Completing some spectra for 2-perfect cycle systems

Peter Adams and Elizabeth J. Billington* Centre for Combinatorics Department of Mathematics The University of Queensland Queensland 4072 Australia

ABSTRACT: The determination of the spectrum for the decomposition of K_v into 2-perfect *m*-cycle systems is completed here for several small values of *m*. In particular, the cases m = 9, 12 and 16 are completed (except for three isolated cases). Other isolated 2-perfect *m*-cycle systems, some listed as unknown in a recent survey paper by Lindner and Rodger, have been found: namely, for K_v where (m, v) = (7, 21), (11, 33), (11, 45),(13, 39), (17, 35), (17, 51), (17, 69), (19, 39), (19, 77), (19, 115), (23, 93).The spectra for m = 7, 11, 12, 13 and 17 are now complete, with no isolated exceptions.

1 Introduction

An *m*-cycle decomposition of K_v is an edge-disjoint decomposition of K_v into cycles of length *m*. We write (a, b, c, \ldots, x, y) to denote the cycle with edges $\{a, b\}, \{b, c\}, \ldots, \{x, y\}, \{y, a\}$. If K_v has vertex set *V*, and *C* denotes an edge-disjoint set of *m*-cycles which cover all the edges of K_v , then (V, C) is an *m*-cycle system of K_v .

If c is a cycle of length m, then let c(i) denote the graph formed from c by joining all vertices in c at distance i. If (V, C) is an m-cycle system of K_v such that $(V, \{c(i) \mid c \in C\})$ is also a cycle system of K_v , then we call (V, C) an *i*-perfect m-cycle system. See the survey paper [10] by Lindner and Rodger and the references therein for more detail. We shall also use the concept of *i*-perfect m-cycle decompositions of graphs besides the complete graph; in particular, decompositions of complete tri- and quadripartite graphs will be used in the constructions.

Australasian Journal of Combinatorics 7(1993), pp.175-187

^{*}Research supported by the Australian Research Council

Our basic construction (for cases not dealt with in [10], such as 2-perfect *m*-cycle systems with m = 12, 15, 16) is as follows.

For some admissible value of v with v = ed + h, we take the vertices of K_v to be

$$\{\infty_1,\ldots,\infty_h\}\cup\{(i,j)\mid 0\leqslant i\leqslant e-1,\ 1\leqslant j\leqslant d\}.$$

Now we take a decomposition into 2-perfect *m*-cycles of the complete *k*-partite graph $K_{d,d,\dots,d}$ (*k* lots of *d*'s here; usually k = 3 or k = 4). Next we require a group divisible design GD(k, 1, M; e) where the group sizes belong to *M*. If $m \in M$ we usually require a decomposition of K_{md+h} , and also of $(K_{md+h} \setminus K_h)$, the complete graph on md + h vertices with a "hole" of size *h*, if h > 1. For most cases, we have $M = \{m\}$, but if, say, $M = \{m, q^*\}$ (so one group in the GDD is of size *q* and the rest are all of size *m*) then we require a decomposition of K_{qd+h} and of $(K_{md+h} \setminus K_h)$. Sometimes if *e* is "too small", a suitable GDD does not exist, and then we may need a direct construction of K_{ed+h} .

If a GD(k, 1, m; e) exists, then place such a design on the set $\{(i, j) \mid 0 \leq i \leq e-1\}$. Then we take *m*-cycles as follows:

(1) If $\{(x_1, j), (x_2, j), \dots, (x_m, j)\}$ is one of the groups of the GDD, then on the vertices

 $\{\infty_1, \ldots, \infty_h\} \cup \{(x_1, j), (x_2, j), \ldots, (x_m, j) \mid j = 1, 2, \ldots, d\}$

we place a 2-perfect m-cycle decomposition of K_{md+h} .

(2) For all other groups $\{(y_1, j), (y_2, j), \dots, (y_m, j)\}$ of the GDD, we take a decomposition of $(K_{md+h} \setminus K_h)$ (or of K_{md+h} if h = 0 or 1) with the vertex set

 $\{\infty_1,\ldots,\infty_h\} \cup \{(y_1,j),(y_2,j),\ldots,(y_m,j) \mid j=1,2,\ldots,d\}.$

(3) Finally, for each block $\{(z_1, j), (z_2, j), \dots, (z_k, j)\}$ of the GDD, on the vertex set $\{(z_1, j) \mid 1 \leq j \leq d\} \cup \{(z_2, j) \mid 1 \leq j \leq d\} \cup \dots \cup \{(z_k, j) \mid 1 \leq j \leq d\}$

we place a decomposition of the complete k-partite graph $K_{d,d,\dots,d}$.

The result is a suitable 2-perfect m-cycle system of K_{ed+h} .

We also use the following GDDs.

LEMMA 1.1 There is a group divisible design on $2n \ge 6$ elements with block size 3 and group size 2 whenever $2n \equiv 0$ or 2 (mod 6); there is a group divisible design on $2n \ge 10$ elements with block size 3, one group of size 4 and the rest of size 2, when $2n \equiv 4 \pmod{6}$.

Proof: The cases $2n \equiv 0$ or 2 (mod 6) first appeared in Hanani [7], Lemma 6.3; such group divisible designs also arise from any Steiner triple system by deleting one point. For the case $2n \equiv 4 \pmod{6}$, see for example page 276 of [13]. This gives a pairwise balanced design with number of elements congruent to 5 (mod 6), and with one block of size five and the rest of size three. Deletion of a point from the block of size five yields a suitable group divisible design, with one group of size four and the rest of size two.

2 2-perfect odd-cycle systems

2.1 2-perfect 7-cycle systems

This was first dealt with in [12]. However, as stated in Lindner and Rodger's survey paper [10], the one outstanding case is K_{21} . We exhibit a suitable decomposition. Let the vertices of K_{21} be $\{\infty\} \cup \{(i,j) \mid 0 \leq i \leq 4, 1 \leq j \leq 4\}$. Then the following six cycles are suitable starter cycles, modulo (5, -), with ∞ fixed of course.

 $\begin{array}{l}(\infty,(0,1),(3,1),(2,1),(0,2),(2,2),(1,2)),\\(\infty,(0,3),(2,3),(1,1),(1,2),(3,4),(2,4)),\\((0,1),(1,2),(4,1),(1,3),(2,2),(0,3),(4,3)),\\((0,1),(4,2),(1,3),(2,4),(2,2),(3,3),(1,4)),\\((0,1),(0,3),(4,4),(2,3),(4,1),(3,4),(0,4)),\\((0,1),(3,4),(4,2),(0,4),(2,2),(2,3),(2,4)).\end{array}$

This completes the spectrum for 2-perfect 7-cycle systems.

2.2 2-perfect 9-cycle systems

Lindner and Rodger [9] showed that the necessary conditions for existence of a 2-perfect 9-cycle system of K_v , namely that $v \equiv 1$ or 9 (mod 18), are sufficient for $v \equiv 1 \pmod{18}$, with the possible exception of v = 55. They also pointed out that existence of a 2-perfect 9-cycle decomposition of $K_{27} \setminus K_9$ (that is, K_{27} with a "hole" of size 9) would deal with the case $v \equiv 9 \pmod{18}$.

Here we complete the determination of the spectrum except for the case v = 45.

In all cases (1 or 9 (mod 18)) the construction follows that described in [2], so we omit details. For completeness both $v \equiv 9$ and $v \equiv 1 \pmod{18}$ can be dealt with this way. The case $v \equiv 1 \pmod{18}$ requires decompositions of K_{19} , K_{37} and $K_{9,9,9}$. Since 19 and 37 are primes, we know (see [9], Lemma 2.2) that there exists a 2-perfect 9-cycle decomposition of K_{19} and of K_{37} . Example 2.1 below gives a decomposition of $K_{9,9,9}$.

EXAMPLE 2.1 A 2-perfect 9-cycle system of $K_{9,9,9}$:

Elements are $\{(i, j) \mid 0 \leq i \leq 8, 1 \leq j \leq 3\}$.

Working modulo 9, we take the following three starter cycles:

((0,1), (0,2), (0,3), (1,1), (2,2), (3,3), (2,1), (1,2), (6,3)),((0,1), (2,2), (1,3), (7,1), (1,2), (4,3), (8,1), (3,2), (7,3)),((0,1), (5,2), (7,3), (7,1), (4,2), (1,3), (8,1), (6,2), (4,3)).

The case $v \equiv 9 \pmod{18}$ requires decompositions of $K_{9,9,9}$ (above), K_{27} (see [9], Lemma 2.3) and $K_{27} \setminus K_9$ (below). There is also an isolated case, K_{45} , for which no decomposition is yet known.

EXAMPLE 2.2 A 2-perfect 9-cycle decomposition of $K_{27} \setminus K_9$, that is, a 2-perfect 9-cycle decomposition of K_{27} with a hole of size 9:

The elements are $\{A, B, C, D, E, F, G, H, I\} \cup \{(i, j) \mid 0 \leq i \leq 2, 1 \leq j \leq 6\}$. The cycles, 35 of them, are as follows:

((0,1), (2,4), (0,6), (1,1), (0,4), (1,6), (2,1), (1,4), (2,6))(uncycled), ((0,3), (0,5), (1,2), (2,3), (2,5), (0,2), (1,3), (1,5), (2,2))(uncycled); then the following starter cycles, mod (3, -): ((0, 2), (1, 6), (1, 2), (0, 6), (1, 5), (2, 3), (1, 1), (2, 6), (0, 4)),((0,1),(1,5),(2,1),(0,4),(1,3),(1,4),(0,3),(0,2),(0,5)),(A, (0, 1), (0, 2), B, (1, 1), (2, 2), C, (0, 3), (1, 2)),(A, (0, 3), (0, 1), D, (1, 3), (2, 1), E, (0, 5), (0, 4)),(A, (0, 5), (0, 6), F, (1, 5), (0, 3), G, (1, 4), (1, 6)),(B, (0, 6), (1, 6), D, (0, 2), (1, 2), F, (0, 4), (1, 4)),(B, (0, 3), (1, 3), H, (1, 2), (2, 1), I, (1, 5), (2, 5)),(C, (0, 4), (1, 5), D, (1, 4), (0, 5), H, (0, 6), (2, 5)),(C, (0, 6), (1, 3), E, (0, 4), (1, 2), I, (1, 4), (1, 1)),(E, (0, 2), (1, 5), G, (2, 2), (0, 4), H, (0, 1), (0, 6)),(F, (0, 1), (1, 1), G, (2, 6), (1, 3), I, (0, 6), (0, 3)).

This completes the spectrum for 2-perfect 9-cycle systems, except for the one case K_{45} .

2.3 2-perfect 11-cycle systems

Outstanding cases here are K_{33} and K_{45} (see [10]).

Let the vertices of K_{33} be denoted by $\{(i, j) \mid 0 \leq i \leq 10, j = 1, 2, 3\}$. We need 48 cycles. The following cycles give a suitable decomposition of K_{33} :

Four fixed cycles:

 $\begin{array}{l} ((0,1),(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1)), \\ ((0,1),(2,1),(4,1),(6,1),(8,1),(10,1),(1,1),(3,1),(5,1),(7,1),(9,1)), \\ ((0,2),(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2)), \\ ((0,2),(2,2),(4,2),(6,2),(8,2),(10,2),(1,2),(3,2),(5,2),(7,2),(9,2)); \\ \text{and four starter cycles, modulo } (11,-): \\ ((0,1),(4,1),(0,2),(0,3),(1,3),(6,2),(4,3),(10,3),(2,2),(1,1),(8,3)), \\ ((0,1),(5,1),(8,1),(2,3),(3,1),(6,2),(5,3),(2,1),(2,2),(8,2),(0,3)), \\ ((0,2),(3,2),(4,1),(2,2),(4,3),(10,2),(6,3),(8,1),(10,3),(6,2),(9,1)), \\ ((0,2),(4,2),(10,1),(3,3),(2,2),(9,1),(10,3),(1,3),(4,3),(0,3),(5,1)). \end{array}$

For a 2-perfect 11-cycle system of K_{45} , work with the integers modulo 45; then the following two starter cycles yield a suitable decomposition of K_{45} :

(0, 1, 36, 9, 37, 7, 12, 26, 30, 39, 23), (0, 2, 15, 18, 25, 13, 37, 17, 23, 34, 26).

This completes the spectrum for 2-perfect 11-cycle systems.

2.4 2-perfect 13-cycle systems

Here the only outstanding case is K_{39} (see [10]). For the element set we take $\{\infty\} \cup \{(i,j) \mid 0 \leq i \leq 18, j = 1,2\}$. Then the following three cycles are suitable starter cycles, working mod (19, -).

 $\begin{array}{l} (\infty, (0,1), (10,1), (8,1), (4,1), (5,1), (18,1), (15,1), (3,1), (17,1), (12,2), (1,2), (13,2)), \\ ((0,1), (8,1), (0,2), (1,2), (1,1), (3,2), (5,2), (7,1), (11,2), (2,2), (9,1), (10,2), (6,2)), \\ ((0,2), (14,2), (18,1), (7,2), (0,1), (3,2), (12,1), (17,2), (1,2), (11,1), (10,2), (16,2), (3,1)). \end{array}$

This completes the spectrum for 2-perfect 13-cycle systems.

2.5 2-perfect 15-cycle systems

The necessary conditions for existence of a 2-perfect 15-cycle system of K_v are that v is 1, 15, 21 or 25 (mod 30), and of course $v \ge 15$. We deal with these conditions in turn.

First let v = 30n + 1. We take d = 15, e = 2n and h = 1, and use a decomposition of $K_{15,15,15}$ (given below). Then we merely need decompositions of K_{31} and K_{61} ; these exist, by virtue of [9], Lemma 2.2.

Secondly, let v = 30n + 15 = 5(6n + 3). We use d = 5 and e = 6n + 3, and also the existence of a resolvable Steiner triple system of order 6n + 3. The we use decompositions of $K_{5,5,5}$ and K_{15} (see below).

EXAMPLE 2.3 A 2-perfect 15-cycle system of $K_{5,5,5}$.

The element set is $\bigcup_{i=1}^{3} \{(i,j) \mid 0 \leq i \leq 4\}$. The five cycles may be taken as

 $\begin{array}{l} ((0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)),\\ ((0,1),(1,2),(4,3),(1,1),(2,2),(0,3),(2,1),(3,2),(1,3),(3,1),(4,2),(2,3),(4,1),(0,2),(3,3)),\\ ((0,1),(2,2),(3,3),(1,1),(3,2),(4,3),(2,1),(4,2),(0,3),(3,1),(0,2),(1,3),(4,1),(1,2),(2,3)),\\ ((0,1),(3,2),(2,3),(1,1),(4,2),(3,3),(2,1),(0,2),(4,3),(3,1),(1,2),(0,3),(4,1),(2,2),(1,3)),\\ ((0,1),(4,2),(1,3),(1,1),(0,2),(2,3),(2,1),(1,2),(3,3),(3,1),(2,2),(4,3),(4,1),(3,2),(0,3)). \end{array}$

EXAMPLE 2.4 A 2-perfect 15-cycle system of $K_{15,15,15}$.

This is easily obtained from the previous example. From each of those five cycles we obtain nine new cycles, using a latin square of order 3. For example, from the first cycle above, we obtain the 9 cycles with the same second entries in each element, and with the first entries of the 15 elements being:

0	0	0	1	1	1	2	2	2	3	3	3	4	4	4,
0	5	5	1	6	6	2	7	7.	3	.8	8	4	9	9,
0	10	10	1	11	11	2	12	12	3	13	13	4	14	14,
5	0	10	6	1	11	7	2	12	8	3	13	9	4	14,
5	5	0	6	6	1	7	7	2	8	8	3	9	9	4,
5	10	5	6	11	6	7	12	7	8	13	8	9	14	9,
10	0	5	11	1	6	12	2	7	13	3	8	14	4	9,
10	5	10	11	6	11	12	7	12	13	8	13	14	9	14,
10	10	0	11	11	1	12	12°	2	13	13	3	14	14	4.

EXAMPLE 2.5 A 2-perfect 15-cycle system of K_{15} .

The element set is $\{(i, j) \mid 0 \leq i \leq 6, j = 1, 2\} \cup \{\infty\}$. We have one starter mod 7: $(\infty, (0, 1), (1, 1), (0, 2), (3, 2), (1, 2), (5, 1), (6, 2), (2, 1), (2, 2), (4, 1), (6, 1), (3, 1), (5, 2), (4, 2)).$

Thirdly, let v = 30n + 21 = 5(6n + 4) + 1. We take 5 layers with 6n + 4 elements per layer, and an infinity element. We use the existence of a group divisible design $GD(3, 1, \{4^*, 6\}; 6n + 4)$ which has blocks of size three, one group of size 4 and the rest all of size 6. (This exists; see Main Theorem in [6].)

So we need, besides a decomposition of $K_{5,5,5}$, decompositions of K_{21} and of K_{31} ; the latter exists by virtue of [9], Lemma 2.2, and a decomposition of the former we give here:

EXAMPLE 2.6 For a decomposition of K_{21} , we take two starter cycles, on the element set $\{(i, j) \mid 0 \leq i \leq 6, j = 1, 2, 3\}$; they are cycled mod (7, -):

 $\begin{array}{l}(0,1),(1,1),(0,3),(5,1),(6,3),(6,1),(0,2),(4,1),(2,2),(1,3),(6,2),(4,2),(5,2),(5,3),(3,3)),\\(0,1),(5,1),(5,2),(2,2),(3,1),(6,1),(3,2),(0,3),(2,1),(4,2),(5,3),(6,3),(2,3),(6,2),(4,3)).\end{array}$

The final case, $v \equiv 25 \pmod{30}$, is at present incomplete, as no suitable decomposition of K_{25} has yet been found. We could complete the spectrum if we found this, and the isolated case K_{55} .

2.6 2-perfect 17-cycle systems

Since 17 is prime, by Theorem 3.9 of [10] we need only find suitable 2-perfect 17-cycle decompositions of K_{35} , K_{51} , K_{69} and K_{103} . Since 103 is prime, Lemma 3.10 of [10] covers the last of these. The other three cases are dealt with below.

Here is a 2-perfect 17-cycle decomposition of K_{35} ; it has one starter cycle mod 35:

(0, 1, 3, 6, 2, 8, 13, 4, 28, 10, 18, 33, 11, 25, 32, 9, 19).

Here is a 2-perfect 17-cycle decomposition of K_{51} ; it is based on the element set $\{\infty\} \cup \{(i,j) \mid 0 \leq i \leq 24, j = 1, 2\}$. The following three starter cycles are cycled mod (25, -).

$$\begin{array}{l} ((0,1),(1,1),(15,2),(16,1),(3,2),(13,2),(4,2),(2,1),(10,1),(7,2),(4,1), \\ (15,1),(24,1),(3,1),(12,2),(1,2),(5,1)), \\ ((0,1),(2,1),(8,1),(1,1),(1,2),(3,1),(4,2),(10,1),(0,2),(7,1),(17,2), \\ (9,2),(3,2),(2,2),(23,2),(21,2),(8,2)), \\ (\infty,(0,1),(11,2),(8,2),(2,1),(17,1),(5,2),(12,2),(20,1),(23,1),(11,1), \\ (2,2),(22,1),(4,2),(9,2),(5,1),(0,2)). \end{array}$$

And here is a 2-perfect 17-cycle decomposition of K_{69} ; it has two starters cycles mod 69:

(0, 1, 33, 2, 30, 32, 15, 25, 19, 27, 61, 18, 9, 24, 4, 46, 22),(0, 3, 8, 15, 33, 52, 4, 17, 42, 31, 1, 47, 59, 23, 9, 13, 29).

This completes the spectrum for 2-perfect 17-cycle systems.

2.7 2-perfect 19-cycle systems

Since 19 is prime, we need only find 2-perfect 19-cycle decompositions of K_{39} , K_{57} , K_{77} and K_{115} . Moreover, only the first of these is essential for the construction, and the other three are isolated cases.

For K_{39} we have one starter cycle mod 39:

(0, 1, 3, 6, 2, 8, 13, 4, 26, 10, 35, 28, 20, 9, 36, 21, 11, 31, 18).

For K_{77} we have two starter cycles mod 77:

(0, 1, 76, 38, 71, 58, 32, 15, 44, 33, 29, 43, 7, 56, 40, 45, 13, 28, 9),(0, 3, 9, 1, 23, 30, 7, 53, 13, 56, 32, 20, 67, 46, 21, 71, 14, 24, 59).

For K_{115} we have three starter cycles mod 115:

(0, 1, 77, 88, 24, 90, 28, 102, 33, 80, 87, 30, 60, 70, 46, 61, 104, 45, 8), (0, 2, 6, 1, 14, 11, 17, 26, 4, 37, 21, 3, 39, 27, 7, 47, 28, 78, 61), (0, 14, 41, 86, 109, 61, 29, 1, 95, 64, 9, 34, 78, 113, 36, 62, 10, 39, 81).

A suitable decomposition of K_{57} into 2-perfect 19-cycles has not yet been found; otherwise, the spectrum is complete.

2.8 2-perfect 23-cycle systems

As stated in [10] (in Section 3), the spectrum of 2-perfect 23-cycle systems is the set of all $v \equiv 1$ or 23 (modulo 46) except possibly 69 and 93.

A 2-perfect 23-cycle system of K_{93} is given by the following two starter cycles modulo 93:

(0, 1, 23, 88, 83, 52, 73, 60, 21, 25, 77, 42, 12, 62, 59, 75, 56, 45, 78, 70, 79, 81, 15),(0, 6, 16, 2, 9, 21, 41, 64, 90, 22, 56, 88, 35, 83, 59, 30, 85, 68, 31, 77, 33, 15, 51).

At present a suitable 2-perfect 23-cycle system of K_{69} has not been found.

3 2-perfect even cycle systems

The spectrum for 2-perfect *m*-cycle systems, with *m* even, is far less determined. The case m = 4 is impossible; the case m = 6 is dealt with in [8] (see also [3]); the case m = 8 is dealt with in [1]. Treatment of m = 10 is omitted here; about half the spectrum has so far been determined. In this section we completely solve the spectrum for m = 12, and solve the spectrum for m = 16 apart from two isolated cases, (m, v) = (16, 289) and (16, 353).

3.1 2-perfect 12-cycle systems

The necessary condition for a 2-perfect 12-cycle decomposition of K_v to exist is that $v \equiv 1 \text{ or } 9 \pmod{24}$.

When $v \equiv 1 \pmod{24}$, let v = 24n + 1; in our construction we use $K_{12,12,12}$, K_{25} and K_{49} .

When $v \equiv 9 \pmod{24}$, let v = 24n + 9. This case requires $K_{12,12,12}$, K_{33} , K_{57} and $K_{33} \setminus K_9$.

EXAMPLE 3.1 A 2-perfect 12-cycle decomposition of K_{25} :

Element set is \mathbb{Z}_{25} ; one starter cycle mod 25:

(0, 1, 4, 12, 14, 5, 16, 11, 17, 24, 9, 21).

EXAMPLE 3.2 A 2-perfect 12-cycle decomposition of K_{49} :

Element set is \mathbb{Z}_{49} ; two starter cycles mod 49:

(0, 1, 12, 19, 32, 4, 23, 39, 16, 6, 3, 5), (0, 4, 10, 45, 21, 39, 48, 11, 31, 9, 26, 34).

EXAMPLE 3.3 A 2-perfect 12-cycle decomposition of K_{33} :

Element set is $\{(i, j) \mid 0 \leq i \leq 10, j = 1, 2, 3\}$. We take the following four starter cycles mod (11, -):

 $\begin{array}{l}((0,1),(3,1),(1,3),(2,2),(8,3),(6,3),(9,2),(7,1),(0,2),(1,2),(2,1),(5,2)),\\((0,1),(2,1),(3,2),(5,1),(1,3),(9,1),(3,3),(5,2),(8,3),(4,1),(0,2),(8,2)),\\((0,1),(7,1),(2,3),(10,3),(6,2),(4,2),(9,1),(9,2),(9,3),(3,3),(1,1),(0,3)),\\((0,1),(1,1),(6,1),(7,3),(0,3),(4,2),(9,2),(5,2),(10,3),(8,2),(9,3),(8,3)).\end{array}$

EXAMPLE 3.4 A 2-perfect 12-cycle decomposition of K_{57} :

Element set is $\{(i, j) \mid 0 \leq i \leq 18, j = 1, 2, 3\}$. The following seven starter cycles mod (19, -) give a suitable decomposition:

 $\begin{array}{l} ((0,1),(1,1),(4,3),(12,2),(10,3),(0,3),(18,2),(17,1),(11,2),(4,2),(4,1),(9,2)),\\ ((0,1),(15,1),(4,2),(17,1),(13,3),(4,1),(6,3),(7,2),(4,3),(9,1),(13,2),(11,2)),\\ ((0,1),(5,1),(3,3),(18,3),(16,2),(13,2),(6,1),(16,1),(11,2),(11,3),(10,1),(12,1)),\\ ((0,1),(3,1),(0,3),(12,2),(11,2),(15,2),(1,2),(14,3),(9,2),(18,3),(14,1),(6,1)),\\ ((0,2),(11,2),(17,3),(12,1),(14,2),(5,2),(18,2),(9,3),(1,3),(16,2),(0,3),(12,3),\\ ((0,3),(6,3),(13,1),(12,2),(2,1),(18,2),(1,1),(16,2),(12,3),(17,2),(14,1),(14,3)),\\ ((0,3),(16,3),(9,1),(2,2),(10,3),(2,1),(13,3),(18,3),(5,1),(15,3),(14,3),(8,1)). \end{array}$

EXAMPLE 3.5 A 2-perfect 12-cycle decomposition of $K_{33} \setminus K_9$:

The nine hole elements are $\{A, B, C, D, E, F, G, H, I\}$, and the other twenty-four elements are $\{(i, j) \mid 0 \leq i \leq 2, 1 \leq j \leq 8\}$. The graph $K_{33} \setminus K_9$ has 12×41 edges, and so we want 41 12-cycles; we have 13 starters mod (3, -), and two cycles that are fixed (not cycled).

The two fixed cycles are

((0,1),(2,3),(0,4),(2,2),(2,1),(1,3),(2,4),(1,2),(1,1),(0,3),(1,4),(0,2)),((0,5),(1,6),(0,8),(2,7),(2,5),(0,6),(2,8),(1,7),(1,5),(2,6),(1,8),(0,7)).

Then the following 13 cycles are cycled mod (3, -):

 $\begin{array}{l} (A, (0, 1), (2, 1), E, (1, 2), (2, 2), B, (1, 1), (1, 3), F, (0, 2), (2, 3)), \\ (C, (0, 1), (1, 2), G, (1, 1), (0, 2), D, (2, 4), (2, 2), H, (0, 4), (1, 3)), \\ (A, (0, 4), (0, 3), B, (2, 7), (2, 6), C, (2, 8), (1, 1), D, (0, 7), (1, 7)), \\ (A, (0, 6), (0, 4), C, (2, 7), (0, 5), F, (0, 7), (1, 2), I, (1, 6), (1, 5)), \\ (A, (0, 8), (1, 5), G, (2, 4), (1, 6), F, (0, 1), (0, 6), H, (2, 8), (2, 2)), \\ (B, (0, 5), (2, 5), H, (2, 3), (0, 8), G, (0, 3), (1, 5), I, (2, 1), (2, 8)), \\ (D, (0, 5), (0, 4), F, (1, 8), (0, 8), E, (1, 4), (2, 4), I, (2, 3), (0, 6)), \\ (B, (0, 6), (1, 8), D, (0, 3), (2, 5), E, (0, 7), (1, 6), G, (1, 7), (2, 4)), \\ (C, (0, 5), (0, 3), E, (1, 6), (2, 7), H, (1, 1), (1, 7), I, (0, 8), (2, 2)), \\ ((0, 1), (0, 5), (1, 1), (2, 5), (0, 4), (2, 1), (0, 7), (0, 8), (0, 3), (1, 3), (0, 6), (2, 4)), \\ ((0, 2), (0, 6), (1, 2), (2, 6), (0, 5), (2, 4), (2, 1), (1, 6), (1, 8), (2, 2), (0, 7), (2, 5)), \\ ((0, 3), (1, 7), (1, 3), (0, 7), (1, 1), (2, 3), (1, 8), (0, 5), (2, 2), (2, 7), (2, 4), (0, 2)), \\ ((0, 4), (1, 8), (2, 4), (2, 8), (2, 5), (2, 2), (0, 3), (0, 6), (2, 6), (1, 1), (0, 8), (1, 7)). \end{array}$

EXAMPLE 3.6 Last, but certainly not least, we give a decomposition of $K_{12,12,12}$ into 2-perfect 12-cycles.

We have 36 12-cycles, based on the vertex set $\{(i, j) \mid 0 \leq i \leq 11, 1 \leq j \leq 3\}$.

 $\begin{array}{l} ((0,1),(1,2),(10,3),(3,1),(0,2),(5,3),(2,1),(3,2),(0,3),(1,1),(2,2),(3,3)),\\ ((0,1),(2,2),(9,3),(3,1),(1,2),(7,3),(2,1),(0,2),(3,3),(1,1),(3,2),(1,3)),\\ ((0,1),(3,2),(11,3),(3,1),(2,2),(4,3),(2,1),(1,2),(1,3),(1,1),(0,2),(2,3)),\\ ((0,1),(0,2),(8,3),(3,1),(3,2),(6,3),(2,1),(2,2),(2,3),(1,1),(1,2),(0,3)),\\ ((0,1),(5,2),(6,3),(3,1),(4,2),(1,3),(2,1),(7,2),(8,3),(1,1),(6,2),(11,3)),\\ ((0,1),(6,2),(5,3),(3,1),(5,2),(3,3),(2,1),(4,2),(11,3),(1,1),(7,2),(9,3)),\\ ((0,1),(7,2),(7,3),(3,1),(6,2),(0,3),(2,1),(5,2),(9,3),(1,1),(4,2),(10,3)),\\ ((0,1),(4,2),(4,3),(3,1),(7,2),(2,3),(2,1),(6,2),(10,3),(1,1),(5,2),(8,3)),\\ ((0,1),(9,2),(2,3),(3,1),(8,2),(9,3),(2,1),(11,2),(4,3),(1,1),(10,2),(7,3)),\\ ((0,1),(10,2),(1,3),(3,1),(9,2),(11,3),(2,1),(8,2),(7,3),(1,1),(11,2),(5,3)),\\ ((0,1),(11,2),(3,3),(3,1),(11,2),(10,3),(2,1),(10,2),(6,3),(1,1),(9,2),(6,3)),\\ ((0,1),(8,2),(0,3),(3,1),(11,2),(10,3),(2,1),(10,2),(6,3),(1,1),(9,2),(4,3)), \end{array}$

 $\begin{array}{l} ((4,1),(1,2),(6,3),(7,1),(0,2),(1,3),(6,1),(3,2),(8,3),(5,1),(2,2),(11,3)), \\ ((4,1),(2,2),(5,3),(7,1),(1,2),(3,3),(6,1),(0,2),(11,3),(5,1),(3,2),(9,3)), \\ ((4,1),(3,2),(7,3),(7,1),(2,2),(0,3),(6,1),(1,2),(9,3),(5,1),(0,2),(10,3)), \\ ((4,1),(0,2),(4,3),(7,1),(3,2),(2,3),(6,1),(2,2),(10,3),(5,1),(1,2),(8,3)), \\ ((4,1),(5,2),(2,3),(7,1),(4,2),(9,3),(6,1),(7,2),(4,3),(5,1),(6,2),(7,3)), \\ ((4,1),(6,2),(1,3),(7,1),(5,2),(11,3),(6,1),(4,2),(7,3),(5,1),(7,2),(5,3)), \\ ((4,1),(7,2),(3,3),(7,1),(6,2),(8,3),(6,1),(5,2),(5,3),(5,1),(4,2),(6,3)), \\ ((4,1),(4,2),(0,3),(7,1),(7,2),(10,3),(6,1),(6,2),(6,3),(5,1),(12,2),(4,3)), \\ ((4,1),(4,2),(0,3),(7,1),(8,2),(5,3),(6,1),(11,2),(0,3),(5,1),(10,2),(3,3)), \\ ((4,1),(10,2),(9,3),(7,1),(9,2),(7,3),(6,1),(8,2),(3,3),(5,1),(11,2),(1,3)), \\ ((4,1),(11,2),(11,3),(7,1),(10,2),(4,3),(6,1),(9,2),(13),(5,1),(18,2),(2,3)), \\ ((4,1),(8,2),(8,3),(7,1),(11,2),(6,3),(6,1),(10,2),(2,3),(5,1),(9,2),(2,3)), \\ ((4,1),(8,2),(8,3),(7,1),(11,2),(6,3),(6,1),(10,2),(2,3),(5,1),(9,2),(0,3)), \end{array} \end{array}$

 $\begin{array}{l} ((8,1),(1,2),(2,3),(11,1),(0,2),(9,3),(10,1),(3,2),(4,3),(9,1),(2,2),(7,3)),\\ ((8,1),(2,2),(1,3),(11,1),(1,2),(11,3),(10,1),(0,2),(7,3),(9,1),(3,2),(5,3)),\\ ((8,1),(3,2),(3,3),(11,1),(2,2),(8,3),(10,1),(1,2),(5,3),(9,1),(0,2),(6,3)),\\ ((8,1),(0,2),(0,3),(11,1),(3,2),(10,3),(10,1),(2,2),(6,3),(9,1),(1,2),(4,3)),\\ ((8,1),(5,2),(10,3),(11,1),(4,2),(5,3),(10,1),(7,2),(0,3),(9,1),(6,2),(3,3)),\\ ((8,1),(6,2),(9,3),(11,1),(5,2),(7,3),(10,1),(4,2),(3,3),(9,1),(7,2),(1,3)),\\ ((8,1),(7,2),(11,3),(11,1),(6,2),(4,3),(10,1),(5,2),(13),(9,1),(4,2),(2,3)),\\ ((8,1),(4,2),(8,3),(11,1),(7,2),(6,3),(10,1),(6,2),(2,3),(9,1),(5,2),(0,3)),\\ ((8,1),(4,2),(6,3),(11,1),(8,2),(13),(10,1),(11,2),(8,3),(9,1),(10,2),(11,3)),\\ ((8,1),(10,2),(5,3),(11,1),(9,2),(3,3),(10,1),(8,2),(11,3),(9,1),(11,2),(9,3)),\\ ((8,1),(11,2),(7,3),(11,1),(10,2),(0,3),(10,1),(9,2),(9,3),(9,1),(8,2),(10,3)),\\ ((8,1),(8,2),(4,3),(11,1),(11,2),(2,3),(10,1),(10,2),(10,3),(9,1),(9,2),(8,3)). \end{array}$

This completes the spectrum for 2-perfect 12-cycle systems.

3.2 2-perfect 16-cycle systems

The necessary condition for a 2-perfect 16-cycle decomposition of K_v to exist is that $v \equiv 1 \pmod{32}$. So let v = 32n + 1. We have four cases, according as n is 0 or 1 (mod 3), or 2 or 5 (mod 6).

First, let n = 3m, so that v = 4(24m) + 1. We take d = 4 in our construction, and use a GD(4, 1, 24; 24m); this exists for $m \ge 4$ [5]. Then we need decompositions of $K_{4,4,4,4}$ and K_{97} ; see below. There are also the isolated cases K_{193} and K_{289} . A decomposition of the former of these is given below.

Secondly, let n = 3m + 1, so that v = 4(24m + 8) + 1. We again take d = 4 and use a GD(4,1,8;24m + 8); this exists for all $m \ge 1$ [5]. Then we use decompositions of $K_{4,4,4,4}$ and K_{33} .

Thirdly, let n = 6m + 2, so that v = 16(12m + 4) + 1. This time we use d = 16, together with a resolvable BIBD(12m + 4, 4, 1), and decompositions of $K_{16,16,16,16}$ and K_{65} . These are given below.

Fourthly and finally, let n = 6m + 5, so that v = 4(48m + 40) + 1. This time, with d = 4, we use a GD(4, 1, {16, 40^{*}}; 48m + 40), which exists for $m \ge 3$. (The existence follows from Theorem 4 of [4] and Lemma 2.27 of [5], using a GD(4, 1, 8; 32).) Then we use decompositions of $K_{4,4,4,4}$, K_{65} and K_{161} ; these are given below. We also have

the isolated cases (corresponding to m = 1 and 2) K_{353} and K_{545} . A construction for the latter is also given below; the former remains open.

EXAMPLE 3.7 A decomposition of $K_{4,4,4,4}$; element set is $\{(i,j) \mid 1 \leq i, j \leq 4\}$. The second component, j, of each element, determines to which part of the partition of $K_{4,4,4,4}$ the element belongs.

 $\begin{array}{l} (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4), \\ (1,1), (2,2), (3,3), (4,4), (2,1), (3,2), (4,3), (1,4), (3,1), (4,2), (1,3), (2,4), (4,1), (1,2), (2,3), (3,4), \\ (1,1), (3,2), (1,4), (2,3), (2,1), (4,2), (2,4), (3,3), (3,1), (1,2), (3,4), (4,3), (4,1), (2,2), (4,4), (1,3), \\ (1,1), (4,2), (3,4), (1,3), (2,1), (1,2), (4,4), (2,3), (3,1), (2,2), (1,4), (3,3), (4,1), (3,2), (2,4), (4,3), \\ (1,1), (2,3), (3,2), (3,4), (2,1), (3,3), (4,2), (4,4), (3,1), (4,3), (1,2), (1,4), (4,1), (1,3), (2,2), (2,4), \\ (1,1), (3,3), (1,2), (2,4), (2,1), (4,3), (2,2), (3,4), (3,1), (1,3), (3,2), (4,4), (4,1), (2,3), (4,2), (1,4). \end{array}$

EXAMPLE 3.8 A decomposition of K_{33} , given by one starter cycle mod 33:

(0, 1, 3, 6, 2, 8, 13, 26, 7, 14, 23, 5, 15, 31, 19, 11).

EXAMPLE 3.9 A decomposition of K_{65} , given by two starter cycles, mod 65:

(0, 1, 56, 62, 57, 20, 9, 54, 58, 2, 26, 8, 33, 48, 60, 3),(0, 2, 15, 31, 50, 7, 42, 35, 3, 17, 46, 20, 58, 10, 44, 21).

EXAMPLE 3.10 A decomposition of K_{97} , given by three starter cycles, mod 97:

(0, 1, 19, 4, 42, 15, 79, 51, 94, 3, 35, 84, 59, 89, 8, 5),(0, 2, 42, 87, 83, 25, 4, 39, 10, 71, 30, 41, 75, 66, 22, 12),(0, 7, 21, 34, 12, 35, 81, 61, 1, 32, 40, 95, 71, 45, 64, 47).

EXAMPLE 3.11 A decomposition of K_{161} , given by five starter cycles, mod 161:

(0, 1, 155, 20, 94, 103, 6, 22, 123, 4, 127, 97, 18, 114, 131, 2),(0, 3, 107, 32, 140, 146, 77, 153, 87, 112, 143, 26, 61, 95, 39, 11),(0, 4, 95, 17, 115, 44, 87, 41, 64, 9, 33, 133, 100, 108, 121, 18),(0, 5, 15, 3, 24, 38, 19, 4, 31, 78, 42, 62, 84, 16, 110, 81),(0, 37, 89, 143, 27, 86, 135, 22, 111, 72, 156, 115, 53, 13, 123, 73).

EXAMPLE 3.12 A decomposition of K_{193} , given by six starter cycles, mod 193:

(0, 1, 135, 18, 60, 187, 40, 134, 186, 46, 168, 14, 94, 101, 183, 2),(0, 3, 65, 133, 76, 43, 38, 73, 98, 175, 137, 50, 143, 36, 185, 8),(0, 4, 124, 138, 164, 192, 160, 8, 179, 44, 50, 60, 107, 131, 27, 45),(0, 9, 84, 105, 2, 130, 4, 82, 125, 175, 63, 187, 85, 1, 98, 79),(0, 11, 26, 46, 23, 77, 60, 4, 17, 146, 109, 192, 54, 115, 164, 34),(0, 27, 67, 168, 11, 83, 32, 117, 47, 166, 3, 34, 82, 177, 148, 60).

EXAMPLE 3.13 A 2-perfect 16-cycle decomposition of $K_{16,16,16,16}$:

We use six cycles in the decomposition of $K_{4,4,4,4}$ given in Example 3.7. From each one of these cycles, 16 new cycles are formed, on the set $\{(i,j)|1 \le i \le 16, 1 \le j \le 4\}$, as follows. From the cycle

 $((a_1, x_1), (a_2, x_2), (a_3, x_3), (a_4, x_4), (b_1, x_1), (b_2, x_2), (b_3, x_3), (b_4, x_4), (c_1, x_1), (c_2, x_2), (c_3, x_3), (c_4, x_4), (d_1, x_1), (d_2, x_2), (d_3, x_3), (d_4, x_4)),$

we successively replace (g_1, g_2, g_3, g_4) , for g = a, b, c and d, by $(g_1 + 4\alpha, g_2 + 4\beta, g_3 + 4\gamma, g_4 + 4\delta)$, where $\alpha, \beta, \gamma, \delta$ is a row from a 16×4 resolvable orthogonal array. It is straightforward to check that the result is a 2-perfect 16-cycle system of $K_{16,16,16,16}$.

EXAMPLE 3.14 A 2-perfect 16-cycle system of K_{545} .

Note that $545 = 1 + (16 \times 34)$, so let d = 16 in the construction. There exists a $GD(4, 1, \{4, 10^*\}; 34)$; this, together with decompositions of K_{65} , K_{161} and $K_{16,16,16,16}$, complete the existence proof. (The GDD used here may be constructed from a resolvable GDD(3, 1, 4; 24) by adjoining ten new elements, one to each parallel class.)

4 Concluding remarks

We tabulate below the expected and actual spectra for 2-perfect *m*-cycle systems for values of *m* we have considered here. References are given in the "Comments" column. The column headed "Spectrum (*)" lists the expected spectrum, if there are any undecided values in the last column. This table updates and extends the 2-perfect part of the table given in [10]. It now remains for someone to settle the remaining undecided values, especially 25 for m = 15!

			Undecided
m	Spectrum (*)	Comments	values
3	1 or 3 (mod 6)	Steiner triple system	
4	Ø	Not possible	
5	1 or 5 (mod 10), not 15	[11]	
6	1 or 9 (mod 12)	[8], [3]	
7	1 or 7 (mod 14)	[12], [10] and Section 2.1 above	
8	1 (mod 16)	[1]	
9	1 or 9 (mod 18)	[9], [10] and Section 2.2 above	45
11	1 or 11 (mod 22)	[9], [10] and Section 2.3 above	
12	1 or 9 (mod 24)	Section 3.1 above	
13	1 or 13 (mod 26)	[9], [10] and Section 2.4 above	
15	$1, 15, 21 \text{ or } 25 \pmod{30}$	Section 2.5 above	$25 \pmod{30}$
16	1 mod (32)	Section 3.2 above	289, 353
17	1 or 17 (mod 34)	[10] and Section 2.6 above	
19	1 or 19 (mod 38)	[10] and Section 2.7 above	57
23	1 or 23 (mod 46)	[10] and Section 2.8 above	69

References

- [1] Peter Adams and Elizabeth J. Billington, The spectrum for 2-perfect 8-cycle systems, Ars Combin. (to appear).
- [2] Peter Adams, Elizabeth J. Billington and C.C. Lindner, The spectrum for 3perfect 9-cycle systems, Australas. J. Combin. 5 (1992), 103-108.
- [3] Elizabeth J. Billington and C.C. Lindner, The spectrum for lambda-fold 2perfect 6-cycle systems, European J. Combin. 13 (1992), 5-14.
- [4] A.E. Brouwer, Optimal packings of K₄'s into a K_n, J. Combin. Theory, Ser. A 26 (1979), 278-297.
- [5] A.E. Brouwer, A. Schrijver and H. Hanani, Group divisible designs with blocksize four, Discrete Math. 20 (1977), 1-10.
- [6] Charles J. Colbourn, Dean G. Hoffman and Rolf Rees, A new class of group divisible designs with block size three, J. Combin. Theory, Ser. A. 59 (1992), 73-89.
- Haim Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
- [8] C.C. Lindner, K.T. Phelps and C.A. Rodger, The spectrum for 2-perfect 6-cycle systems, J. Combin. Theory Ser. A 57 (1991), 76-85.
- C.C. Lindner and C.A. Rodger, 2-perfect m-cycle systems, Discrete Math. 104 (1992), 83-90.
- [10] C.C. Lindner and C.A. Rodger, Decomposition into cycles II: Cycle systems in Contemporary design theory: a collection of surveys (J.H. Dinitz and D.R. Stinson, eds.), John Wiley and Sons, New York, 1992, 325-369.
- [11] C.C. Lindner and D.R. Stinson, Steiner pentagon systems, Discrete Math. 52 (1984), 67-74.
- [12] Elisabetta Manduchi, Steiner heptagon systems, Ars Combin. 31 (1991), 105-115.
- [13] Richard M. Wilson, Some partitions of all triples into Steiner triple systems in Hypergraph Seminar (Ohio State University 1972), Lecture Notes in Math. 411, 267-277 (Springer-Verlag, Berlin, Heidelberg, New York 1974).

(Received 18/8/92)

187

and a second second

and ⁴⁸ and a second second