UNCOVERED NODES AND 3-CYCLES IN TOURNAMENTS

J.W. MOON

Department of Mathematics, University of Alberta Edmonton, Alberta, Canada T6G 2G1

Abstract. Let $c(T_n)$ denote the number of 3-cycles in the tournament T_n and let $u(T_n)$ denote the number of nodes i in T_n such that each arc oriented towards i belongs to at least one 3-cycle. We determine the minimum value of $c(T_n)$ when $u(T_n) = n$ and the maximum value of $c(T_n)$ when $u(T_n) = 3$.

1. Introduction. A tournament T_n consists of a set of n nodes $1, 2, \ldots, n$ such that each pair of distinct nodes i and j is joined by exactly one of the arcs ij or ji. If the arc ij is in T_n we say that i beats j or that j loses to i and write $i \rightarrow j$. If each node of a subtournament A beats each node of a subtournament B we write $A \rightarrow B$. For definitions not given here or for additional material on tournaments, see [12] or [15].

Node *i* is said to *cover* node *j* if node *i* beats every node that node *j* beats or, equivalently, if $i \rightarrow j$ and the arc ij belongs to no 3-cycle. It is not difficult to see that the covering relation thus defined is transitive [10; p. 72]. So, as pointed out in [10], every finite tournament has at least one uncovered node (a result originally proved by another argument in [8; p. 148]). In fact, every strong tournament T_n with $n \geq 3$ nodes has at least three uncovered nodes (*cf.* [17], [11], [15; p. 178], [9] or [10]). We observe that node *i* is an uncovered node if and only if every arc oriented towards *i* belongs to at least one 3-cycle or, equivalently, if for any other node *j* there exists a path from *i* to *j* of length at most two; nodes with this property have been called kings in several recent papers (*cf.* [9], [2], [18], [7] or [4]).

Miller [10] has shown that if the tournament T_n represents majority preferences between a set of n proposals, then various voting procedures will always select a proposal from the set of uncovered nodes of T_n (see also [16], [1], [14], or [5]) for additional material involving uncovered nodes in this context). Let $u(T_n)$ denote the number of uncovered nodes in the tournament T_n . Miller [10; p. 78] remarked that the size of $u(T_n)$, in a strong tournament T_n , "depends largely on the degree of intransitivity within $[T_n]$, which in turn may be measured by the proportion of all triples of [nodes in T_n] that are cyclic \cdots . With some

Australasian Journal of Combinatorics 7(1993), pp.157-173

complications, the pattern is this: as intransitivity \cdots declines, $[u(T_n)]$ approaches or equals 3; as it increases, $[u(T_n)]$ approaches or equals [n]." Our main object here is to determine the minimum number of 3-cycles possible in a tournament T_n when $u(T_n) = n$ and the maximum number of 3-cycles possible when $u(T_n) = 3$.

2. Preliminary Remarks. The score s_i of a node i in a tournament T_n is the number of nodes beaten by i and the score sequence of T_n is the sequence $\overline{s} = (s_1, s_2, \ldots, s_n)$; the sum of the scores is clearly n(n-1)/2. We let R_n denote any regular tournament with n nodes, that is, a tournament in which $s_i = (n-1)/2$ for all nodes if n is odd, or $s_i = n/2 - 1$ for half the nodes and n/2 for the other half if n is even.

It is well-known and easy to see that the number $c(T_n)$ of 3-cycles in a tournament T_n with score sequence \overline{s} is given by the formula

(2.1)
$$c(T_n) = \binom{n}{3} - \sum_{1}^{n} \binom{s_i}{2};$$

from this it follows readily that

(2.2)
$$c(T_n) \le \gamma(n) := \begin{cases} (n^3 - n)/24 & \text{if } n \text{ is odd} \\ (n^3 - 4n)/24 & \text{if } n \text{ is even,} \end{cases}$$

with equality holding if and only if T_n is a regular tournament R_n (see, e.g., [12; p. 9] or [15; p. 186]). Landau [8] showed that every node of maximum score in a tournament T_n is an uncovered node. Miller [10; p. 80] pointed out that this and result (2.2) imply that if $c(T_n) = \gamma(n)$ then $u(T_n) = n$ if n is odd, and $n/2 \leq u(T_n) \leq n$ if n is even. When n = 2m the upper bound here can be realized for all $m \geq 3$ and the lower bound can be realized if and only if m is odd; if n = 4m then tournaments T_n such that $c(T_n) = \gamma(n)$ and $u(T_n) = n/2 + 1$ exist for all $m \geq 1$. In Section 4 we show that if $u(T_n) = n$ then the minimum possible value of $c(T_n)$ is a quadratic in n, with leading term $n^2/4$, and we determine the minimal tournaments.

In the other direction, if T_n is a strong tournament with $n \ge 3$ nodes, then $c(T_n) \ge n-2$ [6; p. 306]. Burzio and Demaria [3] (see also [13]) have recently characterized the tournaments for which equality holds here and, as it turns out, all these tournaments have exactly three uncovered nodes. In Section 5 we show that if $u(T_n) = 3$, then the maximum possible value of $c(T_n)$ is a cubic in n, whose first two terms are $(n^3 - n^2)/24$, and we characterize the maximal tournaments. 3. An Inequality. Let $\overline{s} = (s_1, s_2, \ldots, s_n)$ be the score sequence of a tournament T_n such that $u(T_n) = n$. We may suppose the nodes are labelled so that

$$(3.1) s_1 \leq s_2 \leq \cdots \leq s_n.$$

Let S_j and e_j be such that $S_j = s_1 + \dots + s_j = j(j-1)/2 + e_j$ for $1 \le j \le n$; then $e_j \ge 0$ since there are j(j-1)/2 arcs joining any j nodes. Suppose that $j + e_j \le n-1$ and that $e_j \le j-1$ for some j. Then there would be a node $p \in \{j+1,\dots,n\}$ that beats all nodes in $\{1,\dots,j\}$ and a node $q \in \{1,\dots,j\}$ that loses to all nodes in $\{j+1,\dots,n\}$; but then node p would cover node q, contrary to the assumption that $u(T_n) = n$. Consequently, if $u(T_n) = n$, then

(3.2)
$$S_j \ge {j \choose 2} + \min\{j, n-j\} = {j+1 \choose 2} + \min\{0, n-2j\}$$

for $1 \leq j \leq n-1$, and

$$(3.3) S_n = \binom{n}{2}$$

We now derive an inequality involving such sequences \overline{s} that we shall use in the next section to determine the minimum value of $c(T_n)$ if $u(T_n) = n$.

LEMMA 1. Let $\overline{s} = (s_1, \ldots, s_n)$ denote a sequence of $n \ge 5$ integers satisfying conditions (3.1)-(3.3). Let $\overline{x} = (1, 2, \ldots, m-1, m, m, m, m+1, \ldots, n-2)$ if $n = 2m + 1 \ge 5$ and let $\overline{y} = (1, 2, \ldots, m-1, m, m, m, m, m+2, \ldots, n-2)$ and $\overline{z} = (1, 2, \ldots, m-3, m-1, m-1, m-1, m-1, m, \ldots, n-2)$ if $n = 2m \ge 8$; finally, let $\overline{y} = (1, 2, 3, 3, 3)$ and $\overline{z} = (2, 2, 2, 2, 3, 4)$ if n = 6. Then

(3.4)
$$f(\overline{s}) := \sum_{1}^{n} {\binom{s_i}{2}} \le {\binom{n-1}{3}} + \begin{cases} \frac{(n-1)(n-3)}{4} & \text{if } n = 2m + 1\\ n(n-4)/4 & \text{if } n = 2m, \end{cases}$$

with equality holding if and only if $\overline{s} = \overline{x}$ when n is odd or $\overline{s} = \overline{y}$ or \overline{z} when n is even.

PROOF: It is easy to verify that equality holds in (3.4) when $\overline{s} = \overline{x}$, \overline{y} , or \overline{z} . Let us assume that \overline{s} is a maximal sequence, *i.e.*, a sequence for which $f(\overline{s})$ assumes its maximum value over the set of all sequences satisfying (3.1)-(3.3). Suppose there

exists a least integer k such that strict inequality holds in (3.2) when j = k. We assume, initially, that $1 \le k \le m$ so that

$$(3.5) S_k = \binom{k+1}{2} + \alpha$$

where $\alpha \geq 1$. Then $s_1 = 1 + \alpha$ if k = 1; and if $k \geq 2$ then it follows from the definition of k and the relation $S_j = S_{j-1} + s_j$ that $s_j = j$ for $1 \leq j \leq k-1$, and that

$$(3.6) s_k = k + \alpha > s_{k-1}.$$

Let *h* denote the largest integer such that $s_{k+1} = \cdots = s_{k+h}$; then

$$(3.7) \qquad \qquad s_{k+h} < s_{k+h+1}$$

if k + h < n. We now show that – apart from one exceptional case –

(3.8)
$$S_{k+u} > \binom{k+u+1}{2} + \min\{0, n-2k-2u\}$$

for $1 \le u \le h - 1$, assuming that $h \ge 2$.

We observe that if $s_{k+1} = \sigma$, then

$$S_{k+u} = S_k + u\sigma = \binom{k+1}{2} + \alpha + u\sigma,$$

so (3.8) holds if and only if

(3.9)
$$u\{\sigma - k - (u+1)/2\} + \alpha + \max\{0, 2k + 2u - n\} > 0.$$

It follows from (3.2), (3.5), and the definition of h that

$$w\sigma = S_{k+w} - S_k \ge \binom{k+w+1}{2} + \min\{0, n-2k-2w\} - \binom{k+1}{2} - \alpha$$
$$= w\{k + (w+1)/2\} - \alpha - \max\{0, 2k+2w-n\}$$

for $1 \le w \le h$. So, in particular,

(3.10)
$$\sigma \ge k + (h+1)/2 - \alpha/h - h^{-1} + \max\{0, 2k+2h-n\}.$$

Moreover, if $m+1 \le k+h$ and v := m+1-k, then

(3.11)
$$\sigma \ge k + (v+1)/2 - v^{-1} \cdot (2m+2-n+\alpha).$$

We now apply these estimates in (3.9), considering three cases separately.

Case 1: $k+u < k+h \le m$. Let *L* denote the left hand side of inequality (3.9). In this case it follows from (3.10) that

$$L \ge u\{(h-u)/2 - \alpha/h\} + \alpha \ge u/2 + \alpha/h > 0,$$

as required.

Case 2: $k+u \le m < k+v = m+1 \le k+h$. Notice that $v \ge u+1 \ge 2$ here. In this case it follows from (3.11) that

$$L \ge u\{(v-u)/2 - v^{-1} \cdot (2m+2-n+\alpha)\} + \alpha \ge u/2 + \alpha/v - u(2m+2-n)/v.$$

If n = 2m + 1, then

$$L \ge u/2 + \alpha/v - u/v \ge \alpha/v > 0,$$

as required. If n = 2m and $v \ge 4$, which is certainly the case if $u \ge 3$, then

$$L \ge u/2 + \alpha/v - 2u/v \ge \alpha/v > 0.$$

Moreover, it follows from the inequality $\sigma = s_{k+1} \ge s_k = k + \alpha$ that

$$L \ge u \{ lpha - (u+1)/2 \} + lpha = (u+1)(lpha - u/2),$$

so L > 0 if u = 1 or u = 2 and $\alpha \ge 2$. Thus we find that L > 0here *except* when n = 2m, $\alpha = 1$, u = 2, v = 3, and $s_{k+1} = k + 1$; in this exceptional case k = m + 1 - v = m - 2 and $(s_1, \ldots, s_{m+1}) =$ $(1, 2, \ldots, m - 3, m - 1, m - 1, m - 1).$

Case 3: $m+1 \le k+u < k+h$. In this case it follows from (3.10) that

$$\begin{split} L &\geq u\{(h-u)/2 - (\alpha + 2k - n)/h\} + (\alpha + 2k - n) \\ &= h^{-1}(h-u)\{\alpha + 2u + 2k - n + u(h-4)/2\} \\ &\geq h^{-1}(h-u)\{\alpha + 1 + u(h-4)/2\}, \end{split}$$

so L is certainly positive if $h \ge 4$; and if $2 \le h \le 3$, then

$$\begin{split} L &\geq h^{-1}(h-u)\{\alpha+1+(h-1)(h-4)/2\} \\ &= h^{-1}(h-u)\{\alpha+(h-2)(h-3)/2\} \geq \alpha/h > 0, \end{split}$$

as required. Thus it follows that inequalities (3.9) and (3.8) hold apart from the one exceptional case.

Suppose we are not in this exceptional case and let $\overline{r} = (r_1, \ldots, r_n)$ denote the integer sequence in which $r_i = s_i$ except that $r_k = s_k - 1$ and $r_{k+h} = s_{k+h} + 1$. Then \overline{r} clearly satisfies condition (3.3); and \overline{r} also satisfies conditions (3.1) and (3.2) in view of inequalities (3.6) and (3.7) and relations (3.5) and (3.8), respectively. But

(3.12)
$$f(\overline{r}) - f(\overline{s}) = \binom{s_{k+h}+1}{2} - \binom{s_{k+h}}{2} + \binom{s_k-1}{2} - \binom{s_k}{2} = s_{k+h} - s_k + 1 \ge 1,$$

contrary to the assumption that \overline{s} is a maximal sequence.

It follows, therefore, that if \overline{s} is a maximal sequence then either strict equality holds in (3.2) for $1 \le j \le m$ and

$$(3.13) (s_1, \ldots, s_m) = (1, 2, \ldots, m),$$

or \overline{s} involves the exceptional case encountered earlier and n = 2m and

$$(3.14) (s_1,\ldots,s_{m+1}) = (1,2,\ldots,m-3,m-1,m-1,m-1,m-1).$$

(This last sequence is to be interpreted as (2,2,2,2) if m = 3.) And, similarly, it follows by duality that if \bar{s} is a maximal sequence, then either $(s_{n-m}, \ldots, s_n) = (n-m-1, n-m, \ldots, n-2)$ — that is,

$$(3.15) (s_{m+2},\ldots,s_n) = (m,m+1,\ldots,n-2)$$

if n = 2m + 1 or

$$(3.16) (s_{m+1},\ldots,s_n) = (m-1,m,\ldots,n-2)$$

if n = 2m — or n = 2m and

$$(3.17) (s_{m-1},\ldots,s_n) = (m,m,m,m+2,\ldots,n-2).$$

If n = 2m+1 and we combine (3.13) and (3.15), we find that s_{m+1} must equal m, in view of (3.1), so $\overline{s} = \overline{x}$. If n = 2m and we combine the only compatible alternatives, namely, (3.13) and (3.17) or (3.14) and (3.16), we find that $\overline{s} = \overline{y}$ or \overline{z} . This suffices to complete the proof of the lemma.

4. Minimal Tournaments T_n with $u(T_n) = n$. If $u(T_6) = 6$ for a tournament T_6 , then T_6 must have score sequence (2, 2, 2, 3, 3, 3); this follows from an argument that will be given later. There are five non-isomorphic tournaments with this score sequence (cf. [12; p. 95]) and of these only the following three have the property that $u(T_6) = 6$: (i) the tournament T_6 consisting of two disjoint 3-cycles (A, B, C) and (c, b, a) such that $(A, B, C) \rightarrow (c, b, a)$ except that $a \to A, b \to B$, and $c \to C$; (ii) the tournament T_6 with nodes $1, 2, \ldots, 6$ in which $j \to i$ if j > i except that $1 \to 5, 1 \to 6, 2 \to 4$, and $4 \to 6$; and (iii) the dual of the tournament described in (ii). Let M_1 denote the trivial tournament with just one node and let M_6 denote any one of the three tournaments just described. More generally, if n = 3 or 5 or $n \ge 7$ let M_n denote any tournament obtained from any tournament M_{n-2} by adjoining two nodes p and q such that $p \to q$, $q \to M_{n-2}$, and $M_{n-2} \to p$. It is not difficult to verify that $u(M_n) = n$ for any such tournament M_n . We now show that among all tournaments T_n such that $u(T_n) = n$ these are the minimal tournaments, that is, the tournaments with the minimum number of 3-cycles.

THEOREM 1. Let T_n be a tournament with $n \neq 2, 4$ nodes such that $u(T_n) = n$. Then

$$c(T_n) \ge \begin{cases} (n-1)^2/4 & \text{if } n \text{ is odd} \\ (n^2 - 2n + 8)/4 & \text{if } n \text{ is even,} \end{cases}$$

with equality holding if and only if T_n is one of the tournaments M_n .

PROOF: We may suppose that $n \ge 5$ since the result certainly holds when n = 1 or 3. And, as we saw earlier, we may suppose the score sequence \overline{s} of T_n satisfies conditions (3.1)-(3.3) so that, in particular, $s_1 \ge 1$ and $s_n \le n-2$.

We consider first the case when $2 \le s_1 \le \cdots \le s_n \le n-3$. If n=6 then $\overline{s} = (2,2,2,3,3,3)$ so $c(T_6) = 8$, by (2.1), and T_6 is one of the tournaments M_6 , in view of the earlier observation. So we may now suppose that n=5 or $n \ge 7$. If n is odd then \overline{s} is certainly not the sequence \overline{x} described in

Lemma 1; then in this case it follows from (2.1) and Lemma 2 that

$$\begin{split} c(T_n) &= \binom{n}{3} - f(\overline{s}) \\ &> \binom{n}{3} - f(\overline{x}) \\ &= \binom{n}{3} - \binom{n-1}{3} - (n-1)(n-3)/4 = (n-1)^2/4, \end{split}$$

as required.

If $n \geq 8$ is even then \overline{s} is neither of the sequences \overline{y} or \overline{z} described in Lemma 1, so $f(\overline{s}) < f(\overline{y}) = f(\overline{z})$. Now \overline{s} can be transformed into one of the sequences \overline{y} or \overline{z} by a series of exchanges each of which involves replacing two elements s_k and s_{k+h} by s_k-1 and $s_{k+h}+1$, respectively, where kand h are as defined in the proof of Lemma 1. Each such exchange increases the value of the sum $f(\overline{s})$ by $s_{k+h} - s_k + 1 \geq 1$. Thus it follows from (3.12) that $f(\overline{s}) + 1 \leq f(\overline{y}) = f(\overline{z})$ with equality holding only if \overline{s} can be transformed into \overline{y} or \overline{z} by a single exchange that involves replacing two equal elements s_k and s_{k+h} by $s_k - 1$ and $s_{k+h} + 1$. Now $y_1 = z_1 = 1$ and $y_n = z_n = n - 2$; hence, if \overline{s} can be so transformed, it must be that $k = 1, k + h = n, s_1 = 2$, and $s_n = n - 3$. But we are assuming that $n \geq 8$ here, so s_1 cannot equal s_n and, consequently, \overline{s} cannot be so transformed into \overline{y} or \overline{z} by a single exchange.

We conclude, therefore, that if n is even, $n \ge 8$, and $2 \le s_1 \le s_n \le n-3$, then $f(\overline{s}) + 1 < f(\overline{y}) = f(\overline{z})$. So in this case it follows from (2.1) and Lemma 1 that

$$c(T_n) = \binom{n}{3} + f(\overline{s})$$

$$> 1 + \binom{n}{3} - f(\overline{y})$$

$$= 1 + \binom{n}{3} - \binom{n-1}{3} - n(n-4)/4$$

$$= (n^2 - 2n + 8)/4,$$

as required.

It remains to consider the case when $s_1 = 1$ or $s_n = n-2$. If there is a node p of score 1 let q denote the node that loses to p and let T_{n-2} denote the subtournament determined by the remaining nodes, so that $p \to q$ and $T_{n-2} \to p$. If node q lost to some node w of T_{n-2} then w would cover node p, contrary to our hypothesis; it follows, therefore, that $q \to T_{n-2}$ so q has score n-2. Similarly, if we initially assume there is a node of score n-2 we find that the node that beats this node has score 1. Thus if $s_1 = 1$ or $s_n = n-2$ there exist nodes p and q of score 1 and n-2, respectively, such that T_n has the structure described above; and, in this case, it follows readily that

(4.1)
$$c(T_n) = n - 2 + c(T_{n-2}).$$

The subtournament T_{n-2} is such that $u(T_{n-2}) = n-2$; for if in T_{n-2} some node v covers some node w, then v clearly covers w in T_n as well, contrary to our hypothesis. We now observe that there is no tournament T_4 such that $u(T_4) = 4$ (since there is no tournament T_2 such that $u(T_2) = 2$). Consequently, the only tournaments T_6 such that $u(T_6) = 6$ are those with score sequence (2, 2, 2, 3, 3, 3) that were discussed earlier. So, in completing the argument for the case when $s_1 = 1$ and $s_n = n-2$, we may assume that n = 5 or $n \ge 7$ and that the required result has already been proved when nis replaced by n-2. Thus it follows from (4.1), the fact that $u(T_{n-2}) = n-2$, and the induction hypothesis, that

$$c(T_n) \ge n-2 + \begin{cases} (n-3)^2/4 = (n-1)^2/4 & \text{if } n \text{ is odd} \\ (n-2)(n-4)/4 + 2 = (n^2 - 2n + 8)/4 & \text{if } n \text{ is even,} \end{cases}$$

with equality holding if and only if T_{n-2} is one of the tournaments M_{n-2} ; that is, if and only if T_n is one of the tournaments M_n . This suffices to complete the proof of the theorem.

5. Minimizing Certain Sums. In the next section we shall make use of the following slight extension of a familiar result on the minimum value of a sum $\sum_{1}^{n} {w_i \choose 2}$, subject to the condition that the w_i 's are non-negative integers having a fixed sum.

LEMMA 2. Let J, K, j, and k be given positive integers such that

(5.1) $[J/j] \le \lfloor K/k \rfloor.$

For any integer D such that $0 \le D \le J$, let h(D) denote the minimum value of the sum

$$f(\overline{w}) = \sum_{i=1}^{j+k} \binom{w_i}{2}$$

over all sequences $\overline{w} = (w_1, \ldots, w_{j+k})$ of j+k non-negative integers such that

$$(5.2) w_1 + \dots + w_i = J - D$$

and

(5.3)
$$w_{j+1} + \cdots + w_{j+k} = K + D.$$

Then h(D) is a strictly increasing function of D; furthermore, if \overline{w} satisfies conditions (5.2) and (5.3), then $f(\overline{w}) = h(D)$ if and only if the integers w_1, \ldots, w_j are as nearly equal as possible and the integers w_{j+1}, \ldots, w_{j+k} are as nearly equal as possible.

PROOF: If $1 \le D \le J$ let \overline{w} be a sequence that satisfies (5.2) and (5.3) and is such that $f(\overline{w}) = h(D)$. We may suppose that

$$w_1 \leq \lfloor (J-D)/j \rfloor \leq \lfloor J/j \rfloor - 1$$
 and $w_{j+k} \geq \lfloor (K+D)/k \rfloor \geq \lfloor K/k \rfloor + 1$

so that $w_{j+k} \ge w_1 + 2$, by (5.1). Let \overline{w}' denote the sequence that differs from \overline{w} only in that $w'_1 = w_1 + 1$ and $w'_{j+k} = w_{j+k} - 1$. Then \overline{w}' satisfies (5.2) and (5.3) with D replaced by D-1. Moreover,

$$h(D) = f(\overline{w}) = f(\overline{w}') + w_{j+k} - w_1 - 1 \ge f(\overline{w}') + 1 \ge h(D-1) + 1.$$

This proves the first part of the required conclusion; and the last part follows readily upon considering the subsequences (w_1, \ldots, w_j) and $(w_{j+1}, \ldots, w_{j+k})$ separately.

6. Maximal Tournaments T_n with $u(T_n) = 3$. If $n \ge 3$ let T_X , T_Y , and T_Z denote (possibly empty) tournaments with X, Y and Z nodes such that X + Y + Z = n - 3. Let $Q = Q(T_X, T_Y, T_Z)$ denote the tournament consisting of disjoint copies of T_X, T_Y , and T_Z plus three additional nodes

 $x, y, \text{ and } z \text{ such that } x \to T_X, y \to T_Y, z \to T_Z, \{x\} \cup T_X \to \{y\} \cup T_Y, \{y\} \cup T_Y \to \{z\} \cup T_Z, \text{ and } \{z\} \cup T_Z \to \{x\} \cup T_X.$ The only uncovered nodes in any such tournament Q are the nodes x, y, and z. We now show that among the class of tournaments T_n such that $u(T_n) = 3$, the maximal tournaments – that is, the tournaments with the maximum number of 3-cycles – are a certain subset of these tournaments Q.

THEOREM 2. Let T_n be a tournament with $n \ge 3$ nodes such that $u(T_n) = 3$. Then $c(T_n) \le C(n)$, where

$$24C(n) = \begin{cases} n(n^2 - n + 2) & n = 6m\\ (n - 1)(n^2 - 1) & n = 6m + 1\\ n(n - 2)(n + 1) & n = 6m + 2\\ n^3 - n^2 - n + 9 & \text{if } n = 6m + 3\\ (n + 2)(n^2 - 3n + 4) & n = 6m + 4\\ (n - 1)(n^2 - 1) & n = 6m + 5. \end{cases}$$

Furthermore, $c(T_n) = C(n)$ if and only if T_n is a tournament of the form $Q(R_X, R_Y, R_Z)$ where (i) R_X, R_Y , and R_Z are regular tournaments with X, Y, and Z nodes, (ii) X + Y + Z = n - 3, and (iii) X, Y, and Z differ from each other by at most one.

PROOF: The theorem certainly holds when n = 3 or 4, so we may assume that $n \ge 5$. Let x, y, and z denote the uncovered nodes of the tournament T_n . We may suppose that $x \to y$ and $y \to z$. If $x \to z$ then, since x does not cover z, there must be a fourth node v such that $z \to v$ and $v \to x$; but then none of the nodes x, y, or z would cover v which, since the covering relation is transitive, contradicts the assumption that $u(T_n) = 3$. Consequently, $z \to x$ and the uncovered nodes x, y, and z form a 3-cycle, (x, y, z) say.

Each node $v \notin \{x, y, z\}$ is covered by at least one of the three uncovered nodes x, y, and z. If node x, say, covers such a node v then $x \to v$ and, in addition, $z \to v$; for, $z \to x$ and if $v \to z$, then x would not cover v. Thus each such node v loses to at least two of the nodes x, y, and z, namely, a node that covers v and the immediate predecessor of the covering node in the 3-cycle (x, y, z).

Let T_X denote the (possibly empty) subtournament of T_n determined by those nodes v such that (i) v is covered by x and hence loses both to x and to z, the predecessor of x in the 3-cycle (x, y, z), but (ii) vbeats y, the successor of x in the 3-cycle (x, y, z). Let T_Y and T_Z be similarly defined with respect to nodes y and z and, finally, let T_D denote the subtournament determined by the remaining nodes v that lose to all three nodes x, y, and z. Then X+Y+Z+D = n-3 since each node $v \notin \{x, y, z\}$ belongs to exactly one of these four subtournaments.

If there were nodes $v \in T_X$ and $w \in T_Y$, say, such that $w \to v$, then (w, v, y) would be a 3-cycle containing the arc \overrightarrow{yw} , contrary to the assumption that y covers w. Consequently, $T_X \to T_Y$ and, similarly, $T_Y \to T_Z$ and $T_Z \to T_X$. The foregoing observations imply that T_n contains a subtournament $Q(T_X, T_Y, T_Z)$ where X + Y + Z = n - 3 - D plus the (disjoint) subtournament T_D of nodes that lose to all three of the nodes x, y, and z.

Let s_x, s_y , and s_z denote the scores of the nodes x, y, and z in the tournament T_n and let $s_1, s_2, \ldots, s_{n-3}$ denote the scores of the remaining nodes. It follows from what we have deduced about the structure of T_n that

(6.1)
$$s_x + s_y + s_z = (n - 2 - Z) + (n - 2 - X) + (n - 2 - Y) \\ = 3(n - 2) - (X + Y + Z) = 2n - 3 + D;$$

furthermore,

(6.2)
$$s_1 + \dots + s_{n-3} = \binom{n}{2} - s_x - s_y - s_z = \binom{n-2}{2} - D.$$

It is not difficult to verify that the sequence $\overline{s} = (s_1, \ldots, s_{n-3}, s_x, s_y, s_z)$ satisfies the hypothesis of Lemma 2 with J = (n-2)(n-3)/2, K = 2n-3, j = n-3, and k = 3. Hence we conclude that a lower bound for the sum

$$f(\overline{s}) = \sum_{1}^{n-3} {\binom{s_i}{2}} + {\binom{s_x}{2}} + {\binom{s_y}{2}} + {\binom{s_z}{2}}$$

is obtained by evaluating the right hand side when the integers s_x, s_y, s_z are as nearly equal as possible and the integers s_1, \ldots, s_{n-3} are as nearly equal as possible, subject to conditions (6.1) and (6.2) with D = 0.

More specifically, suppose that n = 6m + 5; then 2n - 3 = 12m + 7 and

$$\binom{s_x}{2} + \binom{s_y}{2} + \binom{s_z}{2} \ge 2\binom{4m+2}{2} + \binom{4m+3}{2} = (n-2)(2n-5)/3,$$

with equality holding if and only if s_x, s_y , and s_z equal 4m+2, 4m+2, and 4m+3 or, equivalently, X, Y, and Z equal 2m, 2m+1, and 2m+1 (in

some order). Furthermore, n-2 = 6m+3 and n-3 = 6m+2, so

$$\sum_{1}^{n-3} \binom{s_i}{2} \ge (3m+1)\binom{3m+1}{2} + (3m+1)\binom{3m+2}{2} = (n-3)^3/8,$$

with equality holding if and only if half the scores s_1, \ldots, s_{n-3} equal 3m + 1and the other half equal 3m + 2. Thus it follows from (2.1) that if n = 6m + 5, then

$$c(T_n) = \binom{n}{3} - f(\overline{s})$$

$$\leq \binom{n}{3} - (n-2)(2n-5)/3 - (n-3)^3/8$$

$$= (n^2 - 1)(n-1)/24 = C(6m+5).$$

Moreover, equality holds if and only if D = 0 and T_n is a tournament of the form $Q(T_X, T_Y, T_Z)$ where X, Y, and Z equal 2m, 2m+1, and 2m+1; and half the nodes in the subtournaments T_X, T_Y , and T_Z have score 3m+1in T_n and the other half have score 3m+2. It is not difficult to see that this last condition on the scores is satisfied if and only if all the subtournaments T_X, T_Y , and T_Z are regular. This suffices to prove the required result when n = 6m + 5, and the same type of argument covers the cases $n \equiv 0, 1$, or $3 \pmod{6}$ as well. (The cases $n \equiv 0$ or $3 \pmod{6}$, are particularly easy.)

If, however, $n \equiv 2$ or 4 (mod 6), then the foregoing argument yields an upper bound for $c(T_n)$ that is not best possible. For, to realize the bound in these cases, the nodes in the subtournaments T_X , T_Y , and T_Z would all have to have the same score and this is not possible here. Thus we need some additional arguments in these two remaining cases.

Suppose that n = 6m + 2 where $m \ge 1$. If $D \ge 1$ for the tournament T_n , then it follows readily from Lemma 2 that

$$\begin{split} f(\overline{s}) &\geq \binom{4m}{2} + 2\binom{4m+1}{2} + \binom{3m-1}{2} + (6m-2)\binom{3m}{2} \\ &= n(n-2)(3n-5)/24 + 1, \end{split}$$

so

$$c(T_n) = \binom{n}{3} - f(\overline{s}) \le n(n-2)(n+1)/24 - 1 = C(6m+2) - 1.$$

Similarly, if n = 6m + 4 and $D \ge 1$, we find that $c(T_n) \le C(6m + 4) - 1$. So we may assume henceforth that n = 6m + 2 or 6m + 4, where $m \ge 1$, and that D = 0, that is, that T_n is a tournament of the form $Q(T_X, T_Y, T_Z)$ where X + Y + Z = n - 3. We next dispose of the possibility that $\max \{X, Y, Z\}$ exceeds 4m, say.

If n is even - in particular, if $n \equiv 2$ or $4 \pmod{6}$ - then

$$\sum_{1}^{n-3} \binom{s_i}{2} \ge (n-3)\binom{(n-2)/2}{2} = (n-2)(n-3)(n-4)/8.$$

Now suppose that n = 6m + 2, where $m \ge 1$, so that X + Y + Z = 6m - 1and $s_x + s_y + s_z = 2n - 3 = 12m + 1$. If max $\{X, Y, Z\} \ge 4m + 1$, then min $\{s_x, s_y, s_z\} \le 2m - 1$ and

$$\binom{s_x}{2} + \binom{s_y}{2} + \binom{s_z}{2} \ge \binom{2m-1}{2} + 2\binom{5m+1}{2} = (9n^2 - 32n + 40)/12,$$

appealing to Lemma 2 again. Hence, in this case,

$$\begin{aligned} c(T_n) &= \binom{n}{3} - f(\overline{s}) \\ &\leq \binom{n}{3} - (n-2)(n-3)(n-4)/8 - (9n^2 - 32n + 40)/12 \\ &= (n^3 - 3n^2 - 6n - 8)/24 \\ &= C(6m + 2) - (n^2 + 2n + 4)/12 < C(6m + 2). \end{aligned}$$

Similarly, we find that if n = 6m + 4, where $m \ge 1$, and $\max \{X, Y, Z\} \ge 4m + 1$, then

$$c(T_n) \le (n^3 - 3n^2 + 10n - 8)/24 = C(6m + 4) - (n - 2)(n - 4)/12 < C(6m + 4).$$

Thus we may further assume, from now on, that $\max \{X, Y, Z\} \le 4m \le 2(n-2)/3$.

It follows readily from the definition of $Q(T_X, T_Y, T_Z)$ that

$$c(T_n) = (X+1)(Y+1)(Z+1) + c(T_X) + c(T_Y) + c(T_Z).$$

We mentioned earlier, in (2.2), that $c(T_N) \leq \gamma(N)$, where $24\gamma(N) = N^3 - N$ or $N^3 - 4N$ according as N is odd or even, with equality holding if and only if T_N is a regular tournament R_N . Consequently,

$$c(T_n) \le \Gamma(X, Y, Z)$$

where

$$\Gamma(X, Y, Z) = (X+1)(Y+1)(Z+1) + \gamma(X) + \gamma(Y) + \gamma(Z),$$

with equality holding if and only if T_n is of the form $Q(R_X, R_Y, R_Z)$. So it remains to determine the values of X, Y, and Z, where X + Y + Z = n - 3, for which the function $\Gamma(X, Y, Z)$ attains its maximum value. We need consider only the cases when $Z \leq Y \leq X \leq 2(n-2)/3$.

Notice that it follows from the definition of the function $\gamma(N)$ that

(6.3)
$$((N-1)^2 - 1)/8 \le \gamma(N) - \gamma(N-1) \le (N^2 - 1)/8$$

for N = 1, 2, ..., with equality holding on the left or the right according as N is even or odd. Now suppose that X > Z + 1. Then

$$\begin{split} \Delta &:= \Gamma(X-1,Y,Z+1) - \Gamma(X,Y,Z) \\ &= (X-Z-1)(Y+1) + \gamma(X-1) - \gamma(X) + \gamma(Z+1) - \gamma(Z) \\ &\geq (X-Z-1)(Y+1) - (X^2 - Z^2)/8 \\ &= (X-Z-1)\{(Y+1) - (X+Z+1)/8\} - Z/4 - 1/8, \end{split}$$

where we have used relation (6.3) in the third line.

If X = Z + 2, then

$$\Delta \ge Y + 1 - (2Z + 3)/8 - Z/4 - 1/8$$
$$= Y - Z/2 + 1/2 \ge Z/2 + 1/2 > 0.$$

Next we combine the inequalities $Z \le Y$, $Y \ge (n-3-X)/2$, and $X \le 2(n-2)/3$, and find that

$$\begin{split} Y+1-(X+Z+1)/8 &\geq (7Y+7-X)/8\\ &\geq \{7(n-1-X)-2X\}/16\\ &\geq \{7(n-1)-6(n-2)\}/16 = (n+5)/16. \end{split}$$

Consequently, if $X \ge Z + 3$, then

$$\begin{split} \Delta &\geq (n+5)/8 - Z/4 - 1/8 \\ &\geq (n+4)/8 - (n-3)/12 = n/24 + 3/4 > 0. \end{split}$$

Thus, if X > Z + 1, then $\Gamma(X - 1, Y, Z + 1) > \Gamma(X, Y, Z)$. This implies that if $n \equiv 2$ or $4 \pmod{6}$ and $\max{\{X, Y, Z\}} \le 2(n-2)/3$, then the maximum value of $\Gamma(X, Y, Z)$ occurs when X, Y, and Z are as nearly equal as possible. It is easy to verify that this maximum value of $\Gamma(X, Y, Z)$ equals C(n) when $n \equiv 2$ or $4 \pmod{6}$ (and, in fact, for all n), so this suffices to complete the proof of the theorem.

Let M_n and Q_n denote any of the minimal and maximal tournaments considered in Theorems 1 and 2, respectively. We remark in closing that if n = 3or $n \ge 5$, then there exists a tournament T_n such that $c(T_n) = c(M_n)$ but for which $u(T_n) = 3$ whereas $u(M_n) = n$. Furthermore, if $n \ge 18$ (and perhaps for some smaller values also), then there exist tournaments T_n such that $c(T_n) = c(Q_n)$ but $u(T_n) = n - 3$ whereas $u(Q_n) = 3$.

This paper was written while the author was visiting the University of Otago with the assistance of a grant from the Natural Sciences and Engineering Research Council of Canada.

References

- J.S. Banks, Sophisticated voting outcomes and agenda control, Soc. Choice Welfare 1 (1985) 295-306.
- [2] M.F. Bridgland and K.B. Reid, Stability of kings in tournaments, Progress in Graph Theory (J.A. Bondy and U.S.R. Murty, eds.), Academic Press, Toronto, 1984, 117-128.
- [3] M. Burzio and D.C. Demaria, Hamiltonian tournaments with the least number of 3-cycles, J. Graph Th. 14 (1990) 663-672.
- [4] M. Carver, Chicken a la king, *Discover* 9 (1988) 92,96.
- [5] G.W. Cox, The uncovered set and the core, Amer. J. Pol. Sci. 31 (1987) 408-422.
- [6] F. Harary, R.Z. Norman, and D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York, 1965.

- [7] J. Huang and W. Li, Toppling kings in a tournament by introducing new kings, J. Graph Th. 11 (1987) 7-11.
- [8] A.G. Landau, On dominance relations and the structure of animal societies, III. The conditions for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.
- [9] S.B. Maurer, The king chicken theorems, Math. Mag. 53 (1980) 67-80.
- [10] N.R. Miller, A new solution set for tournaments and majority voting: Further graph-theoretical approaches to the theory of voting, Amer. J. Pol. Sci. 24 (1980) 68-96. Two corrections, Amer. J. Pol. Sci. 27 (1983) 382-385.
- [11] J.W. Moon, Solution to problem 463, Math. Mag. 35 (1962) 189.
- [12] J.W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.
- [13] J.W. Moon, Irreducible tournaments with the minimum number of 3-cycles, Quaestiones Math. 15 (1992), in press.
- [14] H. Moulin, Choosing from a tournament, Soc. Choice Welfare 3 (1986) 271-291.
- [15] K.B. Reid and L.W. Beineke, Tournaments, Selected Topics in Graph Theory (L.W. Beineke and R.J. Wilson, eds.), Academic Press, London, 1978, 169-204.
- [16] K.A. Shepsle and B.R. Weingast, Uncovered sets and sophisticated voting outcomes with implications for agenda institutions, Amer. J. Pol. Sci. 28 (1984) 49-74.
- [17] D.L. Silverman, Problem 463, Math. Mag. 34 (1961) 425.
- [18] K. Wayland, Getting your chickens elected, Cong. Num. 45 (1984) 311-318.

(Received 14/8/92)

a departamente de la companya de la La companya de la com La companya de la com

and the provide state of the st

a service a service of the service o Service of the service Service of the service

¹ States and the states of the states

 $(x_i) \in \mathcal{X}_i$