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Abstract. Let c(Tn) denote the number of 3-cycles in the tournament Tn and let 
u(Tn) denote the number of nodes i in Tn such that each arc oriented towards i 
belongs to at least one 3-cycle. We determine the minimum value of c(Tn) when 
u(Tn) = n and the maximum value of c(Tn) when u(Tn) = 3. 

1. Introduction. A tournament Tn consists of a set of n nodes 1,2, ... , n 

such that each pair of distinct nodes i and j is joined by exactly one of the 
---i> ---+ --+ 

arcs 'lJ or j i. If the arc 'lJ is in Tn we say that i beats j or that 

j loses to i and write i -+ j. If each node of a subtournament A beats each 

node of a sub tournament B we write A -+ B. For definitions not given here 

or for additional material on tournaments, see [12] or [15]. 

Node i is said to cover node j if node i beats every node that node 
---i> 

j beats or, equivalently, if i -+ j and the arc 'lJ belongs to no 3-cycle. It is 

not difficult to see that the covering relation thus defined is transitive [10; p. 72]. 

So, as pointed out in [10], every finite tournament has at least one uncovered node 

(a result originally proved by another argument in [8; p. 148]). In fact, every strong 

tournament Tn with n 2:: 3 nodes has at least three uncovered nodes (cf. [17], 
[11], [15; p. 178], [9] or [10]). We observe that node i is an uncovered node if and 

only if every arc oriented towards i belongs to at least one 3-cycle or, equivalently, 

if for any other node j there exists a path from i to j of length at most 

two; nodes with this property have been called kings in several recent papers (cf. 

[9], [2], [18], [7] or [4]). 

Miller [10] has shown that if the tournament Tn represents majority pref

erences between a set of n proposals, then various voting procedures will always 

select a proposal from the set of uncovered nodes of Tn (see also [16], [1], [14], or 

[5]) for additional material involving uncovered nodes in this context). Let u(Tn) 
denote the number of uncovered nodes in the tournament Tn. Miller [10; p. 78] 

remarked that the size of u(Tn), in a strong tournament Tn, "depends largely 

on the degree of intransitivity within [Tn], which in turn may be measured by 

the proportion of all triples of [nodes in Tn] that are cyclic .... With some 
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complications, the pattern is this: as intransitivity declines, [u(Tn)] ap

proaches or equals 3; as it increases, [u(Tn)] approaches or equals [n]." Our 

main object here is to determine the minimum number of 3-cycles possible in a tour

nament Tn when u(Tn) = n and the maximum number of 3-cycles possible 

when u(Tn) = 3. 

2. Preliminary Remarks. The score Sj of a node i in a tournament Tn is 

the number of nodes beaten by i and the score sequence of Tn is the sequence 

S = (Sl,S2, ... ,sn); the sum of the scores is clearly n(n - 1)/2. We let Rn 
denote any regular tournament with n nodes, that is, a tournament in which 

Si = (n - 1)/2 for all nodes if n is odd, or Si = n/2 - 1 for half the nodes 

and n/2 for the other half if n is even. 

It is well-known and easy to see that the number c( Tn) of 3-cycles in a 

tournament Tn with score sequence S is given by the formula 

(2.1 ) c(Tn) = (;) - t ei
) 

1 

from this it follows readily that 

(2.2) { 
(n3 - n)/24 

c(Tn) S ,(n):= (n3 _ 4n)/24 
if n is odd 

if n is even, 

with equality holding if and only if Tn is a regular tournament Rn (see, e.g., 

[12; p. 9] or [15; p. 186]). Landau [8] showed that every node of maximum score 

in a tournament Tn is an uncovered node. Miller [10; p. 80] pointed out that 

this and result (2.2) imply that if c(Tn) = len) then u(Tn) = n if n is odd, 

and n/2:S; u(Tn) :s; n if n is even. When n = 2m the upper bound here 

can be realized for all m 2:: 3 and the lower bound can be realized if and only 

if m is odd; if n = 4m then tournaments Tn such that c(Tn) = len) and 

u(Tn) = n/2 + 1 exist for all m 2:: 1. In Section 4 we show that if u(Tn) = n 
then the minimum possible value of c(Tn) is a quadratic in n, with leading 

term n 2 /4, and we determine the minimal tournaments. 

In the other direction, if Tn is a strong tournament with n:2: 3 nodes, 

then c(Tn) 2:: n-2 [6; p. 306]. Burzio and Demaria [3] (see also [13]) have recently 

characterized the tournaments for which equality holds here and, as it turns out, all 

these tournaments have exactly three uncovered nodes. In Section 5 we show that if 

u(Tn) = 3, then the maximum possible value of c(Tn) is a cubic in n, whose 

first two terms are (n 3 
- n2 )/24, and we characterize the maximal tournaments. 
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3. An Inequality. Let s = (S}, S2, ••• , sn) be the score sequence of a tour

nament Tn such that u(Tn) = n. We may suppose the nodes are labelled so 

that 

(3.1) 

Let Sj and ej be such that Sj = S1 + .. '+Sj = j(j-1)/2+ej for 1::; j ::; n; 

then ej 2:: 0 since there are j(j -1)/2 arcs joining any j nodes. Suppose that 

j + e j ::; n - 1 and that e j ::; j - 1 for some j. Then there would be a node 

p E {j + 1, ... , n} that beats all nodes in {I, ... ,j} and a node q E {I, ... ,j} 
that loses to all nodes in {j + 1, ... , n}; but then node p would cover node q, 

contrary to the assumption that u(Tn) = n. Consequently, if u(Tn) = n, then 

(3.2) Sj 2:: (~) + min {j, n - j} = (j ; 1) + min {O, n - 2j} 

for 1::; j ::; n - 1, and 

(3.3) 

We now derive an inequality involving such sequences s that we shall use in the 

next section to determine the minimum value of c(Tn) if u(Tn) = n. 

LEMMA 1. Let s = (S1' ... , sn) denote a sequence of n;:::: 5 integers satisfying 

conditions (3.1)-(3.3). Let x = (1,2, ... , m - 1, m, m, m, m + 1, ... , n - 2) if 

n = 2m + 1 2:: 5 and let y = (1,2, ... , m - 1, m, m, m, m, m + 2, ... , n - 2) and 
Z = (1,2, ... , m - 3, m - 1, m - 1, m - 1, m - 1, m, ... , n - 2) if n = 2m 2:: 8; 
finally, let y = (1,2,3,3,3,3) and z = (2,2,2,2,3,4) if n = 6. Then 

(3.4) f(s) := t (Si) ::; (n - 1) + { (n - l)(n - 3)/4 
1 2 3 n(n - 4)/4 

if n = 2m + 1 

if n = 2m, 

with equality holding if and only if s = x when n is odd or s = y or z 
when n is even. 

PROOF: It is easy to verify that equality holds in (3.4) when s = x, y, or z. Let 

us assume that s is a maximal sequence, i. e., a sequence for which f(s) assumes 

its maximum value over the set of all sequences satisfying (3.1)-(3.3). Suppose there 
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exists a least integer k such that strict inequality holds in (3.2) when j = k. 

We assume, initially, that 1:S k :S m so that 

where 0: ~ 1. Then 81 = 1 + 0: if k = 1; and if k ~ 2 then it follows 

from the definition of k and the relation Sj = Sj-1 + Sj that Sj = J for 
1 :S j :S k - 1, and that 

(3.6) 8k = k + 0: > Sk-1. 

Let h denote the largest integer such that Sk+l = '" = Sk+hi then 

if k + h < n. \Ve now show that - apart from one exceptional case -

(
k + U + 1) . (3.8) Sk+u> 2 + mm {O,n - 2k - 2u} 

for 1:S U :S h - 1, assuming that h ~ 2. 

We observe that if Sk+1 = (J, then 

(
k + 1) 

Sk+u = Sk + U(J = 2 + 0: + U(J, 

so (3.8) holds if and only if 

(3.9) u{(J - k - (u + 1)/2} + 0: + max {0,2k + 2u - n} > O. 

It follows from (3.2), (3.5), and the definition of h that 

(k + w + 1) . (k + 1) W(J = Sk+w - Sk ~ 2 + mm {a, n - 2k - 2w} - 2 - 0: 

= w{k + (w + 1)/2} - 0: - max {0,2k + 2w - n} 

for 1:S w :S h. So, in particular, 

(3.10) (J ~ k + (h + 1)/2 - o:/h - h-1 
• max {0,2k + 2h - n}. 
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Moreover, if m + 1 :s; k + h and v:= m + 1 - k, then 

(3.11) (7 ~ k + (v + 1)/2 - v-I. (2m + 2 - n + a). 

We now apply these estimates in (3.9), considering three cases separately. 

Case 1: k + u < k + h ~ m. Let L denote the left hand side of inequal

ity (3.9). In this case it follows from (3.10) that 

L ~ u{(h - u)/2 - a/h} + a ~ u/2 + a/h > 0, 

as required. 

Case 2: k + u ~ m < k + v = m + 1 ~ k + h. Notice that v 2: u + 1 ~ 2 
here. In this case it follows from (3.11) that 

L ~ u{( v - u)/2 - v-I. (2m + 2 - n + a)} + a 2: u/2 + a/v - u(2m + 2 - n)/v. 

If n = 2m + 1, then 

L ~ u/2 + a/v - u/v ~ a/v> 0, 

as required. If n = 2m and v ~ 4, which is certainly the case if u ~ 3, then 

L 2: u/2 + a/v - 2u/v 2: a/v> O. 

Moreover, it follows from the inequality (7 = Sk+1 ~ Sk = k + a that 

L ~ u{a - (u + 1)/2} + a = (u + l)(a - u/2), 

so L > ° if u = 1 or u = 2 and a ~ 2. Thus we find that L > ° 
here except when n = 2m, a = 1, u = 2, v = 3, and Sk+1 = k + 1; in this 

exceptional case k = m + 1 - v = m - 2 and (Sl, .. " Srn+1) = 
(1,2, ... ,m - 3,m -I,m -I,m -I,m -1). 

Case 3: m + 1 ~ k + u < k + h. In this case it follows from (3.10) that 

L ~ u{(h - u)/2 - (a + 2k - n)/h} + (a + 2k - n) 

= h-1 (h - u){a + 2u + 2k - n + u(h - 4)/2} 

~ h- 1(h - u){a + 1 + u(h - 4)/2}, 
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so L is certainly positive if· h ~ 4; and if 2 ~ h ::; 3, then 

L ~ h- 1(h - u){a + 1 + (h -l)(h - 4)/2} 

= h- 1 (h - u){a + (h - 2)(h - 3)/2} ~ a/h > 0, 

as required. Thus it follows that inequalities (3.9) and (3.8) hold apart from the 

one exceptional case. 

Suppose we are not in this exceptional case and let f = (rt, ... , rn) denote 

the integer sequence in which ri = Si except that rk = Sk - 1 and rk+h = 

Sk+h+l. Then T clearly satisfies condition (3.3); and T also satisfies conditions 

(3.1) and (3.2) in view of inequalities (3.6) and (3.7) and relations (3.5) and (3.8), 
respectively. But 

(3.12) 

contrary to the assumption that s is a maximal sequence. 

It follows, therefore, that if s is a maximal sequence then either strict 

equality holds in (3.2) for 1 ~ j ::; m and 

(3.13) (SI, .. "sm) = (1,2, ... ,m), 

or s involves the exceptional case encountered earlier and n = 2m and 

(3.14) (Sl,'" ,sm+d = (1,2, ... ,m - 3,m -I,m -1, m -I,m -1). 

(This last sequence is to be interpreted as (2,2,2,2) if m = 3.) And, similarly, 

it follows by duality that if s is a maximal sequence, then either (sn-m, ... , sn) = 
(n m - 1, n m, . .. , n - 2) that is, 

(3.15) (Sm+2, ... , sn) = (m, m + 1, ... , n - 2) 

if n = 2m + 1 or 

(3.16) (Sm+l,'" ,sn) = (m -I,m, ... ,n - 2) 

if n = 2m or n = 2m and 

(3.17) (Sm-I, ... , sn) = (m, m, m, m, m + 2, ... , n - 2). 
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If n = 2m+ 1 and we combine (3.13) and (3.15), we find that 8 m +l must 

equal m, in view of (3.1), so s = x. If n = 2m and we combine the only 

compatible alternatives, namely, (3.13) and (3.17) or (3.14) and (3.16), we find that 

s = fj or z. This suffices to complete the proof of the lemma. 

4. Minimal Tournaments T. with u(T.} = n. If U(T6) = 6 for a tourna
ment T6, then T6 must have score sequence (2,2,2,3,3,3); this follows from 

an argument that will be given later. There are five non-isomorphic tournaments 

with this score sequence (cf. [12; p. 95]) and of these only the following three have 

the property that U(T6) = 6: (i) the tournament T6 consisting of two disjoint 

3-cycles (A, B, C) and (c, b, a) such that (A, B, C) -t (c, b, a) except that 

a -t A, b -t B, and c -t C; (ii) the tournament T6 with nodes 1,2, ... ,6 

in which j -t i if j > i except that 1 -t 5, 1 -t 6, 2 -t 4, and 4 -t 6; 

and (iii) the dual of the tournament described in (ii). Let Ml denote the trivial 

tournament with just one node and let M6 denote anyone of the three tour

naments just described. More generally, if n = 3 or 5 or n 2:: 7 let Mn 

denote any tournament obtained from any tournament M n - 2 by adjoining two 

nodes p and q such that p -t q, q -t M n - 2 , and M n - 2 -t p. It is not 

difficult to verify that u(Mn) = n for any such tournament Mn. We now show 

that among all tournaments Tn such that u(Tn) = n these are the minimal 

tournaments, that is, the tournaments with the minimum number of 3-cycles. 

THEOREM 1. Let Tn be a tournament with n =J. 2,4 nodes such that u(Tn) = 
n. Then 

( ) { 
(n - 1)2/4 if n is odd 

c Tn > 
- (n2 - 2n + 8)/4 if n is even, 

with equality holding if and only if Tn is one of the tournaments Mn. 

PROOF: We may suppose that n 2:: 5 since the result certainly holds when n = 1 

or 3. And, as we saw earlier, we may suppose the score sequence s of Tn 

satisfies conditions (3.1)-(3.3) so that, in particular, 81 2:: 1 and Sn ~ n - 2. 

We consider first the case when 2 S 81 :s; ... S 8 n S n - 3. If n = 6 then 

s = (2,2,2,3,3,3) so c(T6) = 8, by (2.1), and T6 is one of the tournaments 

M 6 , in view of the earlier observation. So we may now suppose that n = 5 or 

n 2:: 7. If n is odd then s is certainly not the sequence x described in 
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Lemma 1; then in this case it follows from (2.1) and Lemma 2 that 

as required. 

c(Tn) = (;) - J(8) 

> (;) - J(X) 

(;) _ (n;l) -(n-1)(n-3)/4=(n-1)2/4, 

If n 2: 8 is even then 8 is neither of the sequences y or z described 

in Lemma 1, so J(8) < J(y) = J(z). Now 8 can be transformed into one of 

the sequences y or z by a series of exchanges each of which involves replacing 

two elements 8k and 8k+h by 8k - 1 and 8k+h + 1, respectively, where k 
and h are as defined in the proof of Lemma 1. Each such exchange increases the 

value of the sum J(8) by 8k+h - 8k + 1 2:: 1. Thus it follows from (3.12) that 

J(8) + 1 :::; JCff) = J(z) with equality holding only if 8 can be transformed into 

y or z by a single exchange that involves replacing two equal elements 8k and 

8k+h by Sk - 1 and 8k+h + 1. Now Yl = Zl = 1 and Yn = Zn = n - 2; 
hence, if 8 can be so transformed, it must be that k = 1, k + h = n, 81 = 2, 

and 8 n = n - 3. But we are assuming that n 2:: 8 here, so 81 cannot equal 

8 n and, consequently, 8 cannot be so transformed into y or z by a single 

exchange. 

We conclude, therefore, that if n is even, n 2:: 8, and 2:::; 81 ~ 8 n ~ 

n - 3, then f(8) + 1 < f(y) = f(z). So in this case it follows from (2.1) and 

Lemma 1 that 

c(Tn) = (;) + J(8) 

> 1 + (;) - f(y) 

= 1 + G) - (n ; 1) -n( n - 4) /4 

= (n 2 
- 2n + 8)/4, 

as required. 

It remains to consider the case when 81 = 1 or Sn = n - 2. If there is 

a node p of score 1 let q denote the node that loses to p and let Tn - 2 

denote the subtournament determined by the remaining nodes, so that p -? q 
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and Tn - 2 -t p. If node q lost to some node w of T n - 2 then w would 

cover node p, contrary to our hypothesis; it follows, therefore, that q -t Tn _ 2 

so q has score n - 2. Similarly, if we initially assume there is a node of score 

n - 2 we find that the node that beats this node has score 1. Thus if s 1 = 1 or 

Sn = n - 2 there exist nodes p and q of score 1 and n - 2, respectively, 

such that Tn has the structure described above; and, in this case, it follows readily 

that 

( 4.1) 

The subtournament Tn- 2 is such that u(Tn- 2) = n - 2; for if in Tn- 2 
some node v covers some node w, then v clear ly covers w in Tn as 

well, contrary to our hypothesis. We now observe that there is no tournament T4 
such that U(T4) = 4 (since there is no tournament T2 such that U(T2) = 2). 

Consequently, the only tournaments T6 such that U(T6) = 6 are those with 

score sequence (2,2,2,3,3,3) that were discussed earlier. So, in completing the 

argument for the case when 81 = 1 and 8 n = n - 2, we may assume that 

n = 5 or n ~ 7 and that the required result has already been proved when n 

is replaced by n - 2. Thus it follows from (4.1), the fact that U(Tn-2) = n - 2, 

and the induction hypothesis, that 

{ 
(n-3)2/4=(n-1)2/4 

c(Tn) ~ n - 2 + 
(n-2)(n-4)/4+2=(n2-2n+8)/4 if n 

if n is odd 

is even, 

with equality holding if and only if Tn - 2 is one of the tournaments M n - 2 ; that 

is, if and only if Tn is one of the tournaments Mn. This suffices to complete 

the proof of the theorem. 

5. Minimizing Certain Sums. In the next section we shall make use of the fol

lowing slight extension of a familiar result on the minimum value of a sum L:~ (~i), 

subject to the condition that the wi's are non-negative integers having a fixed 

sum. 

LEMMA 2. Let J, K,j, and k be given positive integers such that 

(5.1) rJfjl ~ lK/kJ. 
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For any integer D such that 0 =:; D =:; J, let h( D) denote the minimum 

value of the sum 

over all sequences w = (WI,"" Wj+k) of j + k non-negative integers such that 

(5.2) WI + ... + W j = J - D 

and 

(5.3) Wj+1 + ... + Wj+k = K + D. 

Then h( D) is a strictly increasing function of D; furthermore, if w sat

isfies conditions (5.2) and (5.3), then jew) = h(D) if and only if the integers 

WI,'" ,Wj are as nearly equal as possible and the integers Wj+I,"" Wj+k are 

as nearly equal as possible. 

PROOF: If 1:::;; D :::;; J let w be a sequence that satisfies (5.2) and (5.3) and is 

such that few) = h(D). We may suppose that 

WI :::;; l(J - D)jjJ :::;; rJjjl - 1 and Wj+k ~ r(K + D)jkl ~ lKjkJ + 1 

so that Wj+k ~ WI + 2, by (5.1). Let W' denote the sequence that differs from 

w only in that w~ = WI + 1 and W}+k = Wj+k - 1. Then w' satisfies (5.2) 
and (5.3) with D replaced by D - 1. Moreover, 

h(D) = jew) = jew') + Wj+k - WI -1 ~ jew') + 1 ~ h(D - 1) + 1. 

This proves the first part of the required conclusion; and the last part follows 

readily upon considering the subsequences (WI, ... , W j) and ( W j+1 , ... , W j+k) 

separately. 

6. Maximal Tournaments T. with u(T.) = 3. If n ~ 3 let Tx , Ty , 
and Tz denote (possibly empty) tournaments with X, Y and Z nodes such 

that X + Y + Z = n - 3. Let Q = Q(Tx , Ty , Tz ) denote the tournament 

consisting of disjoint copies of Tx , Ty , and Tz plus three additional nodes 
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x,y, and z such that x -+ Tx, y -+ Ty, z -+ Tz, {x} U Tx -+ {y} U Ty, 
{y} U Ty -+ {z} U Tz, and {z} U Tz -+ {x} U Tx. The only uncovered nodes in 

any such tournament Q are the nodes x, y, and z. We now show that among 

the class of tournaments Tn such that u(Tn) = 3, the maximal tournaments 

- that is, the tournaments with the maximum number of 3-cycles - are a certain 

subset of these tournaments Q. 

THEOREM 2. Let Tn be a tournament with n 2:: 3 nodes such that u(Tn) = 3. 

Then c(Tn) S C(n), where 

n(n2 - n + 2) n=6m 

(n - 1)(n2 - 1) n = 6m + 1 

24C(n) = 
n(n - 2)(n + 1) n =6m+2 

n3 
- n2 

- n + 9 if n = 6m +3 

(n+2)(n2 -3n+4) n = 6m +4 

(n - 1)(n2 - 1) n = 6m+5. 

Furthermore, c(Tn) = C(n) if and only if Tn is a tournament of the form 

Q(Rx, Ry,Rz) where (i) Rx,Ry , and Rz are regular tournaments with 

X, Y, and Z nodes, (ii) X + Y + Z = n - 3, and (iii) X, Y, and Z 
differ from each other by at most one. 

PROOF: The theorem certainly holds when n = 3 or 4, so we may assume that 

n 2:: 5. Let x, y, and z denote the uncovered nodes of the tournament Tn. 
We may suppose that x -+ y and y -+ z. If x -+ Z then, since x does not 

cover z, there must be a fourth node v such that z -t v and v -+ x; but 

then none of the nodes x, y, or z would cover v which, since the covering 

relation is transitive, contradicts the assumption that u(Tn) = 3. Consequently, 

z -+ x and the uncovered nodes x, y, and z form a 3-cycle, (x, y, z) say. 

Each. node v ¢ {x, y, z} is covered by at least one of the three uncovered 

nodes x, y, and z. If node x, say, covers such a node v then x -+ v and, 

in addition, z -+ v; for, z -+ x and if v -+ z, then x would not cover v. 
Thus each such node v loses to at least two of the nodes x, y, and z, namely, 

a node that covers v and the immediate predecessor of the covering node in the 

3-cycle (x,y,z). 

Let Tx denote the (possibly empty) subtournament of Tn determined 

by those nodes v such that (i) v is covered by x and hence loses both 

to x and to z, the predecessor of x in the 3-cycle (x, y, z), but (ii) v 
beats y, the successor of x in the 3-cycle (x, y, z ). Let Ty and Tz be 
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similarly defined with respect to nodes y and z and, finally, let TD denote 

the subtournament determined by the remaining nodes v that lose to all three 

nodes x, y, and z. Then X + Y + Z + D = n - 3 since each node v ¢ {x, y, z} 
belongs to exactly one of these four subtournaments. 

If there were nodes v E Tx and w E Ty, say, such that w -4 v, then 

(w, v, y) would be a 3-cycle containing the arc -y;l;, contrary to the assumption 

that y covers w. Consequently, Tx -4 Ty and, similarly, Ty -4 Tz and 

Tz -t Tx. The foregoing observations imply that Tn contains a subtournament 

Q(Tx, Ty, Tz) where X + Y + Z = n - 3 - D plus the (disjoint) subtournament 
TD of nodes that lose to all three of the nodes x, y, and z. 

Let 8 x, S y , and 8 z denote the scores of the nodes x, y, and z in 

the tournament Tn and let Sl, S2, .•• ,Sn-3 denote the scores of the remaining 

nodes. It follows from what we have deduced about the structure of Tn that 

(6.1) 

furthermore, 

8 x + Sy + Sz = (n - 2 - Z) + (n - 2 - X) + (n - 2 - Y) 

= 3(n - 2) - (X + Y + Z) = 2n - 3 + D; 

(6.2) 81 + ... + Sn-3 = (~) - Sx - Sy - Sz = (n 2 2) - D. 

It is not difficult to verify that the sequence s = (S1, . .. ,Sn-3, 8 x , 8 y , sz) satisfies 

the hypothesis of Lemma 2 with J = (n - 2)(n - 3)/2, K = 2n - 3, j = n - 3, 

and k = 3. Hence we conclude that a lower bound for the sum 

f(5) = ~ (~) + e;) + e;) + (~) 

is obtained by evaluating the right hand side when the integers 8 x , SY' Sz are 

as nearly equal as possible and the integers Sl, ... , Sn-3 are as nearly equal as 
possible, subject to conditions (6.1) and (6.2) with D = O. 

More specifically, suppose that n = 6m + 5; then 2n - 3 = 12m + 7 and 

with equality holding if and only if SXl Sy, and Sz equal 4m+ 2, 4m + 2, and 

4m + 3 or, equivalently, X, Y, and Z equal 2m, 2m + 1, and 2m + 1 (in 
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some order). Furthermore, n - 2 = 6m + 3 andn - 3 = 6m + 2, so 

with equality holding if and only if half the scores 81,"" 8 n -3 equal 3m + 1 

and the other half equal 3m + 2. Thus it follows from (2.1) that if n = 6m + 5, 

then 

c(Tn) = (;) - f(8) 

~ (;) - (n - 2)(2n - 5)/3 - (n - 3)3/8 

= (n 2 
- 1)(n - 1)/24 = C(6m + 5). 

Moreover, equality holds if and only if D = 0 and Tn is a tournament of the 

form Q(Tx , Ty , Tz ) where X, Y, and Z equal 2m, 2m + 1, and 2m + 1; 

and half the nodes in the subtournaments Tx , Ty , and Tz have score 3m + 1 

in Tn and the other half have score 3m+2. It is not difficult to see that this last 

condition on the scores is satisfied if and only if all the subtournaments Tx, Ty, 
and Tz are regular. This suffices to prove the required result when n = 6m + 5, 

and the same type of argument covers the cases n == 0,1, or 3 (mod 6) as well. 

(The cases n == 0 or 3 (mod 6), are particularly easy.) 

If, however, n == 2 or 4 (mod 6), then the foregoing argument yields an 

upper bound for c(Tn) that is not best possible. For, to realize the bound in 

these cases, the nodes in the subtournaments Tx, Ty, and Tz would all have 

to have the same score and this is not possible here. Thus we need some additional 

arguments in these two remaining cases. 

Suppose that n = 6m + 2 where m 2:: 1. If D ~ 1 for the tournament 

Tn, then it follows readily from Lemma 2 that 

f(8) ~ (4:) + 2 (4m2+ 1) + (3m
2
-I) + (6m _ 2)(3:) 

= n(n - 2)(3n - 5)/24 + 1, 

so 

c(Tn) = G) - f(s) ::;n(n - 2)(n + 1)/24-1 = C(6m + 2),- 1. 
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Similarly, if n = 6m + 4 and D:2: 1, we find that c(Tn):S; C(6m + 4) - 1. 

So we may assume henceforth that n = 6m + 2 or 6m + 4, where m:2: 1, 
and that D = 0, that is, that Tn is a tournament of the form Q(Tx , Ty , Tz ) 
where X + Y + Z = n - 3. We next dispose of the possibility that max {X, Y, Z} 
exceeds 4m, say. 

If n is even - in particular, if n == 2 or 4 (mod 6) - then 

Now suppose that n = 6m + 2, where m:2: 1, so that X + Y + Z = 6m - 1 

and Sx + Sy + Sz = 2n - 3 = 12m + 1. If max {X, Y, Z} :2: 4m + 1, then 
min {s x, S y, S z} ::; 2m - 1 and 

appealing to Lemma 2 again. Hence, in this case, 

c(Tn) (;) - 1(8) 

::; (;) - (n - 2)(n - 3)(n - 4)/8 - (9n 2 32n + 40)/12 

= (n 3 
- 3n2 

- 6n - 8)/24 

= C(6m + 2) - (n 2 + 2n + 4)/12 < C(6m + 2). 

Similarly, we find that if n = 6m + 4, where m:2: 1, and max {X, Y, Z} :2: 

4m + 1, then 

c(Tn) :s; (n 3 
- 3n2 + IOn - 8)/24 = C(6m + 4) - (n - 2)(n 4)/12 < C(6m + 4). 

Thus we may further assume, from now on, that max {X, Y, Z} :s; 4m ::; 

2(n - 2)/3. 
It follows readily from the definition of Q(Tx, Ty, Tz) that 

c(Tn) = (X + 1)(Y + l)(Z + 1) + c(Tx) + c(Ty) + c(Tz ). 

We mentioned earlier, in (2.2), that C(TN):::; ,(N), where 24,(N) = N 3 - N 
or N3 - 4N according as N is odd or even, with equality holding if and only 
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if TN is a regular tournament RN. Consequently, 

c(Tn) ~ rex, Y, Z) 

where 

r(x,Y, Z) = (X + l)(Y + l)(Z + 1) + ,(X) + ,(Y) + ,(Z), 

with equality holding if and only if Tn is of the form Q(Rx,Ry,Rz ). So it 

remains to determine the values of X, Y, and Z, where X + Y + Z = n - 3, 

for which the function rex, Y, Z) attains its maximum value. We need consider 

only the cases when Z ~ Y ~ X ~ 2(n - 2)/3. 

Notice that it follows from the definition of the function ,( N) that 

(6.3) ((N - 1)2 - 1)/8 ~ ,(N) -,(N - 1) ~ (N 2 
- 1)/8 

for N 1,2, ... , with equality holding on the left or the right according as N 

is even or odd. Now suppose that X > Z + 1. Then 

~ : = rex - 1, Y, Z + 1) - rex, Y, Z) 

= (X Z - l)(Y + 1) + ,(X - 1) -,(X) + ,(Z + 1) -,(Z) 

;::: (X - Z - l)(Y + 1) - (X2 - Z2)/8 

= (X - Z -l){(Y + 1) - (X + Z + 1)/8} - Z/4 -1/8, 

where we have used relation (6.3) in the third line. 

If X = Z + 2, then 

~ ;::: Y + 1 - (2Z + 3)/8 - Z/4 -1/8 

= Y - Z/2+ 1/2;::: Z/2+ 1/2> o. 

Next we combine the inequalities Z ~ Y, Y ;::: (n-3-X)/2, and X ~ 2(n-2)/3, 
and find that 

Y + 1 - (X + Z + 1)/8 ;::: (7Y + 7 - X)/8 

;::: {7(n -1- X) - 2X}/16 

~ {7(n - 1) - 6(n - 2)}/16 = (n + 5)/16. 
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Consequently, if X ~ Z + 3, then 

Ll ~ (n + 5)/8 - Z/4 - 1/8 

~ (n + 4)/8 - (n - 3)/12 = n/24 + 3/4 > O. 

Thus, if X > Z + 1, then rex - 1, Y, Z + 1) > rex, Y, Z). This implies that 

if n == 2 or 4 (mod 6) and max {X, Y, Z} :::; 2(n - 2)/3, then the maximum 

value of rex, Y, Z) occurs when X, Y, and Z are as nearly equal as possible. 

It is easy to verify that this maximum value of rex, Y, Z) equals C(n) when 

n 2 or 4 (mod 6) (and, in fact, for all n), so this suffices to complete the 
proof of the theorem. 

Let Mn and Qn denote any of the minimal and maximal tournaments 

considered in Theorems 1 and 2, respectively. We remark in closing that if n = 3 

or n ~ 5, then there exists a tournament Tn such that c(Tn) = c(Mn) but 

for which u(Tn) = 3 whereas u(Mn) = n. Furthermore, if n ~ 18 (and 

perhaps for some smaller values also), then there exist tournaments Tn such that 

c(Tn) =c( Qn) but u(Tn) = n - 3 whereas u( Qn) = 3. 

This paper was written while the author was visiting the University of Otago 

with the assistance of a grant from the Natural Sciences and Engineering Research 

Council of Canada. 
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