J.W. Moon

Department of Mathematics, University of Alberta Edmonton, Alberta, Canada T6G 2G1

Abstract. Let $c\left(T_{n}\right)$ denote the number of 3 -cycles in the tournament T_{n} and let $u\left(T_{n}\right)$ denote the number of nodes i in T_{n} such that each arc oriented towards i belongs to at least one 3 -cycle. We determine the minimum value of $c\left(T_{n}\right)$ when $u\left(T_{n}\right)=n$ and the maximum value of $c\left(T_{n}\right)$ when $u\left(T_{n}\right)=3$.

1. Introduction. A tournament T_{n} consists of a set of n nodes $1,2, \ldots, n$ such that each pair of distinct nodes i and j is joined by exactly one of the arcs $\overrightarrow{i j}$ or $\overrightarrow{j i}$. If the arc $\overrightarrow{i j}$ is in T_{n} we say that i beats j or that j loses to i and write $i \rightarrow j$. If each node of a subtournament A beats each node of a subtournament B we write $A \rightarrow B$. For definitions not given here or for additional material on tournaments, see [12] or [15].

Node i is said to cover node j if node i beats every node that node j beats or, equivalently, if $i \rightarrow j$ and the arc $\overrightarrow{i j}$ belongs to no 3 -cycle. It is not difficult to see that the covering relation thus defined is transitive [10; p. 72]. So, as pointed out in [10], every finite tournament has at least one uncovered node (a result originally proved by another argument in [8; p. 148]). In fact, every strong tournament T_{n} with $n \geq 3$ nodes has at least three uncovered nodes (cf. [17], [11], [15; p. 178], [9] or [10]). We observe that node i is an uncovered node if and only if every arc oriented towards i belongs to at least one 3 -cycle or, equivalently, if for any other node j there exists a path from i to j of length at most two; nodes with this property have been called kings in several recent papers ($c f$. [9], [2], [18], [7] or [4]).

Miller [10] has shown that if the tournament T_{n} represents majority preferences between a set of n proposals, then various voting procedures will always select a proposal from the set of uncovered nodes of T_{n} (see also [16], [1], [14], or [5]) for additional material involving uncovered nodes in this context). Let $u\left(T_{n}\right)$ denote the number of uncovered nodes in the tournament T_{n}. Miller [10; p. 78] remarked that the size of $u\left(T_{n}\right)$, in a strong tournament T_{n}, "depends largely on the degree of intransitivity within $\left[T_{n}\right]$, which in turn may be measured by the proportion of all triples of [nodes in T_{n}] that are cyclic \cdots. With some
complications, the pattern is this: as intransitivity \cdots declines, $\left[u\left(T_{n}\right)\right]$ approaches or equals 3 ; as it increases, $\left[u\left(T_{n}\right)\right]$ approaches or equals $[n]$." Our main object here is to determine the minimum number of 3 -cycles possible in a tournament T_{n} when $u\left(T_{n}\right)=n$ and the maximum number of 3-cycles possible when $u\left(T_{n}\right)=3$.
2. Preliminary Remarks. The score s_{i} of a node i in a tournament T_{n} is the number of nodes beaten by i and the score sequence of T_{n} is the sequence $\bar{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right) ;$ the sum of the scores is clearly $n(n-1) / 2$. We let R_{n} denote any regular tournament with n nodes, that is, a tournament in which $s_{i}=(n-1) / 2$ for all nodes if n is odd, or $s_{i}=n / 2-1$ for half the nodes and $n / 2$ for the other half if n is even.

It is well-known and easy to see that the number $c\left(T_{n}\right)$ of 3 -cycles in a tournament T_{n} with score sequence \bar{s} is given by the formula

$$
\begin{equation*}
c\left(T_{n}\right)=\binom{n}{3}-\sum_{1}^{n}\binom{s_{i}}{2} ; \tag{2.1}
\end{equation*}
$$

from this it follows readily that

$$
c\left(T_{n}\right) \leq \gamma(n):=\left\{\begin{array}{lll}
\left(n^{3}-n\right) / 24 & \text { if } n & \text { is odd } \tag{2.2}\\
\left(n^{3}-4 n\right) / 24 & \text { if } n & \text { is even }
\end{array}\right.
$$

with equality holding if and only if T_{n} is a regular tournament R_{n} (see, e.g., [12; p. 9] or [15; p. 186]). Landau [8] showed that every node of maximum score in a tournament T_{n} is an uncovered node. Miller [10; p. 80] pointed out that this and result (2.2) imply that if $c\left(T_{n}\right)=\gamma(n)$ then $u\left(T_{n}\right)=n$ if n is odd, and $n / 2 \leq u\left(T_{n}\right) \leq n$ if n is even. When $n=2 m$ the upper bound here can be realized for all $m \geq 3$ and the lower bound can be realized if and only if m is odd; if $n=4 m$ then tournaments T_{n} such that $c\left(T_{n}\right)=\gamma(n)$ and $u\left(T_{n}\right)=n / 2+1$ exist for all $m \geq 1$. In Section 4 we show that if $u\left(T_{n}\right)=n$ then the minimum possible value of $c\left(T_{n}\right)$ is a quadratic in n, with leading term $n^{2} / 4$, and we determine the minimal tournaments.

In the other direction, if T_{n} is a strong tournament with $n \geq 3$ nodes, then $c\left(T_{n}\right) \geq n-2 \quad[6 ;$ p. 306]. Burzio and Demaria [3] (see also [13]) have recently characterized the tournaments for which equality holds here and, as it turns out, all these tournaments have exactly three uncovered nodes. In Section 5 we show that if $u\left(T_{n}\right)=3$, then the maximum possible value of $c\left(T_{n}\right)$ is a cubic in n, whose first two terms are $\left(n^{3}-n^{2}\right) / 24$, and we characterize the maximal tournaments.
3. An Inequality. Let $\bar{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be the score sequence of a tournament T_{n} such that $u\left(T_{n}\right)=n$. We may suppose the nodes are labelled so that

$$
\begin{equation*}
s_{1} \leq s_{2} \leq \cdots \leq s_{n} \tag{3.1}
\end{equation*}
$$

Let S_{j} and e_{j} be such that $S_{j}=s_{1}+\cdots+s_{j}=j(j-1) / 2+e_{j}$ for $1 \leq j \leq n$; then $e_{j} \geq 0$ since there are $j(j-1) / 2$ arcs joining any j nodes. Suppose that $j+e_{j} \leq n-1$ and that $e_{j} \leq j-1$ for some j. Then there would be a node $p \in\{j+1, \ldots, n\}$ that beats all nodes in $\{1, \ldots, j\}$ and a node $q \in\{1, \ldots, j\}$ that loses to all nodes in $\{j+1, \ldots, n\}$; but then node p would cover node q, contrary to the assumption that $u\left(T_{n}\right)=n$. Consequently, if $u\left(T_{n}\right)=n$, then

$$
\begin{equation*}
S_{j} \geq\binom{ j}{2}+\min \{j, n-j\}=\binom{j+1}{2}+\min \{0, n-2 j\} \tag{3.2}
\end{equation*}
$$

for $1 \leq j \leq n-1, \quad$ and

$$
\begin{equation*}
S_{n}=\binom{n}{2} \tag{3.3}
\end{equation*}
$$

We now derive an inequality involving such sequences \bar{s} that we shall use in the next section to determine the minimum value of $c\left(T_{n}\right)$ if $u\left(T_{n}\right)=n$.

Lemma 1. Let $\bar{s}=\left(s_{1}, \ldots, s_{n}\right)$ denote a sequence of $n \geq 5$ integers satisfying conditions (3.1)-(3.3). Let $\bar{x}=(1,2, \ldots, m-1, m, m, m, m+1, \ldots, n-2)$ if $n=2 m+1 \geq 5$ and let $\bar{y}=(1,2, \ldots, m-1, m, m, m, m, m+2, \ldots, n-2)$ and $\bar{z}=(1,2, \ldots, m-3, m-1, m-1, m-1, m-1, m, \ldots, n-2) \quad$ if $\quad n=2 m \geq 8$; finally, let $\bar{y}=(1,2,3,3,3,3)$ and $\bar{z}=(2,2,2,2,3,4)$ if $n=6$. Then

$$
f(\bar{s}):=\sum_{1}^{n}\binom{s_{i}}{2} \leq\binom{ n-1}{3}+ \begin{cases}(n-1)(n-3) / 4 & \text { if } n=2 m+1 \tag{3.4}\\ n(n-4) / 4 & \text { if } n=2 m\end{cases}
$$

with equality holding if and only if $\bar{s}=\bar{x}$ when n is odd or $\bar{s}=\bar{y}$ or \bar{z} when n is even.

Proof: It is easy to verify that equality holds in (3.4) when $\bar{s}=\bar{x}, \bar{y}$, or \bar{z}. Let us assume that \bar{s} is a maximal sequence, i.e., a sequence for which $f(\bar{s})$ assumes its maximum value over the set of all sequences satisfying (3.1)-(3.3). Suppose there
exists a least integer k such that strict inequality holds in (3.2) when $j=k$. We assume, initially, that $1 \leq k \leq m$ so that

$$
\begin{equation*}
S_{k}=\binom{k+1}{2}+\alpha \tag{3.5}
\end{equation*}
$$

where $\alpha \geq 1$. Then $s_{1}=1+\alpha$ if $k=1$; and if $k \geq 2$ then it follows from the definition of k and the relation $S_{j}=S_{j-1}+s_{j}$ that $s_{j}=j$ for $1 \leq j \leq k-1$, and that

$$
\begin{equation*}
s_{k}=k+\alpha>s_{k-1} \tag{3.6}
\end{equation*}
$$

Let h denote the largest integer such that $s_{k+1}=\cdots=s_{k+h}$; then

$$
\begin{equation*}
s_{k+h}<s_{k+h+1} \tag{3.7}
\end{equation*}
$$

if $k+h<n$. We now show that - apart from one exceptional case -

$$
\begin{equation*}
S_{k+u}>\binom{k+u+1}{2}+\min \{0, n-2 k-2 u\} \tag{3.8}
\end{equation*}
$$

for $1 \leq u \leq h-1$, assuming that $h \geq 2$.
We observe that if $s_{k+1}=\sigma$, then

$$
S_{k+u}=S_{k}+u \sigma=\binom{k+1}{2}+\alpha+u \sigma
$$

so (3.8) holds if and only if

$$
\begin{equation*}
u\{\sigma-k-(u+1) / 2\}+\alpha+\max \{0,2 k+2 u-n\}>0 \tag{3.9}
\end{equation*}
$$

It follows from (3.2), (3.5), and the definition of h that

$$
\begin{aligned}
w \sigma=S_{k+w}-S_{k} & \geq\binom{ k+w+1}{2}+\min \{0, n-2 k-2 w\}-\binom{k+1}{2}-\alpha \\
& =w\{k+(w+1) / 2\}-\alpha-\max \{0,2 k+2 w-n\}
\end{aligned}
$$

for $1 \leq w \leq h$. So, in particular,

$$
\begin{equation*}
\sigma \geq k+(h+1) / 2-\alpha / h-h^{-1} \cdot \max \{0,2 k+2 h-n\} . \tag{3.10}
\end{equation*}
$$

Moreover, if $m+1 \leq k+h$ and $v:=m+1-k$, then

$$
\begin{equation*}
\sigma \geq k+(v+1) / 2-v^{-1} \cdot(2 m+2-n+\alpha) . \tag{3.11}
\end{equation*}
$$

We now apply these estimates in (3.9), considering three cases separately.
Case 1: $\boldsymbol{k}+\boldsymbol{u}<\boldsymbol{k}+\boldsymbol{h} \leq \boldsymbol{m}$. Let L denote the left hand side of inequality (3.9). In this case it follows from (3.10) that

$$
L \geq u\{(h-u) / 2-\alpha / h\}+\alpha \geq u / 2+\alpha / h>0,
$$

as required.
Case 2: $\boldsymbol{k}+\boldsymbol{u} \leq \boldsymbol{m}<\boldsymbol{k}+\boldsymbol{v}=\boldsymbol{m}+\mathbf{1} \leq \boldsymbol{k}+\boldsymbol{h}$. Notice that $v \geq u+1 \geq 2$ here. In this case it follows from (3.11) that

$$
L \geq u\left\{(v-u) / 2-v^{-1} \cdot(2 m+2-n+\alpha)\right\}+\alpha \geq u / 2+\alpha / v-u(2 m+2-n) / v .
$$

If $n=2 m+1$, then

$$
L \geq u / 2+\alpha / v-u / v \geq \alpha / v>0
$$

as required. If $n=2 m$ and $v \geq 4$, which is certainly the case if $u \geq 3$, then

$$
L \geq u / 2+\alpha / v-2 u / v \geq \alpha / v>0
$$

Moreover, it follows from the inequality $\sigma=s_{k+1} \geq s_{k}=k+\alpha$ that

$$
L \geq u\{\alpha-(u+1) / 2\}+\alpha=(u+1)(\alpha-u / 2)
$$

so $L>0$ if $u=1$ or $u=2$ and $\alpha \geq 2$. Thus we find that $L>0$ here except when $n=2 m, \alpha=1, u=2, v=3$, and $s_{k+1}=k+1$; in this exceptional case $k=m+1-v=m-2$ and $\left(s_{1}, \ldots, s_{m+1}\right)=$ $(1,2, \ldots, m-3, m-1, m-1, m-1, m-1)$.

Case 3: $\boldsymbol{m}+\mathbf{1} \leq \boldsymbol{k}+\boldsymbol{u}<\boldsymbol{k}+\boldsymbol{h}$. In this case it follows from (3.10) that

$$
\begin{aligned}
L & \geq u\{(h-u) / 2-(\alpha+2 k-n) / h\}+(\alpha+2 k-n) \\
& =h^{-1}(h-u)\{\alpha+2 u+2 k-n+u(h-4) / 2\} \\
& \geq h^{-1}(h-u)\{\alpha+1+u(h-4) / 2\},
\end{aligned}
$$

so L is certainly positive if $h \geq 4 ;$ and if $2 \leq h \leq 3$, then

$$
\begin{aligned}
L & \geq h^{-1}(h-u)\{\alpha+1+(h-1)(h-4) / 2\} \\
& =h^{-1}(h-u)\{\alpha+(h-2)(h-3) / 2\} \geq \alpha / h>0
\end{aligned}
$$

as required. Thus it follows that inequalities (3.9) and (3.8) hold apart from the one exceptional case.

Suppose we are not in this exceptional case and let $\bar{r}=\left(r_{1}, \ldots, r_{n}\right)$ denote the integer sequence in which $r_{i}=s_{i}$ except that $r_{k}=s_{k}-1$ and $r_{k+h}=$ $s_{k+h}+1$. Then \bar{r} clearly satisfies condition (3.3); and \bar{r} also satisfies conditions (3.1) and (3.2) in view of inequalities (3.6) and (3.7) and relations (3.5) and (3.8), respectively. But

$$
\begin{align*}
f(\bar{r})-f(\bar{s}) & =\binom{s_{k+h}+1}{2}-\binom{s_{k+h}}{2}+\binom{s_{k}-1}{2}-\binom{s_{k}}{2} \tag{3.12}\\
& =s_{k+h}-s_{k}+1 \geq 1
\end{align*}
$$

contrary to the assumption that \bar{s} is a maximal sequence.
It follows, therefore, that if \bar{s} is a maximal sequence then either strict equality holds in (3.2) for $1 \leq j \leq m$ and

$$
\begin{equation*}
\left(s_{1}, \ldots, s_{m}\right)=(1,2, \ldots, m) \tag{3.13}
\end{equation*}
$$

or \bar{s} involves the exceptional case encountered earlier and $n=2 m$ and

$$
\begin{equation*}
\left(s_{1}, \ldots, s_{m+1}\right)=(1,2, \ldots, m-3, m-1, m-1, m-1, m-1) \tag{3.14}
\end{equation*}
$$

(This last sequence is to be interpreted as $(2,2,2,2)$ if $m=3$.) And, similarly, it follows by duality that if \bar{s} is a maximal sequence, then either $\left(s_{n-m}, \ldots, s_{n}\right)=$ $(n-m-1, n-m, \ldots, n-2)$ - that is,

$$
\begin{equation*}
\left(s_{m+2}, \ldots, s_{n}\right)=(m, m+1, \ldots, n-2) \tag{3.15}
\end{equation*}
$$

if $n=2 m+1$ or

$$
\begin{equation*}
\left(s_{m+1}, \ldots, s_{n}\right)=(m-1, m, \ldots, n-2) \tag{3.16}
\end{equation*}
$$

if $n=2 m$ - or $n=2 m$ and

$$
\begin{equation*}
\left(s_{m-1}, \ldots, s_{n}\right)=(m, m, m, m, m+2, \ldots, n-2) \tag{3.17}
\end{equation*}
$$

If $n=2 m+1$ and we combine (3.13) and (3.15), we find that s_{m+1} must equal m, in view of (3.1), so $\bar{s}=\bar{x}$. If $n=2 m$ and we combine the only compatible alternatives, namely, (3.13) and (3.17) or (3.14) and (3.16), we find that $\bar{s}=\bar{y}$ or \bar{z}. This suffices to complete the proof of the lemma.
4. Minimal Tournaments $\boldsymbol{T}_{\mathbf{w}}$ with $\boldsymbol{u}\left(\boldsymbol{T}_{\boldsymbol{m}}\right)=\boldsymbol{n}$. If $u\left(T_{6}\right)=6$ for a tournament T_{6}, then T_{6} must have score sequence ($2,2,2,3,3,3$); this follows from an argument that will be given later. There are five non-isomorphic tournaments with this score sequence (cf. [12; p. 95]) and of these only the following three have the property that $u\left(T_{6}\right)=6$: (i) the tournament T_{6} consisting of two disjoint 3-cycles (A, B, C) and (c, b, a) such that $(A, B, C) \rightarrow(c, b, a)$ except that $a \rightarrow A, b \rightarrow B$, and $c \rightarrow C$; (ii) the tournament T_{6} with nodes $1,2, \ldots, 6$ in which $j \rightarrow i$ if $j>i$ except that $1 \rightarrow 5,1 \rightarrow 6,2 \rightarrow 4$, and $4 \rightarrow 6$; and (iii) the dual of the tournament described in (ii). Let M_{1} denote the trivial tournament with just one node and let M_{6} denote any one of the three tournaments just described. More generally, if $n=3$ or 5 or $n \geq 7$ let M_{n} denote any tournament obtained from any tournament $\quad M_{n-2}$ by adjoining two nodes p and q such that $p \rightarrow q, q \rightarrow M_{n-2}$, and $M_{n-2} \rightarrow p$. It is not difficult to verify that $u\left(M_{n}\right)=n$ for any such tournament M_{n}. We now show that among all tournaments T_{n} such that $u\left(T_{n}\right)=n$ these are the minimal tournaments, that is, the tournaments with the minimum number of 3 -cycles.

Theorem 1. Let T_{n} be a tournament with $n \neq 2,4$ nodes such that $u\left(T_{n}\right)=$ n. Then

$$
c\left(T_{n}\right) \geq \begin{cases}(n-1)^{2} / 4 & \text { if } n \text { is odd } \\ \left(n^{2}-2 n+8\right) / 4 & \text { if } n \text { is even },\end{cases}
$$

with equality holding if and only if T_{n} is one of the tournaments M_{n}.

Proof: We may suppose that $n \geq 5$ since the result certainly holds when $n=1$ or 3. And, as we saw earlier, we may suppose the score sequence \bar{s} of T_{n} satisfies conditions (3.1)-(3.3) so that, in particular, $s_{1} \geq 1$ and $s_{n} \leq n-2$.

We consider first the case when $2 \leq s_{1} \leq \cdots \leq s_{n} \leq n-3$. If $n=6$ then $\bar{s}=(2,2,2,3,3,3)$ so $c\left(T_{6}\right)=8, \quad$ by (2.1), and T_{6} is one of the tournaments M_{6}, in view of the earlier observation. So we may now suppose that $n=5$ or $n \geq 7$. If n is odd then \bar{s} is certainly not the sequence \bar{x} described in

Lemma 1; then in this case it follows from (2.1) and Lemma 2 that

$$
\begin{aligned}
c\left(T_{n}\right) & =\binom{n}{3}-f(\bar{s}) \\
& >\binom{n}{3}-f(\bar{x}) \\
& =\binom{n}{3}-\binom{n-1}{3}-(n-1)(n-3) / 4=(n-1)^{2} / 4
\end{aligned}
$$

as required.
If $n \geq 8$ is even then \bar{s} is neither of the sequences \bar{y} or \bar{z} described in Lemma 1, so $f(\bar{s})<f(\bar{y})=f(\bar{z})$. Now \bar{s} can be transformed into one of the sequences \bar{y} or \bar{z} by a series of exchanges each of which involves replacing two elements s_{k} and s_{k+h} by $s_{k}-1$ and $s_{k+h}+1$, respectively, where k and h are as defined in the proof of Lemma 1. Each such exchange increases the value of the sum $f(\bar{s})$ by $s_{k+h}-s_{k}+1 \geq 1$. Thus it follows from (3.12) that $f(\bar{s})+1 \leq f(\bar{y})=f(\bar{z})$ with equality holding only if \bar{s} can be transformed into \bar{y} or \bar{z} by a single exchange that involves replacing two equal elements s_{k} and s_{k+h} by $s_{k}-1$ and $s_{k+h}+1$. Now $y_{1}=z_{1}=1$ and $y_{n}=z_{n}=n-2$; hence, if \bar{s} can be so transformed, it must be that $k=1, k+h=n, s_{1}=2$, and $s_{n}=n-3$. But we are assuming that $n \geq 8$ here, so s_{1} cannot equal s_{n} and, consequently, \bar{s} cannot be so transformed into \bar{y} or \bar{z} by a single exchange.

We conclude, therefore, that if n is even, $n \geq 8$, and $2 \leq s_{1} \leq s_{n} \leq$ $n-3$, then $f(\bar{s})+1<f(\bar{y})=f(\bar{z})$. So in this case it follows from (2.1) and Lemma 1 that

$$
\begin{aligned}
c\left(T_{n}\right) & =\binom{n}{3}+f(\bar{s}) \\
& >1+\binom{n}{3}-f(\bar{y}) \\
& =1+\binom{n}{3}-\binom{n-1}{3}-n(n-4) / 4 \\
& =\left(n^{2}-2 n+8\right) / 4,
\end{aligned}
$$

as required.
It remains to consider the case when $s_{1}=1$ or $s_{n}=n-2$. If there is a node p of score 1 let q denote the node that loses to p and let T_{n-2} denote the subtournament determined by the remaining nodes, so that $p \rightarrow q$
and $T_{n-2} \rightarrow p$. If node q lost to some node w of T_{n-2} then w would cover node p, contrary to our hypothesis; it follows, therefore, that $q \rightarrow T_{n-2}$ so q has score $n-2$. Similarly, if we initially assume there is a node of score $n-2$ we find that the node that beats this node has score 1 . Thus if $s_{1}=1$ or $s_{n}=n-2$ there exist nodes p and q of score 1 and $n-2$, respectively, such that T_{n} has the structure described above; and, in this case, it follows readily that

$$
\begin{equation*}
c\left(T_{n}\right)=n-2+c\left(T_{n-2}\right) . \tag{4.1}
\end{equation*}
$$

The subtournament T_{n-2} is such that $u\left(T_{n-2}\right)=n-2$; for if in T_{n-2} some node v covers some node w, then v clearly covers w in T_{n} as well, contrary to our hypothesis. We now observe that there is no tournament T_{4} such that $u\left(T_{4}\right)=4$ (since there is no tournament T_{2} such that $u\left(T_{2}\right)=2$). Consequently, the only tournaments T_{6} such that $u\left(T_{6}\right)=6$ are those with score sequence $(2,2,2,3,3,3)$ that were discussed earlier. So, in completing the argument for the case when $s_{1}=1$ and $s_{n}=n-2$, we may assume that $n=5$ or $n \geq 7$ and that the required result has already been proved when n is replaced by $n-2$. Thus it follows from (4.1), the fact that $u\left(T_{n-2}\right)=n-2$, and the induction hypothesis, that

$$
c\left(T_{n}\right) \geq n-2+\left\{\begin{aligned}
(n-3)^{2} / 4 & =(n-1)^{2} / 4 & & \text { if } \quad n \quad \text { is odd } \\
(n-2)(n-4) / 4+2 & =\left(n^{2}-2 n+8\right) / 4 & & \text { if } n \quad \text { is even }
\end{aligned}\right.
$$

with equality holding if and only if T_{n-2} is one of the tournaments M_{n-2}; that is, if and only if T_{n} is one of the tournaments M_{n}. This suffices to complete the proof of the theorem.
5. Minimizing Certain Sums. In the next section we shall make use of the following slight extension of a familiar result on the minimum value of a sum $\sum_{1}^{n}\binom{w_{i}}{2}$, subject to the condition that the w_{i} 's are non-negative integers having a fixed sum.

Lemma 2. Let J, K, j, and k be given positive integers such that

$$
\begin{equation*}
\lceil J / j\rceil \leq\lfloor K / k\rfloor . \tag{5.1}
\end{equation*}
$$

For any integer D such that $0 \leq D \leq J$, let $h(D)$ denote the minimum value of the sum

$$
f(\bar{w})=\sum_{1}^{j+k}\binom{w_{i}}{2}
$$

over all sequences $\bar{w}=\left(w_{1}, \ldots, w_{j+k}\right)$ of $j+k$ non-negative integers such that

$$
\begin{equation*}
w_{1}+\cdots+w_{j}=J-D \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{j+1}+\cdots+w_{j+k}=K+D \tag{5.3}
\end{equation*}
$$

Then $h(D)$ is a strictly increasing function of D; furthermore, if \bar{w} satisfies conditions (5.2) and (5.3), then $f(\bar{w})=h(D)$ if and only if the integers w_{1}, \ldots, w_{j} are as nearly equal as possible and the integers w_{j+1}, \ldots, w_{j+k} are as nearly equal as possible.

Proof: If $1 \leq D \leq J$ let \bar{w} be a sequence that satisfies (5.2) and (5.3) and is such that $f(\bar{w})=h(D)$. We may suppose that

$$
w_{1} \leq\lfloor(J-D) / j\rfloor \leq\lceil J / j\rceil-1 \quad \text { and } \quad w_{j+k} \geq\lceil(K+D) / k\rceil \geq\lfloor K / k\rfloor+1
$$

so that $w_{j+k} \geq w_{1}+2$, by (5.1). Let \bar{w}^{\prime} denote the sequence that differs from \bar{w} only in that $w_{1}^{\prime}=w_{1}+1$ and $w_{j+k}^{\prime}=w_{j+k}-1$. Then \bar{w}^{\prime} satisfies (5.2) and (5.3) with D replaced by $D-1$. Moreover,

$$
h(D)=f(\bar{w})=f\left(\bar{w}^{\prime}\right)+w_{j+k}-w_{1}-1 \geq f\left(\bar{w}^{\prime}\right)+1 \geq h(D-1)+1 .
$$

This proves the first part of the required conclusion; and the last part follows readily upon considering the subsequences $\left(w_{1}, \ldots, w_{j}\right)$ and $\left(w_{j+1}, \ldots, w_{j+k}\right)$ separately.
6. Maximal Tournaments $\boldsymbol{T}_{\boldsymbol{m}}$ with $\boldsymbol{u}\left(\boldsymbol{T}_{\boldsymbol{m}}\right)=\mathbf{3}$. If $n \geq 3$ let T_{X}, T_{Y}, and T_{Z} denote (possibly empty) tournaments with X, Y and Z nodes such that $X+Y+Z=n-3$. Let $Q=Q\left(T_{X}, T_{Y}, T_{Z}\right)$ denote the tournament consisting of disjoint copies of T_{X}, T_{Y}, and T_{Z} plus three additional nodes
x, y, and z such that $x \rightarrow T_{X}, y \rightarrow T_{Y}, z \rightarrow T_{Z},\{x\} \cup T_{X} \rightarrow\{y\} \cup T_{Y}$, $\{y\} \cup T_{Y} \rightarrow\{z\} \cup T_{Z}$, and $\{z\} \cup T_{Z} \rightarrow\{x\} \cup T_{X}$. The only uncovered nodes in any such tournament Q are the nodes x, y, and z. We now show that among the class of tournaments T_{n} such that $u\left(T_{n}\right)=3$, the maximal tournaments - that is, the tournaments with the maximum number of 3 -cycles - are a certain subset of these tournaments Q.

Theorem 2. Let T_{n} be a tournament with $n \geq 3$ nodes such that $u\left(T_{n}\right)=3$. Then $c\left(T_{n}\right) \leq C(n)$, where

$$
24 C(n)= \begin{cases}n\left(n^{2}-n+2\right) & n=6 m \\ (n-1)\left(n^{2}-1\right) & n=6 m+1 \\ n(n-2)(n+1) & n=6 m+2 \\ n^{3}-n^{2}-n+9 & \text { if } \\ (n+2)\left(n^{2}-3 n+4\right) & n=6 m+3 \\ (n-1)\left(n^{2}-1\right) & n=6 m+5\end{cases}
$$

Furthermore, $c\left(T_{n}\right)=C(n)$ if and only if T_{n} is a tournament of the form $Q\left(R_{X}, R_{Y}, R_{Z}\right)$ where (i) R_{X}, R_{Y}, and R_{Z} are regular tournaments with X, Y, and Z nodes, (ii) $X+Y+Z=n-3$, and (iii) X, Y, and Z differ from each other by at most one.

Proof: The theorem certainly holds when $n=3$ or 4 , so we may assume that $n \geq 5$. Let x, y, and z denote the uncovered nodes of the tournament T_{n}. We may suppose that $x \rightarrow y$ and $y \rightarrow z$. If $x \rightarrow z$ then, since x does not cover z, there must be a fourth node v such that $z \rightarrow v$ and $v \rightarrow x$; but then none of the nodes x, y, or z would cover v which, since the covering relation is transitive, contradicts the assumption that $u\left(T_{n}\right)=3$. Consequently, $z \rightarrow x$ and the uncovered nodes x, y, and z form a 3 -cycle, (x, y, z) say.

Each node $v \notin\{x, y, z\}$ is covered by at least one of the three uncovered nodes x, y, and z. If node x, say, covers such a node v then $x \rightarrow v$ and, in addition, $z \rightarrow v ;$ for, $z \rightarrow x$ and if $v \rightarrow z$, then x would not cover v. Thus each such node v loses to at least two of the nodes x, y, and z, namely, a node that covers v and the immediate predecessor of the covering node in the 3 -cycle (x, y, z).

Let T_{X} denote the (possibly empty) subtournament of T_{n} determined by those nodes v such that (i) v is covered by x and hence loses both to x and to z, the predecessor of x in the 3 -cycle (x, y, z), but (ii) v beats y, the successor of x in the 3-cycle (x, y, z). Let T_{Y} and T_{Z} be
similarly defined with respect to nodes y and z and, finally, let T_{D} denote the subtournament determined by the remaining nodes v that lose to all three nodes x, y, and z. Then $X+Y+Z+D=n-3$ since each node $v \notin\{x, y, z\}$ belongs to exactly one of these four subtournaments.

If there were nodes $v \in T_{X}$ and $w \in T_{Y}$, say, such that $w \rightarrow v$, then (w, v, y) would be a 3 -cycle containing the arc $\overrightarrow{y w}$, contrary to the assumption that y covers w. Consequently, $T_{X} \rightarrow T_{Y}$ and, similarly, $T_{Y} \rightarrow T_{Z}$ and $T_{Z} \rightarrow T_{X}$. The foregoing observations imply that T_{n} contains a subtournament $Q\left(T_{X}, T_{Y}, T_{Z}\right)$ where $X+Y+Z=n-3-D$ plus the (disjoint) subtournament T_{D} of nodes that lose to all three of the nodes x, y, and z.

Let s_{x}, s_{y}, and s_{z} denote the scores of the nodes x, y, and z in the tournament T_{n} and let $s_{1}, s_{2}, \ldots, s_{n-3}$ denote the scores of the remaining nodes. It follows from what we have deduced about the structure of T_{n} that

$$
\begin{align*}
s_{x}+s_{y}+s_{z} & =(n-2-Z)+(n-2-X)+(n-2-Y) \tag{6.1}\\
& =3(n-2)-(X+Y+Z)=2 n-3+D ;
\end{align*}
$$

furthermore,

$$
\begin{equation*}
s_{1}+\cdots+s_{n-3}=\binom{n}{2}-s_{x}-s_{y}-s_{z}=\binom{n-2}{2}-D . \tag{6.2}
\end{equation*}
$$

It is not difficult to verify that the sequence $\bar{s}=\left(s_{1}, \ldots, s_{n-3}, s_{x}, s_{y}, s_{z}\right)$ satisfies the hypothesis of Lemma 2 with $J=(n-2)(n-3) / 2, \quad K=2 n-3, \quad j=n-3$, and $k=3$. Hence we conclude that a lower bound for the sum

$$
f(\bar{s})=\sum_{1}^{n-3}\binom{s_{i}}{2}+\binom{s_{x}}{2}+\binom{s_{y}}{2}+\binom{s_{z}}{2}
$$

is obtained by evaluating the right hand side when the integers s_{x}, s_{y}, s_{z} are as nearly equal as possible and the integers s_{1}, \ldots, s_{n-3} are as nearly equal as possible, subject to conditions (6.1) and (6.2) with $D=0$.

More specifically, suppose that $n=6 m+5$; then $2 n-3=12 m+7$ and

$$
\binom{s_{x}}{2}+\binom{s_{y}}{2}+\binom{s_{z}}{2} \geq 2\binom{4 m+2}{2}+\binom{4 m+3}{2}=(n-2)(2 n-5) / 3
$$

with equality holding if and only if s_{x}, s_{y}, and s_{z} equal $4 m+2,4 m+2$, and $4 m+3$ or, equivalently, X, Y, and Z equal $2 m, 2 m+1$, and $2 m+1$ (in
some order). Furthermore, $n-2=6 m+3$ and $n-3=6 m+2$, so

$$
\sum_{1}^{n-3}\binom{s_{i}}{2} \geq(3 m+1)\binom{3 m+1}{2}+(3 m+1)\binom{3 m+2}{2}=(n-3)^{3} / 8
$$

with equality holding if and only if half the scores s_{1}, \ldots, s_{n-3} equal $3 m+1$ and the other half equal $3 m+2$. Thus it follows from (2.1) that if $n=6 m+5$, then

$$
\begin{aligned}
c\left(T_{n}\right) & =\binom{n}{3}-f(\bar{s}) \\
& \leq\binom{ n}{3}-(n-2)(2 n-5) / 3-(n-3)^{3} / 8 \\
& =\left(n^{2}-1\right)(n-1) / 24=C(6 m+5) .
\end{aligned}
$$

Moreover, equality holds if and only if $D=0$ and T_{n} is a tournament of the form $Q\left(T_{X}, T_{Y}, T_{Z}\right)$ where X, Y, and Z equal $2 m, 2 m+1$, and $2 m+1$; and half the nodes in the subtournaments T_{X}, T_{Y}, and T_{Z} have score $3 m+1$ in T_{n} and the other half have score $3 m+2$. It is not difficult to see that this last condition on the scores is satisfied if and only if all the subtournaments T_{X}, T_{Y}, and T_{Z} are regular. This suffices to prove the required result when $n=6 m+5$, and the same type of argument covers the cases $n \equiv 0,1$, or $3(\bmod 6)$ as well. (The cases $n \equiv 0$ or $3(\bmod 6)$, are particularly easy.)

If, however, $n \equiv 2$ or $4(\bmod 6)$, then the foregoing argument yields an upper bound for $c\left(T_{n}\right)$ that is not best possible. For, to realize the bound in these cases, the nodes in the subtournaments T_{X}, T_{Y}, and T_{Z} would all have to have the same score and this is not possible here. Thus we need some additional arguments in these two remaining cases.

Suppose that $n=6 m+2$ where $m \geq 1$. If $D \geq 1$ for the tournament T_{n}, then it follows readily from Lemma 2 that

$$
\begin{aligned}
f(\bar{s}) & \geq\binom{ 4 m}{2}+2\binom{4 m+1}{2}+\binom{3 m-1}{2}+(6 m-2)\binom{3 m}{2} \\
& =n(n-2)(3 n-5) / 24+1,
\end{aligned}
$$

$$
c\left(T_{n}\right)=\binom{n}{3}-f(\bar{s}) \leq n(n-2)(n+1) / 24-1=C(6 m+2)-1 .
$$

Similarly, if $n=6 m+4$ and $D \geq 1$, we find that $c\left(T_{n}\right) \leq C(6 m+4)-1$. So we may assume henceforth that $n=6 m+2$ or $6 m+4$, where $m \geq 1$, and that $D=0$, that is, that T_{n} is a tournament of the form $Q\left(T_{X}, T_{Y}, T_{Z}\right)$ where $X+Y+Z=n-3$. We next dispose of the possibility that $\max \{X, Y, Z\}$ exceeds $4 m$, say.

If n is even - in particular, if $n \equiv 2$ or $4(\bmod 6)-$ then

$$
\sum_{1}^{n-3}\binom{s_{i}}{2} \geq(n-3)\binom{(n-2) / 2}{2}=(n-2)(n-3)(n-4) / 8
$$

Now suppose that $n=6 m+2$, where $m \geq 1$, so that $X+Y+Z=6 m-1$ and $s_{x}+s_{y}+s_{z}=2 n-3=12 m+1$. If $\max \{X, Y, Z\} \geq 4 m+1$, then $\min \left\{s_{x}, s_{y}, s_{z}\right\} \leq 2 m-1$ and

$$
\binom{s_{x}}{2}+\binom{s_{y}}{2}+\binom{s_{z}}{2} \geq\binom{ 2 m-1}{2}+2\binom{5 m+1}{2}=\left(9 n^{2}-32 n+40\right) / 12
$$

appealing to Lemma 2 again. Hence, in this case,

$$
\begin{aligned}
c\left(T_{n}\right) & =\binom{n}{3}-f(\bar{s}) \\
& \leq\binom{ n}{3}-(n-2)(n-3)(n-4) / 8-\left(9 n^{2}-32 n+40\right) / 12 \\
& =\left(n^{3}-3 n^{2}-6 n-8\right) / 24 \\
& =C(6 m+2)-\left(n^{2}+2 n+4\right) / 12<C(6 m+2) .
\end{aligned}
$$

Similarly, we find that if $n=6 m+4$, where $m \geq 1$, and $\max \{X, Y, Z\} \geq$ $4 m+1$, then

$$
c\left(T_{n}\right) \leq\left(n^{3}-3 n^{2}+10 n-8\right) / 24=C(6 m+4)-(n-2)(n-4) / 12<C(6 m+4) .
$$

Thus we may further assume, from now on, that $\max \{X, Y, Z\} \leq 4 m \leq$ $2(n-2) / 3$.

It follows readily from the definition of $Q\left(T_{X}, T_{Y}, T_{Z}\right)$ that

$$
c\left(T_{n}\right)=(X+1)(Y+1)(Z+1)+c\left(T_{X}\right)+c\left(T_{Y}\right)+c\left(T_{Z}\right)
$$

We mentioned earlier, in (2.2), that $c\left(T_{N}\right) \leq \gamma(N)$, where $24 \gamma(N)=N^{3}-N$ or $N^{3}-4 N$ according as N is odd or even, with equality holding if and only
if T_{N} is a regular tournament R_{N}. Consequently,

$$
c\left(T_{n}\right) \leq \Gamma(X, Y, Z)
$$

where

$$
\Gamma(X, Y, Z)=(X+1)(Y+1)(Z+1)+\gamma(X)+\gamma(Y)+\gamma(Z)
$$

with equality holding if and only if T_{n} is of the form $Q\left(R_{X}, R_{Y}, R_{Z}\right)$. So it remains to determine the values of X, Y, and Z, where $X+Y+Z=n-3$, for which the function $\Gamma(X, Y, Z)$ attains its maximum value. We need consider only the cases when $Z \leq Y \leq X \leq 2(n-2) / 3$.

Notice that it follows from the definition of the function $\gamma(N)$ that

$$
\begin{equation*}
\left((N-1)^{2}-1\right) / 8 \leq \gamma(N)-\gamma(N-1) \leq\left(N^{2}-1\right) / 8 \tag{6.3}
\end{equation*}
$$

for $N=1,2, \ldots$, with equality holding on the left or the right according as N is even or odd. Now suppose that $X>Z+1$. Then

$$
\begin{aligned}
\Delta: & =\Gamma(X-1, Y, Z+1)-\Gamma(X, Y, Z) \\
& =(X-Z-1)(Y+1)+\gamma(X-1)-\gamma(X)+\gamma(Z+1)-\gamma(Z) \\
& \geq(X-Z-1)(Y+1)-\left(X^{2}-Z^{2}\right) / 8 \\
& =(X-Z-1)\{(Y+1)-(X+Z+1) / 8\}-Z / 4-1 / 8,
\end{aligned}
$$

where we have used relation (6.3) in the third line.

$$
\text { If } X=Z+2, \text { then }
$$

$$
\begin{aligned}
\Delta & \geq Y+1-(2 Z+3) / 8-Z / 4-1 / 8 \\
& =Y-Z / 2+1 / 2 \geq Z / 2+1 / 2>0
\end{aligned}
$$

Next we combine the inequalities $Z \leq Y, Y \geq(n-3-X) / 2$, and $X \leq 2(n-2) / 3$, and find that

$$
\begin{aligned}
Y+1-(X+Z+1) / 8 & \geq(7 Y+7-X) / 8 \\
& \geq\{7(n-1-X)-2 X\} / 16 \\
& \geq\{7(n-1)-6(n-2)\} / 16=(n+5) / 16
\end{aligned}
$$

Consequently, if $X \geq Z+3$, then

$$
\begin{aligned}
\Delta & \geq(n+5) / 8-Z / 4-1 / 8 \\
& \geq(n+4) / 8-(n-3) / 12=n / 24+3 / 4>0 .
\end{aligned}
$$

Thus, if $X>Z+1$, then $\Gamma(X-1, Y, Z+1)>\Gamma(X, Y, Z)$. This implies that if $n \equiv 2$ or $4(\bmod 6)$ and $\max \{X, Y, Z\} \leq 2(n-2) / 3$, then the maximum value of $\Gamma(X, Y, Z)$ occurs when X, Y, and Z are as nearly equal as possible. It is easy to verify that this maximum value of $\Gamma(X, Y, Z)$ equals $C(n)$ when $n \equiv 2$ or $4(\bmod 6)$ (and, in fact, for all n), so this suffices to complete the proof of the theorem.

Let M_{n} and Q_{n} denote any of the minimal and maximal tournaments considered in Theorems 1 and 2, respectively. We remark in closing that if $n=3$ or $n \geq 5$, then there exists a tournament T_{n} such that $c\left(T_{n}\right)=c\left(M_{n}\right)$ but for which $u\left(T_{n}\right)=3$ whereas $u\left(M_{n}\right)=n$. Furthermore, if $n \geq 18$ (and perhaps for some smaller values also), then there exist tournaments T_{n} such that $c\left(T_{n}\right)=c\left(Q_{n}\right)$ but $u\left(T_{n}\right)=n-3$. whereas $u\left(Q_{n}\right)=3$.

This paper was written while the author was visiting the University of Otago with the assistance of a grant from the Natural Sciences and Engineering Research Council of Canada.

References

[1] J.S. Banks, Sophisticated voting outcomes and agenda control, Soc. Choice Welfare 1 (1985) 295-306.
[2] M.F. Bridgland and K.B. Reid, Stability of kings in tournaments, Progress in Graph Theory (J.A. Bondy and U.S.R. Murty, eds.), Academic Press, Toronto, 1984, 117-128.
[3] M. Burzio and D.C. Demaria, Hamiltonian tournaments with the least number of 3-cycles, J. Graph Th. 14 (1990) 663-672.
[4] M. Carver, Chicken a la king, Discover 9 (1988) 92,96 .
[5] G.W. Cox, The uncovered set and the core, Amer. J. Pol. Sci. 31 (1987) 408-422.
[6] F. Harary, R.Z. Norman, and D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York, 1965.
[7] J. Huang and W. Li, Toppling kings in a tournament by introducing new kings, J. Graph Th. 11 (1987) 7-11.
[8] A.G. Landau, On dominance relations and the structure of animal societies, III. The conditions for a score structure, Bull. Math. Biophys. 15 (1953) 143-148.
[9] S.B. Maurer, The king chicken theorems, Math. Mag. 53 (1980) 67-80.
[10] N.R. Miller, A new solution set for tournaments and majority voting: Further graph-theoretical approaches to the theory of voting, Amer. J. Pol. Sci. 24 (1980) 68-96. Two corrections, Amer. J. Pol. Sci. 27 (1983) 382-385.
[11] J.W. Moon, Solution to problem 463, Math. Mag. 35 (1962) 189.
[12] J.W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.
[13] J.W. Moon, Irreducible tournaments with the minimum number of 3 -cycles, Quaestiones Math. 15 (1992), in press.
[14] H. Moulin, Choosing from a tournament, Soc. Choice Welfare 3 (1986) 271291.
[15] K.B. Reid and L.W. Beineke, Tournaments, Selected Topics in Graph Theory (L.W. Beineke and R.J. Wilson, eds.), Academic Press, London, 1978, 169204.
[16] K.A. Shepsle and B.R. Weingast, Uncovered sets and sophisticated voting outcomes with implications for agenda institutions, Amer. J. Pol. Sci. 28 (1984) 49-74.
[17] D.L. Silverman, Problem 463, Math. Mag. 34 (1961) 425.
[18] K. Wayland, Getting your chickens elected, Cong. Num. 45 (1984) 311-318.

