then the generalisation 

gives new examples of Key Distribution Patterns. In any case the constructions 

and the proofs are much easier in the general (Laguerre plane) setting. 

Perhaps one of the first questions we should ask is, Why should finite ge­

ometries be involved in the study of information security? Do finite geometries 

just provide "nice" examples, or is there some intrinsic reason why they appear in 

efficient solutions to many of the problems in information security? Of course it 

would be extremely difficult to answer this question in general, so I will attempt 

to give what I believe are some partial answers, with supporting evidence. 

It is extremely difficult to define the term 'finite geometry', and I prefer not 

to do so. However, examples of finite geometries include the finite projective and 

affine spaces and the finite inversive, Laguerre and Minkowski planes mentioned 

in this article. 

The first thing to say.is thatit is easy to see why we should deal with finite 

objects. We have a finite number of participants, messages, bits, and soon, so we 

are talking about finite, or discrete, mathematics. Thus, we are mainly concerned 

with the Why geometries? part of the question. 
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We have already hinted at something which is possibly part of the answer. 

As soon as we have a set of elements and distinguished subsets of them, we have 

an incidence structure. If we are lucky, the properties that we require, say fixed 

parameters or interactions of the subsets, might force the incidence structure to 

be a design, or even a geometry. The properties of the problem might be best 

modelled by a geometry, with its levels of interaction between components of 

various types, as seen in the application to secret sharing schemes discussed in 

Section 2. Beutelspacher [3] pointed out that the complex structure of geometries 

can provide efficient models for hierarchical systems and structures. 

In any case, usually we are looking for a good solution to our problem, for a 

suitable definition of good. Designs and, to a greater extent, geometries have a 

great deal of symmetry and have well-determined interactions between their com­

ponents. Hence it is not inconceivable that geometries, with their rich structure, 

might provide good solutions to problems. 

In [3], Beutelspacher gave an additional argument. He pointed out that ge­

ometries are often examples of more structures with extreme values of 

parameters, that is, with parameters at an extreme of their possible values. Often 

these extreme cases are the ones we prefer, for practical reasons. 

An added bonus is that the performance of a geometrical solution to a problem 

resides in the properties of the geometry itself, rather than in some hard problem 

(such as factoring a large integer) whose performance status changes over time. 

More precisely, a scheme is unconditionally secure if its security is independent of 

the computing power and effort an unauthorised opponent is willing to use to im­

properly break the scheme. In general, we might expect schemes constructed from 

geometrical structures to provide unconditional security or performance, rather 

than the conditional security provided by hard number-theoretical problems. We 

shall see that, in many situations, this is indeed the case. 

A scheme which is based on a geometry inherits all the structure of the un­

derlying geometry. As a consequence, it is found in practice that a geometrical 

scheme is easy to construct and easy to implement. In general there is less storage 

required, as· much of the information resides in the geometrical structure, hence 

does not need to be stored. 

Beutelspacher [3] noted that, in most applications, only the structure of the 

geometry is used. Often a question that arises in an application will translate to 

a geometrical problem, usually depending only on the incidences of the structure. 

Also, the applications concentrate on projective spaces over finite fields, perhaps 
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for the reason that they are well understood and calculations can be performed 

efficiently. 

2. Secret Sharing Scheilles 

First, let's give a more precise definition of a secret sharing scheme. We adopt 

the terminology used in (14], due largely to Simmons. 

The set P of participants in a secret sharing scheme are those who are au­

thorised to take part in the scheme. The secret is the piece of information to be 

protected, or the action whose initiation is to be controlled, and the set of all pos­

sible secrets is the secret set. Given P, the access structure r of a secret sharing 

scheme is a specification of those subsets of P which are authorised to determine 

the secret. 

The final component of a secret sharing scheme is the security. The security 

s is defined to be the reciprocal of the maximum, taken over all subsets of P not 

in r of the probability that an unauthorised set of participants obtains the secret. 

Hence we see that a secret sharing scheme on a participant set P is determined 

by the pair (r, s). In practice the participants are each issued with a share, and the 

shares of a set of participants are used to determine whether the set of participants 

is authorised. 

An access structure (and hence any scheme with that access structure) is 

monotone if every set of participants which contains a subset in the access structure 

is itself in the access structure, that is, 

A E r and A ~ A' ~ P =? A' E r. 

Non-monotone schemes have been considered to model situations in which there 

is a power of veto, see [4], but here we restrict our attention to monotone schemes. 

We think of a secret sharing scheme, then, as the abstract notion of its access 

structure and security. A construction for a secret sharing scheme is some concrete 

realisation of the scheme. Usually, a construction for a scheme is a mapping of 

the shares and secret onto the elements of some incidence structure so that the 

properties of the scheme are reflected by the properties of the incidence structure, 

see Example 2.1. 
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It should be clear that, given a secret sharing scheme with access structure 

r and security s, there may be many different constructions for the scheme, see, 

for example, [15] and its references. The most elementary construction is the one 

which uses the complete listing of all subsets in the access structure. When a group 

of people tries to access the secret the list of authorised sets has to be checked. 

We hope to find more efficient algorithms than this one. 

2.1 Example Suppose that we are given a participant set P where IPI = v ~ 3. 

Suppose we wish to construct a secret sharing scheme with security 100 and with 

access structure r which is all subsets of'P of size at least 3. (In fact this is a 

(3,v)-threshold scheme, where a (k, n )-threshold scheme is a secret sharing scheme 

on n participants whose access structure is the collection of subsets of'P of size at 

least k, see [15].) It is easy to see that r is monotone. We now give a construction 

for this scheme. 

In PG(3,q), choose the points of a line 1 to be the secret set (this line 1 is 

assumed to be public knowledge). We assume that each secret in the s~cret set 

is used with equal probability. Once a secret S (point of I) is chosen, let 1r be a 
plane through S and meeting I only in S. We choose a set K; of points on 1r such 

that K; U {S} is a (v + 1 )-arc of 1r (that is, K, U {S} is a set of v + 1 points, no three 

collinear). The share of each participant is the coordinate triple of one point of 

K,. Note that the maximum size of a k-arc in 1r is q + 1 if q is odd and q + 2 if q 
is even (see [8], 8.1.3); so immediately we see that we must have q large enough, 

say q ~ v + 1. 

Now when at least three participants get together, their shares span the plane 

7r. This group of participants can therefore determine the point S of intersection 

of the plane 1r with the line 1 and so recover the secret. 

We consider the security of this construction. An unauthorised set of partici­

pants (a group of one or two participants) has as shares either a point of PG(3,q) 
or two points spanning a line of PG(3,q), not through S. This unauthorised set, 

in attempting to determine the secret, can do no better than just to guess S, 

knowing only that it lies on 1. Since there are q + 1 points on a line in PG(3, q), 
so we can obtain a security of 100 by choosing q ~ 99. 

We now consider some desirable properties of secret sharing schemes. An 

outsider in a secret sharing scheme is a non-participant in the scheme. A scheme 

is perfect if the probability that an outsider can improperly obtain the secret is 

at most the reciprocal of the security. In other words, the probability that an 

unauthorised set can improperly obtain the secret is no better than that of an 
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outsider .. The construction given in Example 2.1 is perfect, since an outsi'der can 
at best guess the point S on 1, with probability Ij(q + 1), equal to the best an 
unauthorised set of participants can do .. 

Further, it is clear that the scheme of Example 2.1 is unconditionally secure, 
since the security is independent of the amount of computing power and effort 
that an opponent is willing to expend in order to improperly obtain the secret. 
They can do no better than just guess the secret among the points of 1. 

There are many geometrical constructions, such as Example 2.1, for secret 
sharing schemes with monotone access structure. Such constructions generally 
have the property that they are perfect and unconditionally secure. In addition, 
they are easy to construct and to implement. Also, since the geometrical structure 
can quickly check whether a subset is authorised, it is unnecessary to keep a list of 
the subsets in the access structure, so the storage requirements are generally quite 
low. For these reasons we introduce the definition of a geometric construction for 
a secret sharing scheme. 

A geometric construction for a secret sharing scheme (r, s) on a participant 
set 'P is a construction in which the possible secrets and the shares are subspaces 
in a projective space PG(n, q). The secret set is usually also a subspace and the 
possible secrets are subspaces of the secret set. Further, the construction is such 
that a subset of participants in P is in r if and only if the subspace of PG(n,q) 
spanned by the points contained in their shares contains the secret. The value 
of q must be large enough to accommodate the number of participants with the 
given access structure among the subspaces of PG( n, q). The security is achieved 
by choosing a value of q large enough, as in Example 2.1, to ensure a large enough 
number of secrets, each chosen with equal probability. In fact Example 2.1 is a 
geometric construction for the secret sharing scheme given there, as the secret set 
is a line, the secrets are points on that line and the shares are points of PG(3, q). 
In addition, a set of participants is in r if and only if their shares span the plane 
7l" which contains the secret S. 

So far we have not considered the existence of constructions for given se­
cret sharing schemes. Also, if we prefer geometric constructions (for the reasons 
indicated above), we are lead to consider the following questions: 

1. Given a secret sharing scheme with a monotone access structure, is it possible 
to find a construction for it? Is there an algorithm to find the construction? 

2. Must there always be a perfect construction? 
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3. Must there always be a perfect, geometric construction? 

In 1987, Ito, Saito and Nishizeki [9] showed that any secret sharing scheme 

with monotone access structure can be realised with a perfect construction, and 

gave an algorithm using the underlying structure ofa (k, k )-threshold scheme. In 
1990, Benaloh and Leichter [1] gave a different algorithm for such a construction, 

again using threshold schemes. Further, Simmons [16] conjectured in 1990 that 

any secret sharing scheme with monotone access structure could be realised with 

a perfect, geometric construction. 

The proof of this conjecture was given in 1992 by Simmons, Jackson and 

Martin [11], who exhibited an algorithm for constructing a perfect, geometric 

secret sharing scheme for any given monotone access structure. This algorithm 

basically translates the algorithms given in [9] and [1) into geometric language, and 

shows that the construction can be found based on the manipulation of Boolean 

logical expressions. More precisely, an algorithm is given which operates on a 

logical description of the access structure to produce another logical expression 

that uniquely defines a geometrical construction for the scheme. 

Now we know that any secret sharing scheme with a monotone access structure 

can be constructed with a perfect, geometric scheme. The next question to ask is, 

are these schemes any good in practical situations? 

There are several performance or efficiency measures proposed for construc­

tions of secret sharing schemes, see, for example, [5] or [6]. These are largely 

based on the aim of minimising the size of the shares issued to each participant. 

Unfortunately the perfect, geometric constructions for secret sharing schemes aris­

ing from the Simmons, Jackson and Martin algorithm do not perform very well 

according to these measures, see the conclusion of [11]. Importantly, however, it 

is still true that given a secret sharing scheme with a monotone access structure 

then geometric constructions are among the best known according to the proposed 

measures. 

Thus we see that we have an algorithmic way of providing a perfect, geo­

metric construction for a secret sharing scheme with monotone access structure, 

but these schemes are not very efficient in practice. However, as discussed in [10], 

since geometric constructions worked out on a case-by-case basis have been found 

to be good in practice, what is needed is an algorithm for finding a good (per­

fect, geometric) construction for a secret sharing scheme with a monotone access 
structure. 

201 



3. Key Distribution Patterns 

The security of a cryptosystem, either symmetric or public key, is determined 
under the fundamental assumption that a possible opponent has complete knowl­

edge of the algorithm being used. This is called Kerckhoff's Msumption, and 

the consequence of this assumption is that the security of a. cryptographic system 

resides entirely in the key. It follows that key management, the theory of secure 

generation, distribution and storage of cryptographic keys, is of prime importance. 

Most of the solutions proposed so far use a key distribution centre, or KDC, 
to generate and distribute the keys. The KDC would probably also be required 

to store, for some period of time, the keys which it generates. 

Consider a network of v :2:: 3 nodes PI, P2 , ••. , Pv , each of which must be able 

to communicate with any other node in a secure way. (The case v = 2 is trivial, 

as only a single key is required.) We assume that this communication is done via 

a symmetric cryptosystem, that is, each pair of nodes Pi, Pj must be in possession 

of a common (secret) key J(ij which they use for encryption and decryption of the 

messages sent between them. One way to achieve this would be to distribute to 

each pair of nodes a key, unique to that pair. We call this the trivial system for key 

distribution. In this system, the KDC would need to generate (and possibly store) 

v(v - 1)/2 secret keys and we require each node to store v-I keys. This system 
has the advantage that, after the initial key distribution, each node is ready to 

communicate with each other node. The main disadvantage is that a large amount 

of key storage is required at each node and at the KDC. 

An alternative to the above sy~tem would be for the KDC to generate a key 

for a pair of communicating nodes only when it is required, and destroy the key 

after each use. The storage required is quite small, since each node need only store 

a key for communicating with the KDC plus the session keys for the nodes with 

which it is currently communicating. The problems of the responsiveness of the 

KDC (it is no good waiting half an hour for a key for an urgent message), the 

delay in communication and the bottleneck situation created by the large amount 

of communication traffic with the KDC currently seem difficult to resolve. 

For this reason, we will concentrate our attention on combinatorial models 

similar to the trivial system of initial distribution of keys to each pair of nodes. In 

other words, we seek a system under which each node can communicate with each 

other node without first needing to contact the KDC, but we require that the key 

storage needed at each node should be as small as possible. Mitchell and Piper [13] 

have proposed an elegant solution in which each node is issued with a relatively 
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small number of sub keys (binary strings of a specified length) and each key used 

by a pair of nodes is generated from a combination of some of these subkeys. This 

combination is usually a one-way function to ensure that an opponent obtaining 

a secret key would be unable to recover the subkeys. 

Suppose we think of the set of nodes as the set P of points and the set of 

subkeys as the set 13 of blocks of a (finite) incidence structure (P,l3,I). A point is 

incident with a block if the corresponding node posesses the corresponding subkey. 

The key to be used for communication between two nodes PI, P2 is generated from 

the subkeys in (PI) n (P2 ) (where (P) denotes the set of blocks incident with P). 
We make the following definition, following [12], and identifying the nodes with 

the points and the subkeys with the blocks. 

A key distribution pattern, or KDP, on v points is a finite incidence structure 

IC with v ~ 3 and such that, for any two distinct points PI, P2 of K, we have 

(K1 ) (Pt) n (P2) CZ (Q) for any Q E P\{P1 ,P2}. 

The condition on the KDP ensures that the key Kij used by the pair of nodes 

PI, P2 cannot be determined from the subkeys of any other node. For if Q is 

another node, the condition (Kl) ensures that PI, P2 share at least one subkey 

not in the subkey set belonging to Q. 

There is an immediate geometrical interpretation of (K1). If we recall that 

the line on points A, B of P is the set of points in the intersection of all blocks on 

A, B; we see that condition (K1) is equivalent to the condition that each line of 

(P,B,I) has size 2. 

It is desirable in an application that each of a pair of nodes be able to de­

termine the common key non-interactively, that is, with no interaction between 

the nodes. This is achieved by a key distribution pattern as follows. The blocks 

used in the key distribution pattern are really just names for the subkeys, and 

each node is issued with the values of only those subkeys which it posesses. Then 

the key distribution pattern is made public information. When a node wishes to 

communicate with another node it uses the public information to determine the 

names of the subkeys that it has in common with with that other node, then uses 

the (private) values of those subkeys to determine the common secret key, using 

some one-way function. 

The trivial system for key distribution proposed above (in which each pair of 

nodes has a common key) has the trivial 2 - (v, 2, 1) design as its KDP. To see 
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this, let P = {PI, ... ,Pv } bethe set of points, let B = {xijI1::; i < j::; v} be 
a set of subkeys and define Pi I x jk if and only if i = j or i = k. Then, if nodes 
PI, P2 say wish to communicate, each uses the (unique) common subkey X12 to 
determine (via some one-way function) their common key K 12 • 

The problem is to give examples ofKDPs with storage requirements at each 
node as small as possible. The KDP of the trivial 2 - (v, 2,1) design requires 
storage of (v - 1) subkeys at each node, and is the standard with which other 
KDPs are compared. 

As an example, consider the incidence structure (P, B, I) where we have P = 
{PI, ... ,Pv }' B = {Xl, ... , xv} and where Pi I Xj if and only if i f= j (this is a 
trivial symmetric 2 - (v, v-I, v - 2) design). Now this design is a KDP on v 
points, since for any i,j we have I(Pi ) n (Pj)/ = v - 2 (in fact (Pi) n (Pj) contains 
every block except Xi and Xj) and any third point Pk is incident with only v - 3 of 
these v - 2 blocks, as (Pk ) does not contain Xk. Although this KDP only requires 
a total of v subkeys at the KDC, it still requires the storage of v-I subkeys at 
each node. 

There have been other KDPs proposed. In [12], it is shown that any biplane 
(a 2 - (v, k, 2) design) is a KDP in which the KDC generates v subkeys and in 
which each node stores only r subkeys where r satisfies r(r-1) = 2(v-l). (To see 
that a biplane is a KDP, note that every pair of points is incident with exactly two 
blocks, and any third point is incident with at most one of these two blocks, for if 
not, there would be a pair of blocks incident with three points.) Quinn [13] gives 
a construction for KDPs, better than the trivial KDP, using Hadamard matrices. 

In terms of the storage requirements, biplanes are 'good' 1-KDPs, but the 
problem is that there are only a finite number of examples of biplanes known, and 
the largest of these has only 79 points. Although Mitchell and Piper [12] gave some 
methods for combining w-KDPs to obtain w-KDPs on a larger number of points, 
there is still a restriction on the parameters of any example obtained in this way, 
and possibly some of the performance is lost. Quinn [13] has given a construction of 
an infinite family of good 1-KDPs based on conics in finite desarguesian projective 
planes. The storage requirements for these new KDPs both at the KDC and at 
each node are approximately the same as for the biplane KDP for the same number 
of nodes and give a significant saving over the storage requirements of the trivial 
KDP. 

The above KDPs protect a key from attack by a single other participant in 
the system, in the sense that the subkeys at one particular node cannot be used 

204 



to generate the key of another pair of users. This idea can be generalised to one 

which protects each key from attack by a number of participants in collusion, as 

in [12]. 

Let v 2: 3 and let w be an integer with 1 :::; w S v 2. A w-KDP on v points 

is a finite incidence structure K with v points such that, for any pair of points 

P I1 P2 we have 

w 

(Pd n (P2 ) cz: U(Qi) for any points QI1"" Qw E P\{P11 P2 }. (K2). 
i=I 

This condition (K2) ensures that PI and P2 share at least one subkey not in any 

of (Ql), ... , (Qw). Note that every KDP is a w-KDP for some maximal value of 
w ~ 1, and we use the maximal value of w in claiming that a structure is a w-KDP. 

Notice that the trivial KDP on v points is a (v - 2)-KDP, since any number 

of nodes, distinct from a given two nodes PI, P2 , in collusion do not posess the 

common subkey Xl2 of PI and P2 • The trivial symmetric designs and the biplanes 

are all l-KDPs. Further, Mitchell and Piper [12] showed that every t-design with 

t ~ 3 is a (t 2)-KDP and that every 3 - (v, k, A) design for which A2 > WA is a 

w-KDP. 

Mitchell and Piper [12] also pointed out some immediate geometrical conse­

quences of their definition. Recall that if PEP, the external structure K P of K at 

P is the incidence structure with point set P\{P} and block set {B E B I P ¢ B}. 
It is not difficult to show (see [12]) that if w ~ 1 then an incidence structure K is 

a (w + l)-KDP if and only if x: P is a w-KDP for each PEP. 

Mitchell [11] has discussed the effectiveness of using 3-designs as KDPs. In 

particular, we consider an inversive plane of order q, that is, a 3 - (q2 + 1, q + 1, 1) 

design. The following results, giving an example of the usefulness of external 

structures, are stated in [13]: 

3.1 Construction [13], 3.1.7 An inversive plane of order q is a q-KDP on q2 + 1 

points with q(q2 + 1) subkeys and q(q + 1) subkeys at each node. 

Proof: It is easy to see that an inversive plane has q3 + q blocks and q( q + 1) 

blocks on a point. Since two points lie on q + 1 blocks, and any three points lie on 

a unique block, it follows that the blocks on a pair of points cannot be contained 

in the union of the blocks on any q other points. o 
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3.2 Construction [13], 3.3.4 Let P be any point of an inversive plane Iof order 

q. Then I P is a (q - l)-KDP on q2 points with q2(q - 1) subkeys and q2 - 1 

subkeys at each node. 

Proof: It is clear that I P has q2 points and l + q - (q( q + 1)) = q3 _ q2 

blocks, with each pair of points on q(q + 1) - (q + 1) = q2 - 1 blocks on a point. 

The result follows from the result of Mitchell and Piper. o 

Thus the external structure of an inversive plane at one of its points provides 

a KDP with slightly better storage requirements than those of the inversive plane 

KDP. Notice, however, that one node is lost. Constructions 3.1 and 3.2 give infinite 

families of KDPs, as there is an inversive plane of every prime power order, see 

[7]. It is an unsolved problem in finite geometry whether there are any inversive 

planes of non-prime power order. 

Quinn [13] also gave constructions of new w-KDPs using families of conics in 

finite desarguesian affine planes. vVe discuss these constructions further in Section 

4. All of these are examples of KDPs which have significantly better key storage 

requirements than the trivial KDP. 

Quinn noted the following open problems. Let K be a w-KDP on v points. 

vVe require lower bounds for the following, as functions of v and w: 

(1) the average (bit) storage at a node 

(2) the total (bit) storage. 

Also, we also need an upper bound (as a function of v) for 

(3) w, the number of colluding nodes which can be protected against while still 

having reasonable storage. 

Once good bounds are known, the problem will be to find KDPs near or 
attaining these bounds. 

In conclusion, we have seen that not only do geometrical objects provide 

examples of KDPs, but geometrical concepts such as lines, external structures, 

have a role to play in the theory of KDPs. 
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4. Laguerre planes and w-KDPs 

We have already seen that inversive planes give rise to w-KDPs as in Con­

structions 3.1 and 3.2. In this section we give constructions of w-KDPs using other 

so-called circle geometries, the Laguerre planes. 

Quinn [13] 3.5.6 and 3.5.8 gave constructions for two families IC3( q, u) and 

IC4(q, u, t) of (u -l)-KDPs on q2 nodes, where q is a prime power, using lines and 

families of conics in u copies of the desarguesian affine plane of order q. In fact her 

constructions are particular cases of the following more general constructions, 4.1 

and 4.2, for w-KDPs in any Laguerre plane of order 8. For geometrical preliminaries 

needed in this section, see [7] or [8] and [2] or [17]. 

A (finite) Laguerre plane is an incidence structure of points, lines, and circles 

satisfying: 
(i) each point is on a unique line, and a line and a circle have a unique common 

point 

(ii) any three points, no two collinear, lie on a unique circle 

(iii) if P and Q are two non-collinear points and if C is a circle containing P but 

not Q then there is exactly one circle C' incident with P, Q and having only 

P in common with C 

(iv) there exist a point P and a circle C not containing P, and each circle contains 

at least three points. 

Given a Laguerre plane, there is an integer 8 such that each circle has 8 + 1 

points. We call 8 the order of the Laguerre plane, which we then denote by £(8). 
It follows easily that a Laguerre plane £(8) has 8(8 + 1) points, 8 + 1 mutually 

disjoint lines and 8
3 circles. Each line has 8 points, there is a unique line and 8 2 

circles on a point and there are 8 circles on a pair of points. 

Given a w-KDP IC on v points, we let b denote the total storage of K, where 

the total storage is the total number of subkeys in IC. Also, we let r denote the 

node storage, that is, the number of subkeys held at each node in K. In general, 

good KDPs seek to minimise these storages, with a low value of r possibly more 

desirable than a low value of b. 

4.1 Construction Choose u collinear points R 1 , .•• , Ru in £( 8), where 2 ::; u ::; 8. 
Let Kl = (P,B,I) be the incidence structure with points the points of £(8) not 

on the line containing the points Ri, blocks the circles of £(8) containing Ri for 

some i together with the pairs {Pi, Pj} where Pi, Pj are collinear in £( 8 ). Then 

IC 1 is a (u - l)-KDP on 8
2 points with b = U8 2 + 8 2 (S - 1)/2 and.,. = us + 8 - 1. 
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Each pair of points in KI lies on 1 or u common blocks. 

Proof: First we show that KI satisfies the property (K2) given in Section 

3 for w = u 1. Let PI, P2 be points of K I . If PI, P2 are collinear in C( s) then 

(PI) n (P2) is just the block {PI, P2}, which is not in (Q) for any Q E P\ {PI, P2}, 

hence is not in the union of the sets (Qi) for any u 1 points Ql,"" Qu-l E 

P\ {PI, Pz} and condition (K2) is satisfied. If PI, P2 are not collinear in £(8), 
then (PI) n (P2) is the set of u circles on the three points PI, Pz, Ri for each 

i = 1, ... ,u. Suppose that condition (K2) is not satisfied, so there is a collection 

of u -1 points Ql,'" ,Qu-I E P\{PI ,P2} such that 

u-l 

(PJ) n (P2) ~ U (Qi). 
i=l 

It follows that there are two circles, on PI, Pz, Ri and PI, P2, Rj say, which are 

contained in (Q k) for some 1 :S k :S u - 1. But then these circles have three points 

in common, namely PI, Pz, Q k, contrary to the property Oi) of a Laguerre plane. 

Finally we check the parameters. The number of points is the number of 

points of £( s) not on a line, which is s2 + 8 - 8 = 8
2

• The number b is the number 

of circles on the points R 1 , ..• ,Ru plus the number of pairs {Pi, Pj } of collinear 

points. This is usz + 8 2 (S 1)/2. Also, r is the number of circles on a fixed point 

Pi and one of the points R 1 , ... ,Ru plus the number of pairs {Pi, Pj} where Pj is 

collinear with Pi, which is us + 8 - 1. 0 

4.2 Construction Choose u collinear points R 1 , ••• ,Ru in £( 8), where 2 :S u :S s. 

Let 7rl, ... , 7rt be t ~ 2 permutations of the set P of points of £(8) not lying on 

the line containing the points Ri and with the additional property that 

for each ordered pair (i, j) with 1 :S i, j :S t and for each pair PI, P2 of points 

in P if 7r i (PI) is collinear with 7r i (P2) then 71" j (PI) is not collinear with 71" j (Pz ). 
Let JC 2 = (P, B, I) be the incidence structure as follows. The points are the points 

of P, the blocks are the sets 7r;l(Cj) for some i E {I, ... , t} and where Cj is a circle 

through the point R j for some j E {I, ... , u}. (N ote that some blocks may not 

be distinct.) Then K2 is a (u - l)-KDP on s2 points with b = tus2 and r = tus. 
Each pair of points lies on either (t - l)u or tu common blocks. 

Proof: We show that K2 satisfies the property (K2) given in Section 3 for 

w = u - 1. Let PI, P2 be points of K2. By the properties of the permutations, it 

follows that either 7I"i(P1 ) is not collinear with 7I"i(P2) for any i = 1, ... , t or that 

7rk(PJ) is collinear with 7I"k(P2) for exactly one value k E {I, ... , t} (and so 7I"i(Pd 

is not collinear with 7ri(P2) for any i E {I, ... , t} \ {k}). If 7ri(Pd is not collinear 
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with 1ri(P2) for some value i then (PI) n (P2) contains the set of blocks 1r;l(Cj) 
where Cj is a circle through 1ri(P1),1ri(P2),Rj for each j E {1, ... ,u} (a total of 

u blocks). It follows that for any pair of points PI, P2 then (PI) n (P2) contains 

ei ther (t 1)u or tu circles on PI and P2 . Although some of these circles may 

be repeated, (PI) n (P2 ) contains at least u distinct circles, one through each of 

R I , . •. ,Ru. As in the proof of Construction 4.1, if condition (K2) is not satisfied, 

there is a collection of u 1 points Q1, ... ,Qu-l E P\ {PI, P2} such that 

u-l 

(PI) n (P2 ) ~ U (Qd· 
i=1 

It follows that there are at least two circles, on the points 1r i ( PI), 1r i (P2 ), Ri and the 

points 1ri(PI), 1ri(P2), Rj say, which are contained in (Qk) for some 1 :s: k :s: 1£-1. 

But then these circles have three points in common, namely 1ri(Pl), 1ri(P2), Qk, 
contrary to the property (ii) of a Laguerre plane. 

We calculate the parameters of this w-KDP. The number of points is the 

number of points of £( s) not on a line, which is 8
2

. The number b is t times the 

number of circles on one of the points R1 , ..• , R u , which is tU8
2

• Also, T is t times 

the number of circles on fixed point and one of the points R 1 , ••• , R u , which is 

U8 + 8 1. o 

If the w-KDP K2 has no repeated blocks, then it is in fact a ((t - l)u - 1)­

KDP, and in general K2 will be a w-KDP for some maximum value w with u -1 :s: 
w :s: ((t 1)u 1). For ease of notation we refer to K2 as a (u - 1)-KDP. 

There is an infinite family of Laguerre planes known, see [2] or [17J. In 

particular, let 0 be an oval in a plane PG(2, q) embedded in PG(3, q), where 

q is a power of a prime, let P E PG(3, q)\PG(2, q) and let T denote the cone 

which projects 0 from P. The set of points P = T\P, the set of lines through P 
and a point of 0 and the set of intersections of T with the planes in PG(3, q) not 

through P form a Laguerre plane £(0) of order q. A Laguerre plane isomorphic 

to a £( 0) is called ovoidal, and is classical if the oval is an irreducible conic. It 

follows that the constructions 4.1 and 4.2 provide an infinite family of q-KDPs on 

q2 points, for q a power of a prime. 

Further, many w-KDPs on different numbers of points can be constructed 

using 4.1 or 4.2. If we require a w-KDP on v points, we choose 8 2 2: v such that 

there is a Laguerre plane of order 8 and construct a w-KDP on 8 2 points. If 8 2 > v, 

there will be nodes which are not presently used. Such nodes could be added to 

the network later as required. As a penalty, the total and node storages increase. 
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We now investigate how these constructions generalise the constructions in 

[13] 3.5.6 and 3.5.8. Given a point Q of the Laguerre plane C( s), the internal 
structure CQ at Q is the incidence structure with points the points of C( s) not 

collinear with Q, lines the lines of C( s) not containing Q and the circles of C( 8) 
containing Q. Under the incidence induced by the incidence of C(8), this is an 

affine plane of order 5, and we note that each internal structure of a classical 

Laguerre plane is desarguesian. 

It is not difficult to see that Quinn's coordinate-based constructions are actu­

ally performed in the internal structures of a classical Laguerre plane at the points 

R 1 , ..• ,Ru of the constructions. Thus they follow from the Constructions 4.1 and 

4.2 in the special case that C( 8) is classical. Since all Laguerre planes of order s 

will give rise to KDPs on 8
2 nodes with the same storage requirements, if s is a 

power of a prime then it is probably expedient to use the classical Laguerre plane 

and the coordinatisations exhibited in [13]. However the constructions and proofs 

of the w-KDP property are easier using the methods introduced in this section. 

In addition, if there are Laguerre planes of non-prime power order (currently an 

unsolved problem in finite geometry), then Constructions 4.1 and 4.2 will give new 

examples of w-KDPs. 

Quinn, [13] 3.4.7, has addressed the general problem of the existence of such 

a set of permutations as required in Construction 4.2. As a corollary, it follows 

that the set P of points of a Laguerre plane not on a fixed line certainly admits 

at least 2 and at most s + 1 such permutations. (If the Laguerre plane is classical 

then s + 1 permutations are admitted.) The value t = 2 certainly minimises the 

number of subkeys stored at the KDC and at each node for given values of 8 and u. 

However further analysis of the number of bits needed for the keys and subkeys is 

required to determine whether t = 2 also minimises the bit storage requirements, 

see [13]. 

In conclusion, we note that the w-KDPs found in Constructions 4.1 and 4.2 

may also be useful in practice, since they are easy to implement and have sig­

nificantly lower storage requirements than the trivial KDP, as exhibited in the 

following table. 

In the table, m is the maximum number of subkeys used to determine each 

key (namely, the maximum value of I(PI ) n (P2 )1 in the w-KDP). The first rows of 

the table (above the bar) give restrictions on the parameters of the w-KDP and 

the rows below the bar give properties of the w-KDPs. 
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Kl K2 
u 2:Su:Ss 2:SU:S5 
t 2:St:::;s+1 
w U 1 u-1 

max v S2 52 

r us + (s - 1) tus 

b us2 + 8
2
(8-1) 

2 tus 2 

m u tu 

To compare, recall that the trivial KDP on 8 2 points will have r = (S2 - 1), 

b = 8 2 (8
2 1)/2 and m = 1. If small values of ware acceptable, we can achieve a 

much lower key storage and total storage using the geometrical w-KDPs Kl and 

K 2 . 

Acknowledgements: The author wishes to thank Keith Martin for useful dis­

cussions about many facets of information security. 

The author also acknowledges the support of the Australian Research Council. 

5. References 

[1] J. Benaloh and J. Leichter, Generalized Secret Sharing and Monotone Func­

tions, Crypto '88, Santa Barbara, CA, August 21-25, 1988, in Advances in 

Cryptology, Ed. by G. Goos and J. Hartmanis, Vol. 403, Springer-Verlag , 
Berlin, 1990, 27-35. 

[2} W. Benz, Vorlesungen iiber Geometrie der Algebren, Springer-Verlag, Berlin­
Heidelberg, 1973. 

[3] A. Beutelspacher, Applications of finite geometry to cryptography, Geome­

tries, Codes and Cryptography, Ed. by G. Longo, M. Marchi and A. Sgarro, 

CISM Courses and Lectures No. 313, Springer-Verlag, Wien - New York 1990, 
161-186. 

[4] A. Beutelspacher, How to say 'no', in Lecture notes in computer science 434; 

Advances in cryptology; Proc. Eurocrypt '89, Berlin: Springer-Verlag, 1990, 
491-496. 

[5] G. Blundo, E. de Santis, D.R. Stinson and U. Vaccaro, Graph decompositions 
and secret sharing schemes, J. Cryptology, to appear. 

[6] E.F. Brickell and D.R. Stinson, Some improved bounds on the information 

rate of perfect secret sharing schemes, to appear, J. Cryptology. 

211 



[7] P. Dembowski, Finite Geometries, Springer, Berlin, 1968. 

[8] J .W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Univer­

sity Press, Oxford, 1978. 

[9] M. Ito, A. Saito and T. Nishizeki, Secret sharing scheme realizing general 
access structure, Proceedings IEEE Global Telecommunications Conference, 

Globecom '87, IEEE Communications Soc. Press (1987), 99-102. 

[10] W.-A. Jackson and K.M. Martin, Geometric secret sharing schemes and their 

duals, preprint (1991). 

[11] C.J. Mitchell, Combinatorial techniques for key storage reduction in secure 
networks. Technical memo, Hewlett Packard Laboratories, Bristol, 1988. 

[12] C.J. Mitchell and F .C. Piper, Key storage in secure networks, Discrete Ap­

plied Mathematics 21 (1988), 215-228 

[13] K.A.S. Quinn, Combinatorial Structures with Applications to Information 

Theory PhD Thesis, RHBNC, University of London, 1991. 

[14] G.J. Simmons, An introduction to shared secret and/or shared control 

schemes and their application, Chapter 9 in Contemporary Cryptology: The 

Science of Information Integrity, Ed. by G.J. Simmons, IEEE Press, New 
York, 1992, 441-497. 

[15] G.J. Simmons, Geometric shared secret and/or shared control schemes, 

Crypto '90, Santa Barbara, CA, August 11-15, 1990, Advances in cryptology, 

Vol 537 Ed. by S.A.Vanstone, Springer-Verlag, Berlin, 1991,216-241. 

[16] G.J. Simmons, W.A. Jackson and K. Martin, The geometry of shared secret 

schemes, Bull. 1. C.A. 1 (1991), 71-88. 

[17] J .A. Thas, Circle geometries and generalized quadrangles, Finite Geometries, 
Dekker, New York, 1985, 327-352. 

(Received 1/9/92) 

212 


