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ABSTRACT: The determination of the spectrum for the decomposition 
of Kv into 2-perfect m-cycle systems is completed here for several small 
values of m. In particular, the cases m = 9, 12 and 16 are completed 
(except for three isolated cases). Other isolated 2-perfect m-cycle systems, 
some listed as unknown in a recent survey paper by Lindner and Rodger, 
have been found: namely, for Kv where (m,v) = (7,21), (11,33), (11,45), 
(13,39), (17,35), (17,51), (17,69), (19,39), (19,77), (19,115), (23,93). 
The spectra for m = 7,11,12,13 and 17 are now complete, with no isolated 
exceptions. 

1 Introduction 

An m-cycle decomposition of Kv is an edge-disjoint decomposition of Kv into cycles 
of length m. We write (a, b, c, ... , x, y) to denote the cycle with edges 
{a, b}, {b, c}, ... , {x, y}, {y, a}. If Kv has vertex set V, and C denotes an edge-disjoint 
set of m-cycles which cover all the edges of K v , then (V, C) is an m-cycle system of 
Kv. 

If c is a cycle of length m, then let c( i) denote the graph formed from c by joining 
all vertices in c at distance i. If (V, C) is an m-cycle system of Kv such that (V, {c( i) I 
c E C}) is also a cycle system of KVl then we call (V, C) an i-perfect m-cycle system. 
See the survey paper [10) by Lindner and Rodger and the references therein for more 
detail. We shall also use the concept of i-perfect m-cycle decompositions of graphs 
besides the complete graph; in particular, decompositions of complete tri- and quadri
partite graphs will be used in the constructions. 
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Our basic construction (for cases not dealt with in [10], such as 2-perfect m-cycle 
systems with m = 12, 15, 16) is as follows. 

For some admissible value of v with v = ed + h, we take the vertices of Kv to be 

Now we take a decomposition into 2-perfect m-cycles of the complete k-partite graph 
Kd,d, ... ,d (k lots of d's here; usually k= 3 or k 4). Next we require a group divisible 
design GD(k, 1, M; e) where the group sizes belong to M. If m E M we usually 
require a decomposition of Kmd+h, and also of (Kmd+h \ K h), the complete graph on 
md + h vertices with a "hole" of size h, if h > 1. For most cases, we have M = {m}, 
but if, say, M = {m, q*} (so one group in the GDD is of size q and the rest are all of 
size m) then we require a decomposition of Kqd+h and of (Kmd+h \ Kh)' Sometimes 
if e is "too small", a suitable GDD does not exist, and then we may need a direct 
construction of Ked+h' 

If a GD( k, 1, m; e) exists, then place such a design on the set {( i, j) I 0 ~ i ( e -I}. 
Then we take m-cycles as follows: 

(1) If {(Xl, j), (X2' j), ... , (xm, j)} is one of the groups of the GDD, then on the 
vertices 

{(01) ... ,OOh}U{(Xl,j),(X2,j), ... ,(Xm ,j) Ij = 1,2, ... ,d} 

we place a 2-perfect m-cycle decomposition of Kmd+h. 
(2) For all other groups {(Yl,j), (Y2,j), ... , (Ym,j)) of theGDD, we take a decom

position of (Kmd+h \ Kh) (or of Kmd+h if h 0 or 1) with the vertex set 

{001, ... , OOh} U {(Yl,j), (Y2, j), ... , (Ym, j) I j = 1,2, ... , d}. 

(3) Finally, for each block {(Zl,j), (Z2,j), ... , (Zk,j)) of the GDD, on the vertex 
set 

{(Zl,j) 11 (j ~ d}U{(Z2,j) 11 (j ~ d}U ",U{(Zk,j) 11 ~j (d} 

we place a decomposition of the complete k-partite graph Kd,d, ... ,d' 
The result is a suitable 2-perfect m-cycle system of Ked+h. 
We also use the following GDDs. 

LEMMA 1.1 There is a group divisible design on 2n ~ 6 elements with block size 3 
and group size 2 whenever 2n == 0 or 2 (mod 6) i there is a group divisible design on 
2n ~ 10 elements with block size 3, one group of size 4 and the rest of size 2, when 
2n 4 (mod 6). 

Proof: The cases 2n Oor 2 (mod 6) first appeared in Ranani [7], Lemma 6.3; 
such group divisible designs also arise from any Steiner triple system by deleting one 
point. For the case 2n == 4 (mod 6), see for example page 276 of [13]. This gives a 
pairwise balanced design with number of elements congruent to 5 (mod 6), and with 
one block of size five and the rest of size three. Deletion of a point from the block of 
size five yields a suitable group divisible design, with one group of size four and the 
rest of size two. 
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2 2-perfect odd-cycle systems 

2.1 2-perfect 7-cycle systems 

This was first dealt with in [12]. However, as stated in Lindner and Rodger's survey 
paper [10J, the one outstanding case is K21- We exhibit a suitable decomposition. 
Let the vertices of K21 be {oo} U Hi,i) I 0 ~ i ~ 4, 1 ~ j ~ 4}. Then the following 
six cycles are suitable starter cycles, modulo (5, -), with 00 fixed of course. 

(00,(0,1),(3,1),(2,1),(0,2),(2,2),(1,2», 
(00,(0,3),(2,3),(1,1),(1,2),(3,4),(2,4»), 
«0,1), (1, 2), (4,1), (1,3), (2,2), (0, 3), (4,3», 
«0,1), (4,2), (1,3), (2, 4), (2,2), (3, 3), (1, 4», 
«0,1), (0, 3), (4,4), (2,3),(4,1), (3, 4), (0, 4», 
«0,1), (3,4), (4,2), (0,4), (2,2), (2, 3), (2,4». 

This completes the spectrum for 2-perfect 7-cyde systems. 

2.2 2-perfect 9-cycle systems 

Lindner and Rodger [9] showed that the necessary conditions for existence of a 2-
perfect 9-cycle system of K1}, namely that v == 1 or 9 (mod 18), are sufficient for 
v == 1 (mod 18), with the possible exception of v = 55. They also pointed out that 
existence of a 2-perfect 9-cycle decomposition of K27 \ Kg (that K27 with a ((hole" 
of size 9) would deal with the case v == 9 (mod 18). 

Here we complete the determination of the spectrum except for the case v = 45. 
In all cases (1 or 9 (mod 18» the construction follows that described in [2], so we 

omit details. For completeness both v == 9 and v == 1 (mod 18) can be dealt with 
this way. The case v == 1 (mod 18) requires decompositions of K 19 , K37 and K9,9,9. 
Since 19 and 37 are primes, we know (see [9], Lemma 2.2) that there exists a 2-perfect 
9-cycle decomposition of K19 and of K 37. Example 2.1 below gives a decomposition 
of K 9,9,9. 

EXAMPLE 2.1 A 2-perfect 9-cycle system of K9,9,9: 

Elements are {(i,i) I 0 ~ i ~ 8, 1 ~ j ~ 3}. 
Working modulo 9, we take the following three starter cycles: 

«0,1),(0,2),(0,3),(1,1),(2,2),(3,3),(2,1),(1,2),(6,3)), 
« 0,1), (2,2), (1,3), (7,1), (1,2), (4,3), (8, 1), (3, 2), (7,3», 
«0,1), (5, 2), (7, 3), (7,1), (4,2), (1,3), (8, 1), (6,2), (4,3». 

The case v == 9 (mod 18) requires decompositions of K9,9,9 (above), K27 (see [9], 
Lemma 2.3) and K27 \ Kg (below). There is also an isolated case, K4S, for which no 
decomposition is yet known. 

EXAMPLE 2.2 A 2-perfect 9-cycle decomposition of K27 \ K9! that is! a 2-perfect 
9-cycle decomposition of K27 with a hole of size 9: 
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The elements are {A, B, G, D, E, F, G, H, J} U {(i,j) ! o~ i ~ 2, 1 ~ j ~ 6}. The 
cycles, 35 of them, are as follows: 

((0,1),(2,4),(0,6),(1,1),(0,4),(1,6),(2,1),(1,4),(2,6)) 
((0,3),(0,5),(1,2),(2,3),(2 1 5),(0,2),(1,3),(1,5),(2,2)) 
then the following starter cycles, mod (3, -) : 

((0,2)i(1,6),(1,2),(0,6),(1,5),(2,3),(1,1),(2,6),(0,4) ), 
((0,1),(1,5),(2,1),(0,4),(1,3),(1,4),(0,3),(0,2),(0,5)), 
(A, (0, 1), (0, 2), B, (1, 1), (2, 2), G, (0, 3), (1,2)), 
(A, (0, 3), (0, 1), D, (1,3), (2, 1), E, (0, 5), (0,4)), 
(A, (0, 5), (0, 6), F, (1,5), (0, 3), G, (1, 4), (1, 6)), 
(B, (0, 6), (1, 6), D, (0, 2), (1, 2), F, (0,4), (1,4)), 
(B,(0,3),(1,3),H,(1,2),(2,1),J,(l,5),(2,5)), 
(G, (0, 4), (1,5), D, (1,4), (0, 5), H, (0, 6), (2, 5)), 
(G,(0,6),(1,3),E,(O,4),(1,2),J,(1,4),(1,1)), 
(E, (0, 2), (1, 5), G, (2, 2), (0,4), H, (0,1), (0, 6)), 
(F, (0,1), (1, 1), G, (2,6), (1, 3), J, (0, 6), (0, 3)). 

( uncycled), 
( uncycled)j 

This completes the spectrum for 2-perfect 9-cycle systems, except for the one case 
K45· 

2.3 2-perfect II-cycle systems 

Outstanding cases here are K33 and K45 (see [10J). 
Let the vertices of K33 be denoted by {( i, j) I ° ~ i ~ 10, j = 1,2, 3}. We need 

48 cycles. The following cycles give a suitable decomposition of K33: 

Four fixed cycles: 
((0,1),(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1)), 
( (0, 1), (2, 1), (4, 1), (6, 1), (8, 1), (10, 1), (1, 1), (3, 1), (5, 1), (7, 1), (9, 1)), 
((0,2), (1,2), (2, 2), (3, 2), (4,2), (5,2), (6,2), (7, 2), (8,2), (9,2), (10, 2)), 
((0,2), (2, 2), (4,2), (6,2), (8, 2), (10, 2), (I, 2), (3,2), (5, 2), (7, 2), (9, 2)); 
and four starter cycles, modulo (11, -) : 

((0,1),(4,1),(0,2),(0,3),(1,3),(6,2),(4,3),(10,3),(2,2),(1,1),(8,3)), 
((0,1),(5,1),(8,1),(2,3),(3,1),(6,2),(5,3),(2,1),(2,2),(8,2),(0,3)), 
((0,2), (3,2), (4,1), (2, 2), (4,3), (10, 2), (6, 3), (8, 1), (10, 3), (6, 2), (9,1 )), 
((0,2), (4,2), (10, 1), (3,3), (2, 2), (9, 1), (10,3), (1,3), (4,3), (0,3), (5, 1 )). 

For a 2-perfect 11-cycle system of K45, work with the integers modulo 45; then the 
following two starter cycles yield a suitable decomposition of K45: 

(0,1,36,9,37, 7,12,26,30,39,23),(0,2,15,18,25,13,37,17,23,34,26). 

This completes the spectrum for 2-perfect 11-cycle systems. 

178 



2.4 2-perfect I3-cycle systems 

Here the only outstanding case is K39 (see [10]). For the element set we take {<Xl} U 
{(i,j) I 0 ~ i ~ 18, j = 1,2}. Then the following three cycles are suitable starter 
cycles, working mod (19, -). 

(00, (0, 1), (10, 1), (8, 1), (4, 1), (5, 1), (18, 1), (15, 1), (3, 1), (17, 1), (12,2), (1, 2), (13,2)), 
«0,1), (8,1), (0, 2), (1,2), (1,1), (3, 2), (5,2), (7, 1), (11,2), (2,2), (9, 1), (10, 2), (6,2)), 
«0,2), (14, 2), (18, 1), (7, 2), (0,1), (3,2), (12,1), (17, (1,2), (11,1), (10, 2), (16, 2), (3,1)). 

This completes the spectrum for 2-perfect 13-cycle systems. 

2.5 2-perfect I5-cycle systems 

The necessary conditions for existence of a 2-perfect 15-cycle system of Kv are that 
v is 1, 15, 21 or 25 (mod 30), and of course v ;?:: 15. We deal with these conditions in 
turn. 

First let v 30n + 1. We take d = 15, e 2n and h 1, and use a decomposition 
of K15,15,15 (given below). Then we merely need decompositions of K31 and K 61 ; 

these exist, by virtue of [9], Lemma 2.2. 
Secondly, let v = 30n + 15 5(6n + 3). We use d = 5 and e 6n + 3, and 

also the existence of a resolvable Steiner triple system of order 6n + 3. The we use 
decompositions of K5,5,5 and K 15 (see below). 

EXAMPLE 2.3 A 2-perfect 15-cycle system of K5,5,5. 

The element set is Uj=l {( i, j) I 0 ~ i ~ 4}. The five cycles may be taken as 

«0,1), (0, 2), (0, 3), (1, 1), (1,2), (1, 3), (2, 1), (2,2), (2, 3), (3, 1), (3,2), (3,3), (4, 1), (4, 2), (4,3)), 
«0,1), (1,2), (4, 3), (1, 1), (2, 2), (0, 3), (2,1), (3, 2), (1, 3), (3, 1), (4,2), (2,3), (4,1), (0,2), (3,3)), 
«0,1), (2,2), (3, 3), (1, 1), (3,2), (4, 3), (2, 1), (4,2), (0, 3), (3, 1), (0,2), (1,3), (4, 1), (1,2), (2, 3)), 
«0,1), (3, 2), (2, 3), (1, I), (4,2), (3, 3), (2, 1), (0, 2), (4, 3), (3, 1), (1,2), (0,3), (4,1), (2,2), (1, 3)), 
«0,1), (4,2), (1,3), (1, 1), (0,2), (2, 3), (2, 1), (1,2), (3, 3), (3, 1), (2, 2), (4, 3), (4, 1), (3,2), (0, 3)). 

EXAMPLE 2.4 A 2-perfect 15-cycle system of K15,15,15. 

This is easily obtained from the previous example. From each of those five cycles 
we obtain nine new cycles, using a latin square of order 3. For example, from the first 
cycle above, we obtain the 9 cycles with the same second entries in each element, and 
with the first entries of the 15 elements being: 

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4, 
0 5 5 1 6 6 2 7 7 3 8 8 4 9 9, 
0 10 10 1 11 11 2 12 12 3 13 13 4 14 14, 
5 0 10 6 1 11 7 2 12 8 3 13 9 4 14, 
5 5 0 6 6 1 7 7 2 8 8 3 9 9 4, 
5 10 5 6 11 6 7 12 7 8 13 8 9 14 9, 

10 0 5 11 1 6 12 2 7 13 3 8 14 4 9, 
10 5 10 11 6 11 12 7 12 13 8 13 14 9 14, 
10 10 0 11 11 1 12 12 2 13 13 3 14 14 4. 
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EXAMPLE 2.5 A 2-perfect 15-cycle system of K15. 

The element set is {(i,j) I 0 ~ i ~ 6, j 1,2} U {co}. We have one starter mod 
7: 

(00, (0, 1), (1, 1), (0, 2), (3, 2), (1,2), (5, 1), (6, 2), (2, 1), (2,2), (4,1), (6, 1), (3, 1), (5, 2), (4,2)). 

Thirdly, let v = 30n + 21 = 5( 6n + 4) + 1. We take 5 layers with 6n + 4 elements 
per layer, and an infinity element. We use the existence of a group divisible design 
GD(3, 1, {4*, 6}j 6n + 4) which has blocks of size three, one group of size 4 and the 
rest all of size 6. (This existsj see Main Theorem in [6].) 

So we need, besides a decomposition of K5,5,5, decompositions of K21 and of K31j 

the latter exists by virtue of [9], Lemma 2.2, and a decomposition of the former we 
give here: 

EXAMPLE 2.6 For a decomposition of K21J we take two starter cycles, on the 
element set {(i,j) I 0 ~ i ~ 6, j = 1,2, 3}; they are cycled mod (7, 

(0,1), (1, 1), (0,3), (5, 1), (6, 3), (6,1), (0,2), (4, 1), (2, 2), (1,3), (6,2), (4,2), (5,2), (5,3), (3, 3)), 
(0,1), (5,1), (5,2), (2,2), (3,1), (6,1), (3,2), (0,3), (2,1), (4,2), (5, 3), (6,3), (2,3), (6,2), (4,3)). 

The final case, v == 25 (mod 30), is at present incomplete, as no suitable decomposition 
of K 25 has yet been found. We could complete the spectrum if we found this, and 
the isolated case K 55. 

2.6 2-perfect 17-cycle systems 

Since 17 is prime, by Theorem 3.9 of [10] we need only find suitable 2-perfect 17-cycle 
decompositions of K35, K51, K69 and K 103 . Since 103 is prime, Lemma 3.10 of [10] 
covers the last of these. The other three cases are dealt with below. 

Here is a 2-perfect 17-cycle decomposition of K35 j it has one starter cycle mod 35: 

(0,1,3,6,2,8,13,4,28,10,18,33,11,25,32,9,19). 

Here is a 2-perfect 17-cycle dt:!composition of K51; it is based on the element set 
{co} U {( i, j) I 0 ~ i ~ 24, j = 1,2}. The following three starter cycles are cycled 
mod (25, -). 

((0,1), (1,1), (15,2), (16, 1), (3, 2), (13,2), (4,2), (2, 1), (10, 1), (7,2), (4,1), 
(15,1), (24, 1), (3, 1), (12, 2), (1,2), (5, 1)), 

(( 0, 1), (2, 1), (8, 1), (1,1), (1,2), (3, 1), (4,2), (10, 1), (0, 2), (7, 1), (17,2), 
(9,2),(3,2),(2,2),(23,2),(21,2),(8,2)), 

( 00 , (0, 1), (11, 2), (8, 2), (2, 1), (17, 1), ( 5, 2), (12, 2), (20, 1), (23, 1), (11, 1), 
(2,2),(22,1),(4,2),(9,2),(5,1),(0,2)). 

And here is a 2-perfect 17-cycle decomposition of K69j it. has two starters cycles 
mod 69: 

(0,1,33,2,30,32,15,25,19,27,61,18,9,24,4,46,22), 
(0,3,8,15,33,52,4,17,42,31,1,47,59,23,9,13,29). 

This completes the spectrum for 2-perfect 17-cycle systems. 
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2.7 2-perfect 19-cycle systems 

Since 19 is prime, we need only find 2-perfect 19-cycle decompositions of K 39 , K57, 

K77 and K1l5. Moreover, only the first of these is essential for the construction, and 
the other three are isolated cases. 

For K39 we have one starter cycle mod 39: 

(0,1,3,6,2,8,13,4,26,10,35,28,20,9,36,21,11,31,18). 

For K77 we have two starter cycles mod 77: 

(0,1,76,38, 71,58,32,15,44,33,29,43,7,56,40,45,13,28,9), 
(0,3,9,1,23,30, 7,53,13,56,32,20,67,46,21, 71,14,24,59). 

For K1l5 we have three starter cycles mod 115: 

(0,1, 77,88,24,90,28,102,33,80,87,30,60, 70,46,61,104,45,8), 
(0,2,6,1,14,11,17,26,4,37,21,3,39,27,7,47,28,78,61), 
(0,14,41,86,109,61,29,1,95,64,9,34,78,113,36,62,10,39,81). 

A suitable decomposition of K57 into 2-perfect 19-cycles has not yet been found; 
otherwise, the spectrum is complete. 

2.8 2-perfect 23-cycle systems 

As stated in [10] (in Section 3), the spectrum of 2-perfect 23-cycle systems is the set 
of all v == 1 or 23 (modulo 46) except possibly 69 and 93. 

A 2-perfect 23-cycle system of K93 is given by the following two starter cycles 
modulo 93: 

(0,1,23,88,83,52,73,60,21,25,77,42,12,62,59,75,56,45, 78,70, 79,81,15), 
(0,6,16,2,9,21,41,64,90,22,56,88,35,83,59,30,85,68,31, 77,33,15,51). 

At present a suitable 2-perfect 23-cycle system of K69 has not been found. 

3 2-perfect even cycle systems 

The spectrum for 2-perfect m-cycle systems, with m even, is far less determined. 
The case m = 4 is impossible; the case m = 6 is dealt with in [8] (see also [3]); the 
case m = 8 is dealt with in [1]. Treatment of m = 10 is omitted here; about half 
the spectrum has so far been determined. In this section we completely solve the 
spectrum for m = 12, and solve the spectrum for m = 16 apart from two isolated 
cases, (m, v) = (16,289) and (16,353). 
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3.1 2-perfect 12-cycle systems 

The necessary condition for a 2-perfect 12-cycle decomposition of Kv to exist is that 
v == 1 or 9 (mod 24). 

When v == 1 (mod 24), let v = 24n + 1; in our construction we use K12,12,12, K2S 

and K49. 
When v == 9 (mod 24), let v = 24n + 9. This case requires K 12 ,12,12, K33, K57 and 

K33 \ Kg. 

EXAMPLE 3.1 A 2-perfect 12-cycle decomposition of K25: 

Element set is Z2S; one starter cycle mod 25: 

(0,1,4,12,14,5,16,11,17,24,9,21). 

EXAMPLE 3.2 A 2-perfect 12'-cycle decomposition of K49: 

Element set is Z49; two starter cycles mod 49: 

(0,1,12,19,32,4,23,39,16,6,3,5),(0,4,10,45,21,39,48,11,31,9,26,34). 

EXAMPLE 3.3 A 2-perfect 12-cycle decomposition of K33: 

Element set is {(i,j) I ° ~ i ~ 10, j = 1,2, 3}. We take the following four starter 
cycles mod (11, - ): 

((0,1), (3, 1), (1, 3), (2, 2), (8,3), (6,3), (9, 2), (7,1), (0, 2), (1,2), (2, 1), (5, 2)), 
((0,1), (2,1), (3, 2), (5,1), (1, 3), (9, 1), (3, 3), (5, 2), (8,3), (4,1), (0,2), (8, 2)), 
((0,1), (7, 1), (2, 3), (10, 3), (6, 2), (4,2), (9, 1), (9, 2), (9, 3), (3,3), (1, 1), (0, 3)), 
((0,1), (1, 1), (6, 1), (7, 3), (0, 3), (4,2), (9, 2), (5, 2), (10,3), (8,2), (9, 3), (8, 3)). 

EXAMPLE 3.4 A 2-perfect 12-cycle decomposition of KS7: 

Element set is {(i,j) I ° ~ i ~ 18, j = 1,2, 3}. The following seven starter cycles 
mod (19, -) give a suitable decomposition: 

((0,1), (1,1), (4, 3), (12,2), (10, 3), (0, 3), (18, 2), (17, 1), (11, 2), (4, 2), (4, 1), (9, 2)), 
«0,1), (15, 1), (4,2), (17,1), (13, 3), (4, 1), (6,3), (7,2), (4,3), (9,1), (13,2), (11, 2)), 
«0,1); (5,1), (3,3), (18,3), (16, 2), (13, 2), (6,1), (16, 1), (11, 2), (11,3), (10,1), (12,1)), 
«0,1), (3, 1), (0, 3), (12,2), (11,2), (15, 2), (1, 2), (14,3), (9, 2), (18, 3), (14, 1), (6, 1)), 
«0,2), (11,2), (17,3), (12, 1), (14, 2), (5, 2), (18,2), (9, 3), (1, 3), (16,2), (0, 3), (12, 3)), 
«0,3), (6, 3), (13, 1), (12, 2), (2, 1), (18,2), (1, 1), (16,2), (12,3), (17,2), (14,1), (14, 3)), 
«0,3), (16, 3), (9, 1), (2,2), (10,3), (2, 1), (1, 3), (18, 3), (5, 1), (15, 3), (14,3), (8,1)). 

EXAMPLE 3.5 A 2-perfect 12-cycle decomposition of K33 \ K9: 
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The nine hole elements are {A, B, 0, D, E, F, G, H, I}, and the other twenty-four 
elements are {(i,j) I ° ~ i ~ 2, 1 ~ j ~ 8}. The graph K33 \ Kg has 12 X 41 edges, 
and so we want 41 12-cycles; we have 13 starters mod (3, and two cycles that 
are fixed (not cycled). 

The two fixed cycles are 

(0,1), (2, 3), (0, 4), (2, 2), (2,1), (1, 3), (2,4), (1,2), (1,1), (0, 3), (1, 4), (0, 2», 
((0,5), (1, 6), (0, 8), (2, 7), (2, 5), (0, 6), (2,8), (1,7), (1, 5), (2,6), (1, 8), (0, 7». 

Then the following 13 cycles are cycled mod (3, -): 

(A, (0, 1), (2, 1), E, (1, 2), (2,2), B, (1,1), (1, 3), F, (0, 2), (2, 3», 
(C,(0,1),(1,2),G,(1,1),(0,2),D,(2,4),(2,2),H,(0,4),(1,3», 
(A, (0,4), (0,3), B, (2, 7), (2, 6), 0, (2, 8), (1,1), D, (0, 7), (1,7», 
(A, (0,6), (0,4),0, (2, 7), (0, 5), F, (0, 7), (1,2), I, (1, 6), (1,5», 
(A, (0, 8), (1,5), G, (2,4), (1, 6), F, (0, 1), (0, 6), H, (2, 8), (2, 2», 
(B, (0,5), (2,5), H, (2, 3), (0,8), G, (0,3), (1, 5), I, (2, 1), (2, 8», 
(D, (0,5), (0,4), F, (1, 8), (0,.8), E, (1, 4), (2,4), I, (2, 3), (0, 6», 
(B, (0, 6), (1,8), D, (0, 3), (2, 5), E, (0, 7), (1, 6), G, (1, 7), (2, 4», 
(C, (0,5), (0,3), E, (1, 6), (2, 7), H, (1, 1), (1, 7), I, (0, 8), (2, 2», 
«0,1), (0, 5), (1, 1), (2, 5), (0,4), (2, 1), (0, 7), (0, 8), (0, 3), (1,3), (0, 6), (2,4», 
«0,2),(0,6),(1,2),(2,6),(0,5),(2,4),(2,1),(1,6),(1,8),(2,2),(0,7),(2,5», 
«(0,3),(1, 7),(1,3),(0, 7),(1,1),(2,3),(1,8),(0,5),(2,2),(2, 7),(2,4),(0,2», 
«0,4), (1, 8), (2, 4), (2, 8), (2,5), (2,2), (0, 3), (0,6), (2, 6), (1, 1), (0, 8), (1,7». 

EXAMPLE 3.6 Last, but certainly not least, we give a decomposition of K12,12,12 

into 2-perfect 12-cycles. 

We have 36 12-cydes, based on the vertex set {(i,j) I ° ~ i ~ 11, 1~ j ~ 3}. 

«0, I), (1,2), (10,3), (3, I), (0, 2), (5, 3), (2,1), (3,2), (0,3), (I, I), (2, 2), (3,3)), 
«0,1), (2, 2), (9,3), (3, 1), (I, 2), (7, 3), (2,1), (0,2), (3, 3), (I, I), (3,2), (1, 3», 
«0, I), (3, 2), (11,3), (3, 1), (2, 2), (4, 3), (2, 1), (1,2), (1,3), (1,1), (0, 2), (2, 3», 
«0, I), (0,2), (8, 3), (3,1), (3, 2), (6,3), (2,1), (2, 2), (2,3), (1, I), (1,2), (0,3», 
«O,I),(5,2),(6,3),(3,1~(4,2),(I,3),(2,1),(7,2),(8,3),(1,1),(6,2),(11,3», 
«0,1),(6,2),(5,3),(3,1),(5,2),(3,3),(2,1),(4,2),(11,3),(1,1),(7,2),(9,3», 
«0,1),(7,2),(7,3),(3,1),(6,2),(0,3),(2,1),(5,2),(9,3),(1,1),(4,2),(10,3», 
«0, I), (4, 2), (4,3), (3,1), (7, 2), (2,3), (2,1), (6, 2), (10,3), (I, I), (5, 2), (8,3», 
«0,1), (9, 2), (2, 3), (3,1), (8, 2), (9, 3), (2,1), (11, 2), (4, 3), (I, I), (10,2), (7,3», 
«0, I), (10, 2), (1,3), (3, I), (9,2), (11,3), (2, I), (8,2), (7, 3), (1, I), (11,2), (5, 3», 
«0, I), (11, 2), (3,3), (3,1), (10,2), (8,3), (2, I), (9,2), (5,3), (1, I), (8,2), (6,3», 
«0, I), (8, 2), (0,3), (3, I), (11, 2), (10, 3), (2, 1), (10,2), (6, 3), (1, I), (9, 2), (4,3», 
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( 4, I), (1,2), (6,3), (7, 1), (0, 2), (1,3), (6, I), (3, 2), (8, 3), (5, 1), (2,2), (11, 3)), 
«4,1), (2,2), (5,3), (7, 1), (1,2), (3, 3), (6, 1), (0,2), (11,.3), (5, 1), (3, 2), (9,3)), 
«4, I), (3,2), (7,3), (7, 1), (2, 2), (0,3), (6, I), (1, 2), (9,3), (5, 1), (0, 2), (10,3)), 
«4,1), (0,2), (4,3), (7,1), (3, 2), (2, 3), (6, 1), (2, 2), (10, 3), (5, 1), (1, 2), (8, 3)), 
« 4, 1), (5,2), (2,3), (7,1), (4,2), (9,3), (6, 1), (7,2), (4,3), (5, 1), (6,2), (7,3», 
« 4,1), (6, 2), (1,3), (7, 1), (5, 2), (11,3), (6,1), (4,2), (7,3), (5, 1), (7,2), (5, 3», 
«4,1), (7, 2), (3,3), (7, 1), (6, 2), (8,3), (6, 1), (5, 2), (5, 3), (5, 1), (4,2), (6, 3», 
« 4,1), (4; 2),(0,3), (7, 1), (7, 2), (10,3), (6,1), (6,2), (6,3), (5,1), (5, 2), (4,3)), 
«4,1), (9,2), (10,3), (7,1), (8,2), (5,3), (6, 1), (11,2), (0,3), (5,1), (10, 2), (3,3», 
«4,1), (10, 2), (9, 3), (7,1), (9,2), (7,3), (6,1), (8, 2), (3,3), (5, 1), (11, 2), (1,3), 
«4,1), (11, 2), (11, 3), (7,1), (10, 2), (4, 3), (6, 1), (9, 2), (1, 3), (5, 1), (8, 2), (2, 3», 
«4,1), (8,2), (8,3), (7, 1), (11, 2), (6,3), (6,1), (10, 2), (2,3), (5,1), (9,2), (0,3», 

«8,1), (1, 2), (2,3), (11, 1), (0, 2), (9, 3), (10,1), (3, 2), (4,3), (9, 1), (2, 2), (7, 3)), 
«8,1), (2, 2), (1,3), (11, 1), (1, 2), (11, 3), (10,1), (0,2), (7,3), (9,1), (3, 2), (5,3», 
«8,1), (3,2), (3, 3), (11, 1), (2, 2), (8,3), (10, 1), (1, 2), (5,3), (9, 1), (0, 2), (6,3», 
«8, 1), (0, 2), (0, 3), (11, 1), (3, 2), (10, 3), (10, I), (2,2), (6,3), (9, 1), (1,2), (4,3», 
«8,1), (5, 2), (10,3), (11, 1), (4, 2), (5,3), (10,1), (7,2), (0,3), (9,1), (6,2), (3,3», 
«8, I), (6, 2), (9,3), (11, 1), (5, 2), (7, 3), (10, I), (4, 2), (3,3), (9, 1), (7, 2), (1, 3)), 
«8, I), (7, 2), (11,3), (11,1), (6, 2), (4,3), (10, 1), (5,2), (1,3), (9,1), (4,2), (2,3», 
«8,1), (4, 2), (8, 3), (11, 1), (7,2), (6, 3), (10, 1), (6, 2), (2,3), (9,1), (5, 2), (0,3», 
«8,1), (9,2), (6, 3), (11, 1), (8,2), (1, 3), (10, I), (11, 2), (8,3), (9,1), (10,2), (11, 3»), 
«8,1), (10, 2), (5,3), (11, I), (9, 2), (3,3), (10,1), (8,2), (11, 3), (9, I), (11,2), (9, 3), 
«8,1), (11, 2), (7,3), (11, I), (10,2), (0, 3), (10,1), (9,2), (9, 3), (9,1), (8,2), (10, 3)), 
«8, I), (8,2), (4, 3), (11, 1), (11, 2), (2,3), (10,1), (10, 2), (10,3), (9,1), (9, 2), (8, 3». 

This completes the spectrum for 2-perfect 12-cycle systems. 

3.2 2-perfect 16-cycle systems 

The necessary condition for a 2-perfect 16-cycle decomposition of Kv to exist is that 
v 1 (mod 32). So let v = 32n + 1. We have four cases, according as n is 0 or 1 
(mod 3), or 2 or 5 (mod 6). 

First, let n = 3m, so that v = 4(24m) + 1. We take d = 4 in our construction, 
and use a GD( 4,1, 24j 24m)j this exists for m ): 4 [5]. Then we need decompositions 
of K 4,4,4,4 and K97; see below. There are also the isolated cases K193 and K289. A 
decomposition of the former of these is given below. 

Secondly, let n = 3m + 1, so that v 4(24m + 8) + 1. We again take d = 4 and 
use a GD( 4,1,8; 24m + 8); this exists for all m ): 1 [5]. Then we use decompositions 
of K 4,4,4,4 and K33. 

Thirdly, let n = 6m + 2, so that v = 16(12m + 4) + 1. This time we use d = 16, 
together with a resolvable BIBD(12m+4, 4,1), and decompositions of K16,16,16,16 and 
K65. These are given below. 

Fourthly and finally, let n = 6m + 5, so that v = 4( 48m + 40) + 1. This time, with 
d 4, we use a GD( 4,1, {16, 40*}; 48m + 40), which exists for m ~ 3. (The existence 
follows from Theorem 4 of [4] and Lemma 2.27 of [5], using a GD(4,1,8;32).) Then 
we use decompositions of K 4,4,4,4, K65 and K 161; these are given below. We also have 
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the isolated cases (corresponding to m = 1 and 2) K353 and K545. A construction for 
the latter is also given below; the former remains open. 

EXAMPLE 3.7 A decomposition of K4,4,4,4j element set is {( i, j) I 1 ~ i, j ~ 4}. 
The second component, j J of each element, determines to which part of the partition 
of K4,4,4,4 the element belongs. 

(1,1), (1, 2), (1, 3), (1, 4), (2, 1), (2,2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4,4), 
(1,1), (2, 2), (3, 3), (4,4), (2, 1), (3,2), (4,3), (1, 4), (3, 1), (4,2), (1, 3), (2, 4), (4,1), (1, 2), (2, 3), (3,4), 
(1,1), (3, 2), (1, 4), (2, 3), (2, 1), (4,2), (2,4), (3, 3), (3, 1), (1, 2), (3, 4), (4, 3), (4, 1), (2, 2), (4,4), (1,3), 
(1,1), (4, 2), (3, 4), (1, 3), (2, 1), (1,2), (4, 4), (2, 3), (3, 1), (2, 2), (1, 4), (3, 3), (4,1), (3, 2), (2,4), (4,3), 
(1,1), (2, 3), (3, 2), (3, 4), (2, 1), (3,3), (4, 2), (4, 4), (3, 1), (4, 3), (1, 2), (1, 4), (4,1), (1, 3), (2,2), (2,4), 
(1,1), (3, 3), (1, 2), (2, 4), (2, 1), (4,3), (2, 2), (3,4), (3, 1), (1,3), (3, 2), (4,4), (4,1), (2, 3), (4,2), (1,4). 

EXAMPLE 3.8 A decomposition of K33} given by one starter cycle mod 33: 

(0,1,3,6,2,8,13,26,7,14,23,5,15,31,19,11). 

EXAMPLE 3.9 A decomposition of K 65 } given by two starter cycles} mod 65: 

(0,1,56,62,57,20,9,54,58,2,26,8,33,48,60,3), 
(0,2,15,31,50,7,42,35,3,17,46,20,58,10,44,21). 

EXAMPLE 3.10 A decomposition of K971 given by three starter cycles} mod 97: 

(0,1,19,4,42,15,79,51,94,3,35,84,59,89,8,5), 
(0,2,42,87,~3,25,4,39,10,71,30,41,75,66,22,12), 
(0,7,21,34,12,35,81,61,1,32,40,95,71,45,64,47). 

EXAMPLE 3.11 A decomposition of K 161, given by five starter cycles} mod 161: 

(0,1,155,20,94,103,6,22,123,4,127,97,18,114,131,2), 
(0,3,107,32,140,146,77,153,87,112,143,26,61,95,39,11), 
(0,4,95,17,115,44,87,41,64,9,33,133,100,108,121,18), 
(0,5,15,3,24,38,19,4,31,78,42,62,84,16,110,81), 
(0,37,89,143,27,86,135,22,111, 72,156,115,53,13,123,73). 

EXAMPLE 3.12 A decomposition of K193} given by six starter cycles} mod 193: 

(0,1,135,18,60,187,40,134,186,46,168,14,94,101,183,2), 
(0,3,65,133,76,43,38,73,98,175,137,50,143,36,185,8), 
(0,4,124,138,164,192,160,8,179,44,50,60,107, 131,27,45), 
(0,9,84,105,2,130,4,82,125,175,63,187,85,1,98,79), 
(0,11,26,46,23,77,60,4,17,146,109,192,54,115,164,34), 
(0,27,67,168,11,83,32,117,47,166,3,34,82,177,148,60). 

EXAMPLE 3.13 A 2-perfect 16-cycle decomposition of K 16 ,16,16,16: 
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We use six cycles in the decomposition of K4,4,4.4 given in Example 3.7. From each 
one of these cycles, 16 new cycles are formed, on the set {(i, j)ll :::; i :::; 16,1 :::; j :::; 4}, 
as follows. From the cycle 
(( al, Xl), (a2' X2), (a3, X3), (a4' X4), (bl , Xl), (b21 X2), (b3, X3), (b41 X4), 
(q, Xl)' (C2' X2)' (C3, X3), (C4' X4), (db Xl), (d2, X2), (d3, X3), (d4, X4)), 
we successively replace (91,92,93,94), for 9 a, b, c and d, by (91 + 4a,92 + 4/3,93 + 
4,,94 + 48), where a,/3",5 is a row from a 16 x 4 resolvable orthogonal array. It is 
straightforward to check that the result is a 2-perfect 16-cycle system of K16,16,16,16. 

EXAMPLE 3.14 A 2-perfect 16-cycle system of K545. 

Note that 545 1 + (16 x 34), so let d = 16 in the construction. There ex
ists a GD(4,1,{4,10*};34); this, together with decompositions of K65, Kl6l and 
K16,16,16,16, complete the existence proof. (The GDD used here may be constructed 
from a resolvable GDD(3, 1,4; 24) by adjoining ten new elements, one to each parallel 
class. ) 

4 Concluding remarks 

We tabulate below the expected and actual spectra for 2-perfect m-cycle systems 
for values of m we have considered here. References are given in the "Comments" 
column. The column headed "Spectrum (*)" lists the expected spectrum, if there 
are any undecided values in the last column. This table updates and extends the 
2-perfect part of the table given in [10]. It now remains for someone to settle the 
remaining undecided values, especially 25 for m 15! 

U ..1 

Sp<:o\..uJ.l.llll (~) (1, r,s 

3 1 or 3 (mod 6) Steiner triple system 
4 0 Not possible 
5 1 or 5 (mod 10), not 15 [11] 
6 1 or 9 (mod 12) [8], [3] 
7 1 or 7 (mod 14) [12], [10] and Section 2.1 above 
8 1 (mod 16) [1] 
9 1 or 9 (mod 18) [9], [10] and Section 2.2 above 45 

11 1 or 11 (mod 22) [9], [10] and Section 2.3 above 
12 1 or 9 (mod 24) Section 3.1 above 
13 1 or 13 (mod 26) [9], [10] and Section 2.4 above 
15 1, 15, 21 or 25 (mod 30) Section 2.5 above 25 (mod 30) 
16 1 mod (32) Section 3.2 above 289, 353 
17 1 or 17 (mod 34) [10] and Section 2.6 above 
19 1 or 19 (mod 38) [10] and Section 2.7 above 57 
23 1 or 23 (mod 46) [10] and Section 2.8 above 69 
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